WO2023068018A1 - Tripod-type constant-velocity universal joint - Google Patents

Tripod-type constant-velocity universal joint Download PDF

Info

Publication number
WO2023068018A1
WO2023068018A1 PCT/JP2022/036825 JP2022036825W WO2023068018A1 WO 2023068018 A1 WO2023068018 A1 WO 2023068018A1 JP 2022036825 W JP2022036825 W JP 2022036825W WO 2023068018 A1 WO2023068018 A1 WO 2023068018A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
roller
velocity universal
tripod
type constant
Prior art date
Application number
PCT/JP2022/036825
Other languages
French (fr)
Japanese (ja)
Inventor
卓 板垣
達朗 杉山
将太 河田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023068018A1 publication Critical patent/WO2023068018A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part

Definitions

  • This invention relates to a tripod type constant velocity universal joint.
  • a constant velocity universal joint which constitutes the power transmission system of automobiles and various industrial machines, connects two shafts on the drive side and the driven side so that torque can be transmitted, and transmits rotational torque at a constant speed even if the two shafts change their operating angles. can do.
  • Constant velocity universal joints are broadly classified into fixed type constant velocity universal joints that allow only angular displacement and sliding type constant velocity universal joints that allow both angular displacement and axial displacement.
  • a sliding constant velocity universal joint is used on the differential side (inboard side), and a fixed constant velocity universal joint is used on the driving wheel side (outboard side).
  • a tripod type constant velocity universal joint is one of the sliding constant velocity universal joints.
  • this tripod type constant velocity universal joint there are known a single roller type roller and a double roller type roller as a torque transmission member.
  • a double-roller type tripod type constant velocity universal joint (hereinafter simply referred to as a tripod type constant velocity universal joint) is mainly composed of an outer joint member, a tripod member as an inner joint member, and a roller unit as a torque transmission member. is configured.
  • the outer joint member has three linear track grooves extending in the axial direction formed on its inner peripheral surface at equal intervals in the circumferential direction.
  • a roller guide surface is formed extending in the direction.
  • a tripod member and a roller unit are housed inside the outer joint member.
  • the tripod member has three radially projecting legs.
  • the roller unit is mainly composed of a roller, an inner ring placed inside the roller and fitted on the pedestal, and a plurality of needle rollers interposed between the roller and the inner ring. and housed in the track grooves of the outer joint member.
  • the inner peripheral surface of the inner ring forms an arcuate convex surface in a longitudinal section including the axis of the inner ring.
  • each leg shaft of the tripod member has a straight shape in a longitudinal section including the axis of the leg shaft, a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft, and a direction perpendicular to the axis of the joint. It is in contact with the inner peripheral surface of the inner ring, and a gap is formed between it and the inner peripheral surface of the inner ring in the axial direction of the joint.
  • the rollers of the roller unit attached to the leg shaft of the tripod member roll on the roller guide surfaces of the track grooves of the outer joint member.
  • the cross-section of the leg shaft is substantially elliptical, when the tripod-type constant velocity universal joint takes an operating angle, the axis of the tripod member is inclined with respect to the axis of the outer joint member, but the roller unit is aligned with the tripod member. It is tiltable with respect to the axis of the leg shaft. Therefore, since the rollers roll correctly on the roller guide surface, it is possible to reduce the induced thrust and the slide resistance, and it is possible to reduce the vibration of the joint (Patent Document 1). Angular contacts and circular contacts are mainly applied to the shape of the three track grooves having roller guide surfaces formed in the outer joint member.
  • Patent Document 2 proposes a method of setting the minimum value of the track clearance in a sliding tripod type constant velocity universal joint to a partially negative clearance (tightening allowance) of -50 ⁇ m to +10 ⁇ m in an unloaded state.
  • the inside of the cup portion of the outer joint member is finished by cold forging, and after heat treatment, the inside of the cup portion is generally not finished by grinding or the like. Therefore, in addition to the effect of cold forging accuracy, heat treatment deformation caused by heat treatment of the roller guide surfaces of the track grooves causes the track diameter, which is the width dimension between the roller guide surfaces, to vary among the three track grooves. occur. In other words, the difference between the maximum and minimum track diameters increases between the three track grooves. The difference between the maximum and minimum values of the track diameters of the three track grooves is called the mutual difference of the track diameters.
  • the mutual difference between the track diameters affects the dispersion of the track clearance, which is the clearance between the track diameter and the outer diameter of the roller. In other words, it affects the difference between the maximum value and the minimum value of the track clearance between the three track grooves.
  • the difference between the maximum value and the minimum value of the track clearance between the three track grooves is also called the mutual difference of the track clearance.
  • Patent Document 2 in which the minimum value of the track clearance is set to a partial negative clearance (clamping allowance) of -50 ⁇ m to +10 ⁇ m in a no-load state, has the effect of suppressing the mutual difference in track clearance due to the negative clearance. Considering the ease of handling, such as the large sliding resistance when mounted on a vehicle under load, it was concluded that a correct track clearance is desirable.
  • the present invention enables practical use of a selected combination of rollers for the track diameter of the outer joint member based on the practical accuracy level of forging and heat treatment, and improves durability, strength, and NVH characteristics. It is an object of the present invention to provide a tripod-type constant velocity universal joint capable of ensuring
  • the present inventors have investigated (a) precision at the limit of forging and heat treatment, (b) possibility of efficient practical use of a selected combination of rollers for track diameters, and (c) durability.
  • Various multifaceted items such as securing of durability, strength, and NVH characteristics (vibration characteristics) were examined.
  • the key to the solution was to focus on the circumferential backlash in the central range of the joint axial direction of the track grooves, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints.
  • the new idea of setting the minimum value of the track clearance and the mutual difference of the track diameters in the middle range led to the present invention.
  • the present invention provides an outer joint member formed with three track grooves having roller guide surfaces arranged in circumferentially opposite directions, and a radially projecting roller guide surface.
  • a constant velocity tripod type comprising: a tripod member having three leg shafts; and a torque transmission member having rollers that are rotatably inserted into track grooves of the outer joint member and supported by the leg shafts.
  • the range from 10 mm on the inner side to 10 mm on the opening side with respect to the center of the slide range of the track groove in the joint axial direction is defined as a center range
  • the width dimension between the roller guide surfaces is defined in the center range.
  • a portion having a minimum track diameter is formed, a track clearance is formed between the roller guide surface and the outer peripheral surface of the roller in the central region, and the minimum value of the track clearance of the three track grooves in the central region is 0.010 mm or more and 0.100 mm or less, and the mutual difference in track diameter of the three track grooves in the central area is 0.150 mm or less.
  • An inner ring that rotatably supports the roller is provided, the inner ring is fitted onto the leg shaft, and the roller is movable in the axial direction of the outer joint member along the roller guide surface, thereby induced thrust and slide resistance can be reduced, and low vibration of the joint can be realized.
  • the inner peripheral surface of the inner ring is arcuately convex in the longitudinal section of the inner ring, and the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg shaft.
  • the cross section perpendicular to the axis has a substantially elliptical shape, and the outer peripheral surface of the leg shaft contacts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the inner ring in the axial direction of the joint.
  • a clearance is formed between the roller and the inner peripheral surface, and the roller can be tilted within the track groove. As a result, the tilting motion of the roller in the track groove becomes smooth, and it is possible to reduce the induced thrust and slide resistance and reduce the vibration of the joint.
  • the relative rotation between the inner ring and the roller can be smoothed.
  • the rolling elements are needle rollers
  • the relative rotation between the inner ring and the rollers can be smoothed, and the internal parts can be made compact.
  • Either angular contact or circular contact can be applied as the form of contact between the roller and the roller guide surface.
  • the present invention since it is possible to suppress backlash in the circumferential direction and ensure NVH characteristics, it is particularly suitable for tripod-type constant-velocity motor-driven electric vehicles that require improved rotational torque transmission responsiveness and improved quietness. Universal joints can be realized.
  • FIG. 1 is a longitudinal sectional view of a tripod type constant velocity universal joint according to a first embodiment of the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 2 is a plan view of the roller unit and the leg shaft as viewed along line BB in FIG. 1
  • 4 is a longitudinal sectional view of the roller unit taken along line EE of FIG. 3
  • FIG. FIG. 2 is a vertical cross-sectional view showing a state in which the tripod type constant velocity universal joint of FIG. 1 takes a normal working angle
  • FIG. 2 is a longitudinal sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 assumes an operating angle larger than the normal operating angle
  • FIG. 7b is a cross-sectional view taken along the line ZZ in FIG. 7b showing the details of the track grooves of the outer joint member in FIG. 1 in the joint axial direction.
  • FIG. 2 is a vertical cross-sectional view showing details of track grooves of the outer joint member of FIG. 1 in the joint axial direction;
  • Fig. 7b is an enlarged cross-sectional view in the central region W of Figs. 7a, 7b;
  • FIG. 9 is a partial cross-sectional view showing the minimum value of track clearance in FIG. 8;
  • FIG. 9 is a partial cross-sectional view showing the maximum value of the track clearance in FIG. 8;
  • FIG. 5 is a partial cross-sectional view showing the minimum track clearance in the case of circular contacts;
  • FIG. 5 is a schematic diagram for explaining that the load becomes non-uniform for each leg axle due to mutual differences in track clearances; 7b is a cross-sectional view showing a modification of the bottom shape of the cup portion of the track groove of FIG. 7a;
  • FIG. FIG. 5 is a cross-sectional view of a tripod-type constant velocity universal joint according to a second embodiment of the present invention;
  • FIG. 5 is a cross-sectional view of a tripod-type constant velocity universal joint according to a third embodiment of the present invention;
  • FIG. 10 is a cross-sectional view showing a modification in which one side of the track groove has no flange;
  • FIG. 1 is a vertical cross-sectional view of a tripod type constant velocity universal joint according to this embodiment
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the tripod member 3 and the two lower roller units 4 are not shown in cross section, and the illustration of the shaft 9 is omitted.
  • 3 is a plan view of the roller unit and the leg shaft taken along the line BB of FIG. 1
  • FIG. 4 is a longitudinal sectional view of the roller unit taken along the line EE of FIG.
  • FIG. 5 is a longitudinal sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 has a normal working angle
  • FIG. 6 shows a state in which the tripod-type constant velocity universal joint of FIG. 1 has a working angle larger than the normal working angle. It is a longitudinal cross-sectional view showing a state.
  • the tripod type constant velocity universal joint 1 is mainly composed of an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member.
  • the outer joint member 2 has a cup portion 2a with one end open, and three linear track grooves 5 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction. Circumferentially opposed roller guide surfaces 6 are formed, each extending in the axial direction.
  • a tripod member 3 and a roller unit 4 are housed inside the outer joint member 2 .
  • the tripod member 3 has three radially projecting leg shafts 7 .
  • a shaft 9 is spline-fitted into the center hole 8 of the tripod member 3 and fixed in the axial direction by a retaining ring 10 .
  • the roller unit 4 includes a roller 11, an inner ring 12 disposed inside the roller 11 and fitted on the leg shaft 7, and a plurality of needle rollers 13 interposed between the roller 11 and the inner ring 12.
  • the main part is composed of The roller unit 4 is accommodated in the track groove 5 of the outer joint member 2 , and the center of the roller unit 4 (roller 11 ) in the width direction is positioned on the pitch circle PC of the track groove 5 .
  • the needle rollers 13 are arranged between the cylindrical inner peripheral surface 11b of the roller 11 and the cylindrical outer peripheral surface 12b of the inner ring 12 in a so-called full roller state without a retainer.
  • the cylindrical inner peripheral surface 11b of the roller 11 is used as an outer raceway surface
  • the cylindrical outer peripheral surface 12b of the inner ring 12 is used as an inner raceway surface.
  • the inner peripheral surface 12a of the inner ring 12 forms an arc-shaped convex surface in a longitudinal section including the axis of the inner ring 12. As shown in FIG.
  • This arc-shaped convex surface has a curvature radius ri of, for example, about 30 mm in order to allow the leg shaft 7 to be inclined by about 2 to 3° with respect to the inner ring 12 due to whirling unique to tripod type constant velocity universal joints. ing.
  • the outer peripheral surface 11a of the roller 11 is formed of a partial spherical surface with a radius of curvature r centered on the axis 4x of the roller unit 4, in other words, on the axis 7x of the leg shaft 7 shown in FIG.
  • the roller unit 4 composed of the inner ring 12 of the roller unit 4, the needle rollers 13 and the rollers 11 is constructed so as not to be separated by the washers 14 and 15. As shown in FIG.
  • the washers 14 and 15 are divided at one point in the circumferential direction (see FIG. 3), and are fitted in the annular groove of the cylindrical inner peripheral surface 11b of the roller 11 in an elastically contracted state. ing.
  • each leg shaft 7 of the tripod member 3 has a straight shape in a longitudinal section including the axis 7x of the leg shaft 7 (see FIG. 3).
  • the outer peripheral surface 7a of the leg shaft 7 has a substantially elliptical shape in a cross section perpendicular to the axis 7x of the leg shaft 7, and extends in the direction perpendicular to the axis of the joint, that is, the direction of the major axis a.
  • a gap m is formed with the inner peripheral surface 12a of the inner ring 12 in the axial direction of the joint, that is, in the direction of the minor axis b.
  • the axis of the tripod member 3 is inclined with respect to the axis of the outer joint member 2 as shown in FIG.
  • the unit 4 is tiltable with respect to the axis of the leg shaft 7 of the tripod member 3 . Therefore, the rollers 11 of the roller unit 4 and the roller guide surface 6 are prevented from being in an oblique state, and they roll properly, so that the induced thrust and the slide resistance can be reduced, and the vibration of the joint can be reduced. can be realized.
