JP5349756B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP5349756B2
JP5349756B2 JP2007008366A JP2007008366A JP5349756B2 JP 5349756 B2 JP5349756 B2 JP 5349756B2 JP 2007008366 A JP2007008366 A JP 2007008366A JP 2007008366 A JP2007008366 A JP 2007008366A JP 5349756 B2 JP5349756 B2 JP 5349756B2
Authority
JP
Japan
Prior art keywords
convex
joint
shaft
constant velocity
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007008366A
Other languages
Japanese (ja)
Other versions
JP2008175277A (en
Inventor
亮 中川
祐一 淺野
浩志 河村
清茂 山内
仁博 小澤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to JP2007008366A priority Critical patent/JP5349756B2/en
Priority claimed from PCT/JP2008/050510 external-priority patent/WO2008088007A1/en
Publication of JP2008175277A publication Critical patent/JP2008175277A/en
Application granted granted Critical
Publication of JP5349756B2 publication Critical patent/JP5349756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention provides a constant velocity universal joint having a recess-projection engagement configuration in which backlash at a shaft connecting region does not easily occur, and an inner joint component and a shaft can be firmly connected. In the constant velocity universal joint of the present invention, the inner joint component and the shaft 5 fitted into an axis hole 22 of the inner joint component are connected by the recess-projection engagement configuration. Engagement contacting regions 38 of projections 35 and recesses 36 corresponding thereto are in close contact over the whole region.

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、例えばFF車や4WD車、FR車などで使用されるドライブシャフトやプロペラシャフトに組み込まれる固定式あるいは摺動式等速自在継手に関し、特に内側継手部材とシャフトとを連結するための凹凸嵌合構造を備えた等速自在継手に関する。   The present invention relates to a fixed or sliding constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and is incorporated in a drive shaft or a propeller shaft used in, for example, an FF vehicle, a 4WD vehicle, or an FR vehicle. In particular, the present invention relates to a constant velocity universal joint having an uneven fitting structure for connecting an inner joint member and a shaft.
例えば、自動車のドライブシャフトは、シャフトの一方の軸端に摺動式等速自在継手を装着し、他方の軸端に固定式等速自在継手を装着した構造を具備する。   For example, a drive shaft of an automobile has a structure in which a sliding constant velocity universal joint is attached to one shaft end of the shaft and a fixed constant velocity universal joint is attached to the other shaft end.
このドライブシャフトの連結用継手として使用されている摺動式等速自在継手の一つであるトリポード型等速自在継手(TJ)は、内周面に三本のトラック溝が軸方向に形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材(外輪)と、半径方向に突出した三本の脚軸を有する内側継手部材(トリポード部材)と、その内側継手部材の脚軸と外側継手部材のローラ案内面との間に回転自在に収容された転動体(ローラ)とを主要な部材として構成される。   A tripod type constant velocity universal joint (TJ), which is one of the sliding type constant velocity universal joints used as a coupling for drive shafts, has three track grooves formed in the axial direction on the inner peripheral surface. The outer joint member (outer ring) having an axial roller guide surface on each side of each track groove, the inner joint member (tripod member) having three leg shafts projecting in the radial direction, and the inner joint member A rolling element (roller) rotatably accommodated between the leg shaft and the roller guide surface of the outer joint member is configured as a main member.
また、固定式等速自在継手の一つであるバーフィールド型等速自在継手(BJ)は、内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って形成した外側継手部材(外輪)と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材(内輪)と、外側継手部材のトラック溝と内側継手部材のトラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを主要な部材として構成される。   In addition, a Barfield type constant velocity universal joint (BJ), which is one of fixed type constant velocity universal joints, is an outer joint member in which a plurality of track grooves are formed along the axial direction at equal intervals in the circumferential direction on the inner spherical surface ( An outer ring, an inner joint member (inner ring) formed on the outer spherical surface along the axial direction with a plurality of track grooves paired with the track grooves of the outer joint member, and a track groove of the outer joint member; The main members are a plurality of balls that transmit torque by being interposed between the track grooves of the inner joint member, and a cage that is interposed between the inner spherical surface of the outer joint member and the outer spherical surface of the inner joint member. Configured as
これら摺動式等速自在継手あるいは固定式等速自在継手とシャフトとの連結構造には、内側継手部材の軸孔内径にシャフトの軸端を圧入する構造が採用されている。この内側継手部材の軸孔内径に軸方向に沿う凹凸として雌スプラインを形成すると共に、シャフトの軸端外径にも雄スプラインを形成する。   A structure in which the shaft end of the shaft is press-fitted into the inner diameter of the shaft hole of the inner joint member is employed as a connection structure between the sliding constant velocity universal joint or the fixed constant velocity universal joint and the shaft. A female spline is formed as irregularities along the axial direction on the inner diameter of the shaft hole of the inner joint member, and a male spline is also formed on the outer diameter of the shaft end of the shaft.
これら雌スプラインが形成された内側継手部材の軸孔内径と、雄スプラインが形成されたシャフトの軸端外径には、例えば高周波焼入れあるいは浸炭焼入れにより硬化処理が施されて硬化層が形成されている。この硬化層の形成により内側継手部材の軸孔内径およびシャフトの軸端外径の強度を確保するようにしている。   The inner hole of the inner joint member in which the female spline is formed and the outer diameter of the shaft end of the shaft in which the male spline is formed are subjected to a hardening process by, for example, induction hardening or carburizing hardening to form a hardened layer. Yes. By forming this hardened layer, the strength of the inner diameter of the shaft hole of the inner joint member and the outer diameter of the shaft end of the shaft is ensured.
シャフトの軸端外径を内側継手部材の軸孔内径に圧入して雄スプラインと雌スプラインを噛み合わせることにより、シャフトを内側継手部材に嵌合させている。このシャフトと内側継手部材のスプライン嵌合により両者間でトルクを伝達可能としている(例えば、特許文献1の図2参照)。   The shaft is fitted to the inner joint member by press-fitting the shaft end outer diameter of the shaft into the shaft hole inner diameter of the inner joint member and meshing the male spline and the female spline. Torque can be transmitted between the shaft and the inner joint member by spline fitting (see, for example, FIG. 2 of Patent Document 1).
また、このような内側継手部材とシャフトとの連結構造では、シャフトの軸端部に取り付けられた断面丸形の止め輪を、内側継手部材に設けられた係止面に当接させることにより抜け止めとしたものがある(例えば、特許文献2参照)。
特開2003−314580号公報 特開平8−68426号公報
Further, in such a connection structure of the inner joint member and the shaft, the retaining ring having a round cross section attached to the shaft end portion of the shaft comes into contact with a locking surface provided on the inner joint member. Some have been stopped (see, for example, Patent Document 2).
JP 2003-314580 A JP-A-8-68426
ところで、前述した等速自在継手の内側継手部材とシャフトとの嵌合構造では、内側継手部材の軸孔内径に硬化処理された雌スプラインを形成し、シャフトの軸端外径に硬化処理された雄スプラインを形成することにより、シャフトの軸端外径を内側継手部材の軸孔内径に圧入してスプライン嵌合させるようにしている。   By the way, in the fitting structure of the inner joint member of the constant velocity universal joint and the shaft, a female spline that has been hardened is formed on the inner diameter of the shaft hole of the inner joint member, and the outer end diameter of the shaft is hardened. By forming the male spline, the shaft end outer diameter of the shaft is press-fitted into the shaft hole inner diameter of the inner joint member to be fitted with the spline.
しかしながら、これら内側継手部材とシャフトとの嵌合構造は、硬化処理された雌スプラインと硬化処理された雄スプラインとによる凹凸嵌合であるため、ガタが発生し易いという問題があり、このようなガタがあると、回転トルクを確実に伝達することが困難になると共に、トルクを断続的に付加した際、スプラインの歯面が擦れ合い、スプラインの疲労強度が低下するおそれがあった。しかも、ガタによって異音が発生するおそれがあった。   However, since the fitting structure between the inner joint member and the shaft is a concave-convex fitting between the hardened female spline and the hardened male spline, there is a problem that rattling is likely to occur. When there is backlash, it is difficult to reliably transmit the rotational torque, and when the torque is intermittently applied, the spline tooth surfaces rub against each other, which may reduce the fatigue strength of the spline. In addition, there is a possibility that abnormal noise may occur due to the play.
また、内側継手部材とシャフトの連結構造に止め輪による抜け止めを設けた場合、シャフトの止め輪嵌合用の溝加工および内側継手部材の係止面加工を必要として、工数が増加すると共に、止め輪が必要なことから、部品点数も多くなり、製品のコストアップを招いていた。   In addition, if a retaining ring is provided in the connecting structure of the inner joint member and the shaft, a groove processing for fitting the retaining ring of the shaft and a locking surface processing of the inner joint member are required, which increases the number of steps and increases the stoppage. Since a ring is necessary, the number of parts is increased, leading to an increase in product cost.
そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、シャフト連結部位のガタを発生しにくくし、内側継手部材とシャフトを堅固に連結し得る凹凸嵌合構造を有する等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide a concave-convex fitting that makes it difficult to generate backlash at the shaft connecting portion and can firmly connect the inner joint member and the shaft. An object of the present invention is to provide a constant velocity universal joint having a structure.
本発明の車輪用軸受装置は、外側継手部材と、外側継手部材に内挿される内側継手部材と、外側継手部材と内側継手部材との間に介在してトルク伝達を行なうトルク伝達部材とを備えた等速自在継手において、シャフトの外径面と内側継手部材の軸孔の内径面とのどちらか一方に、圧入始端側の端面を軸方向に対して直交する面にした凸部を設け、この凸部を軸方向に沿って他方に圧入し、圧入した凸部で他方を切削することで他方に前記凸部との嵌合接触部位全域が密着する凹部を形成して、凸部および凹部からなる凹凸嵌合構造で内側継手部材と内側継手部材の軸孔に嵌挿されるシャフトとを連結し、凸部と凹部の前記嵌合接触部位全域での密着が凸部を他方に圧入することで完成していることを特徴とするものである。 The wheel bearing device of the present invention includes an outer joint member, an inner joint member inserted into the outer joint member, and a torque transmission member that transmits torque by being interposed between the outer joint member and the inner joint member. In the constant velocity universal joint, on either one of the outer diameter surface of the shaft and the inner diameter surface of the shaft hole of the inner joint member, a convex portion having an end surface on the press-fitting start end side as a surface orthogonal to the axial direction is provided. This convex part is press-fitted in the other along the axial direction, and the other part is cut by the press-fitted convex part to form a concave part in which the entire contact area with the convex part is in close contact with the convex part and the concave part. The inner joint member and the shaft that is inserted into the shaft hole of the inner joint member are connected by the concave-convex fitting structure, and the close contact of the convex portion and the concave portion in the entire fitting contact portion presses the convex portion into the other. It is characterized by having been completed.
本発明の等速自在継手によれば、凸部とその凸部に嵌合する相手部材の凹部との嵌合接触部位全体が密着しているので、この嵌合構造において、径方向および円周方向においてガタが生じる隙間が形成されない。これは、相手側の凹部形成面に凸部の形状を転写する際に、凸部が相手側の凹部形成面に食い込んでいくことによって、軸孔が僅かに拡径した状態となって凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、軸孔が元の径に戻ろうとして縮径することによる。 According to the constant velocity universal joint of the present invention, since the entire fitting contact portion between the convex portion and the concave portion of the mating member fitted to the convex portion is in close contact, in this fitting structure, the radial direction and the circumference There is no gap in which play occurs in the direction. This is because when the shape of the convex portion is transferred to the concave portion forming surface on the counterpart side, the convex portion bites into the concave portion forming surface on the counterpart side, so that the shaft hole is slightly expanded in diameter. This is because the axial hole is allowed to return to its original diameter when the axial movement is allowed and the axial movement stops.
