JP2005009615A - Spline fitting structure of power transmitting member - Google Patents

Spline fitting structure of power transmitting member Download PDF

Info

Publication number
JP2005009615A
JP2005009615A JP2003175952A JP2003175952A JP2005009615A JP 2005009615 A JP2005009615 A JP 2005009615A JP 2003175952 A JP2003175952 A JP 2003175952A JP 2003175952 A JP2003175952 A JP 2003175952A JP 2005009615 A JP2005009615 A JP 2005009615A
Authority
JP
Japan
Prior art keywords
spline
shaft
power transmission
fitting
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003175952A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sakurai
勝弘 櫻井
Akira Nakagawa
亮 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003175952A priority Critical patent/JP2005009615A/en
Publication of JP2005009615A publication Critical patent/JP2005009615A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure the sufficient fatigue strength of a spline while inhibiting the rattling in the circumferential direction of power transmitting members, in a spline fitting structure of the power transmitting members wherein the direction of load torque is variable. <P>SOLUTION: An angle of torsion of which the direction is changed at an intermediate part of a fitting part is applied to a shaft spline 6 of a power transmitting shaft 1, and a maximum value of fitting pressure p<SB>1</SB>is reduced by providing a distribution of the fitting pressure p<SB>1</SB>acting on the shaft spline 6 from a hole spline 7 of the fitting part, with a maximum value, whereby the stress of each spline 6, 7 corresponding to a base side is released regardless of the direction of the load torque T and the lowering of the fatigue strength can be prevented while inhibiting the rattling in the circumferential direction of a constant velocity universal joint with an inner ring 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、動力伝達部材のスプライン嵌合構造に関するものである。
【0002】
【従来の技術】
回転駆動力を伝達する動力伝達部材同士を軸スプラインと孔スプラインとのスプライン嵌合で連結するスプライン嵌合構造では、動力伝達部材同士の円周方向のガタつきを抑制するために、一方の動力伝達部材である動力伝達シャフトの軸スプラインに捩じれ角を付与したものがある(例えば、特許文献1参照。)。
【0003】
特許文献1に記載されたものでは、動力伝達シャフトの軸スプラインの捩じれ角を、トルク伝達方向に見て主負荷トルクの方向と同じ向きに付与することにより、主負荷トルクによる大きな負荷圧力が作用する軸スプラインの根元側で、この負荷圧力と逆向きの嵌合圧力を作用させ、スプライン根元側の応力を緩和するようにしている。
【0004】
すなわち、動力伝達シャフトの軸スプラインに捩じれ角を付与したときの、継手側の孔スプラインから軸スプラインに作用する嵌合圧力は、捩じれ角による軸スプラインのボス部と孔スプラインの穴部との周方向相対変位が最大となる軸スプラインの根元側と先端側の両端部で、互いに逆向きの最大値となる。したがって、軸スプラインの捩じれ角を、トルク伝達方向に見て主負荷トルクの方向と同じ向きに付与することにより、軸スプラインの根元側では負荷圧力と逆向きの嵌合圧力が、先端側では負荷圧力と同じ向きの嵌合圧力が孔スプラインから作用し、スプライン根元側の応力が緩和される。
【0005】
【特許文献1】
実公平6−33220号公報(第2−3頁、第2−3図)
【0006】
【発明が解決しようとする課題】