  • the substantially elliptical shape is not limited to a literal elliptical shape, and includes shapes generally called an egg shape, an oval shape, and the like.
  • the leg shaft 7 having a substantially elliptical cross section and the inner ring 12 having a circular inner peripheral surface 12a come into contact with each other to transmit torque, the surface pressure of the contact portion between the leg shaft 7 and the inner ring 12 is relieved.
  • the ellipticity b/a of the major axis a and the minor axis b of the substantially elliptical shape of the leg shaft 7 and the curvature radius ri of the inner peripheral surface 12a of the inner ring 12 (see FIG. 4) is set. Therefore, at relatively small working angles that are commonly used, the roller unit 4 can be tilted with respect to the leg shaft 7 as described above with reference to FIG. It can roll without crossing.
  • the outer peripheral surface 7a of the leg shaft 7 and the inner peripheral surface 12a of the inner ring 12 shown in FIG. can no longer incline with respect to the leg shaft 7. Since the angle at which the roller unit 4 can be tilted with respect to the leg shaft 7 is limited, the roller unit 4 must be tilted with respect to the track groove 5 by the insufficient angle when the angle is larger than the predetermined angle exceeding the normal operating angle.
  • the outer peripheral surface 11a of the roller 11 is formed by a partial spherical surface having a curvature radius r centered on the axis 7x of the leg shaft 7. Therefore, as shown in FIG. , the roller unit 4 can be tilted within the track groove 5, so that a large working angle can be accommodated.
  • Characteristic configurations are the following (1) to (4).
  • (1) With respect to the center of the slide range in the joint axial direction of the track groove, the range from 10 mm on the back side to 10 mm on the opening side is defined as the center range, and the track diameter, which is the width dimension between the roller guide surfaces, is defined in the center range. Forming a part where is the smallest.
  • (2) A track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area.
  • the minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less.
  • the mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.
  • the above characteristic configurations (1) to (4) were reached through the following examination process. That is, the inventors found that (a) precision levels at the limits of forging and heat treatment, (b) efficient feasibility of roller selection combinations for track diameters, (c) durability, strength, and NVH properties (low Circumferential direction backlash in the center range of the joint axial direction of the track groove, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints, was investigated. is the key to the solution, and the new idea of setting the minimum value of the track clearance and the mutual difference between the track diameters in the center range is used to achieve the above characteristic configuration (1) to (4) is reached.
  • the characteristic configuration (1) is to precisely form the track clearance in the central range of the joint axial direction of the track groove, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints. A portion is formed in the range where the track diameter, which is the width dimension between the roller guide surfaces, is the smallest. Characteristic configuration (1) will be specifically described with reference to FIGS. 7a and 7b. 7a shows the details of the track grooves of the outer joint member in FIG. 1 in the joint axial direction, and is a cross-sectional view taken along line ZZ in FIG. 7b, and FIG. 7b is a vertical cross-sectional view.
  • the outer joint member of the sliding tripod type constant velocity universal joint is generally manufactured through a forging process, a cutting process, a quenching process, and a grinding process, and the inside of the cup portion is finished by cold forging (grinding after the quenching process). No finish processing is applied in the process, etc.).
  • a portion 6a in which the track diameter L, which is the width dimension between the roller guide surfaces 6, is minimized is formed in the center range W of the track groove in the joint axial direction.
  • a portion 6a formed in the central range W where the track diameter L is the smallest serves as a reference for setting the track clearance ⁇ and the track diameter L, which will be described later.
  • the central range W is located on the back side of the sliding range central portion C of the track groove 5 of the outer joint member 2 in the joint axial direction.
  • a portion 6a having the smallest track diameter L is formed in the central range W, and the track diameter L gradually decreases from the opening side of the cup portion 2a to the sliding range central portion C (central range W). , and gradually increases from the slide range central portion C (central range W) toward the back side.
  • the variation dimension of the track diameter L gradually varying in the axial direction is about 0.100 mm to 0.300 mm.
  • the sliding range central part C is defined.
  • the slide range central portion C is arbitrarily set according to the vehicle use conditions. In other words, the slide range central portion C may deviate from the central position of the entire area from the opening of the cup portion 2a to the bottom portion of the cup portion. Therefore, the center of axial displacement of the roller unit 4 during general vehicle travel is defined as the slide range center C.
  • the area that can be used at all times during general vehicle running is "slide range center C ⁇ 10 mm". stipulate.
  • the sliding range central portion of the track groove in the joint axial direction in the present specification and claims has the above meaning.
  • FIG. 13 shows a modification of the bottom shape of the cup portion 2a of the track groove of FIG. 7a. In this modification, the bottom shape of the cup portion 2a is formed in a concave circular arc shape along the outer peripheral surface 11a of the roller 11. As shown in FIG. Also in this modified example, the slide range center portion C and the center range W are the same.
  • a characteristic configuration (2) is that a track clearance ⁇ is formed between the roller guide surface 6 in the central range W and the outer diameter surface (outer peripheral surface 11a) of the roller 11 .
  • a positive track clearance .delta As shown in FIG. 7a, it is easy to handle due to sliding resistance when mounted on the vehicle, and it is possible to suppress the backlash in the circumferential direction in the area that is most frequently used in the vehicle, ensuring NVH characteristics (low vibration characteristics). can.
  • the track clearance ⁇ is shown in an exaggerated manner.
  • FIG. 8 is an enlarged cross-sectional view in the central region W of FIGS. 7a and 7b.
  • the centerline 5x of the track groove 5 and the axis 7x of the leg shaft 7 are shown aligned, and only the cross section of the outer joint member 2 and the side view of the roller 11 are shown.
  • the outer peripheral surface 11a of the roller 11 is formed of a partial spherical surface with a radius of curvature r with the center of curvature Or on the axis 7x of the leg shaft 7.
  • the roller guide surface 6 passes through the intersection T between the pitch circle PC of the track groove 5 and the center line 5x of the track groove 5, and has the center of curvature OR at a position beyond the center line 5x of the track groove 5 on the line of the contact angle ⁇ . It is formed with a Gothic arch-shaped cross-section with a radius of curvature R and extends parallel to the axis of the joint.
  • the curvature radius R is set appropriately larger than the curvature radius r. Therefore, the outer peripheral surface 11a of the roller 11 and the roller guide surface 6 form an angular contact at two points with a contact angle ⁇ with respect to the horizontal line XX passing through the intersection point T. As shown in FIG.
  • the upper track groove 5 is designated as the first track groove 5(1)
  • the track groove 5 positioned 120° clockwise from the first track groove 5(1) is designated as the second track groove.
  • the track groove 5 located 240° clockwise from the first track groove 5(1) is defined as the third track groove 5(3).
  • the track diameter L and the track clearance ⁇ vary among the three track grooves 5 due to cold forging finishing (no grinding finishing after heat treatment) and heat treatment deformation.
  • the track diameter is L1 and the track clearance is .delta.1.
  • the second track groove 5(2) has a track diameter of L2 and a track clearance of .delta.2.
  • the third track groove 5(3) has a track diameter of L3 and a track clearance of ⁇ 3.
  • reference numeral 5 is assigned, and reference numerals 5(1) to 5(3) are assigned to the first to third track grooves, respectively.
  • L is given
  • the track diameters of the first to third track grooves are given L1 to L3.
  • the reference numeral ⁇ is attached, and the reference numerals ⁇ 1 to ⁇ 3 are attached to the respective track clearances of the first to third track grooves.
  • the maximum value of the track diameter L is denoted by Lmax, and the minimum value thereof is denoted by Lmin.
  • the maximum value of the track clearance ⁇ is denoted by ⁇ max, and the minimum value thereof is denoted by ⁇ min.
  • the track diameter L1 and the track clearance ⁇ 1 of the first track groove 5(1) are the minimum values
  • the track diameter L1 is the minimum value Lmin
  • the track clearance ⁇ 1 is the minimum value.
  • the track diameter L2 and the track clearance ⁇ 2 of the second track groove 5(2) are the maximum values
  • the track diameter L2 is the maximum value Lmax
  • the track clearance ⁇ 2 is the maximum value ⁇ max.
  • FIG. 9 An enlarged view of the first track groove 5(1) in FIG. 8 is shown in FIG.
  • the track diameter L1 of the first track groove 5(1) is the minimum value Lmin
  • the track clearance .delta.1 is the minimum value .delta.min.
  • An enlarged view of the second track groove 5(2) is shown in FIG.
  • the track diameter L2 of the second track groove 5(2) is the maximum value Lmax
  • the track clearance .delta.2 is the maximum value .delta.max.
  • FIG. 11 shows the case of circular contact.
  • FIG. 11 is a partial cross-sectional view showing the minimum value .delta.min of the track clearance .delta. in the case of circular contacts.
  • the roller guide surface 6 of the track groove 5 has a curvature that places the center of curvature OR' on the horizontal line XX passing through the intersection T between the center line 5x of the track groove 5 and the pitch circle PC of the track groove 5. It is formed in a partial cylindrical shape with a radius R'.
  • the roller guide surface 6 and the roller 11 come into contact with each other about the horizontal line XX passing through the intersection point T as the center.
  • the circular contact can be applied in the same manner as the angular contact.
  • the track diameter L which is the width dimension between the roller guide surfaces 6 , varies among the three track grooves 5 . That is, between the three track grooves 5, the difference between the maximum value Lmax and the minimum value Lmin of the track diameter L becomes large.
  • the difference between the maximum value Lmax and the minimum value Lmin of the three track grooves 5 of the track diameter L is called the mutual difference of the track diameter L.
  • Mutual differences in track diameters in this specification and claims are used in this sense.
  • the mutual difference in the track diameters L affects variations in the track clearance ⁇ between the roller guide surface 6 and the outer peripheral surface 11 a of the roller 11 . That is, between the three track grooves 5, the difference between the maximum value ⁇ max and the minimum value ⁇ min of the track clearance ⁇ is affected. Therefore, it was found that the minimum value .delta.min of the track clearance .delta.
  • the maximum value ⁇ max of the track clearance ⁇ in the central range W is 0.250 mm. It has been found that if the track clearance ⁇ exceeds 0.250 mm, a clattering sound or the like occurs when a torque load is applied, and NVH characteristics (low vibration characteristics) cannot be ensured.
  • a characteristic configuration (3) is that the minimum value ⁇ min of the track clearance ⁇ between the three track grooves 5 in the central range W is set to 0.010 mm or more and 0.100 mm or less.
  • the rollers 11 can slide smoothly in the track grooves 5 without unnecessary interference.
  • the track clearance ⁇ in the central range W of the slide range which is most frequently used in actual vehicles, is minimized, so that the circumferential play can be suppressed, and durability, strength, and NVH characteristics (low vibration characteristics) can be ensured.
  • the minimum value ⁇ min of the track clearance ⁇ is set to 0.010 mm or more and 0.100 mm or less, it is possible to practically select and combine rollers for the track grooves of the outer joint member. That is, the minimum value ⁇ min of the track clearance ⁇ has a width of 0.090 mm between the lower limit value 0.010 mm and the upper limit value 0.100 mm. It is possible to practically select and combine a suitable number of rank rollers 11 (roller unit 4).
  • a minimum value Lmin of the track diameter L is measured in the central range W of the track groove 5 of the outer joint member 2 .
  • a roller unit 4 having an outer diameter satisfying 0.010 mm to 0.100 mm, which is the minimum value ⁇ min of the track clearance ⁇ is selected for the track diameter L of the minimum value Lmin.
  • the selected three roller units 4 having the same outer diameter are inserted into all three track grooves 5 including the track groove 5 having the minimum track diameter L of Lmin.
  • the outer diameter tolerance width of the selected three roller units 4 having the same outer diameter is about 0.020 mm. Therefore, the outer diameter dimensions of the three roller units 4 inserted into the track grooves 5 of one outer joint member 2 can be considered to be substantially the same when compared with the value of the mutual difference between the track diameters L. .
  • a characteristic configuration (4) is that the mutual difference between the track diameters L of the three track grooves 5 in the central range W is 0.150 mm or less.
  • the track diameter L2 of the second track groove 5(2) shown in FIGS. 8 and 10 is the maximum value Lmax
  • the track diameter L1 of the first track groove 5(1) shown in FIGS. 8 and 9 is the minimum value.
  • Lmin the track diameter L1 of the first track groove 5(1) shown in FIGS. 8 and 9
  • the mutual difference in track diameter L is the difference between the maximum value Lmax and the minimum value Lmin.
  • the upper limit of the maximum value ⁇ max of the track clearance ⁇ is set to 0.010 mm to 0.100 mm, which is the minimum value ⁇ min of the track clearance ⁇ .
  • a value of 0.250 mm can be secured. Since the upper limit value of the maximum value ⁇ max of the track clearance ⁇ in the central range W is set to 0.250 mm, it is possible to suppress the occurrence of rattling noise when a torque load is applied.
  • FIG. 12 is a schematic diagram assuming the mutual difference D of the track clearance ⁇ of the third track groove 5(3) with respect to the first track groove 5(1) in one cross section.
  • the first track groove 5(1) and the third track groove 5(3) are centered on the track groove pitch circle PC.
  • the track clearance ⁇ of the first track groove 5(1) is reduced, and the first track groove 5(1) is formed in the state of a dashed line in which the center O2 of the outer joint member 2 and the center O3 of the tripod member 3 are aligned.