等速自在継手としては、トルク伝達部材にボールを用いたものであっても、円周方向に向き合ったローラ案内面を有する3つのトラック溝が形成された外側継手部材と、半径方向に突出した3本の脚軸を備えた内側継手部材としてのトリポード部材と、前記脚軸に回転自在に外嵌するとともに前記トラック溝に挿入されたトルク伝達部材としてのローラとを備え、前記ローラが前記ローラ案内面に沿って外側継手部材の軸方向に移動可能としたもの(トリポード型等速自在継手)であってもよい。また、トルク伝達部材にボールを用いたものは、バーフィールド型等速自在継手(BJ)やアンダーカットフリー型等速自在継手(UJ)等の固定式であっても、さらに、クロスグルーブ型等速自在継手(LJ)やダブルオフセット型等速自在継手(DOJ)等の摺動式であってもよい。すなわち、バーフィールド型等速自在継手(BJ)、アンダーカットフリー型等速自在継手(UJ)、及びダブルオフセット型等速自在継手(DOJ)は、内径面に軸方向に延びる複数の案内溝を形成した外側継手部材としての外輪と、外径面に軸方向に延びる複数の案内溝を形成した内側部材としての内輪と、前記外輪の案内溝と前記内輪の案内溝とが協働して形成されるボールトラックに配されたトルク伝達ボールと、前記トルク伝達ボールを保持するポケットを有する保持器とを備えたものであり、クロスグルーブ型等速自在継手(LJ)は、軸線に対して周方向の一方にねじれた案内溝と周方向に他方にねじれた案内溝とを内周面に交互に設けた外側継手部材としての外輪と、外輪の各案内溝と対をなしてボールトラックを形成し、対をなす外輪の案内溝を外周面に交互に設けた内側部材としての内輪と、トルク伝達ボールを保持する保持器とを備えたものである。   As a constant velocity universal joint, even if a ball is used as a torque transmission member, an outer joint member formed with three track grooves having roller guide surfaces facing in the circumferential direction and a radial projection protruded. A tripod member as an inner joint member having three leg shafts, and a roller as a torque transmission member rotatably fitted on the leg shaft and inserted into the track groove, the roller being the roller It may be one that can move in the axial direction of the outer joint member along the guide surface (tripod type constant velocity universal joint). Also, a ball that uses a torque transmission member may be a fixed type such as a Barfield type constant velocity universal joint (BJ) or an undercut free type constant velocity universal joint (UJ), or a cross groove type, etc. A sliding type such as a quick universal joint (LJ) or a double offset type constant velocity universal joint (DOJ) may be used. That is, the Barfield type constant velocity universal joint (BJ), the undercut free type constant velocity universal joint (UJ), and the double offset type constant velocity universal joint (DOJ) have a plurality of guide grooves extending in the axial direction on the inner diameter surface. The outer ring as the outer joint member formed, the inner ring as the inner member formed with a plurality of axially extending guide grooves on the outer diameter surface, the guide groove of the outer ring and the guide groove of the inner ring are formed in cooperation. And a cage having a pocket for holding the torque transmission ball. The cross groove type constant velocity universal joint (LJ) has a circumferential axis with respect to the axis. An outer ring as an outer joint member in which guide grooves twisted in one of the directions and guide grooves twisted in the other in the circumferential direction are alternately provided on the inner peripheral surface, and each guide groove of the outer ring is paired to form a ball track And An inner ring of the inner member provided alternately on the outer peripheral surface of the guide groove of the outer ring forming a, in which a cage for holding the torque transmitting balls.
シャフトに凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を内側継手部材の軸孔内径部よりも高くして、前記シャフトを内側継手部材の軸孔に凸部の軸方向端部側から圧入することによって、この凸部にて内側継手部材の軸孔内径面に凸部に密着嵌合する凹部を形成してもよい。また、内側継手部材の軸孔の内径面に凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をシャフトの外径部よりも高くして、前記内側継手部材側の凸部をその軸方向端部側からシャフトに圧入することによって、この凸部にてシャフトの外径面に凸部に密着嵌合する凹部を形成してもよい。   The shaft is provided with a convex portion, and at least the hardness of the axial end portion of the convex portion is made higher than the inner diameter portion of the inner joint member so that the shaft extends into the axial hole of the inner joint member. By press-fitting from the part side, a concave part that closely fits to the convex part may be formed on the inner surface of the shaft hole of the inner joint member. Further, a convex portion is provided on the inner diameter surface of the shaft hole of the inner joint member, and at least the hardness of the end portion in the axial direction of the convex portion is made higher than the outer diameter portion of the shaft so that the convex portion on the inner joint member side is By press-fitting into the shaft from the axial end portion side, a concave portion that closely fits to the convex portion may be formed on the outer diameter surface of the shaft at the convex portion.
前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部をシャフトに設けるのが好ましい。この際、圧入による凹部形成によって生じるはみ出し部を収納するポケット部をシャフトに設けたり、ポケット部を内側継手部材の軸孔の内径面に設けるようにすることができる。ここで、はみ出し部は、凸部の凹部嵌合部位が嵌入(嵌合)する凹部の容量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。   It is preferable that the shaft is provided with a pocket portion that accommodates the protruding portion generated by forming the concave portion by the press-fitting. At this time, it is possible to provide the shaft with a pocket portion that accommodates the protruding portion that is generated by forming the concave portion by press fitting, or to provide the pocket portion on the inner diameter surface of the shaft hole of the inner joint member. Here, the protruding portion is the material of the capacity of the concave portion into which the concave portion fitting portion of the convex portion is fitted (fitted), and is extruded from the formed concave portion, or cut to form the concave portion. It is comprised from what was extruded, what was extruded, and what was cut.
また、前記はみ出し部を収納するポケット部を、シャフトの凸部の圧入始端側に設けるとともに、このポケット部の反凸部側に内側継手部材の軸孔との調芯用の鍔部を設けるのが好ましい。   Further, a pocket portion for accommodating the protruding portion is provided on the press-fitting start end side of the convex portion of the shaft, and a collar portion for alignment with the shaft hole of the inner joint member is provided on the non-convex portion side of the pocket portion. Is preferred.
また、凸部の突出方向のいずれかの部位が、凹部形成前の凹部形成面の位置に対応する。この際、複数の凸部の頂点を結ぶ円弧の最大直径寸法を内側継手部材の軸孔の内径寸法よりも大きくするとともに、凸部間のシャフト外径面の最大外径寸法を内側継手部材の軸孔の内径寸法よりも小さくしたり、軸孔の凸部の頂点を結ぶ円弧の最小直径寸法をシャフトの内側継手部材嵌挿入部の外径寸法よりも小さくするとともに、凸部間の軸孔内径面の最小内径寸法をシャフトの内側継手部材嵌挿入部の外径寸法よりも大きくしたりする場合がある。   Further, any portion in the protruding direction of the convex portion corresponds to the position of the concave portion forming surface before the concave portion is formed. At this time, the maximum diameter dimension of the arc connecting the vertices of the plurality of protrusions is made larger than the inner diameter dimension of the shaft hole of the inner joint member, and the maximum outer diameter dimension of the shaft outer diameter surface between the protrusions is set on the inner joint member. The inner diameter dimension of the shaft hole is made smaller, or the minimum diameter dimension of the arc connecting the apexes of the projections of the shaft hole is made smaller than the outer diameter dimension of the inner joint member fitting insertion portion of the shaft. In some cases, the minimum inner diameter dimension of the inner diameter surface is made larger than the outer diameter dimension of the inner joint member fitting insertion portion of the shaft.
凸部の突出方向中間部位の周方向厚さを、周方向に隣り合う凸部間における前記中間部位に対応する位置での周方向寸法よりも小さくするのが好ましい。このように設定することによって、凸部の突出方向中間部位の周方向厚さの総和を、周方向に隣り合う凸部間に嵌合する相手側の凸部における前記中間部位に対応する位置での周方向厚さの総和よりも小さくなる。   It is preferable that the circumferential thickness of the protruding portion intermediate portion of the convex portion is smaller than the circumferential dimension at a position corresponding to the intermediate portion between the convex portions adjacent in the circumferential direction. By setting in this way, the sum of the circumferential thicknesses of the projecting direction intermediate portions of the convex portions is the position corresponding to the intermediate portion in the mating convex portion that fits between the convex portions adjacent in the circumferential direction. Smaller than the sum of the circumferential thicknesses.
前記凸部側の軸方向の少なくとも一部に軸方向に沿う凹凸部を設けるのも好ましい。また、前記凸部側の軸方向に沿う凹凸部を鋸歯状に形成する場合がある。   It is also preferable to provide a concavo-convex portion along the axial direction in at least a part of the convex portion in the axial direction. Moreover, the uneven | corrugated | grooved part along the axial direction by the side of the said convex part may be formed in a sawtooth shape.
本発明の凹凸嵌合構造では、径方向及び円周方向においてガタが生じる隙間が形成されないので、嵌合部位の全てが回転トルク伝達に寄与し、安定した回転トルク伝達が可能であり、スプラインの歯面の擦れ合いによるスプラインの疲労強度の低下を回避でき、耐久性に優れる。しかも、異音の発生も生じさせない。さらには、径方向及び円周方向において隙間無く密着しているため、トルク伝達部位の強度が向上し、等速自在継手を軽量、コンパクトにすることができる。   In the concave / convex fitting structure of the present invention, no gap is formed in which the play occurs in the radial direction and the circumferential direction. Therefore, all of the fitting parts contribute to rotational torque transmission, and stable rotational torque transmission is possible. It is possible to avoid a decrease in fatigue strength of the spline due to the friction of the tooth surfaces, and it is excellent in durability. Moreover, no abnormal noise is generated. Furthermore, since it is in close contact with each other in the radial direction and the circumferential direction, the strength of the torque transmitting portion is improved, and the constant velocity universal joint can be made lightweight and compact.
シャフトの外径面と内側継手部材の軸孔の内径面とのどちらか一方に設けられる凸部を、軸方向に沿って他方に圧入し、この他方に凸部にて凸部に密着嵌合する凹部を形成することができる。このため、凹凸嵌合構造を確実に形成することができる。しかも、凹部が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、かつスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。   A convex portion provided on either the outer diameter surface of the shaft or the inner diameter surface of the shaft hole of the inner joint member is press-fitted into the other along the axial direction, and the convex portion is closely fitted to the convex portion on the other side. A concave portion to be formed can be formed. For this reason, an uneven | corrugated fitting structure can be formed reliably. Moreover, it is not necessary to form a spline portion or the like on the member where the recess is formed, and it is excellent in productivity and does not require the phase alignment between the splines. Damage to the tooth surface can be avoided and a stable fitting state can be maintained.
また、シャフトに凸部を設けるとともに、凸部側の硬度を内側継手部材の軸孔内径部よりも高くするものであれば、圧入の際、内側継手部材の軸孔内径面への凹部形成が容易となる。また、シャフト側の硬度を高くでき、シャフトの捩り強度を向上させることができる。また、内側継手部材の軸孔の内径面に凸部を設けるとともに、この凸部側の軸方向端部の硬度をシャフトの外径部よりも高くするものであれば、圧入の際、シャフト側外径面への凹部形成が容易となる。シャフト側の硬度処理(熱処理)を行う必要がないので、シャフトの生産性に優れる。   In addition, when the convex portion is provided on the shaft and the hardness on the convex portion side is made higher than the inner diameter portion of the shaft hole of the inner joint member, the concave portion is formed on the inner diameter surface of the inner joint member at the time of press-fitting. It becomes easy. Further, the shaft side hardness can be increased, and the torsional strength of the shaft can be improved. In addition, if a convex portion is provided on the inner diameter surface of the shaft hole of the inner joint member and the hardness of the axial end portion on the convex portion side is higher than the outer diameter portion of the shaft, It becomes easy to form a recess on the outer diameter surface. Since it is not necessary to perform hardness treatment (heat treatment) on the shaft side, the shaft productivity is excellent.
圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けることによって、はみ出し部をこのポケット内に保持(維持)することができ、はみ出し部が等速自在継手内に紛れ込むことがない。すなわち、はみ出し部をポケット部に収納したままにしておくことができ、はみ出し部の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上及びコスト低減を図ることができる。   By providing a pocket portion that accommodates the protruding portion generated by the depression formation by press-fitting, the protruding portion can be held (maintained) in this pocket, and the protruding portion is not mixed into the constant velocity universal joint. In other words, the protruding portion can be kept stored in the pocket portion, and it is not necessary to perform the removal processing of the protruding portion, the number of assembling work can be reduced, and the assembling workability can be improved and the cost can be reduced. Can be planned.
また、ポケット部の軸方向反凸部側に調芯用の鍔部を設けることによって、ポケット部内のはみ出し部の鍔部側への飛び出しがなくなって、はみ出し部の収納がより安定したものとなる。しかも、鍔部は調芯用であるので、芯ずれを防止しつつシャフトを内側継手部材に圧入することができる。このため、内側継手部材とシャフトとを高精度に連結でき、安定したトルク伝達が可能となる。   In addition, by providing a collar for alignment on the axially anti-convex part side of the pocket part, the protruding part in the pocket part does not protrude to the collar part side, and the storage of the protruding part becomes more stable. . Moreover, since the collar portion is used for alignment, the shaft can be press-fitted into the inner joint member while preventing misalignment. For this reason, the inner joint member and the shaft can be connected with high accuracy, and stable torque transmission is possible.
また、凸部の突出方向のいずれかの部位が、凹部形成前の凹部形成面上に配置されるようにすることによって、凸部が圧入時に凹部形成面に食い込んでいき、凹部を確実に形成することができる。   In addition, by arranging any part in the protruding direction of the convex part on the concave surface where the concave part is formed, the convex part bites into the concave part forming surface during press-fitting, and the concave part is reliably formed. can do.
凸部の突出方向中間部位の周方向厚さを、周方向に隣り合う凸部間における前記中間部位に対応する位置での寸法よりも小さくすることによって、凹部が形成される側の凸部(形成される凹部間の凸部)の突出方向中間部位の周方向厚さを大きくすることができる。このため、相手側の凸部(凹部が形成されることによる凹部間の硬度が低い凸部)のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、硬度が高い側の凸部の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。   The convex part on the side where the concave part is formed by making the circumferential thickness of the intermediate part in the protruding direction of the convex part smaller than the dimension at the position corresponding to the intermediate part between the convex parts adjacent in the circumferential direction ( The thickness in the circumferential direction of the projecting intermediate portion of the convex portion between the concave portions formed can be increased. For this reason, the shear area of the convex part of the other party (the convex part having low hardness between the concave parts due to the formation of the concave parts) can be increased, and the torsional strength can be ensured. Moreover, since the tooth thickness of the convex portion on the higher hardness side is small, the press-fitting load can be reduced and the press-fitting property can be improved.
凸部側の軸方向の少なくとも一部に軸方向に沿う凹凸部を設けたことによって、圧入した際に、硬度が小である側(凸が嵌合する凹部が形成される側)に軸方向に沿う凹凸部が軸方向に沿って食い込むことになる。この食い込みによって、内側継手部材に対するシャフトの軸方向の抜け止めを構成することができる。また、凹凸部を鋸歯状にすることで、硬度が小である側に鋸歯がより食い込むため、より強固な抜け止め機構となる。このため、安定した連結状態を維持でき、等速自在継手の高品質化を図ることができる。しかも、軸方向に沿う凹凸部にて抜け止めを構成することができるので、シャフトに止め輪嵌合用の溝および内側継手部材に係止面を設ける必要がなくなって、加工工数および部品点数の減少を図ることができて、生産コストの低減および組み立て作業性の向上を達成できる。   By providing a concavo-convex portion along the axial direction in at least a part of the axial direction on the convex side, the axial direction on the side having a small hardness (the side on which the concave portion to which the convex is fitted) is formed when press-fitted. The concavo-convex part along the line bites in along the axial direction. By this bite-in, it is possible to configure the shaft in the axial direction to prevent the inner joint member from coming off. Moreover, since the sawtooth bites into the side having a small hardness by making the uneven portion serrated, a stronger retaining mechanism is obtained. For this reason, the stable connection state can be maintained and the quality improvement of the constant velocity universal joint can be achieved. In addition, since the concave and convex portions along the axial direction can be configured to prevent slipping, there is no need to provide a retaining ring fitting groove and inner joint member on the shaft, reducing the number of processing steps and the number of parts. Thus, the production cost can be reduced and the assembly workability can be improved.
本発明の実施形態を以下に詳述する。なお、以下の実施形態は、固定式(バーフィールド型)等速自在継手(BJ)に適用した場合を例示するが、他の固定式等速自在継手、例えばアンダーカットフリー型等速自在継手(UJ)に適用可能であり、さらに、摺動式等速自在継手、例えば、クロスグルーブ型等速自在継手(LJ)やダブルオフセット型等速自在継手(DOJ)、トリポード型等速自在継手(TJ)にも適用可能である。   Embodiments of the present invention are described in detail below. In addition, although the following embodiment illustrates the case where it applies to a fixed type (Burfield type) constant velocity universal joint (BJ), other fixed type constant velocity universal joints, for example, an undercut free type constant velocity universal joint ( UJ) and sliding type constant velocity universal joints such as cross groove type constant velocity universal joints (LJ), double offset type constant velocity universal joints (DOJ), tripod type constant velocity universal joints (TJ) ) Is also applicable.
図1は第1実施形態の凹凸嵌合構造を用いたバーフィールド型等速自在継手の全体構成を例示する。この等速自在継手は、外側継手部材としての外輪1と、外輪1の内挿される内側継手部材としての内輪2と、外輪1と内輪2との間に介在してトルクを伝達するトルク伝達部材としてのボール3と、外輪1と内輪2との間に介在してボール3を保持するケージ4とを主要な部材として構成される。この固定式等速自在継手をドライブシャフトに適用する場合、外輪1を車輪軸受装置(図示せず)に結合させ、内輪2に本発明にかかる凹凸嵌合構造Mでもってシャフト5を結合させることにより、外輪1と内輪2の回転軸が角度をなした状態でも等速でトルクを伝達するようになっている。   FIG. 1 illustrates the overall configuration of a Barfield type constant velocity universal joint using the concave-convex fitting structure of the first embodiment. The constant velocity universal joint includes an outer ring 1 as an outer joint member, an inner ring 2 as an inner joint member into which the outer ring 1 is inserted, and a torque transmission member that is interposed between the outer ring 1 and the inner ring 2 to transmit torque. And a cage 4 that is interposed between the outer ring 1 and the inner ring 2 and holds the ball 3 as main members. When this fixed type constant velocity universal joint is applied to a drive shaft, the outer ring 1 is coupled to a wheel bearing device (not shown), and the shaft 5 is coupled to the inner ring 2 by the concave-convex fitting structure M according to the present invention. Thus, torque is transmitted at a constant speed even when the rotation axes of the outer ring 1 and the inner ring 2 are angled.
外輪1はマウス部6とステム部7とからなり、ステム部7にて車輪軸受装置とトルク伝達可能に結合する。マウス部6は一端にて開口した椀状で、その内球面8に、軸方向に延びた複数のトラック溝9が円周方向等間隔に形成されている。そのトラック溝9はマウス部6の開口端まで延びている。内輪2は、その外球面10に、軸方向に延びた複数のトラック溝11が円周方向等間隔に形成されている。そのトラック溝11は内輪2の軸方向に切り通されている。   The outer ring 1 includes a mouse portion 6 and a stem portion 7. The stem portion 7 is coupled to the wheel bearing device so as to be able to transmit torque. The mouse portion 6 has a bowl shape opened at one end, and a plurality of track grooves 9 extending in the axial direction are formed on the inner spherical surface 8 at equal intervals in the circumferential direction. The track groove 9 extends to the open end of the mouse portion 6. In the inner ring 2, a plurality of track grooves 11 extending in the axial direction are formed on the outer spherical surface 10 at equal intervals in the circumferential direction. The track groove 11 is cut in the axial direction of the inner ring 2.
外輪1のトラック溝9と内輪2のトラック溝11とは対をなし、各対のトラック溝9,11で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール3が転動可能に組み込んである。ボール3は外輪1のトラック溝9と内輪2のトラック溝11との間に介在してトルクを伝達する。ケージ4は外輪1と内輪2との間に摺動可能に介在し、外球面4aにて外輪1の内球面8と接し、内球面4bにて内輪2の外球面10と接する。   The track groove 9 of the outer ring 1 and the track groove 11 of the inner ring 2 form a pair so that the ball 3 as a torque transmitting element can roll on the ball track constituted by each pair of track grooves 9 and 11. It is incorporated. The ball 3 is interposed between the track groove 9 of the outer ring 1 and the track groove 11 of the inner ring 2 and transmits torque. The cage 4 is slidably interposed between the outer ring 1 and the inner ring 2, is in contact with the inner spherical surface 8 of the outer ring 1 at the outer spherical surface 4a, and is in contact with the outer spherical surface 10 of the inner ring 2 at the inner spherical surface 4b.
前述したように内輪2はその軸孔22にシャフト5の端部5aを圧入することによりシャフト5とトルク伝達可能に結合されている。すなわち、本発明に係る第1実記形態の凹凸嵌合構造Mを介して、シャフト5と内輪2とが連結される。なお、この内輪2の軸孔22の内径面37(図2参照)は、冷間鍛造仕上げにより形成されているが、旋削、研磨仕上げにより形成されていてもよい。   As described above, the inner ring 2 is coupled to the shaft 5 so that torque can be transmitted by press-fitting the end portion 5a of the shaft 5 into the shaft hole 22 thereof. That is, the shaft 5 and the inner ring 2 are connected via the concave-convex fitting structure M according to the first embodiment of the present invention. The inner diameter surface 37 (see FIG. 2) of the shaft hole 22 of the inner ring 2 is formed by cold forging finishing, but may be formed by turning or polishing finishing.
凹凸嵌合構造Mは、図3に示すように、例えば、シャフト5側に設けられて軸方向に延びる凸部35と、内輪2の軸孔22の内径面37に形成される凹部36とからなり、凸部35とその凸部35に嵌合する内輪2の凹部36との嵌合接触部位38全域が密着している。複数の凸部35が周方向に沿って所定ピッチで配設され、内輪2の内径面37に凸部35が嵌合する複数の凹部36が周方向に沿って形成されている。つまり、周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。   As shown in FIG. 3, the concave-convex fitting structure M includes, for example, a convex portion 35 provided on the shaft 5 side and extending in the axial direction, and a concave portion 36 formed in the inner diameter surface 37 of the shaft hole 22 of the inner ring 2. Thus, the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 of the inner ring 2 fitted to the convex portion 35 is in close contact. A plurality of convex portions 35 are arranged at a predetermined pitch along the circumferential direction, and a plurality of concave portions 36 into which the convex portions 35 are fitted to the inner diameter surface 37 of the inner ring 2 are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.
この場合、凸部の突出方向のいずれかの部位(図例では、突出方向中間部)が、凹部形成前の凹部形成面の位置に対応するものである。すなわち、各凸部35は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、各凸部35と内輪2の凹部36との嵌合接触部位38とは、図3(b)に示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、内輪2の内径面37よりも内径側に隙間40が形成されている。なお、図例のように、凸部35の突出方向中間部が凹部形成前の凹部形成面の位置に対応せずに、一部(例えば先端部位)が対応するものであってもよい。   In this case, any part in the protruding direction of the convex portion (in the drawing, the intermediate portion in the protruding direction) corresponds to the position of the concave portion forming surface before the concave portion is formed. That is, each convex portion 35 has a triangular shape (mountain shape) having a convex round-shaped cross section, and the fitting contact portion 38 between each convex portion 35 and the concave portion 36 of the inner ring 2 is shown in FIG. It is the range A shown in b), which is the range from the mid-section of the mountain in the cross section to the summit. A gap 40 is formed on the inner diameter side of the inner ring surface 37 of the inner ring 2 between the adjacent convex portions 35 in the circumferential direction. Note that, as shown in the figure, the intermediate portion in the protruding direction of the convex portion 35 may not correspond to the position of the concave portion forming surface before forming the concave portion, but may correspond to a part (for example, the tip portion).