上述した軸スプラインに捩じれ角を付与した動力伝達部材のスプライン嵌合構造は、特許文献1に記載されたもののように主負荷トルクの方向が決まっているものでは、軸スプラインに捩じれ角を付与する向きを、トルク伝達方向に見た主負荷トルクの方向と同じにすることにより、軸スプラインの根元側の応力を緩和することができる。しかしながら、負荷トルクの方向が一定しない動力伝達部材のスプライン嵌合構造では、逆向きに負荷トルクが負荷されたときに、軸スプラインの根元側に負荷圧力と同じ向きの嵌合圧力が作用する。このため、スプライン根元側に大きな応力が発生して、その疲労強度が低下する問題がある。
【0007】
そこで、この発明の課題は、負荷トルクの方向が変化する動力伝達部材のスプライン嵌合構造であっても、動力伝達部材同士の円周方向のガタつきを抑制した上で、スプラインの疲労強度を十分に確保することである。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、回転駆動力を伝達する動力伝達部材同士を軸スプラインと孔スプラインとのスプライン嵌合で連結し、この軸スプラインと孔スプラインの少なくとも一方に捩じれ角を付与した動力伝達部材のスプライン嵌合構造において、前記スプラインの捩じれ角の向きを、嵌合部の途中の少なくとも1箇所で変化させた構成を採用した。
【0009】
すなわち、軸スプラインと孔スプラインの少なくとも一方に捩じれ角を付与し、その捩じれ角の向きを嵌合部の途中の少なくとも1箇所で変化させることにより、嵌合部における孔スプラインから軸スプラインに作用する嵌合圧力の向きをより細かく変化させて、嵌合圧力の分布に極大値を生じさせ、動力伝達部材同士の円周方向のガタつきを抑制した上で嵌合圧力の最大値を低減して、負荷トルクの方向に関わらず、スプライン根元側に発生する応力を緩和できるようにした。
【0010】
前記スプラインの捩じれ角の向きを嵌合部の途中の1箇所で変化させ、この嵌合部におけるスプライン根元側から前記捩じれ角の向き変化位置までの距離をa、捩じれ角の角度をαとし、スプライン先端側から前記捩じれ角の向き変化位置までの距離をb、捩じれ角の角度をβとしたときに、a×tanα≦b×tanβの関係を満たすようにすることにより、軸スプラインの根元側に作用する嵌合圧力の極大値を先端側の嵌合圧力の極大値以下とし、負荷トルクによる大きな負荷圧力が作用するスプライン根元側の応力をより低減することができる。
【0011】
前記スプライン根元側から捩じれ角の向き変化位置までの距離aと、前記スプライン先端側から捩じれ角の向き変化位置までの距離bとを等しくすることにより、捩じれ角の付与によるスプライン根元側と先端側の両端部での周方向変位を小さくし、これら両端部に作用する嵌合圧力を低減することができる。
【0012】
前記スプライン根元側から捩じれ角の向き変化位置までの捩じれ角の角度αと、前記スプライン先端側から捩じれ角の向き変化位置までの捩じれ角の角度βとを等しくすることにより、捩じれ角の付与によるスプライン根元側と先端側の両端部での周方向変位をバランスよく小さくすることができる。
【0013】
前記軸スプラインは、動力伝達シャフトの軸端部または等速自在継手の外輪ステム軸の軸端部に設けられたものとすることができる。
【0014】
前記孔スプラインは、動力伝達シャフトの軸端部または等速自在継手の内輪に設けられたものとすることができる。
【0015】
【発明の実施の形態】
以下、図1乃至図7に基づき、この発明の実施形態を説明する。図1乃至図3は、第1の実施形態を示す。この動力伝達部材のスプライン嵌合構造は自動車の駆動力伝達機構用のものであり、図1に示すように、動力伝達部材である中空の動力伝達シャフト1の両端部に、アウトボード側で動力伝達部材である等速自在継手2の内輪3を、インボード側で動力伝達部材である等速自在継手4の内輪5を、それぞれスプライン嵌合させたものである。回転駆動力はインボード側からアウトボード側へ伝達され、その負荷トルクの方向は自動車の前進時と後退時とで逆転する。なお、等速自在継手2はボールタイプのもの、等速自在継手4はトリポートタイプのものである。
【0016】
図2は、前記動力伝達シャフト1のアウトボード側のスプライン嵌合構造を示す。動力伝達シャフト1の軸スプライン6には、嵌合部の中央(a=b)で向きが等角度(α=β)で逆向きに変化する捩じれ角が付与されている。したがって、この実施形態では、a×tanα=b×tanβとなっている。軸スプライン6にスプライン嵌合された内輪3の孔スプライン7は、通常のスプラインと同様に、軸方向と平行に形成されている。図示は省略するが、インボード側のスプライン嵌合構造も同様の構成とされている。
【0017】
以下に、図3を参照しながら、前記スプライン嵌合構造に負荷トルクが正逆両方向に負荷される場合について、嵌合部で孔スプライン7から軸スプライン6に作用する嵌合圧力pと負荷圧力pの分布を説明する。図3(a)は、負荷トルクTが軸スプライン6の先端側を見て時計回りに負荷される場合、図3(b)は、反時計回りに負荷される場合である。なお、図中には、捩じれ角の向きを変化させないときの各分布を点線で示す。
【0018】
前記嵌合圧力pは、いずれの場合も、捩じれ角の向きが変化する嵌合部の中央と両端とで互いに逆向きになる分布となり、その逆向きの各極大値は、捩じれ角の向きを変化させないときの各最大値よりも小さくなる。
【0019】
また、前記負荷トルクTによる負荷圧力pは、嵌合圧力pの当たりを反映するとともに軸スプライン6の根元側が大きくなる分布となり、その向きは負荷トルクTの方向と同じになる。したがって、負荷圧力pは、図3(a)の場合は、負荷トルクTの時計回りの方向へ凸型の分布、図3(b)の反時計回りのときは、負荷トルクTの反時計回りの方向へ凹型の分布となる。なお、捩じれ角の向きを変化させないときの負荷圧力pは、負荷トルクTの方向と向きが同じで、いずれの場合も軸スプライン6の根元側で最大となり、先端側に向かって単調に減少する。
【0020】
このため、前記嵌合圧力pと負荷圧力pを組み合わせた組み合わせ圧力p+pは、負荷トルクTが時計回りのときに嵌合部中央で最大となる凸型の分布、反時計回りのときに嵌合部中央で最小となる凹型の分布となる。したがっていずれの場合も、捩じれ角の向きを変化させないときよりも、組み合わせ圧力p+pの最大値が低減され、根元側に対応する軸スプライン6と孔スプライン7の応力を緩和することができる。
【0021】