  • the characteristic configurations (1) to (4) together make it possible to practically select and combine rollers for the track diameter of the outer joint member based on the practical accuracy level of forging and heat treatment, and It is easy to handle due to sliding resistance when mounted on a vehicle, and can suppress backlash in the circumferential direction in the central range W of the slide range that is most frequently used in an actual vehicle.
  • NVH characteristics low vibration characteristics
  • FIG. 14 is a cross-sectional view of the tripod type constant velocity universal joint of this embodiment.
  • the lower two rollers and the tripod member are not shown in cross section, and the illustration of the shaft is omitted.
  • This embodiment is a single-roller type tripod type constant velocity universal joint, which is different from the double-roller type of the first embodiment in that it is a single-roller type. Parts having similar functions are denoted by the same reference numerals, and the main points will be explained.
  • this tripod type constant velocity universal joint 1 includes an outer joint member 2, a tripod member 3 as an inner joint member, and a roller 11 as a torque transmission member.
  • the outer joint member 2 has a cup portion 2a with one end open, and three linear track grooves 5 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction. Circumferentially opposed roller guide surfaces 6 are formed, each extending in the axial direction. Inside the outer joint member 2, the tripod member 3 and the roller 11 are accommodated.
  • the tripod member 3 has three radially projecting leg shafts 7 .
  • the roller 11 is wrapped around the cylindrical outer peripheral surface 7a of the leg shaft 7 via a plurality of needle rollers 13, and is rotatably supported by the leg shaft 7.
  • the cylindrical outer peripheral surface 7a of the leg shaft 7 constitutes the inner raceway surface of the needle rollers 13
  • the cylindrical inner circumferential surface 11a of the roller 11 constitutes the outer raceway surface of the needle rollers 13.
  • the roller 11 has a spherical outer peripheral surface 11 a with a curvature radius r centered on the axis 7 x of the leg shaft 7 .
  • a plurality of needle rollers 13 are incorporated between the cylindrical outer peripheral surface 7a of the leg shaft 7 and the cylindrical inner peripheral surface 11a of the roller 11 in a full roller state.
  • the needle rollers 13 are radially in contact with an inner washer 15 that is wrapped around the base of the leg shaft 7 and are in contact with an outer washer 14 that is wrapped around the tip of the leg shaft 7 at a radially outer side.
  • the outer washer 14 is retained by fitting a snap ring 21 into an annular groove 20 formed at the tip of the leg shaft 7 .
  • the outer washer 14 is composed of a disk portion 14a extending in the radial direction of the leg shaft 7 and a cylindrical portion 14b extending in the axial direction of the leg shaft 7. As shown in FIG.
  • the cylindrical portion 14b of the outer washer 14 has an outer diameter smaller than the inner peripheral surface 11a of the roller 11, and the outer end portion 14c of the cylindrical portion 14b seen in the radial direction of the tripod member 3 is equal to the inner peripheral surface 11a of the roller 11. formed with a larger diameter than Therefore, the roller 11 can move in the axial direction of the leg shaft 7 and is prevented from falling off by the end portion 14c.
  • the following characteristic configuration (1) (4) is provided.
  • a track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area.
  • the minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less.
  • the mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.
  • FIG. 15 is a cross-sectional view of the tripod type constant velocity universal joint of this embodiment.
  • the lower two rollers and the tripod member are not shown in cross section, and the illustration of the shaft is omitted.
  • This embodiment is a double-roller type tripod-type constant velocity universal joint, but differs from the double-roller-type tripod-type constant velocity universal joint 1 of the first embodiment in the shape of the leg shaft and the shape of the roller unit. . Parts having similar functions are denoted by the same reference numerals, and the main points will be explained.
  • the outer peripheral surface 7a of the leg shaft 7 of the tripod member 3 is formed in a spherical shape
  • the inner ring 12 of the roller unit 4 is formed in a cylindrical inner peripheral shape.
  • the cylindrical inner peripheral surface 12a of the inner ring 12 is slidably supported on the spherical outer peripheral surface 7a of the leg shaft 7 of the tripod member 3.
  • the outer peripheral surface 11a of the roller 11 is formed in an annular shape with a relatively small radius of curvature r with the center of curvature positioned at a position Or offset in the radial direction from the axis 7x of the leg shaft 7 . Since other configurations are the same as those of the first embodiment, portions having similar functions are denoted by the same reference numerals, and the main points will be described.
  • the main part of the roller unit 4 is composed of a roller 11, an inner ring 12, and a plurality of needle rollers 13 incorporated between the roller 11 and the inner ring 12 in a full complement state.
  • the roller unit 4 is accommodated in the track groove 5 of the outer joint member 2 , and the center of the roller unit 4 (roller 11 ) in the width direction is positioned on the pitch circle PC of the track groove 5 .
  • the tripod member 3 has three radially projecting leg shafts 7 .
  • the outer peripheral surface 7a of the leg shaft 7 is formed in a spherical shape with the center of curvature on the axis 7x of the leg shaft 7, and the cylindrical inner peripheral surface 12a of the inner ring 12 of the roller unit 4 slides on the spherical outer peripheral surface 7a. It is movably attached to the outside.
  • the roller unit 4 can be tilted with respect to the axis of the leg shaft 7 of the tripod member 3 and can move in the axial direction. Therefore, the roller 11 of the roller unit 4 and the roller guide surface 6 can be prevented from being obliquely crossed, and can roll correctly.
  • the roller guide surface 6 is on the horizontal line XX passing through the intersection T between the pitch circle PC of the track groove 5 and the center line 5x of the track groove 5, and is radially offset from the center line 5x of the track groove 5. It is formed by a partial cylindrical surface with a relatively small radius of curvature R centered at OR and extending parallel to the axis of the joint.
  • the flange portion 5a is provided on one side of the track groove 5, but the flange portion may not be provided on one side of the track groove 5 as in the modification shown in FIG.
  • the following characteristic configurations (1) to (4) It has (1) With respect to the center of the slide range in the joint axial direction of the track groove, the range from 10 mm on the back side to 10 mm on the opening side is defined as the center range, and the track diameter, which is the width dimension between the roller guide surfaces, is defined in the center range. Forming a part where is the smallest. (2) A track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area. (3) The minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less. (4) The mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A tripod-type constant-velocity universal joint 1 is provided with: an outside joint member 2 having formed therein three track grooves 5 each having roller guide surfaces 6 disposed so as to face each other in the circumferential direction; a tripod member 3 having three leg shafts 7 protruding in radial directions; and torque transmission members 4, 11 that have rollers 11 rollably fitted in the respective track grooves 5 in the outside joint member 2 and are supported on the leg shafts 7. The tripod-type constant-velocity universal joint is characterized in that: a central range W is defined in a range 10 mm to the depth side and 10 mm to the opening side with respect to a slide range central portion C of each of the track grooves in the joint axial direction; the central range W has formed therein a section 6a where a track length L, which is a width dimension between the roller guide surfaces 6, is minimum; track clearances δ are formed between the roller guide surfaces and the outer circumferential surface of the corresponding roller 11 in the central range W, the minimum value δmin of the track clearances δ of the three track grooves 5 in the central ranges W is set to 0.010-0.100 mm, and the mutual difference in the track lengths L of the three track grooves 5 in the central ranges W is set not more than 0.150 mm.

Description

トリポード型等速自在継手Tripod type constant velocity universal joint
 この発明は、トリポード型等速自在継手に関する。 This invention relates to a tripod type constant velocity universal joint.
 自動車や各種産業機械の動力伝達系を構成する等速自在継手は、駆動側と従動側の二軸をトルク伝達可能に連結すると共に、前記二軸が作動角をとっても等速で回転トルクを伝達することができる。等速自在継手は、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手とに大別され、例えば、自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトにおいては、デフ側(インボード側)に摺動式等速自在継手が使用され、駆動車輪側(アウトボード側)には固定式等速自在継手が使用される。 A constant velocity universal joint, which constitutes the power transmission system of automobiles and various industrial machines, connects two shafts on the drive side and the driven side so that torque can be transmitted, and transmits rotational torque at a constant speed even if the two shafts change their operating angles. can do. Constant velocity universal joints are broadly classified into fixed type constant velocity universal joints that allow only angular displacement and sliding type constant velocity universal joints that allow both angular displacement and axial displacement. In the drive shaft that transmits power to the driving wheels, a sliding constant velocity universal joint is used on the differential side (inboard side), and a fixed constant velocity universal joint is used on the driving wheel side (outboard side). be.
 摺動式等速自在継手の一つとしてトリポード型等速自在継手がある。このトリポード型等速自在継手は、トルク伝達部材であるローラがシングルローラタイプと、ダブルローラタイプが知られている。ダブルローラタイプのトリポード型等速自在継手(以下、単にトリポード型等速自在継手ともいう)は、外側継手部材と、内側継手部材としてのトリポード部材と、トルク伝達部材としてのローラユニットとで主要部が構成されている。 A tripod type constant velocity universal joint is one of the sliding constant velocity universal joints. In this tripod type constant velocity universal joint, there are known a single roller type roller and a double roller type roller as a torque transmission member. A double-roller type tripod type constant velocity universal joint (hereinafter simply referred to as a tripod type constant velocity universal joint) is mainly composed of an outer joint member, a tripod member as an inner joint member, and a roller unit as a torque transmission member. is configured.
 外側継手部材は、その内周面に軸方向に延びる3本の直線状トラック溝が周方向等間隔に形成され、各トラック溝の両側には、円周方向に対向して配置され、それぞれ軸方向に延びるローラ案内面が形成されている。外側継手部材の内部には、トリポード部材とローラユニットが収容されている。トリポード部材は、半径方向に突出した3本の脚軸を有する。ローラユニットは、ローラと、このローラの内側に配置されて脚軸に外嵌されたインナリングと、ローラとインナリングとの間に介在された複数の針状ころとで主要部が構成されており、外側継手部材のトラック溝に収容されている。インナリングの内周面は、インナリングの軸線を含む縦断面において円弧状凸面をなす。 The outer joint member has three linear track grooves extending in the axial direction formed on its inner peripheral surface at equal intervals in the circumferential direction. A roller guide surface is formed extending in the direction. A tripod member and a roller unit are housed inside the outer joint member. The tripod member has three radially projecting legs. The roller unit is mainly composed of a roller, an inner ring placed inside the roller and fitted on the pedestal, and a plurality of needle rollers interposed between the roller and the inner ring. and housed in the track grooves of the outer joint member. The inner peripheral surface of the inner ring forms an arcuate convex surface in a longitudinal section including the axis of the inner ring.
 トリポード部材の各脚軸の外周面は、脚軸の軸線を含んだ縦断面においてストレート形状をなし、脚軸の軸線と直交する横断面において略楕円形状をなし、継手の軸線と直交する方向でインナリングの内周面と接触し、継手の軸線方向でインナリングの内周面との間に隙間が形成されている。このトリポード型等速自在継手では、トリポード部材の脚軸に装着されたローラユニットのローラが、外側継手部材のトラック溝のローラ案内面上を転動する。脚軸の横断面が略楕円形状であるので、トリポード型等速自在継手が作動角を取ったとき、外側継手部材の軸線に対してトリポード部材の軸線は傾斜するが、ローラユニットはトリポード部材の脚軸の軸線に対して傾斜可能である。したがって、ローラがローラ案内面上を正しく転動するので、誘起スラストやスライド抵抗の低減を図ることができ、継手の低振動化を実現することができる(特許文献1)。外側継手部材に形成されたローラ案内面を有する3つのトラック溝の形状は、主にアンギュラコンタクトやサーキュラコンタクトが適用される。 The outer peripheral surface of each leg shaft of the tripod member has a straight shape in a longitudinal section including the axis of the leg shaft, a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft, and a direction perpendicular to the axis of the joint. It is in contact with the inner peripheral surface of the inner ring, and a gap is formed between it and the inner peripheral surface of the inner ring in the axial direction of the joint. In this tripod type constant velocity universal joint, the rollers of the roller unit attached to the leg shaft of the tripod member roll on the roller guide surfaces of the track grooves of the outer joint member. Since the cross-section of the leg shaft is substantially elliptical, when the tripod-type constant velocity universal joint takes an operating angle, the axis of the tripod member is inclined with respect to the axis of the outer joint member, but the roller unit is aligned with the tripod member. It is tiltable with respect to the axis of the leg shaft. Therefore, since the rollers roll correctly on the roller guide surface, it is possible to reduce the induced thrust and the slide resistance, and it is possible to reduce the vibration of the joint (Patent Document 1). Angular contacts and circular contacts are mainly applied to the shape of the three track grooves having roller guide surfaces formed in the outer joint member.
 特許文献2には、摺動式トリポード型等速自在継手におけるトラックすきまの最小値を無負荷状態において-50μm~+10μmによる一部負すきま(締め代)とする方法が提案されている。 Patent Document 2 proposes a method of setting the minimum value of the track clearance in a sliding tripod type constant velocity universal joint to a partially negative clearance (tightening allowance) of -50 μm to +10 μm in an unloaded state.