本発明では、凹凸嵌合構造Mは、凸部35と内輪2の凹部36との嵌合接触部位38全域が密着しているので、この凹凸嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定した回転トルク伝達が可能であり、スプラインの歯面の擦れ合いによるスプラインの疲労強度の低下を回避でき、耐久性に優れる。しかも、異音の発生も生じさせない。さらには、径方向及び円周方向において隙間無く密着しているため、トルク伝達部位の強度が向上し、等速自在継手を軽量、コンパクトにすることができる。   In the present invention, the concave / convex fitting structure M is in close contact with the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 of the inner ring 2, so in the concave / convex fitting structure M, in the radial direction and the circumferential direction. There is no gap in which play occurs. For this reason, all of the fitting parts contribute to rotational torque transmission, and stable rotational torque transmission is possible. A decrease in the fatigue strength of the spline due to friction of the tooth surfaces of the spline can be avoided, and the durability is excellent. Moreover, no abnormal noise is generated. Furthermore, since it is in close contact with each other in the radial direction and the circumferential direction, the strength of the torque transmitting portion is improved, and the constant velocity universal joint can be made lightweight and compact.
次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、図4と図5に示すように、シャフト5の端部5aの外径部には、熱硬化処理を施し、この硬化層Sに軸方向に沿う凸部41aと凹部41bとからなるスプライン41を形成する。このため、スプライン41の凸部41aが硬化処理されて、この凸部41aが凹凸嵌合構造Mの凸部35となる。この際、内輪2の軸孔22の内径面37においては熱硬化処理を行わない未硬化部とする。なお、図4と図5において、破線によるハッチング部が硬化層Sを示している。硬化層Sと内輪2の軸孔22の内径面37の未硬化部との硬度差は、HRCで30ポイント以上とする。シャフト5のスプライン41のモジュールを0.5以下の小さい歯とする。ここで、モジュールとは、ピッチ円直径を歯数で割ったものである。また、図2と図3に示すように、内輪2は、トラック溝およびトラック溝間の外球面に高周波焼入れにより硬化層S1(クロスハッチング部)が形成され、その軸孔22の内径面37を未硬化としている。   Next, the fitting method of the uneven fitting structure M will be described. In this case, as shown in FIGS. 4 and 5, the outer diameter portion of the end portion 5a of the shaft 5 is subjected to a thermosetting process, and the cured layer S is composed of a convex portion 41a and a concave portion 41b along the axial direction. A spline 41 is formed. For this reason, the convex part 41a of the spline 41 is cured, and the convex part 41a becomes the convex part 35 of the concave-convex fitting structure M. At this time, the inner surface 37 of the shaft hole 22 of the inner ring 2 is an uncured portion that is not subjected to heat curing. In FIGS. 4 and 5, the hatched portion indicated by a broken line indicates the hardened layer S. The hardness difference between the hardened layer S and the uncured portion of the inner diameter surface 37 of the shaft hole 22 of the inner ring 2 is 30 points or more in HRC. The module of the spline 41 of the shaft 5 is a small tooth of 0.5 or less. Here, the module is a pitch circle diameter divided by the number of teeth. As shown in FIGS. 2 and 3, the inner ring 2 has a hardened layer S1 (cross-hatched portion) formed by induction hardening on the outer spherical surface between the track grooves and the track grooves. Uncured.
この際、凸部35の突出方向いずれかの部位が、凹部形成前の凹部形成面(この場合、内輪2の軸孔22の内径面37)の位置に対応している。すなわち、図2に示すように、軸孔22の内径面37の内径寸法Dを、凸部55の最大外径寸法、つまりスプライン41の凸部41aである前記凸部35の頂点を結ぶ円の最大直径寸法(外接円直径)D1よりも小さく、隣合う凸部間のシャフト外径面の最大外径寸法、つまりスプライン41の凹部41bの底を結ぶ円の最大直径寸法D2よりも大きく設定される。すなわち、D2<D<D1とされる。   At this time, any portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the shaft hole 22 of the inner ring 2) before the concave portion is formed. That is, as shown in FIG. 2, the inner diameter dimension D of the inner diameter surface 37 of the shaft hole 22 is the maximum outer diameter dimension of the convex section 55, that is, the circle connecting the vertices of the convex section 35 that is the convex section 41 a of the spline 41. It is smaller than the maximum diameter dimension (circumscribed circle diameter) D1, and is set larger than the maximum outer diameter dimension of the shaft outer diameter surface between adjacent convex portions, that is, the maximum diameter dimension D2 of the circle connecting the bottoms of the concave portions 41b of the spline 41. The That is, D2 <D <D1.
スプライン41は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   The spline 41 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process.
そして、図2に示すように、内輪2の軸心とシャフト5の軸心とを合わせた状態で、内輪2に対して、シャフト5を挿入(圧入)していく。この際、軸孔22の内径面37の径寸法Dと、凸部35の最大外径寸法D1と、スプライン41の凹部の最大外径寸法D2とが前記のような関係であり、しかも、凸部35の硬度が軸孔22の内径面37の硬度よりも30ポイント以上大きいので、シャフト5を内輪2の軸孔22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を軸方向に沿って形成していくこになる。   Then, as shown in FIG. 2, the shaft 5 is inserted (press-fitted) into the inner ring 2 in a state where the axis of the inner ring 2 and the axis of the shaft 5 are aligned. At this time, the diameter D of the inner diameter surface 37 of the shaft hole 22, the maximum outer diameter D1 of the convex portion 35, and the maximum outer diameter D2 of the concave portion of the spline 41 are as described above. Since the hardness of the portion 35 is 30 points or more larger than the hardness of the inner diameter surface 37 of the shaft hole 22, if the shaft 5 is press-fitted into the shaft hole 22 of the inner ring 2, the convex portion 35 will bite into the inner diameter surface 37. The convex portion 35 forms the concave portion 36 into which the convex portion 35 is fitted along the axial direction.
これによって、図3(a)(b)に示すように、シャフト5の端部5aの凸部35と内輪2の凹部36との嵌合接触部位38全域が密着している嵌合状態を構成することができる。すなわち、相手側の凹部形成面(この場合、軸孔22に内径面37)に凸部35の形状の転写を行うことになる。この際、凸部35が軸孔22の内径面37に食い込んでいくことによって、軸孔22が僅かに拡径した状態となって、凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、軸孔22が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時に内輪2が径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(嵌合接触部位38の表面)に付与される。このため、凸部35と内輪2の凹部36との嵌合接触部位38全域が密着する凹凸嵌合構造Mを確実に形成することができる。しかも、凹部36が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、しかもスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。シャフト5側の硬度を高くでき、また、シャフト5の捩り強度を向上させることができる。   As a result, as shown in FIGS. 3A and 3B, a fitting state in which the entire fitting contact portion 38 between the convex portion 35 of the end portion 5a of the shaft 5 and the concave portion 36 of the inner ring 2 is in close contact is configured. can do. In other words, the shape of the convex portion 35 is transferred to the concave portion forming surface (in this case, the inner diameter surface 37 of the shaft hole 22). At this time, the convex portion 35 bites into the inner diameter surface 37 of the shaft hole 22, so that the shaft hole 22 is slightly expanded in diameter, allowing the convex portion 35 to move in the axial direction, and the axial direction. If the movement stops, the diameter of the shaft hole 22 is reduced to return to the original diameter. In other words, when the convex portion 35 is press-fitted, the inner ring 2 is elastically deformed in the radial direction, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 35 (the surface of the fitting contact portion 38). For this reason, the uneven | corrugated fitting structure M which the fitting contact part 38 whole region of the convex part 35 and the recessed part 36 of the inner ring | wheel 2 closely_contact | adheres can be formed reliably. Moreover, it is not necessary to form a spline portion or the like on the member in which the concave portion 36 is formed, which is excellent in productivity, and does not require the phase alignment between the splines. The tooth surface can be prevented from being damaged, and a stable fitting state can be maintained. The hardness on the shaft 5 side can be increased and the torsional strength of the shaft 5 can be improved.
前記実施形態のように、シャフト5に形成するスプライン41は、モジュールが0.5以下の小さい歯を用いたので、このスプライン41の成形性の向上を図ることができるとともに、圧入荷重の低減を図ることができる。なお、凸部35を、この種のシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。   As in the above-described embodiment, the spline 41 formed on the shaft 5 uses small teeth with a module of 0.5 or less, so that the moldability of the spline 41 can be improved and the press-fit load can be reduced. Can be planned. In addition, since the convex part 35 can be comprised with the spline normally formed in this kind of shaft, this convex part 35 can be easily formed at low cost.
また、シャフト5を内輪2に圧入していくとによって、凹部36を形成していくと、この凹部36側に加工硬化が生じる。ここで、加工硬化とは、物体に塑性変形(塑性加工)を与えると,変形の度合が増すにつれて変形に対する抵抗が増大し,変形を受けていない材料よりも硬くなることをいう。このため、圧入時に生じる塑性変形によって、凹部36側の内輪2の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。   Further, when the concave portion 36 is formed by press-fitting the shaft 5 into the inner ring 2, work hardening occurs on the concave portion 36 side. Here, work hardening means that when plastic deformation (plastic processing) is applied to an object, the resistance to deformation increases as the degree of deformation increases, and it becomes harder than a material that has not undergone deformation. For this reason, the inner diameter surface 37 of the inner ring 2 on the concave portion 36 side is hardened by the plastic deformation that occurs during the press-fitting, and the rotational torque transmission performance can be improved.
ところで、前記図3に示すスプライン41では、凸部41aのピッチと凹部41bのピッチとが同一設定される。このため、前記実施形態では、図3(b)に示すように、凸部35の突出方向中間部位の周方向厚さLと、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L0とがほぼ同一となっている。   By the way, in the spline 41 shown in FIG. 3, the pitch of the convex portions 41a and the pitch of the concave portions 41b are set to be the same. For this reason, in the said embodiment, as shown in FIG.3 (b), it corresponds to the circumferential direction thickness L of the protrusion direction intermediate part of the convex part 35, and the said intermediate part between the convex parts 35 adjacent to the circumferential direction. The circumferential dimension L0 at the position is substantially the same.
これに対して、図6に示すように、凸部35の突出方向中間部位の周方向厚さL2を、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L1よりも小さいものであってもよい。すなわち、シャフト5に形成されるスプライン41において、凸部35の突出方向中間部位の周方向厚さ(歯厚)L2を、凸部35間に嵌合する相手側つまり内輪2側の凸部43の突出方向中間部位の周方向厚さ(歯厚)L1より小さくしている。   On the other hand, as shown in FIG. 6, the circumferential thickness L2 of the projecting direction intermediate portion of the convex portion 35 is set to a circumferential dimension at a position corresponding to the intermediate portion between the convex portions 35 adjacent in the circumferential direction. It may be smaller than L1. That is, in the spline 41 formed on the shaft 5, the circumferential thickness (tooth thickness) L <b> 2 of the intermediate portion in the protruding direction of the convex portion 35 is set to the convex portion 43 on the opposite side, that is, the inner ring 2 side. This is smaller than the circumferential thickness (tooth thickness) L1 of the intermediate portion in the protruding direction.