図4は、第2の実施形態のスプライン嵌合構造を図式的に示す。このスプライン嵌合構造は、基本的な構成は第1の実施形態のものと同じであり、前記嵌合部の中央(a=b)で向きを変化させた軸スプライン6の捩じれ角について、捩じれ角の変化位置よりも根元側の角度αを先端側の角度βよりも小さくし、a×tanα<b×tanβとした点のみが異なる。したがって、この実施形態では、図3に示した嵌合圧力pの分布における軸スプライン6の根元側の極大値が先端側の極大値よりも小さくなり、根元側に対応する各スプライン6、7の応力がより低減される。
【0022】
図5(a)、(b)、(c)は、第3の実施形態のスプライン嵌合構造の例を示す。これらの各例も基本的な構成は第1の実施形態のものと同じであり、前記軸スプライン6の捩じれ角の向きを嵌合部の中央から外れた位置で変化させた点が、第1および第2の実施形態のものと異なる。
【0023】
図5(a)は、捩じれ角の変化位置を軸スプライン6の先端側へ寄せ(a>b)、捩じれ角の根元側の角度αを先端側の角度βよりも小さくして、a×tanα=b×tanβとした例、図5(b)は、同様にa>b、α<βとして、a×tanα<b×tanβとした例、図5(c)は、捩じれ角の変化位置を軸スプライン6の根元側へ寄せ(a<b)、捩じれ角の根元側の角度αと先端側の角度βを等しくして、a×tanα<b×tanβとした例である。
【0024】
図6および図7は、第4の実施形態を示す。この動力伝達部材のスプライン嵌合構造も図1に示した自動車の駆動力伝達機構用のものであり、図6に示すように、第1の実施形態のものとは逆に、動力伝達シャフト1の軸スプライン6は軸方向と平行に形成され、等速自在継手2の内輪3の孔スプライン7に、嵌合部の中央(a=b)で向きが逆向きの等角度(α=β)で変化する捩じれ角が付与されている。これらの捩じれ角の各角度α、βは、図2に示した軸スプライン6の捩じれ角と逆向きで等しい角度とされており、捩じれ角による軸スプライン6のボス部と孔スプライン7の穴部との周方向相対変位は、第1の実施形態のものと同じである。
【0025】
図7(a)、(b)は、前記スプライン嵌合構造に負荷トルクが正逆両方向に負荷される場合について、嵌合部で孔スプライン7から軸スプライン6に作用する嵌合圧力pと負荷圧力pと負荷圧力を図式的に示す。図7(a)は、負荷トルクTが軸スプライン6の先端側を見て時計回りに負荷される場合、図7(b)は、反時計回りに負荷される場合である。上述したように、捩じれ角による軸スプライン6のボス部と孔スプライン7の穴部との周方向相対変位は第1の実施形態のものと同じであるので、いずれの場合も、嵌合圧力p、負荷圧力pおよび組み合わせ圧力p+pは、それぞれ図3(a)、(b)に示したものと同じ分布になっている。
【0026】
上述した各実施形態では、軸スプラインまたは孔スプラインの一方の捩じれ角の向きを嵌合部の1箇所で変化させたが、軸スプラインと孔スプラインの両方の捩じれ角の向きを変化させることもでき、捩じれ角の変化位置を2箇所以上とすることもできる。
【0027】
また、動力伝達部材である動力伝達シャフトや等速自在継手は、実施形態のものに限定されることはなく、動力伝達シャフトは中実のものや、片側のみに継手がスプライン嵌合されるものとしてもよく、軸端部に孔スプラインを設けたものとしてもよい。さらに、本発明に係る動力伝達部材のスプライン嵌合構造は、動力伝達部材同士がスプライン嵌合されるものであればよく、例えば、車輪のハブと等速自在継手の外輪ステム軸とのスプライン嵌合にも採用することができる。
【0028】
【発明の効果】
以上のように、この発明の動力伝達部材のスプライン嵌合構造は、軸スプラインと孔スプラインの少なくとも一方に捩じれ角を付与し、その捩じれ角の向きを嵌合部の途中の少なくとも1箇所で変化させ、嵌合圧力の分布に極大値を生じさせて嵌合圧力の最大値を低減するようにしたので、動力伝達部材同士の円周方向のガタつきを抑制した上で、負荷トルクの方向に関わらず、スプライン根元側に発生する応力を緩和して、軸スプラインや孔スプラインの疲労強度の低下を防止することができる。
【0029】
前記スプラインの捩じれ角の向きを嵌合部の途中の1箇所で変化させ、この嵌合部におけるスプライン根元側から捩じれ角の向き変化位置までの距離をa、捩じれ角の角度をαとし、スプライン先端側から捩じれ角の向き変化位置までの距離をb、捩じれ角の角度をβとしたときに、a×tanα≦b×tanβの関係を満たすようにすることにより、軸スプラインの根元側に作用する嵌合圧力の極大値を先端側の嵌合圧力の極大値以下とし、負荷トルクによる大きな負荷圧力が作用するスプライン根元側の応力をより低減することができる。
【図面の簡単な説明】
【図1】第1の実施形態の動力伝達部材のスプライン嵌合構造を採用した自動車の駆動力伝達機構の部分を示す切欠き縦断面図
【図2】図1のアウトボード側のスプライン嵌合構造を示す切欠き縦断面図
【図3】a、bは、それぞれ図2の嵌合部に作用する嵌合圧力と負荷圧力を説明する模式図
【図4】第2の実施形態の動力伝達部材のスプライン嵌合構造を示す模式図
【図5】a、b、cは、それぞれ第3の実施形態の動力伝達部材のスプライン嵌合構造の例を示す模式図
【図6】第4の実施形態の動力伝達部材のスプライン嵌合構造示す切欠き縦断面図
【図7】a、bは、それぞれ図6の嵌合部に作用する嵌合圧力と負荷圧力を説明する模式図
【符号の説明】
1 動力伝達シャフト
2 等速自在継手
3 内輪
4 等速自在継手
5 内輪
6 軸スプライン
7 孔スプライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spline fitting structure for a power transmission member.
[0002]
[Prior art]