特開2001-132766号公報Japanese Patent Application Laid-Open No. 2001-132766 特開2018-71757号公報JP 2018-71757 A
 摺動式トリポード型等速自在継手は、外側継手部材のカップ部内を冷間鍛造で仕上げ、熱処理後、カップ部内を研削加工等による仕上げ加工を施さないことが一般的である。そのため、冷間鍛造の精度の影響に加えて、さらに、トラック溝のローラ案内面の熱処理によって生じる熱処理変形により、ローラ案内面間の幅寸法であるトラック径は、3つのトラック溝間でばらつきが生じる。つまり、3つのトラック溝間において、トラック径の最大値と最小値の差が大きくなる。このトラック径の3つのトラック溝間の最大値と最小値の差をトラック径の相互差という。トラック径の相互差は、トラック径とローラ外径との間のすきまであるトラックすきまのばらつきに影響する。つまり、3つのトラック溝間において、トラックすきまの最大値と最小値の差に影響を及ぼす。このトラックすきまの3つのトラック溝間の最大値と最小値の差をトラックすきまの相互差ともいう。 In the sliding tripod type constant velocity universal joint, the inside of the cup portion of the outer joint member is finished by cold forging, and after heat treatment, the inside of the cup portion is generally not finished by grinding or the like. Therefore, in addition to the effect of cold forging accuracy, heat treatment deformation caused by heat treatment of the roller guide surfaces of the track grooves causes the track diameter, which is the width dimension between the roller guide surfaces, to vary among the three track grooves. occur. In other words, the difference between the maximum and minimum track diameters increases between the three track grooves. The difference between the maximum and minimum values of the track diameters of the three track grooves is called the mutual difference of the track diameters. The mutual difference between the track diameters affects the dispersion of the track clearance, which is the clearance between the track diameter and the outer diameter of the roller. In other words, it affects the difference between the maximum value and the minimum value of the track clearance between the three track grooves. The difference between the maximum value and the minimum value of the track clearance between the three track grooves is also called the mutual difference of the track clearance.
 トラックすきまの相互差が過大になると、外側継手部材の軸心とトリポード部材の軸心との間に芯ずれが生じ、トルク負荷時に3つのトラック溝間で均等に荷重を受けられない可能性が生じる。その結果、トラック溝のローラ案内面および内部部品であるローラやトリポード部材の脚軸において、特定のトラック溝で集中的に荷重を受けることになるため、耐久性、強度、NVH特性(振動特性)が低下する恐れがある。詳細は後述する。 If the mutual difference between the track clearances becomes excessive, misalignment occurs between the axis of the outer joint member and the axis of the tripod member, and there is a possibility that the load may not be received evenly among the three track grooves when torque is applied. occur. As a result, specific track grooves receive a concentrated load on the roller guide surfaces of the track grooves and on the leg shafts of the rollers and tripod members, which are internal parts. is likely to decline. Details will be described later.
 特許文献2のトラックすきまの最小値を無負荷状態において-50μm~+10μmによる一部負すきま(締め代)とする方法は、負すきまにより、トラックすきまの相互差を抑制する効果があるが、無負荷状態である車両への装着時の摺動抵抗が大きいという取り扱い性等を考慮すると、トラックすきまは正すきまであることが望ましいという結論に至った。 The method of Patent Document 2, in which the minimum value of the track clearance is set to a partial negative clearance (clamping allowance) of -50 μm to +10 μm in a no-load state, has the effect of suppressing the mutual difference in track clearance due to the negative clearance. Considering the ease of handling, such as the large sliding resistance when mounted on a vehicle under load, it was concluded that a correct track clearance is desirable.
 トリポード型等速自在継手は、適正なトラックすきまを確保するために、外側継手部材のトラック径に対してローラ外径を選択組合せすることが一般的であるが、この選択組合せの効率的な実用を可能にすることが生産性、製造コストの面で重要である。 In tripod type constant velocity universal joints, it is common to select and combine the roller outer diameter with respect to the track diameter of the outer joint member in order to secure an appropriate track clearance. It is important in terms of productivity and manufacturing cost to make it possible.
 上記のような問題に鑑み、本発明は、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せの実用を可能にし、かつ、耐久性、強度、NVH特性を確保できるトリポード型等速自在継手を提供することを目的とする。 In view of the above problems, the present invention enables practical use of a selected combination of rollers for the track diameter of the outer joint member based on the practical accuracy level of forging and heat treatment, and improves durability, strength, and NVH characteristics. It is an object of the present invention to provide a tripod-type constant velocity universal joint capable of ensuring
 本発明者らは、上記の目的を達成するために、(a)鍛造、熱処理の限界にある精度、(b)トラック径に対するローラの選択組合せの効率的な実用の可能性、(c)耐久性、強度、NVH特性(振動特性)の確保という多面的な項目を種々検討した。その結果、トリポード型等速自在継手を装着した実車で最も使用頻度の高いスライド範囲であるトラック溝の継手軸方向の中央範囲における円周方向ガタに焦点を当ることが解決の鍵になることに到達し、当該中央範囲におけるトラックすきまの最小値およびトラック径の相互差を設定するという新たな着想により、本発明に至った。 In order to achieve the above objects, the present inventors have investigated (a) precision at the limit of forging and heat treatment, (b) possibility of efficient practical use of a selected combination of rollers for track diameters, and (c) durability. Various multifaceted items such as securing of durability, strength, and NVH characteristics (vibration characteristics) were examined. As a result, the key to the solution was to focus on the circumferential backlash in the central range of the joint axial direction of the track grooves, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints. The new idea of setting the minimum value of the track clearance and the mutual difference of the track diameters in the middle range led to the present invention.
 前述の目的を達成するための技術的手段として、本発明は、円周方向に対向して配置されたローラ案内面を有する3つのトラック溝が形成された外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、前記外側継手部材のトラック溝に転動自在に嵌挿されたローラを有し、前記脚軸に支持されたトルク伝達部材とを備えたトリポード型等速自在継手において、前記トラック溝の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、前記ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成し、前記中央範囲におけるローラ案内面と前記ローラの外周面との間にトラックすきまを形成し、前記中央範囲における3つのトラック溝の前記トラックすきまの最小値を0.010mm以上とし、0.100mm以下とすると共に、前記中央範囲における3つのトラック溝の前記トラック径の相互差を0.150mm以下としたことを特徴とする。上記の構成により、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せの実用を可能にし、かつ、耐久性、強度、NVH特性を確保できるトリポード型等速自在継手を実現することができる。 As a technical means for achieving the above object, the present invention provides an outer joint member formed with three track grooves having roller guide surfaces arranged in circumferentially opposite directions, and a radially projecting roller guide surface. A constant velocity tripod type comprising: a tripod member having three leg shafts; and a torque transmission member having rollers that are rotatably inserted into track grooves of the outer joint member and supported by the leg shafts. In the universal joint, the range from 10 mm on the inner side to 10 mm on the opening side with respect to the center of the slide range of the track groove in the joint axial direction is defined as a center range, and the width dimension between the roller guide surfaces is defined in the center range. A portion having a minimum track diameter is formed, a track clearance is formed between the roller guide surface and the outer peripheral surface of the roller in the central region, and the minimum value of the track clearance of the three track grooves in the central region is 0.010 mm or more and 0.100 mm or less, and the mutual difference in track diameter of the three track grooves in the central area is 0.150 mm or less. With the above configuration, based on the practical accuracy level of forging and heat treatment, it is possible to practically select and combine rollers for the track diameter of the outer joint member, and to ensure durability, strength, and NVH characteristics. Joints can be realized.
 有利な構成として、上記の中央範囲における3つのトラック溝のトラック径の相互差を0.100mm以下としたことにより、耐久性、強度、NVH特性(低振動特性)の確保を促進することができる。 As an advantageous configuration, by setting the mutual difference between the track diameters of the three track grooves in the above-mentioned central range to 0.100 mm or less, it is possible to promote the securing of durability, strength, and NVH characteristics (low vibration characteristics). .
 上記のローラを回転自在に支持するインナリングを備え、当該インナリングが前記脚軸に外嵌され、ローラがローラ案内面に沿って外側継手部材の軸方向に移動可能にしたことにより、誘起スラストやスライド抵抗の低減を図ることができ、継手の低振動化を実現することができる。 An inner ring that rotatably supports the roller is provided, the inner ring is fitted onto the leg shaft, and the roller is movable in the axial direction of the outer joint member along the roller guide surface, thereby induced thrust and slide resistance can be reduced, and low vibration of the joint can be realized.
 上記のインナリングの内周面がインナリングの縦断面において円弧状凸面に形成され、脚軸の外周面が、脚軸の軸線を含んだ縦断面においてはストレート形状で、かつ、前記脚軸の軸線と直交する横断面においては略楕円形状であり、脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と当接すると共に、継手の軸線方向で前記インナリングの内周面との間にすきまが形成されており、前記ローラが前記トラック溝内で傾斜可能にすることができる。これにより、ローラのトラック溝内での傾斜運動が滑らかとなり、誘起スラストやスライド抵抗の低減、継手の低振動化を実現することができる。 The inner peripheral surface of the inner ring is arcuately convex in the longitudinal section of the inner ring, and the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg shaft. The cross section perpendicular to the axis has a substantially elliptical shape, and the outer peripheral surface of the leg shaft contacts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the inner ring in the axial direction of the joint. A clearance is formed between the roller and the inner peripheral surface, and the roller can be tilted within the track groove. As a result, the tilting motion of the roller in the track groove becomes smooth, and it is possible to reduce the induced thrust and slide resistance and reduce the vibration of the joint.
 上記のインナリングとローラとの間に複数の転動体を配置したことにより、インナリングとローラとの相対回転を滑らかにすることができる。 By arranging a plurality of rolling elements between the inner ring and the roller, the relative rotation between the inner ring and the roller can be smoothed.
 上記の転動体が針状ころであることにより、インナリングとローラとの相対回転を滑らかにすることができ、かつ、内部部品のコンパクト化を図ることができる。 Because the rolling elements are needle rollers, the relative rotation between the inner ring and the rollers can be smoothed, and the internal parts can be made compact.
 上記のローラとローラ案内面との接触形態として、アンギュラコンタクト、サーキュラコンタクトのいずれにも適用することができる。 Either angular contact or circular contact can be applied as the form of contact between the roller and the roller guide surface.
 本発明によれば、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せを実用可能にし、かつ、耐久性、強度、NVH特性を確保できるトリポード型等速自在継手を実現することができる。 According to the present invention, based on the practical accuracy level of forging and heat treatment, it is possible to practically select and combine rollers for the track diameter of the outer joint member, and to ensure durability, strength, and NVH characteristics. Joints can be realized.
 本発明によれば、円周方向ガタを抑制しNVH特性を確保できるため、特に回転トルクの伝達応答性の向上と、静粛性の向上が求められるモータ駆動の電動自動車により好適なトリポード型等速自在継手を実現することができる。 According to the present invention, since it is possible to suppress backlash in the circumferential direction and ensure NVH characteristics, it is particularly suitable for tripod-type constant-velocity motor-driven electric vehicles that require improved rotational torque transmission responsiveness and improved quietness. Universal joints can be realized.
本発明の第1の実施形態に係るトリポード型等速自在継手の縦断面図である。1 is a longitudinal sectional view of a tripod type constant velocity universal joint according to a first embodiment of the present invention; FIG. 図1のA-A線で矢視した横断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 図1のB-B線で矢視したローラユニットおよび脚軸の平面図である。FIG. 2 is a plan view of the roller unit and the leg shaft as viewed along line BB in FIG. 1; 図3のE-E線におけるローラユニットの縦断面図である。4 is a longitudinal sectional view of the roller unit taken along line EE of FIG. 3; FIG. 図1のトリポード型等速自在継手が常用作動角を取った状態を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a state in which the tripod type constant velocity universal joint of FIG. 1 takes a normal working angle; 図1のトリポード型等速自在継手が常用作動角より大きな作動角を取った状態を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 assumes an operating angle larger than the normal operating angle; 図1の外側継手部材のトラック溝の継手軸方向の詳細を示す図7bのZ-Z線で矢視した断面図である。FIG. 7b is a cross-sectional view taken along the line ZZ in FIG. 7b showing the details of the track grooves of the outer joint member in FIG. 1 in the joint axial direction. 図1の外側継手部材のトラック溝の継手軸方向の詳細を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing details of track grooves of the outer joint member of FIG. 1 in the joint axial direction; 図7a、図7bの中央範囲Wにおける拡大した横断面図である。Fig. 7b is an enlarged cross-sectional view in the central region W of Figs. 7a, 7b; 図8におけるトラックすきまの最小値を示す部分的な横断面図である。FIG. 9 is a partial cross-sectional view showing the minimum value of track clearance in FIG. 8; 図8におけるトラックすきまの最大値を示す部分的な横断面図である。FIG. 9 is a partial cross-sectional view showing the maximum value of the track clearance in FIG. 8; サーキュラコンタクトの場合におけるトラックすきまの最小値を示す部分的な横断面図である。FIG. 5 is a partial cross-sectional view showing the minimum track clearance in the case of circular contacts; トラックすきまの相互差により脚軸毎に荷重が不均一となることを説明する模式図である。FIG. 5 is a schematic diagram for explaining that the load becomes non-uniform for each leg axle due to mutual differences in track clearances; 図7aのトラック溝のカップ部の底形状の変形例を示す断面図である。7b is a cross-sectional view showing a modification of the bottom shape of the cup portion of the track groove of FIG. 7a; FIG. 本発明の第2の実施形態に係るトリポード型等速自在継手の横断面図である。FIG. 5 is a cross-sectional view of a tripod-type constant velocity universal joint according to a second embodiment of the present invention; 本発明の第3の実施形態に係るトリポード型等速自在継手の横断面図である。FIG. 5 is a cross-sectional view of a tripod-type constant velocity universal joint according to a third embodiment of the present invention; トラック溝の一側につばのない変形例を示す横断面図である。FIG. 10 is a cross-sectional view showing a modification in which one side of the track groove has no flange;
 本発明の第1の実施形態に係るトリポード型等速自在継手を図1~図13に示す。まず、本実施形態のトリポード型等速自在継手の全体的な構成を図1~図6に基づいて説明する。図1は本実施形態に係るトリポード型等速自在継手の縦断面図で、図2は図1のA-A線で矢視した横断面図である。ただし、図2では、トリポード部材3および下側の2つのローラユニット4は断面表示ではなく、シャフト9は図示を省略している。図3は図1のB-B線で矢視したローラユニットおよび脚軸の平面図で、図4は図3のE-E線におけるローラユニットの縦断面図である。図5は図1のトリポード型等速自在継手が常用作動角を取った状態を示す縦断面図で、図6は図1のトリポード型等速自在継手が常用作動角より大きな作動角を取った状態を示す縦断面図である。 A tripod type constant velocity universal joint according to a first embodiment of the present invention is shown in FIGS. First, the overall configuration of the tripod type constant velocity universal joint of the present embodiment will be described with reference to FIGS. 1 to 6. FIG. FIG. 1 is a vertical cross-sectional view of a tripod type constant velocity universal joint according to this embodiment, and FIG. 2 is a cross-sectional view taken along line AA in FIG. However, in FIG. 2, the tripod member 3 and the two lower roller units 4 are not shown in cross section, and the illustration of the shaft 9 is omitted. 3 is a plan view of the roller unit and the leg shaft taken along the line BB of FIG. 1, and FIG. 4 is a longitudinal sectional view of the roller unit taken along the line EE of FIG. 5 is a longitudinal sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 has a normal working angle, and FIG. 6 shows a state in which the tripod-type constant velocity universal joint of FIG. 1 has a working angle larger than the normal working angle. It is a longitudinal cross-sectional view showing a state.