したがって、シャフト5側の凸部(凸歯)35の歯厚の総和(ΣB1+B2+B3+・・・)を、内輪2側の全周における凸部43の歯厚の総和(ΣA1+A2+A3+・・・)よりも小さく設定している。これによって、内輪2側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の周方向厚さの総和を、相手側の凸部43における周方向厚さの総和よりも小さくする場合、全凸部35の周方向厚さL2を、周方向に隣り合う凸部35間における周方向の寸法L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の周方向厚さが周方向に隣り合う凸部間における周方向の寸法と同一であっても、この周方向の寸法よりも大きくても、総和で小さければよい。なお、図6における凸部35は、断面台形(富士山形状)としている。   Therefore, the total tooth thickness (ΣB1 + B2 + B3 +...) Of the convex portions (convex teeth) 35 on the shaft 5 side is smaller than the total tooth thickness (ΣA1 + A2 + A3 +...) Of the convex portions 43 on the entire circumference on the inner ring 2 side. It is set. As a result, the shear area of the convex portion 43 on the inner ring 2 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at. When making the sum total of the circumferential thickness of the convex part 35 smaller than the sum total of the circumferential direction thickness in the other convex part 43, the circumferential direction thickness L2 of all the convex parts 35 is the convex part adjacent to the circumferential direction. It is not necessary to make it smaller than the circumferential dimension L1 between 35. That is, among the plurality of convex portions 35, even if the circumferential thickness of the arbitrary convex portion 35 is the same as the circumferential dimension between the convex portions adjacent in the circumferential direction, it is larger than the circumferential dimension. However, it is sufficient if the sum is small. In addition, the convex part 35 in FIG. 6 is made into the cross-sectional trapezoid (Mt. Fuji shape).
次に、図7は第2実施形態を示し、この凹凸嵌合構造Mは、シャフト5の凸部35、つまりスプライン41の凸部41aに、軸方向の一部に軸方向に沿う凹凸部55が形成される。この場合、凹凸部55は軸方向に沿う鋸歯状に形成されている。この場合、凸部(凸歯)55aはその断面がポケット側を傾斜面とした直角三角形状とされるものである。   Next, FIG. 7 shows a second embodiment, and this concave / convex fitting structure M has a convex portion 35 of the shaft 5, that is, a convex portion 41 a of the spline 41, and a concave / convex portion 55 extending in the axial direction partially in the axial direction. Is formed. In this case, the uneven portion 55 is formed in a sawtooth shape along the axial direction. In this case, the convex portion (convex tooth) 55a has a cross-sectional shape of a right triangle having the pocket side as an inclined surface.
図9に示すように、内輪2の軸心とシャフト5の軸心を合わせて、この凹凸部55を備えたシャフト5を、内輪2の軸孔22に圧入すれば、シャフト5側の凸部35によって内輪2に凹部36を形成することになるが、この場合、凹凸部55が内輪2側に形成される凹部36の底部に食い込む。すなわち、圧入の際に拡径していた内輪2の軸孔22が拡径しているが、圧入完了時には元の状態に戻るように縮径する。このため、内輪2の軸孔22の内径面側から図8の矢印のように凹凸部55に対して押圧力(縮径力)が作用して、内輪2の軸孔22の内径面に凹凸部55の凸部55aが食い込む。   As shown in FIG. 9, if the shaft 5 provided with the concavo-convex portion 55 is press-fitted into the shaft hole 22 of the inner ring 2 by aligning the axial center of the inner ring 2 and the shaft 5, a convex portion on the shaft 5 side. In this case, the concave / convex portion 55 bites into the bottom of the concave portion 36 formed on the inner ring 2 side. That is, the diameter of the shaft hole 22 of the inner ring 2 that has been expanded at the time of press-fitting is increased, but when the press-fitting is completed, the diameter is reduced to return to the original state. For this reason, a pressing force (diameter reducing force) acts on the concave and convex portion 55 from the inner diameter side of the shaft hole 22 of the inner ring 2 as shown by the arrow in FIG. The convex part 55a of the part 55 bites in.
凸部35側の軸方向の少なくとも一部に軸方向に沿う凹凸部55を設けたことによって、圧入した際に、硬度が小である側(凸部35が嵌合する凹部36が形成される側)に軸方向に沿う凹凸部55が軸方向に沿って食い込むことになる。この食い込みによって、内側継手部材に対するシャフト5の軸方向の抜け止めを構成することができる。また、凹凸部55を鋸歯状にすることで、硬度が小である側に鋸歯がより食い込むため、より強固な抜け止め機構となる。このため、安定した連結状態を維持でき、等速自在継手の高品質化を図ることができる。しかも、軸方向に沿う凹凸部55にて抜け止めを構成することができるので、シャフト5に止め輪嵌合用の溝および内側継手部材に係止面を設ける必要がなくなって、加工工数および部品点数の減少を図ることができて、生産コストの低減および組み立て作業性の向上を達成できる。   By providing the projections and depressions 55 along the axial direction in at least a part of the projections 35 in the axial direction, the side having a small hardness when pressed-in (the depressions 36 into which the projections 35 are fitted is formed. The concavo-convex portion 55 along the axial direction bites in the axial direction. By this bite-in, it is possible to constitute an axial stopper of the shaft 5 with respect to the inner joint member. Further, by making the concave and convex portion 55 serrated, the sawtooth bites more into the side having a low hardness, so that a stronger retaining mechanism is obtained. For this reason, the stable connection state can be maintained and the quality improvement of the constant velocity universal joint can be achieved. Moreover, since the concave and convex portions 55 along the axial direction can be configured to prevent slipping, it is not necessary to provide a retaining surface for the retaining ring fitting groove and the inner joint member on the shaft 5, and the number of processing steps and the number of parts can be reduced. Can be reduced, and production costs can be reduced and assembly workability can be improved.
ところで、内輪2に対してシャフト5を圧入していけば、凸部35にて形成される凹部36から材料がはみ出して、第3実施形態の図10に示すようなはみ出し部45が形成される。はみ出し部45は、凸部35の凹部嵌合部位38が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、凹部36を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。   By the way, if the shaft 5 is press-fitted into the inner ring 2, the material protrudes from the concave portion 36 formed by the convex portion 35, and the protruding portion 45 as shown in FIG. 10 of the third embodiment is formed. . The protruding portion 45 is the material of the capacity of the concave portion 36 into which the concave portion fitting portion 38 of the convex portion 35 is fitted (fitted), and is pushed out from the formed concave portion 36 to form the concave portion 36. It is composed of what has been cut or both extruded and cut.
このため、前記図1に示す等速自在継手では、内輪2にシャフト5を組み付けた後、このはみ出し部45の除去作業を必要としていた。そこで、図10に示す他の実施形態では、はみ出し部45を収納するポケット部50をシャフト5に設けている。   For this reason, in the constant velocity universal joint shown in FIG. 1, after the shaft 5 is assembled to the inner ring 2, it is necessary to remove the protruding portion 45. Therefore, in another embodiment shown in FIG. 10, a pocket portion 50 that accommodates the protruding portion 45 is provided in the shaft 5.
すなわち、シャフト5のスプライン41の軸端縁に周方向溝51を設けることによって、ポケット部50を形成している。図11に示すように、周方向溝51は、そのスプライン41側の側壁51aが、軸方向に対して直交する平面であり、反スプライン側の側面51bが、溝底51cから反スプライン側に向かって拡径するテーパ面である。   That is, the pocket portion 50 is formed by providing the circumferential groove 51 at the axial end edge of the spline 41 of the shaft 5. As shown in FIG. 11, in the circumferential groove 51, the side wall 51a on the spline 41 side is a plane orthogonal to the axial direction, and the side surface 51b on the anti-spline side faces from the groove bottom 51c to the anti-spline side. This is a tapered surface that expands in diameter.
また、この側面51bよりも反スプライン側には、調芯用の円盤状の鍔部52が設けられている。鍔部52の外径寸法が軸孔22の孔径と同一乃至軸孔22の孔径Dよりも僅かに小さく設定される。この場合、鍔部52の外径面52aと軸孔22の内径面37との間に微小隙間tが設けられている。   Further, a disc-shaped flange 52 for alignment is provided on the side opposite to the spline from the side surface 51b. The outer diameter of the flange 52 is set to be the same as the hole diameter of the shaft hole 22 or slightly smaller than the hole diameter D of the shaft hole 22. In this case, a minute gap t is provided between the outer diameter surface 52 a of the flange 52 and the inner diameter surface 37 of the shaft hole 22.
この図10に示す内輪2であっても、図12に示すように、内輪2の軸心とシャフト5の軸心とを合わせて、シャフト5を内輪2の軸孔22に圧入していけば、シャフト5側の凸部35によって、内輪2側に凹部36を形成することになる。この際、生じるはみ出し部45は、図11に示すように、カールしつつポケット部50内に収納されて行く。   Even in the case of the inner ring 2 shown in FIG. 10, as shown in FIG. 12, if the shaft center of the inner ring 2 and the shaft center of the shaft 5 are aligned and the shaft 5 is press-fitted into the shaft hole 22 of the inner ring 2. The concave portion 36 is formed on the inner ring 2 side by the convex portion 35 on the shaft 5 side. At this time, the protruding portion 45 generated is housed in the pocket portion 50 while curling as shown in FIG.
このように、前記圧入による凹部形成によって生じるはみ出し部45を収納するポケット部50を設けることによって、はみ出し部45をこのポケット部50内に保持(維持)することができ、等速自在継手内に紛れ込むことがない。すなわち、はみ出し部45をポケット部50に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上及びコスト低減を図ることができる。   In this way, by providing the pocket portion 50 for storing the protruding portion 45 generated by forming the concave portion by the press-fitting, the protruding portion 45 can be held (maintained) in the pocket portion 50, and the constant velocity universal joint is provided. There is no misunderstanding. That is, the protruding portion 45 can be kept stored in the pocket portion 50, and it is not necessary to perform the removal process of the protruding portion 45, the number of assembling work can be reduced, and the assembling workability can be improved. Cost reduction can be achieved.
また、ポケット部50の反凸部側に内輪2の軸孔22との調芯用の鍔部52を設けることによって、ポケット部50内のはみ出し部45の鍔部52側への飛び出しがなくなって、はみ出し部45の収納がより安定したものとなる。しかも、鍔部52は調芯用であるので、芯ずれを防止しつつ軸部を内輪2の軸孔22に圧入することができる。このため、内輪2とシャフト5を高精度に連結でき、安定したトルク伝達が可能となる。   Further, by providing a collar portion 52 for alignment with the shaft hole 22 of the inner ring 2 on the side opposite to the convex portion of the pocket portion 50, the protruding portion 45 in the pocket portion 50 does not protrude to the collar portion 52 side. , The storage of the protruding portion 45 becomes more stable. Moreover, since the flange portion 52 is used for alignment, the shaft portion can be press-fitted into the shaft hole 22 of the inner ring 2 while preventing misalignment. For this reason, the inner ring 2 and the shaft 5 can be connected with high accuracy, and stable torque transmission is possible.
前記鍔部52は圧入時の調芯用であるので、その外径寸法は、内輪2の孔径よりも僅かに小さい程度に設定するのが好ましい。すなわち、鍔部52の外径寸法が内輪2の孔径と同一や内輪2の孔径よりも大きければ、鍔部52自体を内輪2の軸孔を圧入することになる。この際、芯ずれしていれば、このまま凹凸嵌合構造Mの凸部35が圧入され、シャフト5の軸心と内輪2の軸心とが合っていない状態でシャフト5と内輪2とが連結されることになる。また、鍔部52の外径寸法が軸孔の孔径よりも小さすぎると、調芯用として機能しない。このため、鍔部52の外径面52aと軸孔の内径面との間に微小隙間tとしては、0.01mm〜0.2mm程度に設定するのが好ましい。   Since the flange 52 is used for aligning during press-fitting, the outer diameter is preferably set to be slightly smaller than the hole diameter of the inner ring 2. That is, if the outer diameter dimension of the flange 52 is the same as the hole diameter of the inner ring 2 or larger than the hole diameter of the inner ring 2, the flange 52 itself is press-fitted into the shaft hole of the inner ring 2. At this time, if the center is misaligned, the convex portion 35 of the concave-convex fitting structure M is press-fit as it is, and the shaft 5 and the inner ring 2 are connected in a state where the axis of the shaft 5 and the axis of the inner ring 2 do not match. Will be. Moreover, if the outer diameter dimension of the collar part 52 is too smaller than the hole diameter of a shaft hole, it will not function for centering. For this reason, it is preferable that the minute gap t between the outer diameter surface 52a of the flange portion 52 and the inner diameter surface of the shaft hole is set to about 0.01 mm to 0.2 mm.