In a spline fitting structure in which power transmission members that transmit rotational driving force are connected by spline fitting of a shaft spline and a hole spline, in order to suppress backlash in the circumferential direction between the power transmission members, There is one in which a twist angle is given to an axial spline of a power transmission shaft that is a transmission member (see, for example, Patent Document 1).
[0003]
In the device described in Patent Document 1, a large load pressure due to the main load torque is applied by applying the twist angle of the shaft spline of the power transmission shaft in the same direction as the direction of the main load torque when viewed in the torque transmission direction. On the base side of the shaft spline to be applied, a fitting pressure opposite to this load pressure is applied to relieve the stress on the spline base side.
[0004]
That is, when a twist angle is given to the shaft spline of the power transmission shaft, the fitting pressure acting on the shaft spline from the hole spline on the joint side is the circumference between the boss portion of the shaft spline and the hole spline due to the twist angle. The maximum value in the opposite direction is obtained at both ends of the base side and the tip side of the shaft spline where the directional relative displacement is maximum. Therefore, by applying the twist angle of the shaft spline in the same direction as the direction of the main load torque when viewed in the torque transmission direction, a fitting pressure opposite to the load pressure is applied to the base side of the shaft spline and the load pressure is applied to the tip side. The fitting pressure in the same direction as the pressure acts from the hole spline, and the stress on the spline root side is relieved.
[0005]
[Patent Document 1]
Japanese Utility Model Publication No. 6-33220 (page 2-3, Fig. 2-3)
[0006]
[Problems to be solved by the invention]
In the spline fitting structure of the power transmission member in which the twist angle is given to the above-described shaft spline, if the direction of the main load torque is determined like the one described in Patent Document 1, the twist angle is given to the shaft spline. By making the direction the same as the direction of the main load torque viewed in the torque transmission direction, the stress on the base side of the shaft spline can be relieved. However, in the spline fitting structure of the power transmission member in which the direction of the load torque is not constant, when the load torque is loaded in the opposite direction, the fitting pressure in the same direction as the load pressure acts on the base side of the shaft spline. For this reason, a big stress generate | occur | produces in the spline root side, and there exists a problem which the fatigue strength falls.