 図1、図2に示すように、トリポード型等速自在継手1は、外側継手部材2と、内側継手部材としてのトリポード部材3と、トルク伝達部材としてのローラユニット4とで主要部が構成されている。外側継手部材2は、一端が開口したカップ部2aを有し、内周面に軸方向に延びる3つの直線状トラック溝5が周方向等間隔に形成され、各トラック溝5の両側には、円周方向に対向して配置され、それぞれ軸方向に延びるローラ案内面6が形成されている。外側継手部材2の内部には、トリポード部材3とローラユニット4が収容されている。 As shown in FIGS. 1 and 2, the tripod type constant velocity universal joint 1 is mainly composed of an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member. ing. The outer joint member 2 has a cup portion 2a with one end open, and three linear track grooves 5 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction. Circumferentially opposed roller guide surfaces 6 are formed, each extending in the axial direction. A tripod member 3 and a roller unit 4 are housed inside the outer joint member 2 .
 トリポード部材3は、半径方向に突出した3本の脚軸7を有する。トリポード部材3の中心孔8にシャフト9がスプライン嵌合し、止め輪10により軸方向に固定されている。ローラユニット4は、ローラ11と、このローラ11の内側に配置されて脚軸7に外嵌されたインナリング12と、ローラ11とインナリング12との間に介在された複数の針状ころ13とで主要部が構成されている。ローラユニット4は、外側継手部材2のトラック溝5に収容され、ローラユニット4(ローラ11)の幅方向の中心は、トラック溝5のピッチ円PC上に位置する。 The tripod member 3 has three radially projecting leg shafts 7 . A shaft 9 is spline-fitted into the center hole 8 of the tripod member 3 and fixed in the axial direction by a retaining ring 10 . The roller unit 4 includes a roller 11, an inner ring 12 disposed inside the roller 11 and fitted on the leg shaft 7, and a plurality of needle rollers 13 interposed between the roller 11 and the inner ring 12. The main part is composed of The roller unit 4 is accommodated in the track groove 5 of the outer joint member 2 , and the center of the roller unit 4 (roller 11 ) in the width direction is positioned on the pitch circle PC of the track groove 5 .
 図4に示すように、針状ころ13は、ローラ11の円筒形内周面11bとインナリング12の円筒形外周面12bとの間に、保持器のない、いわゆる総ころ状態で配置され、ローラ11の円筒形内周面11bを外側軌道面とし、インナリング12の円筒形外周面12bを内側軌道面とする。インナリング12の内周面12aは、インナリング12の軸線を含む縦断面において円弧状凸面をなす。この円弧状凸面は、トリポード型等速自在継手特有の振れ回りに起因するインナリング12に対する脚軸7の2~3°程度の傾きを許容するために、例えば、30mm程度の曲率半径riとされている。 As shown in FIG. 4, the needle rollers 13 are arranged between the cylindrical inner peripheral surface 11b of the roller 11 and the cylindrical outer peripheral surface 12b of the inner ring 12 in a so-called full roller state without a retainer. The cylindrical inner peripheral surface 11b of the roller 11 is used as an outer raceway surface, and the cylindrical outer peripheral surface 12b of the inner ring 12 is used as an inner raceway surface. The inner peripheral surface 12a of the inner ring 12 forms an arc-shaped convex surface in a longitudinal section including the axis of the inner ring 12. As shown in FIG. This arc-shaped convex surface has a curvature radius ri of, for example, about 30 mm in order to allow the leg shaft 7 to be inclined by about 2 to 3° with respect to the inner ring 12 due to whirling unique to tripod type constant velocity universal joints. ing.
 ローラ11の外周面11aは、ローラユニット4の軸線4x上、言い換えると、図3に示す脚軸7の軸線7x上に曲率中心をおく曲率半径rの部分球面で形成されている。ローラユニット4のインナリング12、針状ころ13およびローラ11からなるローラユニット4は、ワッシャ14、15により分離しない構造となっている。ワッシャ14、15は、円周方向の一個所で分断されていて(図3参照)、弾性的に縮径させた状態でローラ11の円筒形内周面11bの環状溝に装着するようになっている。 The outer peripheral surface 11a of the roller 11 is formed of a partial spherical surface with a radius of curvature r centered on the axis 4x of the roller unit 4, in other words, on the axis 7x of the leg shaft 7 shown in FIG. The roller unit 4 composed of the inner ring 12 of the roller unit 4, the needle rollers 13 and the rollers 11 is constructed so as not to be separated by the washers 14 and 15. As shown in FIG. The washers 14 and 15 are divided at one point in the circumferential direction (see FIG. 3), and are fitted in the annular groove of the cylindrical inner peripheral surface 11b of the roller 11 in an elastically contracted state. ing.
 図1、図2に示すように、トリポード部材3の各脚軸7の外周面7aは、脚軸7の軸線7x(図3参照)を含んだ縦断面においてストレート形状をなす。また、図3に示すように、脚軸7の外周面7aは、脚軸7の軸線7xと直交する横断面において略楕円形状をなし、継手の軸線と直交する方向、すなわち長軸aの方向でインナリング12の内周面12aと接触し、継手の軸線方向、すなわち短軸bの方向でインナリング12の内周面12aとの間に隙間mが形成されている。トリポード型等速自在継手1では、トリポード部材3の脚軸7に装着されたローラユニット4のローラ11が、外側継手部材2のトラック溝5のローラ案内面6上を転動する。 As shown in FIGS. 1 and 2, the outer peripheral surface 7a of each leg shaft 7 of the tripod member 3 has a straight shape in a longitudinal section including the axis 7x of the leg shaft 7 (see FIG. 3). In addition, as shown in FIG. 3, the outer peripheral surface 7a of the leg shaft 7 has a substantially elliptical shape in a cross section perpendicular to the axis 7x of the leg shaft 7, and extends in the direction perpendicular to the axis of the joint, that is, the direction of the major axis a. A gap m is formed with the inner peripheral surface 12a of the inner ring 12 in the axial direction of the joint, that is, in the direction of the minor axis b. In the tripod type constant velocity universal joint 1 , the rollers 11 of the roller unit 4 attached to the leg shafts 7 of the tripod members 3 roll on the roller guide surfaces 6 of the track grooves 5 of the outer joint member 2 .
 脚軸7の横断面が略楕円形状であるので、常用する比較的小さな作動角では、図5に示すように、外側継手部材2の軸線に対してトリポード部材3の軸線は傾斜するが、ローラユニット4はトリポード部材3の脚軸7の軸線に対して傾斜可能である。したがって、ローラユニット4のローラ11とローラ案内面6とが斜交した状態になることを回避し、正しく転動するので、誘起スラストやスライド抵抗の低減を図ることができ、継手の低振動化を実現することができる。本明細書および請求の範囲において、略楕円形状とは、文字どおりの楕円形状に限られず、一般に卵形状、小判形状等と称される形状を含むものとする。 Since the cross section of the leg shaft 7 is substantially elliptical, the axis of the tripod member 3 is inclined with respect to the axis of the outer joint member 2 as shown in FIG. The unit 4 is tiltable with respect to the axis of the leg shaft 7 of the tripod member 3 . Therefore, the rollers 11 of the roller unit 4 and the roller guide surface 6 are prevented from being in an oblique state, and they roll properly, so that the induced thrust and the slide resistance can be reduced, and the vibration of the joint can be reduced. can be realized. In this specification and the scope of claims, the substantially elliptical shape is not limited to a literal elliptical shape, and includes shapes generally called an egg shape, an oval shape, and the like.
 横断面が略楕円形状の脚軸7と円形の内周面12aをもつインナリング12とが接触してトルクが伝達されるので、脚軸7とインナリング12との接触部の面圧の緩和および脚軸7の強度確保のために、脚軸7の略楕円形状の長軸aと短軸bの楕円度b/aおよびインナリング12の内周面12aの曲率半径ri(図4参照)が設定されている。そのため、常用される比較的小さな作動角では、図5で前述したように、ローラユニット4が脚軸7に対して傾斜することができるため、ローラユニット4のローラ11がローラ案内面6と斜交することなく転動することができる。 Since the leg shaft 7 having a substantially elliptical cross section and the inner ring 12 having a circular inner peripheral surface 12a come into contact with each other to transmit torque, the surface pressure of the contact portion between the leg shaft 7 and the inner ring 12 is relieved. In order to secure the strength of the leg shaft 7, the ellipticity b/a of the major axis a and the minor axis b of the substantially elliptical shape of the leg shaft 7 and the curvature radius ri of the inner peripheral surface 12a of the inner ring 12 (see FIG. 4) is set. Therefore, at relatively small working angles that are commonly used, the roller unit 4 can be tilted with respect to the leg shaft 7 as described above with reference to FIG. It can roll without crossing.
 一方、常用作動角を超えた所定の角度(例えば、15°程度)より大きくなると、図3に示す脚軸7の外周面7aとインナリング12の内周面12aとが干渉し、ローラユニット4(ローラ11)は脚軸7に対してそれ以上傾くことができなくなる。ローラユニット4の脚軸7に対して傾き得る角度が限られているので、前記常用作動角を超えた所定の角度より大きい場合、ローラユニット4がトラック溝5に対して不足する角度分傾く必要があるが、図4に示すように、ローラ11の外周面11aが、脚軸7の軸線7x上に曲率中心をおく曲率半径rの部分球面で形成されているので、図6に示すように、ローラユニット4はトラック溝5内で傾斜可能であり、大きな作動角にも対応可能となる。 On the other hand, when the operating angle exceeds a predetermined angle (for example, about 15°) exceeding the normal operating angle, the outer peripheral surface 7a of the leg shaft 7 and the inner peripheral surface 12a of the inner ring 12 shown in FIG. (Roller 11) can no longer incline with respect to the leg shaft 7. Since the angle at which the roller unit 4 can be tilted with respect to the leg shaft 7 is limited, the roller unit 4 must be tilted with respect to the track groove 5 by the insufficient angle when the angle is larger than the predetermined angle exceeding the normal operating angle. However, as shown in FIG. 4, the outer peripheral surface 11a of the roller 11 is formed by a partial spherical surface having a curvature radius r centered on the axis 7x of the leg shaft 7. Therefore, as shown in FIG. , the roller unit 4 can be tilted within the track groove 5, so that a large working angle can be accommodated.
 本実施形態のトリポード型等速自在継手1の全体的な構成は以上のとおりである。次に特徴的な構成を説明する。特徴的な構成は次の(1)~(4)である。
(1)トラック溝の継手軸方向のスライド範囲中央部に対して、奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成したこと。
(2)中央範囲におけるローラ案内面とローラの外周面との間にトラックすきまを形成したこと。
(3)中央範囲における3つのトラック溝のトラックすきまの最小値を0.010mm以上とし、0.100mm以下としたこと。
(4)中央範囲における3つのトラック溝のトラック径の相互差を0.150mm以下としたこと。
The overall configuration of the tripod type constant velocity universal joint 1 of this embodiment is as described above. Next, a characteristic configuration will be described. Characteristic configurations are the following (1) to (4).
(1) With respect to the center of the slide range in the joint axial direction of the track groove, the range from 10 mm on the back side to 10 mm on the opening side is defined as the center range, and the track diameter, which is the width dimension between the roller guide surfaces, is defined in the center range. Forming a part where is the smallest.
(2) A track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area.
(3) The minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less.
(4) The mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.
 上記の特徴的な構成(1)~(4)は以下の検討経過を経て到達した。すなわち、本発明者らが(a)鍛造、熱処理の限界にある精度レベル、(b)トラック径に対するローラの選択組合せの効率的な実用可能性、(c)耐久性、強度、NVH特性(低振動特性)の確保という多面的な項目を種々検討した結果、トリポード型等速自在継手を装着した実車で最も使用頻度の高いスライド範囲であるトラック溝の継手軸方向の中央範囲における円周方向ガタに焦点を当ることが解決の鍵になることに辿り着き、当該中央範囲におけるトラックすきまの最小値およびトラック径の相互差を設定するという新たな着想によって、上記の特徴的な構成(1)~(4)に到達した。 The above characteristic configurations (1) to (4) were reached through the following examination process. That is, the inventors found that (a) precision levels at the limits of forging and heat treatment, (b) efficient feasibility of roller selection combinations for track diameters, (c) durability, strength, and NVH properties (low Circumferential direction backlash in the center range of the joint axial direction of the track groove, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints, was investigated. is the key to the solution, and the new idea of setting the minimum value of the track clearance and the mutual difference between the track diameters in the center range is used to achieve the above characteristic configuration (1) to (4) is reached.