図10に示す等速自在継手の他の構成は図1に示す等速自在継手と同様であるので、同一部材については図1の符号と同一の符号を付してそれらの説明を省略する。このため、図10に示す等速自在継手は、図1に示す等速自在継手と同様の作用効果を奏する。 Since the other structure of the constant velocity universal joint shown in FIG. 10 is the same as that of the constant velocity universal joint shown in FIG. 1, the same members as those in FIG. For this reason, the constant velocity universal joint shown in FIG. 10 has the same effect as the constant velocity universal joint shown in FIG.
ところで、図13と図14に示すように、内輪2の軸孔22の内径面に、周方向に沿って所定ピッチで配設される小凹部60を設けてもよい。小凹部60としては、凹部36の容積よりも小さくする必要がある。このように小凹部60を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部60を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができて、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及びシャフト5の強度の向上を図ることができる。なお、小凹部60の形状は、図例では半楕円状であるが、矩形等の他の種々のものを採用でき、数も任意に設定できる。   Incidentally, as shown in FIGS. 13 and 14, small concave portions 60 disposed at a predetermined pitch along the circumferential direction may be provided on the inner diameter surface of the shaft hole 22 of the inner ring 2. The small recess 60 needs to be smaller than the volume of the recess 36. Thus, by providing the small recessed part 60, the press fit property of the convex part 35 can be improved. That is, by providing the small concave portion 60, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the pocket part 50 can be made small and the workability of the pocket part 50 and the improvement of the intensity | strength of the shaft 5 can be aimed at. In addition, although the shape of the small recessed part 60 is a semi-elliptical shape in the example of a figure, other various things, such as a rectangle, can be employ | adopted and a number can also be set arbitrarily.
等速自在継手としては、その内側継手部材が、図15(a)(b)(c)に示すようなトリポード系のトラニオンを用いた摺動型の等速自在継手であってもよい。この内側継手部材は、ボス部65と、このボス部65から周方向に沿って120度ピッチで外径方向へ突出する軸部62とを備え、このボス部65の軸孔63にシャフト5が嵌挿される。また、軸部62にトルク伝達部材としてのローラ(図示省略)が付設される。   The constant velocity universal joint may be a sliding type constant velocity universal joint using a tripod trunnion as shown in FIGS. 15 (a), 15 (b) and 15 (c). The inner joint member includes a boss portion 65 and a shaft portion 62 projecting from the boss portion 65 in the outer diameter direction at a pitch of 120 degrees along the circumferential direction. The shaft 5 is inserted into the shaft hole 63 of the boss portion 65. Inserted. Further, a roller (not shown) as a torque transmission member is attached to the shaft portion 62.
このため、ボス部65の軸孔63の内径面を未硬化部とし、これに、図4に示すように、その外径面に硬化処理が施されるとともに、軸端部にスプライン41が形成されたシャフト5をこのボス部65の軸孔63に圧入することになる。なお、トリポード型等速自在継手における内側継手部材においても、図15(b)(c)に示すようにその外面に硬化層S2を設けるようにするのが好ましい。   Therefore, the inner diameter surface of the shaft hole 63 of the boss portion 65 is an uncured portion, and as shown in FIG. 4, the outer diameter surface is subjected to a curing process and a spline 41 is formed at the shaft end portion. The formed shaft 5 is press-fitted into the shaft hole 63 of the boss portion 65. In addition, it is preferable to provide the hardened layer S2 on the outer surface of the inner joint member of the tripod type constant velocity universal joint as shown in FIGS.
この圧入によって、スプライン41の凸歯41aにて構成される凸部35にて、ボス部65の軸孔63の内径面に、凸部35に嵌合する凹部36を形成することができる。この場合であっても、凸部35とシャフト5の凹部36との嵌合接触部位38全域が密着する。このため、内輪2とシャフト5を高精度に連結でき、安定したトルク伝達が可能となる。   By this press-fitting, the concave portion 36 fitted to the convex portion 35 can be formed on the inner diameter surface of the shaft hole 63 of the boss portion 65 at the convex portion 35 constituted by the convex teeth 41 a of the spline 41. Even in this case, the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 of the shaft 5 is in close contact. For this reason, the inner ring 2 and the shaft 5 can be connected with high accuracy, and stable torque transmission is possible.
ところで、前記各実施形態では、シャフト5側に凸部35を構成するスプライン41を形成するとともに、このシャフト5のスプライン41に対して硬化処理を施し、内輪2の内径面を未硬化(生材)としている。これに対して、第4実施形態の図16と図17に示すように、内輪2の軸孔22の内径面に硬化処理を施されたスプライン61(凸条61a及び凹条61bとからなる)を形成するとともに、シャフト5には硬化処理を施さないものであってもよい。なお、このスプライン61も公知公用の手段であるブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。   By the way, in each said embodiment, while forming the spline 41 which comprises the convex part 35 in the shaft 5 side, it hardens | cures with respect to the spline 41 of this shaft 5, and the internal diameter surface of the inner ring | wheel 2 is unhardened (raw material) ). On the other hand, as shown in FIG. 16 and FIG. 17 of the fourth embodiment, the spline 61 (consisting of ridges 61 a and ridges 61 b) in which the inner diameter surface of the shaft hole 22 of the inner ring 2 is cured. And the shaft 5 may not be subjected to a curing process. The spline 61 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing, which are publicly known means. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.
この場合、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(シャフト5の外径面)の位置に対応する。すなわち、スプライン61の凸部61aである凸部35の頂点を結ぶ円の最小直径(凸部35の最小内径寸法)D4をシャフト5の外径寸法D3よりも小さく、スプライン61の凹部61bの底を結ぶ円の最小外径寸法(凸部間の軸孔内径面の内径寸法)D5をシャフト5の外径寸法D3よりも大きく設定する。すなわち、D4<D3<D5とされる。   In this case, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (the outer diameter surface of the shaft 5) before the concave portion is formed. That is, the minimum diameter (minimum inner diameter dimension of the convex portion 35) D4 connecting the vertices of the convex portions 35 that are the convex portions 61a of the spline 61 is smaller than the outer diameter D3 of the shaft 5, and the bottom of the concave portion 61b of the spline 61 The minimum outer diameter dimension (inner diameter dimension of the inner diameter surface of the shaft hole between the convex portions) D5 is set larger than the outer diameter dimension D3 of the shaft 5. That is, D4 <D3 <D5.
この場合、シャフト5を内輪2の軸孔22に圧入すれば、内輪2側の凸部35によって、シャフト5の外径面66に凸部35が嵌合する凹部36を形成することができる。これによって、内輪2側の凸部35とシャフト5の凹部36との嵌合接触部位38全域が密着している嵌合状態を構成することができる。   In this case, if the shaft 5 is press-fitted into the shaft hole 22 of the inner ring 2, the concave portion 36 in which the convex portion 35 is fitted to the outer diameter surface 66 of the shaft 5 can be formed by the convex portion 35 on the inner ring 2 side. Accordingly, it is possible to configure a fitting state in which the entire fitting contact portion 38 between the convex portion 35 on the inner ring 2 side and the concave portion 36 of the shaft 5 is in close contact.
ここで、凸部35とシャフト5の凹部36との嵌合接触部位38とは、図17(b)に示す範囲Bであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、シャフト5の外周面よりも外径側に隙間62が形成される。   Here, the fitting contact portion 38 between the convex portion 35 and the concave portion 36 of the shaft 5 is a range B shown in FIG. 17B, and is a range from the middle of the mountain shape to the top of the mountain in the cross section. Further, a gap 62 is formed on the outer diameter side of the outer peripheral surface of the shaft 5 between the adjacent convex portions 35 in the circumferential direction.
この場合であっても、圧入によってはみ出し部が形成されるので、このはみ出し部を収納するポケット部を設けるのが好ましい。はみ出し部は、図10に示すものと相違して、シャフト側に形成されることになるので、ポケット部を内輪2側に設けることになる。   Even in this case, since the protruding portion is formed by press-fitting, it is preferable to provide a pocket portion for storing the protruding portion. Unlike the one shown in FIG. 10, the protruding portion is formed on the shaft side, so the pocket portion is provided on the inner ring 2 side.
なお、このように内輪2側に凹凸嵌合構造Mの凸部35を形成したものであっても、シャフト5の端部に、その外径寸法が内輪2に圧入する際の調芯となる鍔部を設けてもよい。これによって、高精度の圧入が可能となる。また、内輪2側に抜け止め機能を発揮する鋸歯状等の凹凸部を設けてもよい。ところで、第1実施形態以外の他の実施形態(トリポード型等速自在継手以外)の内輪においては、硬化層S1を図示していないが、図2と図3に示すように硬化層S1を設けるようにするのが好ましい。   Even if the convex portion 35 of the concave-convex fitting structure M is formed on the inner ring 2 side in this way, the outer diameter of the shaft 5 is aligned when the inner ring 2 is press-fitted into the end portion of the shaft 5. A buttocks may be provided. Thereby, press-fitting with high accuracy becomes possible. Moreover, you may provide uneven | corrugated | grooved parts, such as a sawtooth shape which exhibits a retaining function in the inner ring | wheel 2 side. By the way, in the inner rings of other embodiments (other than the tripod type constant velocity universal joint) other than the first embodiment, the hardened layer S1 is not shown, but the hardened layer S1 is provided as shown in FIGS. It is preferable to do so.
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造の凸部35の形状として、前記図3に示す実施形態では断面三角形状であり、図6に示す実施形態では断面台形(富士山形状)であるが、これら以外の半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン41,61を形成し、このスプライン41、61の凸部(凸歯)41a、61aをもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35とそれに対応する凹部36との嵌合接触部位38全域が密着し、しかも、内輪2とシャフト5との間で回転トルクの伝達ができればよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the embodiment, and various modifications are possible. For example, as the shape of the convex portion 35 of the concave-convex fitting structure, FIG. In the embodiment shown in FIG. 6, the cross section is triangular, and in the embodiment shown in FIG. 6, the cross section is trapezoidal (Mt. Fuji), but other shapes such as a semicircular shape, a semielliptical shape, and a rectangular shape are adopted. Further, the area and number of the convex portions 35, the circumferential arrangement pitch, and the like can be arbitrarily changed. That is, the splines 41 and 61 are formed, and the convex portions (convex teeth) 41a and 61a of the splines 41 and 61 do not need to be the convex portions 35 of the concave-convex fitting structure M. Alternatively, a curved corrugated mating surface may be formed. In short, the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It is only necessary that the entire fitting contact portion 38 between the portion 35 and the corresponding recess 36 is in close contact, and that rotational torque can be transmitted between the inner ring 2 and the shaft 5.
また、内輪2の軸孔22としては円孔以外の多角形孔等の異形孔であってよく、この軸孔22に嵌挿するシャフト5の端部5aの断面形状も円形断面以外の多角形等の異形断面であってもよい。このため、例えば、内輪2の軸孔22を円孔として、シャフト5の端部5aの断面形状を円形以外の多角形として、このエッジ部を前記凸部35とすることができる。   Further, the shaft hole 22 of the inner ring 2 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion 5a of the shaft 5 fitted into the shaft hole 22 is also a polygon other than a circular cross section. An irregular cross section such as For this reason, for example, the shaft hole 22 of the inner ring 2 can be a circular hole, the cross-sectional shape of the end 5a of the shaft 5 can be a polygon other than a circle, and the edge can be the convex portion 35.