[0007]
Therefore, the problem of the present invention is to suppress the backlash in the circumferential direction between the power transmission members, even if the spline fitting structure of the power transmission member in which the direction of the load torque is changed. It is to secure enough.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention connects power transmission members for transmitting rotational driving force by spline fitting of a shaft spline and a hole spline, and a twist angle with at least one of the shaft spline and the hole spline. In the spline fitting structure of the power transmission member provided with the above, a configuration is adopted in which the direction of the twist angle of the spline is changed at at least one place in the middle of the fitting portion.
[0009]
That is, by imparting a twist angle to at least one of the shaft spline and the hole spline and changing the direction of the twist angle at at least one place in the middle of the fitting portion, the hole spline in the fitting portion acts on the shaft spline. The direction of the mating pressure is changed more finely, the maximum value is generated in the distribution of the mating pressure, the backlash in the circumferential direction between the power transmission members is suppressed, and the maximum value of the mating pressure is reduced. Regardless of the direction of load torque, the stress generated on the spline root side can be relaxed.
[0010]
The direction of the twist angle of the spline is changed at one place in the middle of the fitting portion, the distance from the spline root side to the direction of the twist angle change position in the fitting portion is a, the angle of the twist angle is α, By satisfying the relationship of a × tan α ≦ b × tan β, where b is the distance from the tip end side of the spline to the direction where the twist angle changes, and β is the twist angle, the base side of the shaft spline The maximum value of the fitting pressure acting on the tip can be made equal to or less than the maximum value of the fitting pressure on the tip side, and the stress on the spline root side on which a large load pressure due to the load torque acts can be further reduced.
[0011]
By making the distance a from the spline root side to the torsion angle direction change position equal to the distance b from the spline tip side to the torsion angle direction change position, the spline root side and the tip side by applying the torsion angle It is possible to reduce the circumferential displacement at both ends, and to reduce the fitting pressure acting on these both ends.
[0012]
By applying the twist angle by equalizing the twist angle α from the spline root side to the twist angle direction change position and the twist angle β from the spline tip side to the twist angle direction change position. The circumferential displacement at both ends of the spline root side and the tip side can be reduced in a balanced manner.
[0013]
The shaft spline may be provided at the shaft end of the power transmission shaft or the shaft end of the outer ring stem shaft of the constant velocity universal joint.
[0014]
The hole spline may be provided at the shaft end of the power transmission shaft or the inner ring of the constant velocity universal joint.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3 show a first embodiment. The spline fitting structure of the power transmission member is for a driving force transmission mechanism of an automobile. As shown in FIG. 1, the power transmission member has a power transmission member on both ends of a hollow power transmission shaft 1 on the outboard side. The inner ring 3 of the constant velocity universal joint 2 that is a transmission member is spline-fitted with the inner ring 5 of the constant velocity universal joint 4 that is a power transmission member on the inboard side. The rotational driving force is transmitted from the inboard side to the outboard side, and the direction of the load torque is reversed between when the automobile is moving forward and when the vehicle is moving backward. The constant velocity universal joint 2 is a ball type, and the constant velocity universal joint 4 is a tripod type.
[0016]
FIG. 2 shows a spline fitting structure on the outboard side of the power transmission shaft 1. The shaft spline 6 of the power transmission shaft 1 is provided with a twisting angle in which the direction changes in the opposite direction at the same angle (α = β) at the center (a = b) of the fitting portion. Therefore, in this embodiment, a × tan α = b × tan β. The hole spline 7 of the inner ring 3 that is spline-fitted to the shaft spline 6 is formed in parallel to the axial direction in the same manner as a normal spline. Although not shown, the spline fitting structure on the inboard side has the same configuration.
[0017]
Below, with reference to FIG. 3, the spline case where fitting structure to the load torque is loaded in both forward and backward directions, the fitting pressure p 1 and the load acting from the hole spline 7 in the axial splines 6 in the fitting portion illustrating the distribution of the pressure p 2. FIG. 3A shows a case where the load torque T is loaded clockwise as viewed from the tip end side of the shaft spline 6, and FIG. 3B shows a case where the load torque T is loaded counterclockwise. In the figure, each distribution when the direction of the twist angle is not changed is indicated by a dotted line.
[0018]
In any case, the fitting pressure p 1 has a distribution in which the center and both ends of the fitting portion in which the direction of the twist angle changes are opposite to each other, and each maximum value in the opposite direction is the direction of the twist angle. It becomes smaller than each maximum value when it is not changed.