 図面を参照して、特徴的な構成を順次説明する。特徴的な構成(1)は、トリポード型等速自在継手を装着した実車で最も使用頻度の高いスライド範囲であるトラック溝の継手軸方向の中央範囲にトラックすきまを精度よく形成するために、中央範囲に、ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成したものである。特徴的な構成(1)について、図7a、図7bに基づいて具体的に説明する。図7aは、図1の外側継手部材のトラック溝の継手軸方向の詳細を示し、図7bのZ-Z線で矢視した断面図で、図7bは縦断面図である。 The characteristic configuration will be explained in order with reference to the drawings. The characteristic configuration (1) is to precisely form the track clearance in the central range of the joint axial direction of the track groove, which is the slide range most frequently used in actual vehicles equipped with tripod type constant velocity universal joints. A portion is formed in the range where the track diameter, which is the width dimension between the roller guide surfaces, is the smallest. Characteristic configuration (1) will be specifically described with reference to FIGS. 7a and 7b. 7a shows the details of the track grooves of the outer joint member in FIG. 1 in the joint axial direction, and is a cross-sectional view taken along line ZZ in FIG. 7b, and FIG. 7b is a vertical cross-sectional view.
 摺動式トリポード型等速自在継手の外側継手部材は、一般的には、鍛造工程、切削工程、焼入れ工程、研削工程により製作され、カップ部内は冷間鍛造で仕上げられる(焼入れ工程後の研削工程等での仕上げ加工は施さない)。鍛造工程と熱処理工程にて、図7aに示すように、トラック溝の継手軸方向の中央範囲Wにローラ案内面6間の幅寸法であるトラック径Lが最小となる部位6aを成形する。中央範囲Wに形成したトラック径Lが最小となる部位6aが、後述するトラックすきまδおよびトラック径Lを設定する際の基準になる。 The outer joint member of the sliding tripod type constant velocity universal joint is generally manufactured through a forging process, a cutting process, a quenching process, and a grinding process, and the inside of the cup portion is finished by cold forging (grinding after the quenching process). No finish processing is applied in the process, etc.). In the forging process and the heat treatment process, as shown in FIG. 7a, a portion 6a in which the track diameter L, which is the width dimension between the roller guide surfaces 6, is minimized is formed in the center range W of the track groove in the joint axial direction. A portion 6a formed in the central range W where the track diameter L is the smallest serves as a reference for setting the track clearance δ and the track diameter L, which will be described later.
 中央範囲Wは、図7a、図7bに示すように、外側継手部材2のトラック溝5の継手軸方向のスライド範囲中央部Cを基準にして、スライド範囲中央部Cに対して、奥側にw(=10mm)から開口側にw(=10mm)の範囲である。図7aに示すように、中央範囲Wにトラック径Lが最小となる部位6aが形成され、トラック径Lは、カップ部2aの開口側からスライド範囲中央部C(中央範囲W)にかけて徐々に小さくなり、スライド範囲中央部C(中央範囲W)から奥側にかけて徐々に大きくなる形状としている。上記の軸方向に徐々に変動するトラック径Lの変動寸法は、0.100mm~0.300mm程度である。 As shown in FIGS. 7a and 7b, the central range W is located on the back side of the sliding range central portion C of the track groove 5 of the outer joint member 2 in the joint axial direction. The range is from w (=10 mm) to w (=10 mm) on the opening side. As shown in FIG. 7a, a portion 6a having the smallest track diameter L is formed in the central range W, and the track diameter L gradually decreases from the opening side of the cup portion 2a to the sliding range central portion C (central range W). , and gradually increases from the slide range central portion C (central range W) toward the back side. The variation dimension of the track diameter L gradually varying in the axial direction is about 0.100 mm to 0.300 mm.
 ここで、スライド範囲中央部Cを定義する。スライド範囲中央部Cは、車両の使用条件で任意に設定される。つまり、スライド範囲中央部Cは、カップ部2aの開口部からカップ部底部までの全域の中心位置からずれる場合がある。したがって、一般的な車両走行時のローラユニット4の軸方向の変位の中心をスライド範囲中心部Cと定義する。スライド範囲中心部Cを基準に、一般的な車両走行時に常時使用される領域を包含できるのが、「スライド範囲中心部C±10mm」であり、この領域において、トラック径L、トラックすきまδを規定する。本明細書および請求の範囲におけるトラック溝の継手軸方向のスライド範囲中央部は、上記の意味を有する。図13に図7aのトラック溝のカップ部2aの底形状の変形例を示す。本変形例では、カップ部2aの底形状は、ローラ11の外周面11aに沿った凹円弧状に形成されている。本変形例でも、スライド範囲中央部C、中央範囲Wは同様である。 Here, the sliding range central part C is defined. The slide range central portion C is arbitrarily set according to the vehicle use conditions. In other words, the slide range central portion C may deviate from the central position of the entire area from the opening of the cup portion 2a to the bottom portion of the cup portion. Therefore, the center of axial displacement of the roller unit 4 during general vehicle travel is defined as the slide range center C. As shown in FIG. Based on the slide range center C, the area that can be used at all times during general vehicle running is "slide range center C ± 10 mm". stipulate. The sliding range central portion of the track groove in the joint axial direction in the present specification and claims has the above meaning. FIG. 13 shows a modification of the bottom shape of the cup portion 2a of the track groove of FIG. 7a. In this modification, the bottom shape of the cup portion 2a is formed in a concave circular arc shape along the outer peripheral surface 11a of the roller 11. As shown in FIG. Also in this modified example, the slide range center portion C and the center range W are the same.
 特徴的な構成(2)は、中央範囲Wにおけるローラ案内面6とローラ11の外径面(外周面11a)との間にトラックすきまδを形成したことである。図7aに示すように、中央範囲W内にあるトラック径Lが最小となる部位6aに正のトラックすきまδが形成されている。これにより、車両への装着時の摺動抵抗に起因する取り扱い性が良好で、かつ、車両で最も使用する頻度が高い領域の円周方向ガタが抑制でき、NVH特性(低振動特性)を確保できる。なお、トラックすきまδは誇張して図示している。 A characteristic configuration (2) is that a track clearance δ is formed between the roller guide surface 6 in the central range W and the outer diameter surface (outer peripheral surface 11a) of the roller 11 . As shown in FIG. 7a, a positive track clearance .delta. As a result, it is easy to handle due to sliding resistance when mounted on the vehicle, and it is possible to suppress the backlash in the circumferential direction in the area that is most frequently used in the vehicle, ensuring NVH characteristics (low vibration characteristics). can. Note that the track clearance δ is shown in an exaggerated manner.
 中央範囲Wにおけるトラック溝5のトラックすきまδについて、図8に基づいて説明する。図8は、図7a、図7bの中央範囲Wにおける拡大した横断面図である。図8では、トラック溝5の中心線5xと脚軸7の軸線7xとが一致した状態で表示し、外側継手部材2の横断面およびローラ11の側面図のみを図示している。 The track clearance δ of the track grooves 5 in the central range W will be explained based on FIG. FIG. 8 is an enlarged cross-sectional view in the central region W of FIGS. 7a and 7b. In FIG. 8 , the centerline 5x of the track groove 5 and the axis 7x of the leg shaft 7 are shown aligned, and only the cross section of the outer joint member 2 and the side view of the roller 11 are shown.
 図8に示すように、ローラ11の外周面11aは、脚軸7の軸線7x上に曲率中心Orをおく曲率半径rの部分球面で形成されている。ローラ案内面6は、トラック溝5のピッチ円PCとトラック溝5の中心線5xとの交点Tを通り、接触角αの線上でトラック溝5の中心線5xを超えた位置に曲率中心ORをおく曲率半径Rのゴシックアーチ形状の横断面で形成され、継手の軸線に平行に延びている。曲率半径Rは、曲率半径rより適宜大きく設定されている。したがって、ローラ11の外周面11aとローラ案内面6とは、交点Tを通る水平線X-Xに対して接触角αをもって2点で接触するアンギュラコンタクトとなっている。 As shown in FIG. 8, the outer peripheral surface 11a of the roller 11 is formed of a partial spherical surface with a radius of curvature r with the center of curvature Or on the axis 7x of the leg shaft 7. The roller guide surface 6 passes through the intersection T between the pitch circle PC of the track groove 5 and the center line 5x of the track groove 5, and has the center of curvature OR at a position beyond the center line 5x of the track groove 5 on the line of the contact angle α. It is formed with a Gothic arch-shaped cross-section with a radius of curvature R and extends parallel to the axis of the joint. The curvature radius R is set appropriately larger than the curvature radius r. Therefore, the outer peripheral surface 11a of the roller 11 and the roller guide surface 6 form an angular contact at two points with a contact angle α with respect to the horizontal line XX passing through the intersection point T. As shown in FIG.
 3つのトラック溝5のうち、例えば、上側のトラック溝5を第1のトラック溝5(1)とし、第1のトラック溝5(1)から時計回りに120°位置のトラック溝5を第2のトラック溝5(2)とし、第1のトラック溝5(1)から時計回りに240°位置のトラック溝5を第3のトラック溝5(3)とする。前述したように、トラック径L、トラックすきまδは、冷間鍛造仕上げ(熱処理後の研削仕上げ加工なし)および熱処理変形により、3つのトラック溝5でばらつきがある。第1のトラック溝5(1)では、トラック径がL1であり、トラックすきまがδ1である。第2のトラック溝5(2)では、トラック径がL2であり、トラックすきまがδ2である。第3のトラック溝5(3)では、トラック径がL3であり、トラックすきまがδ3である。 Of the three track grooves 5, for example, the upper track groove 5 is designated as the first track groove 5(1), and the track groove 5 positioned 120° clockwise from the first track groove 5(1) is designated as the second track groove. and the track groove 5 located 240° clockwise from the first track groove 5(1) is defined as the third track groove 5(3). As described above, the track diameter L and the track clearance δ vary among the three track grooves 5 due to cold forging finishing (no grinding finishing after heat treatment) and heat treatment deformation. In the first track groove 5(1), the track diameter is L1 and the track clearance is .delta.1. The second track groove 5(2) has a track diameter of L2 and a track clearance of .delta.2. The third track groove 5(3) has a track diameter of L3 and a track clearance of δ3.
 ここで、符号の付し方について説明する。3つのトラック溝を特定しない場合は、符号5を付し、第1~第3のトラック溝のそれぞれには、5(1)~5(3)の符号を付す。3つのトラック径を特定しない場合は、符号Lを付し、また、第1~第3のトラック溝のそれぞれのトラック径にはL1~L3の符号を付す。同様に、3つのトラックすきまを特定しない場合は、符号δを付し、また、第1~第3のトラック溝のそれぞれのトラックすきまにはδ1~δ3の符号を付す。トラック径Lの最大値にはLmax、最小値にはLminを付し、トラックすきまδの最大値にはδmax、最小値にはδminを付す。 Here, we will explain how to assign symbols. When the three track grooves are not specified, reference numeral 5 is assigned, and reference numerals 5(1) to 5(3) are assigned to the first to third track grooves, respectively. When the three track diameters are not specified, L is given, and the track diameters of the first to third track grooves are given L1 to L3. Similarly, when the three track clearances are not specified, the reference numeral δ is attached, and the reference numerals δ1 to δ3 are attached to the respective track clearances of the first to third track grooves. The maximum value of the track diameter L is denoted by Lmax, and the minimum value thereof is denoted by Lmin. The maximum value of the track clearance δ is denoted by δmax, and the minimum value thereof is denoted by δmin.
 中央範囲Wにおける3つのトラック溝5の中で、第1のトラック溝5(1)のトラック径L1、トラックすきまδ1が最小値となり、トラック径L1は最小値Lminであり、トラックすきまδ1は最小値δminである。第2のトラック溝5(2)のトラック径L2、トラックすきまδ2が最大値となり、トラック径L2は最大値Lmaxであり、トラックすきまδ2は最大値δmaxである。 Among the three track grooves 5 in the central range W, the track diameter L1 and the track clearance δ1 of the first track groove 5(1) are the minimum values, the track diameter L1 is the minimum value Lmin, and the track clearance δ1 is the minimum value. is the value .delta.min. The track diameter L2 and the track clearance δ2 of the second track groove 5(2) are the maximum values, the track diameter L2 is the maximum value Lmax, and the track clearance δ2 is the maximum value δmax.
 図8における第1のトラック溝5(1)を拡大して図9に示す。図9に示すように、第1のトラック溝5(1)のトラック径L1は最小値Lminであり、トラックすきまδ1は最小値δminである。第2のトラック溝5(2)を拡大して図10に示す。第2のトラック溝5(2)のトラック径L2は最大値Lmaxであり、トラックすきまδ2は最大値δmaxである。生産技術開発は継続的に行われているが、外側継手部材のカップ部2a内を冷間鍛造で仕上げ、その後の熱処理による変形が加わったトラック溝5の精度には限界がある。なお、図8、図9、図10においても、トラック径Lやトラックすきまδの大きさ、ばらつきは誇張して図示している。 An enlarged view of the first track groove 5(1) in FIG. 8 is shown in FIG. As shown in FIG. 9, the track diameter L1 of the first track groove 5(1) is the minimum value Lmin, and the track clearance .delta.1 is the minimum value .delta.min. An enlarged view of the second track groove 5(2) is shown in FIG. The track diameter L2 of the second track groove 5(2) is the maximum value Lmax, and the track clearance .delta.2 is the maximum value .delta.max. Production technology development has been continuously conducted, but there is a limit to the accuracy of the track grooves 5 that are deformed by cold forging and subsequent heat treatment inside the cup portion 2a of the outer joint member. 8, 9 and 10, the track diameter L and the track clearance δ are exaggerated.