ポケット部50の形状としては、前記実施形態では、その周方向溝51は反スプライン側の側面51bを、溝底51cから反スプライン側に向かって拡径するテーパ面としたが、このようなテーパ面としないものであってもよく、要は、生じるはみ出し部45を収納(収容)できるものであればよく、そのため、ポケット部50の容量として、生じるはみ出し部45に対応できるものであればよい。   As the shape of the pocket portion 50, in the above-described embodiment, the circumferential groove 51 has a side surface 51b on the side opposite to the spline that is a tapered surface that expands from the groove bottom 51c toward the side opposite to the spline. It is sufficient that the protruding portion 45 to be generated can be accommodated (accommodated), and as long as the capacity of the pocket portion 50 can be accommodated to the protruding portion 45 that is generated. .
凹凸部55を設ける場合、図7では、スプライン41の軸方向中間部に設けていたが、スプライン41のシャフト端面側に設けても、逆に、反シャフト端面側に設けても、さらには、スプライン41の軸方向全長に設けてもよい。また、各凹凸部55の凸部(凸歯)55aの数及び形状も任意である。すなわち、凹凸部55としては、全凸部35に設けたものであっても、全凸部35のうち任意の凸部35に設けるようにしてもよい。図10等に示すようにポケット部50を有するシャフト5に凹凸部55を設けてもよい。なお、実施形態では、凸部35を構成するスプライン41の凸部41aに凹凸部55を設けていたが、スプライン41の凹部41bに凹凸部55を設けてもよい。   In the case where the uneven portion 55 is provided, in FIG. 7, it is provided in the intermediate portion in the axial direction of the spline 41, but it may be provided on the shaft end surface side of the spline 41, conversely, on the opposite shaft end surface side, The spline 41 may be provided along the entire length in the axial direction. Moreover, the number and shape of the convex part (convex tooth) 55a of each uneven | corrugated | grooved part 55 are also arbitrary. That is, as the concavo-convex portion 55, the concavo-convex portion 55 may be provided on the entire convex portion 35, or may be provided on an arbitrary convex portion 35 among the total convex portions 35. As shown in FIG. 10 and the like, an uneven portion 55 may be provided on the shaft 5 having the pocket portion 50. In the embodiment, the concave and convex portion 55 is provided in the convex portion 41 a of the spline 41 constituting the convex portion 35, but the concave and convex portion 55 may be provided in the concave portion 41 b of the spline 41.
また、前記実施形態では、凸部35に対して熱硬化処理を行い、凸部対応側を未硬化部位として、凸部35の硬度を凹部が形成される部位よりも高くしたが、硬度差をつけることができれば、両者を熱処理しても、両者を熱処理しなくてもよい。さらに、圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要がない。さらに、図2等では隙間40が形成されるが、凸部35間の凹部まで、内輪2の内径面37に食い込むようなものであってもよい。なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、前記したようにHRCで30ポイント以上とするのが好ましいが、凸部35が圧入可能であれば30ポイント未満であってもよい。上記熱処理方法としては、例えば高周波焼入れ、浸炭焼入れ、調質、焼準などが上げられる。圧入時にシャフト5の凸部35で内輪2の内径面に凹部36を形成する場合において、内輪2に浸炭焼入れを行う場合、内径面を防炭処理することで、シャフト5の凸部35より硬度の低い層を内輪2の内径面に形成し易くなる。また、圧入時に内輪2の内径の凸部35でシャフト5に凹部36を形成する場合、シャフト5に焼準処理や調質処理を施すことで、シャフト5の捩り強度を確保しつつシャフト5の外径面の硬度を内輪2の内径の凸部35より低くすることができる。   Moreover, in the said embodiment, although the thermosetting process was performed with respect to the convex part 35 and the convex corresponding | compatible part side was made into the non-hardened part, the hardness of the convex part 35 was made higher than the site | part in which a recessed part is formed, hardness difference is made. If it can be applied, both of them may be heat treated or both may not be heat treated. Furthermore, since only the press-fitting start end portion of the convex portion 35 needs to be harder than the portion where the concave portion 36 is formed during press-fitting, it is not necessary to increase the overall hardness of the convex portion 35. Furthermore, although the gap 40 is formed in FIG. 2 and the like, the gap between the convex portions 35 may bite into the inner diameter surface 37 of the inner ring 2. As described above, the hardness difference between the convex portion 35 side and the concave portion forming surface formed by the convex portion 35 is preferably 30 points or more by HRC, but the convex portion 35 can be press-fitted. If there is, it may be less than 30 points. Examples of the heat treatment method include induction hardening, carburizing and quenching, tempering, and normalizing. In the case where the concave portion 36 is formed on the inner diameter surface of the inner ring 2 by the convex portion 35 of the shaft 5 at the time of press-fitting, when the inner ring 2 is carburized and quenched, the inner surface is subjected to a carbon-proof treatment so that the hardness is higher than the convex portion 35 of the shaft 5. It becomes easy to form a low layer on the inner diameter surface of the inner ring 2. Further, when the concave portion 36 is formed on the shaft 5 by the convex portion 35 of the inner diameter of the inner ring 2 at the time of press-fitting, the shaft 5 is subjected to normalization treatment or tempering treatment, thereby ensuring the torsional strength of the shaft 5. The hardness of the outer diameter surface can be made lower than the convex portion 35 of the inner diameter of the inner ring 2.
凸部35の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させても、両者を移動させてもよい。   Although the end surface (press-fit start end) of the convex portion 35 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side. In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and the side where the recess 36 is formed may be moved or both may be moved.
本発明の第1実施形態を示す凹凸嵌合構造を用いた等速自在継手の断面図である。It is sectional drawing of the constant velocity universal joint using the uneven | corrugated fitting structure which shows 1st Embodiment of this invention. 前記凹凸嵌合構造の分解状態の断面図である。It is sectional drawing of the decomposition | disassembly state of the said uneven | corrugated fitting structure. 前記等速自在継手の凹凸嵌合構造を示し、(a)は拡大断面図であり、(b)(a)のX部拡大図である。The uneven | corrugated fitting structure of the said constant velocity universal joint is shown, (a) is an expanded sectional view, (b) It is the X section enlarged view of (a). 前記等速自在継手に連結されるシャフトの要部側面図である。It is a principal part side view of the shaft connected with the said constant velocity universal joint. 前記シャフトの正面図である。It is a front view of the shaft. 凹凸嵌合構造の変形例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification of an uneven | corrugated fitting structure. 本発明の第2実施形態を示す凹凸嵌合構造の断面図である。It is sectional drawing of the uneven | corrugated fitting structure which shows 2nd Embodiment of this invention. 前記図7の凹凸嵌合構造の要部拡大断面図である。It is a principal part expanded sectional view of the uneven | corrugated fitting structure of the said FIG. 前記図7の分解状態の断面図である。It is sectional drawing of the decomposition | disassembly state of the said FIG. 本発明の第3実施形態を示す凹凸嵌合構造の断面図である。It is sectional drawing of the uneven | corrugated fitting structure which shows 3rd Embodiment of this invention. 前記図10に示す凹凸嵌合構造の要部拡大断面図である。It is a principal part expanded sectional view of the uneven | corrugated fitting structure shown in the said FIG. 前記図10に示す凹凸嵌合構造の組み立て状態の断面図である。It is sectional drawing of the assembly state of the uneven | corrugated fitting structure shown in the said FIG. 本発明の凹凸嵌合構造を構成する他の内輪の断面図である。It is sectional drawing of the other inner ring | wheel which comprises the uneven | corrugated fitting structure of this invention. 前記図13に示す等速自在継手の内輪の要部拡大断面図である。It is a principal part expanded sectional view of the inner ring | wheel of the constant velocity universal joint shown in the said FIG. 本発明の凹凸嵌合構造を用いるトリポード型等速自在継手の内側継手部材を示し、(a)は正面図であり、(b)は断面図であり、(c)は(b)のZ−Z断面図である。The inner joint member of the tripod type constant velocity universal joint using the uneven | corrugated fitting structure of this invention is shown, (a) is a front view, (b) is sectional drawing, (c) is Z- of (b). It is Z sectional drawing. 本発明の第4実施形態を示す凹凸嵌合構造の断面図である。It is sectional drawing of the uneven | corrugated fitting structure which shows 4th Embodiment of this invention. 図16のY部拡大図である。It is the Y section enlarged view of FIG.
符号の説明Explanation of symbols
5 シャフト
22 軸孔
35 凸部
36 凹部
37 内径面
38 凹部嵌合部位
45 はみ出し部
50 ポケット部
52 鍔部
55 凹凸部
63 軸孔
65 ボス部
5 Shaft 22 Shaft hole 35 Convex part 36 Concave part 37 Inner diameter surface 38 Concave fitting part 45 Projection part 50 Pocket part 52 Eave part 55 Concave part 63 Concave part 65 Boss part

Claims (16)

  1. 外側継手部材と、外側継手部材に内挿される内側継手部材と、外側継手部材と内側継手部材との間に介在してトルク伝達を行なうトルク伝達部材とを備えた等速自在継手において、
    シャフトの外径面と内側継手部材の軸孔の内径面とのどちらか一方に、圧入始端側の端面を軸方向に対して直交する面にした凸部を設け、この凸部を軸方向に沿って他方に圧入し、圧入した凸部で他方を切削することで他方に前記凸部との嵌合接触部位全域が密着する凹部を形成して、凸部および凹部からなる凹凸嵌合構造で内側継手部材と内側継手部材の軸孔に嵌挿されるシャフトとを連結し、凸部と凹部の前記嵌合接触部位全域での密着が凸部を他方に圧入することで完成していることを特徴とする等速自在継手。
    In a constant velocity universal joint provided with an outer joint member, an inner joint member inserted into the outer joint member, and a torque transmission member that transmits torque by being interposed between the outer joint member and the inner joint member,
    One of the outer diameter surface of the shaft and the inner diameter surface of the shaft hole of the inner joint member is provided with a convex portion whose end surface on the press-fitting start end side is a surface orthogonal to the axial direction. A concave-convex fitting structure comprising a convex part and a concave part is formed by pressing into the other along the convex part and cutting the other with the press-fitted convex part to form a concave part where the entire fitting contact part with the convex part is in close contact with the other. The inner joint member and the shaft that is inserted into the shaft hole of the inner joint member are connected, and the close contact of the convex portion and the concave portion in the entire fitting contact portion is completed by press-fitting the convex portion into the other. Characteristic constant velocity universal joint.
  2. 前記等速自在継手が、内径面に軸方向に延びる複数の案内溝を形成した外側継手部材としての外輪と、外径面に軸方向に延びる複数の案内溝を形成した内側部材としての内輪と、前記外輪の案内溝と前記内輪の案内溝とが協働して形成されるボールトラックに配されたトルク伝達ボールと、前記トルク伝達ボールを保持するポケットを有する保持器とを備えた等速自在継手であり、前記トルク伝達部材にボールを用いたことを特徴とする請求項1の等速自在継手。   The constant velocity universal joint includes an outer ring as an outer joint member in which a plurality of guide grooves extending in the axial direction are formed on the inner diameter surface, and an inner ring as an inner member in which the plurality of guide grooves extending in the axial direction are formed on the outer diameter surface. And a constant velocity provided with a torque transmission ball disposed on a ball track formed by cooperation of the guide groove of the outer ring and the guide groove of the inner ring, and a cage having a pocket for holding the torque transmission ball. 2. The constant velocity universal joint according to claim 1, wherein a ball is used for the torque transmission member.