[0019]
The load pressure p 2 by the load torque T becomes a root side increases the distribution of axial splines 6 with reflect per mating pressure p 1, its direction is the same as the direction of the load torque T. Therefore, the load pressure p 2, the case of FIG. 3 (a), the distribution of the convex clockwise direction of the load torque T, when the counterclockwise in FIG. 3 (b), counterclockwise load torque T The distribution is concave in the surrounding direction. The load pressure p 2 at which does not change the orientation of the twist angle is, the direction and orientation of the load torque T is equal maximum at the root side of the shaft splines 6 either case, monotonically decreases toward the distal end side To do.
[0020]
Therefore, the fitting pressure p 1 in combination pressure p 1 + p 2 which combines the load pressure p 2 is convex to the load torque T becomes maximum at the fitting portion center when clockwise distribution, anticlockwise In this case, the concave distribution is minimized at the center of the fitting portion. Therefore, in any case, the maximum value of the combined pressure p 1 + p 2 is reduced as compared with the case where the direction of the twist angle is not changed, and the stress of the shaft spline 6 and the hole spline 7 corresponding to the root side can be relaxed. .
[0021]
FIG. 4 schematically shows the spline fitting structure of the second embodiment. This spline fitting structure is basically the same as that of the first embodiment, and the twisting angle of the shaft spline 6 whose direction is changed at the center (a = b) of the fitting portion is twisted. The only difference is that the angle α on the root side with respect to the angle change position is made smaller than the angle β on the tip side, and a × tan α <b × tan β. Therefore, in this embodiment, the maximum value on the root side of the shaft spline 6 in the distribution of the fitting pressure p 1 shown in FIG. 3 is smaller than the maximum value on the tip side, and each spline 6, 7 corresponding to the root side. The stress is further reduced.
[0022]
5A, 5B, and 5C show examples of the spline fitting structure of the third embodiment. The basic configuration of each of these examples is the same as that of the first embodiment, and the first embodiment is that the direction of the twist angle of the shaft spline 6 is changed at a position away from the center of the fitting portion. And different from that of the second embodiment.
[0023]
In FIG. 5A, the change position of the twist angle is moved toward the tip end side of the shaft spline 6 (a> b), the angle α on the root side of the twist angle is made smaller than the angle β on the tip side, and a × tan α = B × tan β, FIG. 5B similarly shows an example where a> b and α <β, and a × tan α <b × tan β, and FIG. 5C shows the change position of the twist angle. In this example, the shaft spline 6 is moved closer to the base side (a <b), and the angle α on the base side of the twist angle and the angle β on the tip side are made equal to satisfy a × tan α <b × tan β.
[0024]
6 and 7 show a fourth embodiment. The spline fitting structure of the power transmission member is also for the driving force transmission mechanism of the automobile shown in FIG. 1, and, as shown in FIG. 6, contrary to the first embodiment, the power transmission shaft 1 The shaft spline 6 is formed in parallel with the axial direction, and the hole spline 7 of the inner ring 3 of the constant velocity universal joint 2 is equiangular (α = β) in the opposite direction at the center (a = b) of the fitting portion. The torsion angle that changes with is given. These torsion angles α and β are equal to each other in the opposite direction to the torsion angle of the shaft spline 6 shown in FIG. 2, and the boss portion of the shaft spline 6 and the hole portion of the hole spline 7 due to the torsion angle. Is the same as that of the first embodiment.
[0025]
FIGS. 7A and 7B show the fitting pressure p 1 acting on the shaft spline 6 from the hole spline 7 at the fitting portion when load torque is applied to the spline fitting structure in both forward and reverse directions. load pressure p 2 and the load pressure schematically illustrates. FIG. 7A shows a case where the load torque T is loaded clockwise as viewed from the tip end side of the shaft spline 6, and FIG. 7B shows a case where the load torque T is loaded counterclockwise. As described above, the circumferential relative displacement between the boss portion of the shaft spline 6 and the hole portion of the hole spline 7 due to the twist angle is the same as that of the first embodiment. 1 , the load pressure p 2 and the combined pressure p 1 + p 2 have the same distribution as those shown in FIGS. 3 (a) and 3 (b), respectively.
[0026]
In each of the above-described embodiments, the direction of the twist angle of one of the shaft spline or the hole spline is changed at one place of the fitting portion, but the direction of the twist angle of both the shaft spline and the hole spline can be changed. The twist angle change position can be two or more.
[0027]
Further, the power transmission shaft and constant velocity universal joint which are power transmission members are not limited to those of the embodiment, and the power transmission shaft is solid or the joint is spline-fitted only on one side. It is good also as what provided the hole spline in the axial end part. Furthermore, the spline fitting structure of the power transmission member according to the present invention is not limited as long as the power transmission members are spline-fitted together. For example, the spline fitting between the wheel hub and the outer ring stem shaft of the constant velocity universal joint is possible. Can also be adopted.