 サーキュラコンタクトの場合を図11に示す。図11は、サーキュラコンタクトの場合におけるトラックすきまδの最小値δminを示す部分的な横断面図である。サーキュラコンタクトの場合は、トラック溝5のローラ案内面6は、トラック溝5の中心線5xとトラック溝5のピッチ円PCとの交点Tを通る水平線X-X上に曲率中心OR’をおく曲率半径R’の部分円筒形状に形成されている。交点Tを通る水平線X-Xを中心にローラ案内面6とローラ11とが接触する。サーキュラコンタクトの場合もアンギュラコンタクトの場合と同様に適用できる。 Fig. 11 shows the case of circular contact. FIG. 11 is a partial cross-sectional view showing the minimum value .delta.min of the track clearance .delta. in the case of circular contacts. In the case of a circular contact, the roller guide surface 6 of the track groove 5 has a curvature that places the center of curvature OR' on the horizontal line XX passing through the intersection T between the center line 5x of the track groove 5 and the pitch circle PC of the track groove 5. It is formed in a partial cylindrical shape with a radius R'. The roller guide surface 6 and the roller 11 come into contact with each other about the horizontal line XX passing through the intersection point T as the center. The circular contact can be applied in the same manner as the angular contact.
 図8で説明したように、ローラ案内面6間の幅寸法であるトラック径Lは、3つのトラック溝5間でばらつきが生じる。つまり、3つのトラック溝5間において、トラック径Lの最大値Lmaxと最小値Lminの差が大きくなる。このトラック径Lの3つのトラック溝5間の最大値Lmaxと最小値Lminの差をトラック径Lの相互差という。本明細書および請求の範囲におけるトラック径の相互差はこの意味で用いる。トラック径Lの相互差は、ローラ案内面6とローラ11の外周面11aとの間のすきまであるトラックすきまδのばらつきに影響する。つまり、3つのトラック溝5間において、トラックすきまδの最大値δmaxと最小値δminの差に影響を及ぼす。したがって、中央範囲Wにおけるトラックすきまδの最小値δminとトラック径Lの相互差とを関連させて設定する必要があることを見出した。 As described with reference to FIG. 8 , the track diameter L, which is the width dimension between the roller guide surfaces 6 , varies among the three track grooves 5 . That is, between the three track grooves 5, the difference between the maximum value Lmax and the minimum value Lmin of the track diameter L becomes large. The difference between the maximum value Lmax and the minimum value Lmin of the three track grooves 5 of the track diameter L is called the mutual difference of the track diameter L. Mutual differences in track diameters in this specification and claims are used in this sense. The mutual difference in the track diameters L affects variations in the track clearance δ between the roller guide surface 6 and the outer peripheral surface 11 a of the roller 11 . That is, between the three track grooves 5, the difference between the maximum value δmax and the minimum value δmin of the track clearance δ is affected. Therefore, it was found that the minimum value .delta.min of the track clearance .delta.
 種々検討、検証した結果、中央範囲Wにおいて、トラックすきまδの最大値δmaxは、0.250mmが上限であることが判明した。トラックすきまδが0.250mmを超えると、トルク負荷時にガタ打ち音などが発生し、NVH特性(低振動特性)を確保できないことが判明した。 As a result of various examinations and verifications, it was found that the maximum value δmax of the track clearance δ in the central range W is 0.250 mm. It has been found that if the track clearance δ exceeds 0.250 mm, a clattering sound or the like occurs when a torque load is applied, and NVH characteristics (low vibration characteristics) cannot be ensured.
 特徴的な構成(3)は、中央範囲Wにおける3つのトラック溝5のトラックすきまδの最小値δminを0.010mm以上とし、0.100mm以下としたことである。 A characteristic configuration (3) is that the minimum value δmin of the track clearance δ between the three track grooves 5 in the central range W is set to 0.010 mm or more and 0.100 mm or less.
 トラックすきまδの最小値δminを0.010mm以上とすることで、ローラ11がトラック溝5内を不要な干渉なく滑らかにスライドすることが可能になり車両への装着時の摺動抵抗による取り扱い性が良好で、かつ、実車で最も使用する頻度の高いスライド範囲の中央範囲Wにおけるトラックすきまδが最小になるので、円周方向ガタを抑制することができ、耐久性、強度、NVH特性(低振動特性)を確保できる。 By setting the minimum value δmin of the track clearance δ to 0.010 mm or more, the rollers 11 can slide smoothly in the track grooves 5 without unnecessary interference. In addition, the track clearance δ in the central range W of the slide range, which is most frequently used in actual vehicles, is minimized, so that the circumferential play can be suppressed, and durability, strength, and NVH characteristics (low vibration characteristics) can be ensured.
 また、トラックすきまδの最小値δminを0.100mm以下とすることで、ローラ案内面6およびローラ11やトリポード部材3の脚軸7の各部品間でバランスよく荷重を受けることが可能となり、耐久性、強度、NVH特性(低振動特性)を確保できる。 In addition, by setting the minimum value δmin of the track clearance δ to 0.100 mm or less, it becomes possible to receive a load in a well-balanced manner between the roller guide surfaces 6, the rollers 11, and the leg shafts 7 of the tripod members 3, resulting in durability. The durability, strength, and NVH characteristics (low vibration characteristics) can be ensured.
 さらに、トラックすきまδの最小値δminを0.010mm以上とし、0.100mm以下とすることで、外側継手部材のトラック溝に対するローラの選択組合せを実用可能にする。すなわち、トラックすきまδの最小値δminの下限値0.010mmと上限値0.100mmとの間には0.090mmの幅が設けられているので、例えば、外径で0.020mm程度の公差幅をもつ適宜数のランクのローラ11(ローラユニット4)による選択組合せを実用可能にする。 Furthermore, by setting the minimum value δmin of the track clearance δ to 0.010 mm or more and 0.100 mm or less, it is possible to practically select and combine rollers for the track grooves of the outer joint member. That is, the minimum value δmin of the track clearance δ has a width of 0.090 mm between the lower limit value 0.010 mm and the upper limit value 0.100 mm. It is possible to practically select and combine a suitable number of rank rollers 11 (roller unit 4).
 具体的に、外側継手部材2のトラック溝5に対するローラ11(ローラユニット4)の選択組合せ方法を説明する。外側継手部材2のトラック溝5の中央範囲Wで、トラック径Lの最小値Lminを測定する。その結果、最小値Lminのトラック径Lに対し、トラックすきまδの最小値δminである0.010mm~0.100mmを満足する外径のローラユニット4を選択する。そして、選択した同じ外径寸法の3つのローラユニット4を、最小値Lminのトラック径Lを有するトラック溝5を含む3つの全てのトラック溝5に挿入する。選択した同じ外径寸法の3つのローラユニット4の外径公差幅は、0.020mm程度である。したがって、1つの外側継手部材2のトラック溝5に挿入される3つのローラユニット4の外径寸法は、トラック径Lの相互差の値に比べたとき、実質的に同一寸法とみなすことができる。 Specifically, a method of selecting and combining the rollers 11 (roller unit 4) with respect to the track grooves 5 of the outer joint member 2 will be described. A minimum value Lmin of the track diameter L is measured in the central range W of the track groove 5 of the outer joint member 2 . As a result, a roller unit 4 having an outer diameter satisfying 0.010 mm to 0.100 mm, which is the minimum value δmin of the track clearance δ, is selected for the track diameter L of the minimum value Lmin. Then, the selected three roller units 4 having the same outer diameter are inserted into all three track grooves 5 including the track groove 5 having the minimum track diameter L of Lmin. The outer diameter tolerance width of the selected three roller units 4 having the same outer diameter is about 0.020 mm. Therefore, the outer diameter dimensions of the three roller units 4 inserted into the track grooves 5 of one outer joint member 2 can be considered to be substantially the same when compared with the value of the mutual difference between the track diameters L. .
 したがって、トラックすきまの最小値δminである0.010mm~0.100mmの範囲のみが、前述した中央範囲Wにおけるトラックすきまδの最大値δmaxの上限値0.250mmを実質的に変動させる関係にある。その結果、中央範囲Wにおけるトラックすきまδの最大値δmaxの上限値0.250mmを確保するためには、トラックすきまの最小値δminである0.010mm~0.100mmの上限値0.100mmをトラックすきまδの最大値δmaxの上限値0.250mmから差し引いた0.150mmを、中央範囲Wにおける3つのトラック溝5のトラック径Lの相互差の上限値とする必要があり、次の特徴的な構成(4)が導かれる。 Therefore, only the range of 0.010 mm to 0.100 mm, which is the minimum value δmin of the track clearance, is in a relationship to substantially change the upper limit value 0.250 mm of the maximum value δmax of the track clearance δ in the central range W described above. . As a result, in order to secure the upper limit value of 0.250 mm for the maximum value δmax of the track clearance δ in the central range W, the upper limit value of 0.100 mm from 0.010 mm to 0.100 mm, which is the minimum value δmin of the track clearance, is required. 0.150 mm subtracted from the upper limit of 0.250 mm of the maximum value δmax of the clearance δ should be set as the upper limit of the mutual difference between the track diameters L of the three track grooves 5 in the central range W. Configuration (4) is derived.
 特徴的な構成(4)は、中央範囲Wにおける3つのトラック溝5のトラック径Lの相互差を0.150mm以下としたことである。図8、図10に示す第2のトラック溝5(2)のトラック径L2が最大値Lmaxであり、図8、図9に示す第1のトラック溝5(1)のトラック径L1が最小値Lminである。トラック径Lの相互差は、最大値Lmaxと最小値Lminとの差である。 A characteristic configuration (4) is that the mutual difference between the track diameters L of the three track grooves 5 in the central range W is 0.150 mm or less. The track diameter L2 of the second track groove 5(2) shown in FIGS. 8 and 10 is the maximum value Lmax, and the track diameter L1 of the first track groove 5(1) shown in FIGS. 8 and 9 is the minimum value. is Lmin. The mutual difference in track diameter L is the difference between the maximum value Lmax and the minimum value Lmin.
 前述したように、トラック径Lの相互差を0.150mm以下としたので、トラックすきまδの最小値δminである0.010mm~0.100mmとした条件で、トラックすきまδの最大値δmaxの上限値0.250mmを確保することができる。中央範囲Wにおけるトラックすきまδの最大値δmaxの上限値を0.250mmとしたので、トルク負荷時のガタ打ち音などの発生を抑制することができる。 As described above, since the mutual difference between the track diameters L is set to 0.150 mm or less, the upper limit of the maximum value δmax of the track clearance δ is set to 0.010 mm to 0.100 mm, which is the minimum value δmin of the track clearance δ. A value of 0.250 mm can be secured. Since the upper limit value of the maximum value δmax of the track clearance δ in the central range W is set to 0.250 mm, it is possible to suppress the occurrence of rattling noise when a torque load is applied.
 トラックすきまδの相互差により脚軸毎に荷重が不均一となることを図12に基づいて説明する。図12は、1つの横断面における第1のトラック溝5(1)に対する第3のトラック溝5(3)のトラックすきまδの相互差Dを想定した模式図である。第1のトラック溝5(1)、第3のトラック溝5(3)は、トラック溝のピッチ円PC上に中心をおく。第1のトラック溝5(1)のトラックすきまδを詰めて、外側継手部材2の中心O2とトリポード部材3の中心O3を一致させた一点鎖線の状態で、第1のトラック溝5(1)を中心にトラックすきまδの相互差Dだけトリポード部材3をθs回転させると、実線で示すように、外側継手部材の中心O2とトリポード部材の中心O3’とがずれる。その結果、トラック溝のピッチ円PCに対する脚軸の長さh1、h2、h3が変化し、脚軸毎の荷重が不均一となる。 The non-uniform load on each axle due to the mutual difference in the track clearance δ will be explained based on FIG. 12 . FIG. 12 is a schematic diagram assuming the mutual difference D of the track clearance δ of the third track groove 5(3) with respect to the first track groove 5(1) in one cross section. The first track groove 5(1) and the third track groove 5(3) are centered on the track groove pitch circle PC. The track clearance δ of the first track groove 5(1) is reduced, and the first track groove 5(1) is formed in the state of a dashed line in which the center O2 of the outer joint member 2 and the center O3 of the tripod member 3 are aligned. When the tripod member 3 is rotated by θs by the mutual difference D of the track clearance δ, the center O2 of the outer joint member and the center O3′ of the tripod member are shifted as indicated by the solid line. As a result, the lengths h1, h2, and h3 of the leg shafts with respect to the pitch circle PC of the track grooves change, and the load on each leg shaft becomes uneven.
 以上を要約すると、特徴的な構成(1)~(4)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せを実用可能にし、かつ、車両への装着時の摺動抵抗による取り扱い性が良好で、かつ、実車で最も使用する頻度の高いスライド範囲の中央範囲Wにおける円周方向ガタを抑制することができ、耐久性、強度、NVH特性(低振動特性)を確保できる。 To summarize the above, the characteristic configurations (1) to (4) together make it possible to practically select and combine rollers for the track diameter of the outer joint member based on the practical accuracy level of forging and heat treatment, and It is easy to handle due to sliding resistance when mounted on a vehicle, and can suppress backlash in the circumferential direction in the central range W of the slide range that is most frequently used in an actual vehicle. NVH characteristics (low vibration characteristics) can be secured.