  3. 前記等速自在継手が、軸線に対して周方向の一方にねじれた案内溝と周方向に他方にねじれた案内溝とを内周面に交互に設けた外側継手部材としての外輪と、外輪の各案内溝と対をなしてボールトラックを形成し、対をなす外輪の案内溝を外周面に交互に設けた内側部材としての内輪と、トルク伝達ボールを保持する保持器とを備えたクロスグルーブ型等速自在継手であり、前記トルク伝達部材にボールを用いたことを特徴とする請求項1の等速自在継手。   The constant velocity universal joint includes an outer ring as an outer joint member in which guide grooves twisted in one circumferential direction with respect to the axis and guide grooves twisted in the other circumferential direction are alternately provided on the inner peripheral surface; A cross groove having an inner ring as an inner member in which a pair of outer ring guide grooves are alternately formed on the outer peripheral surface, and a cage for holding a torque transmission ball. 2. The constant velocity universal joint according to claim 1, wherein said constant velocity universal joint is a ball, and a ball is used as said torque transmission member.
  4. 円周方向に向き合ったローラ案内面を有する3つのトラック溝が形成された外側継手部材と、半径方向に突出した3本の脚軸を備えた内側継手部材としてのトリポード部材と、前記脚軸に回転自在に外嵌するとともに前記トラック溝に挿入されたトルク伝達部材としてのローラとを備え、前記ローラが前記ローラ案内面に沿って外側継手部材の軸方向に移動可能としたことを特徴とする請求項1の等速自在継手。   An outer joint member having three track grooves having roller guide surfaces facing in the circumferential direction, a tripod member as an inner joint member having three leg shafts projecting in the radial direction, And a roller as a torque transmission member that is rotatably fitted and is inserted into the track groove, and the roller is movable in the axial direction of the outer joint member along the roller guide surface. The constant velocity universal joint according to claim 1.
  5. シャフトに凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を内側継手部材の軸孔内径部よりも高くしたことを特徴とする請求項1の等速自在継手。 2. The constant velocity universal joint according to claim 1, wherein a convex portion is provided on the shaft, and hardness of at least an axial end portion of the convex portion is made higher than that of the inner diameter portion of the inner joint member.
  6. 内側継手部材の軸孔の内径面に凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をシャフトの外径部よりも高くしたことを特徴とする請求項1の等速自在継手。 2. The constant velocity universal joint according to claim 1, wherein a convex portion is provided on the inner diameter surface of the shaft hole of the inner joint member, and at least the hardness of the axial end portion of the convex portion is higher than that of the outer diameter portion of the shaft. .
  7. 前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部をシャフトに設けたことを特徴とする請求項5の等速自在継手。   6. The constant velocity universal joint according to claim 5, wherein a pocket portion for accommodating a protruding portion generated by forming the concave portion by the press-fitting is provided on the shaft.
  8. 前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を内側継手部材の軸孔の内径面に設けたことを特徴とする請求項6の等速自在継手。   The constant velocity universal joint according to claim 6, wherein a pocket portion for accommodating a protruding portion generated by forming the concave portion by the press-fitting is provided on an inner diameter surface of the shaft hole of the inner joint member.
  9. 前記はみ出し部を収納するポケット部を、シャフトの凸部の圧入始端側に設けるとともに、このポケット部の反凸部側に内側継手部材の軸孔との調芯用の鍔部を設けたことを特徴とする請求項7の等速自在継手。   The pocket portion for storing the protruding portion is provided on the press-fitting start end side of the convex portion of the shaft, and the collar portion for alignment with the shaft hole of the inner joint member is provided on the anti-convex portion side of the pocket portion. The constant velocity universal joint according to claim 7, characterized in that:
  10. 凸部の突出方向のいずれかの部位が、凹部形成前の凹部形成面の位置に対応することを特徴とする請求項1〜請求項9のいずれかの等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 9, wherein any portion in the protruding direction of the convex portion corresponds to the position of the concave portion forming surface before the concave portion is formed.
  11. 複数の凸部の頂点を結ぶ円弧の最大直径寸法を内側継手部材の軸孔の内径寸法よりも大きくするとともに、隣り合う凸部間のシャフト外径面の最大外径寸法を内側継手部材の軸孔の内径寸法よりも小さくしたことを特徴とする請求項10の等速自在継手。   The maximum diameter dimension of the arc connecting the vertices of the plurality of protrusions is made larger than the inner diameter dimension of the shaft hole of the inner joint member, and the maximum outer diameter dimension of the shaft outer diameter surface between adjacent protrusions is set to the axis of the inner joint member. The constant velocity universal joint according to claim 10, wherein the constant velocity universal joint is smaller than an inner diameter of the hole.
  12. 軸孔の複数の凸部の頂点を結ぶ円弧の最小直径寸法をシャフトの内側継手部材嵌挿部の外径寸法よりも小さくするとともに、隣り合う凸部間の軸孔内径面の最大内径寸法をシャフトの内側継手部材嵌挿部の外径寸法よりも大きくしたことを特徴とする請求項10の等速自在継手。   The minimum diameter dimension of the arc connecting the vertices of the plurality of convex portions of the shaft hole is made smaller than the outer diameter size of the inner joint member insertion portion of the shaft, and the maximum inner diameter dimension of the inner diameter surface of the shaft hole between adjacent convex portions is increased. The constant velocity universal joint according to claim 10, characterized in that it is larger than the outer diameter of the inner joint member fitting portion of the shaft.
  13. 凸部の突出方向中間部位の周方向厚さを、周方向に隣り合う凸部間における前記中間部位に対応する位置での周方向寸法よりも小さくしたことを特徴とする請求項1〜請求項12のいずれかの等速自在継手。   The circumferential thickness of the projecting direction intermediate portion of the convex portion is smaller than the circumferential dimension at a position corresponding to the intermediate portion between the convex portions adjacent in the circumferential direction. Any one of 12 constant velocity universal joints.
  14. 凸部の突出方向中間部位の周方向厚さの総和を、周方向に隣り合う凸部間に嵌合する相手側の凸部における前記中間部位に対応する位置での周方向厚さの総和よりも小さくしたことを特徴とする請求項1〜請求項13のいずれかの等速自在継手。   The sum of the circumferential thicknesses of the projecting direction intermediate portions of the convex portions is the sum of the circumferential thicknesses at positions corresponding to the intermediate portions of the mating convex portions that fit between the convex portions adjacent in the circumferential direction. The constant velocity universal joint according to any one of claims 1 to 13, wherein the constant velocity universal joint is also made smaller.
  15. 前記凸部側の軸方向の少なくとも一部に軸方向に沿う凹凸部を設けたことを特徴とする請求項1〜請求項14のいずれかの等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 14, wherein an uneven portion along the axial direction is provided on at least a part of the convex portion side in the axial direction.
  16. 前記凸部側の軸方向に沿う凹凸部を鋸歯状に形成した請求項15の等速自在継手。   The constant velocity universal joint according to claim 15, wherein the concave and convex portions along the axial direction on the convex portion side are formed in a sawtooth shape.
JP2007008366A 2007-01-17 2007-01-17 Constant velocity universal joint Active JP5349756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008366A JP5349756B2 (en) 2007-01-17 2007-01-17 Constant velocity universal joint

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007008366A JP5349756B2 (en) 2007-01-17 2007-01-17 Constant velocity universal joint
PCT/JP2008/050510 WO2008088007A1 (en) 2007-01-17 2008-01-17 Constant velocity universal joint
US12/522,289 US8506202B2 (en) 2007-01-17 2008-01-17 Constant velocity universal joint
CN 200880001344 CN101611233B (en) 2007-01-17 2008-01-17 Constant velocity universal joint
KR20097011492A KR101510797B1 (en) 2007-01-17 2008-01-17 constant velocity universal joint
EP08703365.0A EP2119929B1 (en) 2007-01-17 2008-01-17 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2008175277A JP2008175277A (en) 2008-07-31
JP5349756B2 true JP5349756B2 (en) 2013-11-20

Family

ID=39702447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008366A Active JP5349756B2 (en) 2007-01-17 2007-01-17 Constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP5349756B2 (en)
CN (1) CN101611233B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093003B2 (en) * 2008-08-29 2012-12-05 トヨタ自動車株式会社 Spline shaft and method for manufacturing spline shaft
CN102859219A (en) * 2010-03-19 2013-01-02 Ntn株式会社 Tripod constant velocity universal joint
CN104279237B (en) * 2013-07-09 2019-05-07 博格华纳公司 Casing with internal spline broaching system
JP2016114082A (en) * 2014-12-11 2016-06-23 本田技研工業株式会社 Fixed type constant velocity joint
CN108973523A (en) * 2017-05-30 2018-12-11 株式会社岛野 Bicycle drive shaft component
DE202018106138U1 (en) * 2017-05-30 2018-11-08 Shimano Inc. Bicycle hub assembly
DE102018008578A1 (en) * 2017-05-30 2019-01-17 Shimano Inc. Bicycle hub assembly
US10377174B2 (en) 2017-08-09 2019-08-13 Shimano Inc. Bicycle hub assembly
US10752320B2 (en) 2017-09-22 2020-08-25 Shimano Inc. Bicycle rear hub assembly
US10946931B2 (en) 2017-09-22 2021-03-16 Shimano Inc. Bicycle rear sprocket assembly and bicycle drive train

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816008Y2 (en) * 1975-06-24 1983-04-01
JPS6251694B2 (en) * 1978-06-21 1987-10-31 Hitachi Ltd
JPS62136609U (en) * 1986-02-21 1987-08-28
JPH0229262Y2 (en) * 1986-09-30 1990-08-06
JPH06312322A (en) * 1993-04-26 1994-11-08 Mitsubishi Materials Corp Hollow movable shaft and manufacture thereof
JP4191878B2 (en) * 2000-05-18 2008-12-03 本田技研工業株式会社 Spline shaft fitting structure for constant velocity joint
JP4219583B2 (en) * 2001-10-26 2009-02-04 Ntn株式会社 Fixed type constant velocity universal joint
JP3958732B2 (en) * 2003-10-09 2007-08-15 三菱電機株式会社 Rotating electric machine and manufacturing method thereof
JP4315819B2 (en) * 2004-01-06 2009-08-19 Ntn株式会社 Drive wheel bearing device
JP2006329345A (en) * 2005-05-27 2006-12-07 Valeo Unisia Transmission Kk Manufacturing method of torque converter, and torque converter manufactured by the method
US8128504B2 (en) * 2006-06-16 2012-03-06 Ntn Corporation Constant velocity universal joint

Also Published As

Publication number Publication date
CN101611233B (en) 2013-03-06
CN101611233A (en) 2009-12-23
JP2008175277A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5349756B2 (en) Constant velocity universal joint
KR101510797B1 (en) constant velocity universal joint
JP4302730B2 (en) Wheel bearing device
EP2031262B1 (en) Constant velocity universal joint
JP2008162359A5 (en)
JP5236348B2 (en) Wheel bearing device
KR101438015B1 (en) Bearing device for wheel
WO2009145034A1 (en) Fixed-type, constant-velocity universal joint
JP5683773B2 (en) Wheel bearing device
JP5398999B2 (en) Wheel bearing device
JP2010047059A (en) Wheel bearing device and axle module
JP2008286308A (en) Constant velocity universal joint
JP5283832B2 (en) Constant velocity universal joint
JP2008256022A (en) Constant velocity universal joint
JP5683772B2 (en) Wheel bearing device
JP5826781B2 (en) Manufacturing method of wheel bearing device
JP5349762B2 (en) Constant velocity universal joint
JP2011106566A (en) Shaft structure for power transmission, intermediate shaft, and outside joint member
JP2008051221A (en) Two member connecting structure
JP2018132077A (en) Constant velocity universal joint
JP2009068582A (en) Bearing device for wheel
JP4294704B2 (en) Wheel bearing device
JP2012255522A (en) Outer joint member for constant velocity universal joint
JP2007333155A (en) Constant-velocity universal joint
JP2008303944A (en) Bearing device for wheel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5349756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250