[0028]
【The invention's effect】
As described above, the spline fitting structure of the power transmission member according to the present invention imparts a twist angle to at least one of the shaft spline and the hole spline, and changes the direction of the twist angle in at least one place in the middle of the fitting portion. Since the maximum value of the fitting pressure is reduced by generating a maximum value in the fitting pressure distribution, the backlash in the circumferential direction between the power transmission members is suppressed and the direction of the load torque is reduced. Regardless, the stress generated on the spline root side can be relieved to prevent the fatigue strength of the shaft spline and hole spline from being lowered.
[0029]
The direction of the torsion angle of the spline is changed at one place in the middle of the fitting portion, and the distance from the spline root side to the change direction of the torsion angle in the fitting portion is a, and the angle of the torsion angle is α. Acts on the base side of the shaft spline by satisfying the relationship of a × tan α ≦ b × tan β, where b is the distance from the tip side to the direction change position of the twist angle, and β is the twist angle. The maximum value of the fitting pressure to be applied is set to be equal to or less than the maximum value of the fitting pressure on the tip side, and the stress on the spline root side on which a large load pressure due to the load torque acts can be further reduced.
[Brief description of the drawings]
FIG. 1 is a cutaway longitudinal sectional view showing a part of a driving force transmission mechanism of an automobile adopting a spline fitting structure of a power transmission member of a first embodiment. FIG. 2 is a spline fitting on the outboard side of FIG. Cutaway longitudinal sectional view showing the structure [Fig. 3] a and b are schematic diagrams for explaining the fitting pressure and the load pressure acting on the fitting portion in Fig. 2, respectively. [Fig. 4] Power transmission of the second embodiment Fig. 5 is a schematic diagram showing a spline fitting structure of a member. Fig. 5 is a schematic diagram showing an example of a spline fitting structure of a power transmission member of the third embodiment. Fig. 6 is a fourth embodiment. Fig. 7 is a cutaway longitudinal sectional view showing the spline fitting structure of the power transmission member of the embodiment. Figs. 7A and 7B are schematic diagrams for explaining the fitting pressure and the load pressure acting on the fitting portion of Fig. 6, respectively. ]
1 Power transmission shaft 2 Constant velocity universal joint 3 Inner ring 4 Constant velocity universal joint 5 Inner ring 6 Shaft spline 7 Hole spline

Claims (6)

回転駆動力を伝達する動力伝達部材同士を軸スプラインと孔スプラインとのスプライン嵌合で連結し、この軸スプラインと孔スプラインの少なくとも一方に捩じれ角を付与した動力伝達部材のスプライン嵌合構造において、前記スプラインの捩じれ角の向きを、嵌合部の途中の少なくとも1箇所で変化させたことを特徴とする動力伝達部材のスプライン嵌合構造。In the spline fitting structure of a power transmission member in which power transmission members that transmit rotational driving force are connected by spline fitting of a shaft spline and a hole spline, and a twist angle is given to at least one of the shaft spline and the hole spline. A spline fitting structure for a power transmission member, wherein the direction of the twist angle of the spline is changed at at least one place in the middle of the fitting portion. 前記スプラインの捩じれ角の向きを嵌合部の途中の1箇所で変化させ、この嵌合部におけるスプライン根元側から前記捩じれ角の向き変化位置までの距離をa、捩じれ角の角度をαとし、スプライン先端側から前記捩じれ角の向き変化位置までの距離をb、捩じれ角の角度をβとしたときに、a×tanα≦b×tanβの関係を満たすようにした請求項1に記載の動力伝達部材のスプライン嵌合構造。The direction of the twist angle of the spline is changed at one position in the middle of the fitting portion, and the distance from the spline root side to the direction of change of the twist angle in the fitting portion is a, and the angle of the twist angle is α, 2. The power transmission according to claim 1, wherein the relationship of a × tan α ≦ b × tan β is satisfied, where b is the distance from the spline tip side to the twisting angle direction change position, and β is the twist angle. Spline fitting structure for members. 前記スプライン根元側から捩じれ角の向き変化位置までの距離aと、前記スプライン先端側から捩じれ角の向き変化位置までの距離bとを等しくした請求項2に記載の動力伝達部材のスプライン嵌合構造。3. The spline fitting structure for a power transmission member according to claim 2, wherein a distance a from the spline root side to a twist angle direction change position is equal to a distance b from the spline tip side to a twist angle direction change position. . 前記スプライン根元側から捩じれ角の向き変化位置までの捩じれ角の角度αと、前記スプライン先端側から捩じれ角の向き変化位置までの捩じれ角の角度βとを等しくした請求項3に記載の動力伝達部材のスプライン嵌合構造。The power transmission according to claim 3, wherein an angle α of a torsion angle from the spline root side to a torsion angle direction change position is equal to an torsion angle angle β from the spline tip side to a torsion angle direction change position. Spline fitting structure for members. 前記軸スプラインが、動力伝達シャフトの軸端部または等速自在継手の外輪ステム軸の軸端部に設けられたものである請求項1乃至4のいずれかに記載の動力伝達部材のスプライン嵌合構造。The spline fitting of a power transmission member according to any one of claims 1 to 4, wherein the shaft spline is provided at a shaft end of a power transmission shaft or a shaft end of an outer ring stem shaft of a constant velocity universal joint. Construction. 前記孔スプラインが、動力伝達シャフトの軸端部または等速自在継手の内輪に設けられたものである請求項1乃至5のいずれかに記載の動力伝達部材のスプライン嵌合構造。The spline fitting structure for a power transmission member according to any one of claims 1 to 5, wherein the hole spline is provided at a shaft end of a power transmission shaft or an inner ring of a constant velocity universal joint.
JP2003175952A 2003-06-20 2003-06-20 Spline fitting structure of power transmitting member Withdrawn JP2005009615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175952A JP2005009615A (en) 2003-06-20 2003-06-20 Spline fitting structure of power transmitting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175952A JP2005009615A (en) 2003-06-20 2003-06-20 Spline fitting structure of power transmitting member

Publications (1)

Publication Number Publication Date
JP2005009615A true JP2005009615A (en) 2005-01-13

Family

ID=34098956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175952A Withdrawn JP2005009615A (en) 2003-06-20 2003-06-20 Spline fitting structure of power transmitting member

Country Status (1)

Country Link
JP (1) JP2005009615A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127192A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Spline
WO2007145019A1 (en) * 2006-06-16 2007-12-21 Ntn Corporation Constant velocity universal joint
JP2007333154A (en) * 2006-06-16 2007-12-27 Ntn Corp Constant-velocity universal joint
JP2007333155A (en) * 2006-06-16 2007-12-27 Ntn Corp Constant-velocity universal joint
US10247247B2 (en) 2015-04-02 2019-04-02 Ihi Corporation Spline connection structure and spline shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127192A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Spline
WO2007145019A1 (en) * 2006-06-16 2007-12-21 Ntn Corporation Constant velocity universal joint
JP2007333154A (en) * 2006-06-16 2007-12-27 Ntn Corp Constant-velocity universal joint
JP2007333155A (en) * 2006-06-16 2007-12-27 Ntn Corp Constant-velocity universal joint
US8128504B2 (en) 2006-06-16 2012-03-06 Ntn Corporation Constant velocity universal joint
US10247247B2 (en) 2015-04-02 2019-04-02 Ihi Corporation Spline connection structure and spline shaft

Similar Documents

Publication Publication Date Title
US7507161B2 (en) Propshaft with constant velocity joint attachment
EP0896922B1 (en) Helicopter transmission
US20090215543A1 (en) Slip yoke with internal splines having permanent coating and related method
JPH08511850A (en) Variable length shaft assembly
GB2339461A (en) Propeller shaft assembly
US9969423B2 (en) Motor driven power steering system
JP4541203B2 (en) Tripod type constant velocity universal joint
CN101287920B (en) Direct torque stream connection with optimized ratio in attaching method
JP2005009615A (en) Spline fitting structure of power transmitting member
JP2006283828A (en) Tripod type constant velocity universal joint
JP2005008121A (en) Shaft joint device for vehicle steering device
WO2004113150A1 (en) Motor vehicle steering device
US8323116B2 (en) Universal joint
JP2005096541A (en) Intermediate shaft device for vehicular steering device
JP4619662B2 (en) Fixed constant velocity universal joint for steering devices
JP2003306152A (en) Intermediate shaft for vehicle steering
JPH11278075A (en) Connecting structure of drive shaft
JP4712304B2 (en) Fixed constant velocity universal joint
JP4133415B2 (en) Fixed type constant velocity universal joint
JP4846216B2 (en) Power transmission structure
JP4115320B2 (en) Power transmission shaft
JP4579112B2 (en) Sliding type constant velocity universal joint and manufacturing method thereof
JP2007247771A (en) Torque-transmitting mechanism
JP2008196591A (en) Fixed type constant velocity universal joint and its manufacturing method
JP2006298297A (en) Constant velocity universal joint for steering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070702