 本発明の第2の実施形態に係るトリポード型等速自在継手を図14に基づいて説明する。図14は、本実施形態のトリポード型等速自在継手の横断面図である。ただし、下側の2つローラおよびトリポード部材は断面表示ではなく、シャフトは図示を省略している。本実施形態は、シングルローラタイプのトリポード型等速自在継手であり、第1の実施形態のダブルローラタイプに比べてシングルローラタイプである点が異なる。同様の機能を有する部位には同一の符号を付して要点を説明する。 A tripod type constant velocity universal joint according to a second embodiment of the present invention will be described with reference to FIG. FIG. 14 is a cross-sectional view of the tripod type constant velocity universal joint of this embodiment. However, the lower two rollers and the tripod member are not shown in cross section, and the illustration of the shaft is omitted. This embodiment is a single-roller type tripod type constant velocity universal joint, which is different from the double-roller type of the first embodiment in that it is a single-roller type. Parts having similar functions are denoted by the same reference numerals, and the main points will be explained.
 図14に示すように、このトリポード型等速自在継手1は、外側継手部材2、内側継手部材としてのトリポード部材3と、トルク伝達部材としてのローラ11とを備える。外側継手部材2は、一端が開口したカップ部2aを有し、内周面に軸方向に延びる3つの直線状トラック溝5が周方向等間隔に形成され、各トラック溝5の両側には、円周方向に対向して配置され、それぞれ軸方向に延びるローラ案内面6が形成されている。外側継手部材2の内部には、トリポード部材3とローラ11が収容されている。 As shown in FIG. 14, this tripod type constant velocity universal joint 1 includes an outer joint member 2, a tripod member 3 as an inner joint member, and a roller 11 as a torque transmission member. The outer joint member 2 has a cup portion 2a with one end open, and three linear track grooves 5 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction. Circumferentially opposed roller guide surfaces 6 are formed, each extending in the axial direction. Inside the outer joint member 2, the tripod member 3 and the roller 11 are accommodated.
 トリポード部材3は、半径方向に突出した3本の脚軸7を有する。ローラ11は、脚軸7の円筒形外周面7aに複数の針状ころ13を介して外篏され、脚軸7に回転自在に支持されている。脚軸7の円筒形外周面7aは針状ころ13の内側軌道面を構成し、ローラ11の円筒形内周面11aは針状ころ13の外側軌道面を構成している。ローラ11は、脚軸7の軸線7x上に曲率中心をおく曲率半径rの球状外周面11aを有する。ローラ11の外周面11aとローラ案内面6との接触は、第1の実施形態で前述したアンギュラコンタクト、サーキュラコンタクトのいずれも適用できる。 The tripod member 3 has three radially projecting leg shafts 7 . The roller 11 is wrapped around the cylindrical outer peripheral surface 7a of the leg shaft 7 via a plurality of needle rollers 13, and is rotatably supported by the leg shaft 7. As shown in FIG. The cylindrical outer peripheral surface 7a of the leg shaft 7 constitutes the inner raceway surface of the needle rollers 13, and the cylindrical inner circumferential surface 11a of the roller 11 constitutes the outer raceway surface of the needle rollers 13. As shown in FIG. The roller 11 has a spherical outer peripheral surface 11 a with a curvature radius r centered on the axis 7 x of the leg shaft 7 . For the contact between the outer peripheral surface 11a of the roller 11 and the roller guide surface 6, both the angular contact and the circular contact described in the first embodiment can be applied.
 複数の針状ころ13は、脚軸7の円筒形外周面7aとローラ11の円筒形内周面11aとの間に総ころ状態で組み込まれている。針状ころ13は、脚軸7の付根部に外篏されたインナワッシャ15と半径方向内側で接すると共に、脚軸7の先端部に外篏されたアウタワッシャ14と半径方向外側で接している。アウタワッシャ14は、脚軸7の先端部に形成された環状溝20に止め輪21を篏合させることにより抜け止めされている。アウタワッシャ14は、脚軸7の半径方向に延びた円盤部14aと、脚軸7の軸線方向に延びた円筒部14bとからなる。アウタワッシャ14の円筒部14bはローラ11の内周面11aより小さな外径を有し、トリポード部材3の半径方向で見た円筒部14bの外側の端部14cは、ローラ11の内周面11aよりも大径に形成されている。したがって、ローラ11は、脚軸7の軸線方向に移動することができ、かつ、端部14cにより脱落が防止されている。 A plurality of needle rollers 13 are incorporated between the cylindrical outer peripheral surface 7a of the leg shaft 7 and the cylindrical inner peripheral surface 11a of the roller 11 in a full roller state. The needle rollers 13 are radially in contact with an inner washer 15 that is wrapped around the base of the leg shaft 7 and are in contact with an outer washer 14 that is wrapped around the tip of the leg shaft 7 at a radially outer side. . The outer washer 14 is retained by fitting a snap ring 21 into an annular groove 20 formed at the tip of the leg shaft 7 . The outer washer 14 is composed of a disk portion 14a extending in the radial direction of the leg shaft 7 and a cylindrical portion 14b extending in the axial direction of the leg shaft 7. As shown in FIG. The cylindrical portion 14b of the outer washer 14 has an outer diameter smaller than the inner peripheral surface 11a of the roller 11, and the outer end portion 14c of the cylindrical portion 14b seen in the radial direction of the tripod member 3 is equal to the inner peripheral surface 11a of the roller 11. formed with a larger diameter than Therefore, the roller 11 can move in the axial direction of the leg shaft 7 and is prevented from falling off by the end portion 14c.
 本実施形態のシングルローラタイプのトリポード型等速自在継手1においても、前述した第1の実施形態のダブルローラタイプのトリポード型等速自在継手1と同様に、次の特徴的な構成(1)~(4)を備えている。
(1)トラック溝の継手軸方向のスライド範囲中央部に対して、奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成したこと。
(2)中央範囲におけるローラ案内面とローラの外周面との間にトラックすきまを形成したこと。
(3)中央範囲における3つのトラック溝のトラックすきまの最小値を0.010mm以上とし、0.100mm以下としたこと。
(4)中央範囲における3つのトラック溝のトラック径の相互差を0.150mm以下としたこと。
In the single-roller type tripod-type constant velocity universal joint 1 of the present embodiment, as well as the double-roller-type tripod-type constant velocity universal joint 1 of the first embodiment described above, the following characteristic configuration (1) (4) is provided.
(1) With respect to the center of the slide range in the joint axial direction of the track groove, the range from 10 mm on the back side to 10 mm on the opening side is defined as the center range, and the track diameter, which is the width dimension between the roller guide surfaces, is defined in the center range. Forming a part where is the smallest.
(2) A track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area.
(3) The minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less.
(4) The mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.
 上記の特徴的な構成(1)~(4)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せを実用可能にし、かつ、車両への装着時の摺動抵抗による取り扱い性が良好で、かつ、実車で最も使用する頻度の高いスライド範囲の中央範囲Wにおける円周方向ガタを抑制することができ、耐久性、強度、NVH特性(低振動特性)を確保できる。上記の特徴的な構成(1)~(4)について第1の実施形態のトリポード型等速自在継手1で説明した内容は、本実施形態のトリポード型等速自在継手1でも同様であるので準用する。 Combined with the above characteristic configurations (1) to (4), based on the practical accuracy level of forging and heat treatment, it is possible to practically select and combine rollers for the track diameter of the outer joint member, and to the vehicle. It is easy to handle due to the sliding resistance when installed, and it is possible to suppress the circumferential play in the central range W of the slide range that is most frequently used in the actual vehicle, durability, strength, NVH characteristics ( low vibration characteristics) can be ensured. The characteristic configurations (1) to (4) described above for the tripod-type constant velocity universal joint 1 of the first embodiment are the same for the tripod-type constant velocity universal joint 1 of the present embodiment, so they apply mutatis mutandis. do.
 本発明の第3の実施形態に係るトリポード型等速自在継手を図15に基づいて説明する。図15は、本実施形態のトリポード型等速自在継手の横断面図である。ただし、下側の2つローラおよびトリポード部材は断面表示ではなく、シャフトは図示を省略している。本実施形態は、ダブルローラタイプのトリポード型等速自在継手であるが、第1の実施形態のダブルローラタイプのトリポード型等速自在継手1とは、脚軸の形状とローラユニットの形状が異なる。同様の機能を有する部位には同一の符号を付して要点を説明する。 A tripod type constant velocity universal joint according to a third embodiment of the present invention will be described with reference to FIG. FIG. 15 is a cross-sectional view of the tripod type constant velocity universal joint of this embodiment. However, the lower two rollers and the tripod member are not shown in cross section, and the illustration of the shaft is omitted. This embodiment is a double-roller type tripod-type constant velocity universal joint, but differs from the double-roller-type tripod-type constant velocity universal joint 1 of the first embodiment in the shape of the leg shaft and the shape of the roller unit. . Parts having similar functions are denoted by the same reference numerals, and the main points will be explained.
 図15に示すように、本実施形態のトリポード型等速自在継手1は、トリポード部材3の脚軸7の外周面7aが球面状に形成され、ローラユニット4のインナリング12が円筒形内周面12aを有し、インナリング12の円筒形内周面12aが、トリポード部材3の脚軸7の球面状外周面7aに摺動可能に外篏されている。ローラ11の外周面11aは、脚軸7の軸線7xから半径方向にオフセットした位置Orに曲率中心をおく比較的小さな曲率半径rの円環状に形成されている。その他の構成については、第1の実施形態と同様であるので、同様の機能を有する部位には、同一の符号を付して、要点を説明する。 As shown in FIG. 15, in the tripod type constant velocity universal joint 1 of the present embodiment, the outer peripheral surface 7a of the leg shaft 7 of the tripod member 3 is formed in a spherical shape, and the inner ring 12 of the roller unit 4 is formed in a cylindrical inner peripheral shape. The cylindrical inner peripheral surface 12a of the inner ring 12 is slidably supported on the spherical outer peripheral surface 7a of the leg shaft 7 of the tripod member 3. As shown in FIG. The outer peripheral surface 11a of the roller 11 is formed in an annular shape with a relatively small radius of curvature r with the center of curvature positioned at a position Or offset in the radial direction from the axis 7x of the leg shaft 7 . Since other configurations are the same as those of the first embodiment, portions having similar functions are denoted by the same reference numerals, and the main points will be described.
 ローラユニット4は、ローラ11と、インナリング12と、ローラ11とインナリング12との間に総ころ状態で組み込まれた複数の針状ころ13とで主要部が構成されている。ローラユニット4は、外側継手部材2のトラック溝5に収容され、ローラユニット4(ローラ11)の幅方向の中心は、トラック溝5のピッチ円PC上に位置する。 The main part of the roller unit 4 is composed of a roller 11, an inner ring 12, and a plurality of needle rollers 13 incorporated between the roller 11 and the inner ring 12 in a full complement state. The roller unit 4 is accommodated in the track groove 5 of the outer joint member 2 , and the center of the roller unit 4 (roller 11 ) in the width direction is positioned on the pitch circle PC of the track groove 5 .
 トリポード部材3は、半径方向に突出した3本の脚軸7を有する。脚軸7の外周面7aは、脚軸7の軸線7x上に曲率中心をおく球面状に形成され、球面状外周面7aにローラユニット4のインナリング12の円筒形内周面12aが、摺動可能に外篏されている。継手が作動角を取ったとき、ローラユニット4はトリポード部材3の脚軸7の軸線に対して傾斜可能であり、軸方向に移動可能である。したがって、ローラユニット4のローラ11とローラ案内面6とが斜交した状態になることを回避し、正しく転動することができる。 The tripod member 3 has three radially projecting leg shafts 7 . The outer peripheral surface 7a of the leg shaft 7 is formed in a spherical shape with the center of curvature on the axis 7x of the leg shaft 7, and the cylindrical inner peripheral surface 12a of the inner ring 12 of the roller unit 4 slides on the spherical outer peripheral surface 7a. It is movably attached to the outside. When the joint takes an operating angle, the roller unit 4 can be tilted with respect to the axis of the leg shaft 7 of the tripod member 3 and can move in the axial direction. Therefore, the roller 11 of the roller unit 4 and the roller guide surface 6 can be prevented from being obliquely crossed, and can roll correctly.
 ローラ案内面6は、トラック溝5のピッチ円PCとトラック溝5の中心線5xとの交点Tを通る水平線X-X上であって、トラック溝5の中心線5xから半径方向にオフセットした位置ORに曲率中心をおく比較的小さな曲率半径Rの部分円筒面で形成され、継手の軸線に平行に延びている。本実施形態では、トラック溝5の一側につば部5aを設けたものを例示したが、図16に示す変形例のように、トラック溝5の一側につば部を設けなくてもよい。 The roller guide surface 6 is on the horizontal line XX passing through the intersection T between the pitch circle PC of the track groove 5 and the center line 5x of the track groove 5, and is radially offset from the center line 5x of the track groove 5. It is formed by a partial cylindrical surface with a relatively small radius of curvature R centered at OR and extending parallel to the axis of the joint. In the present embodiment, the flange portion 5a is provided on one side of the track groove 5, but the flange portion may not be provided on one side of the track groove 5 as in the modification shown in FIG.
 本実施形態のトリポード型等速自在継手1においても、前述した第1の実施形態のダブルローラタイプのトリポード型等速自在継手1と同様に、次の特徴的な構成(1)~(4)を備えている。
(1)トラック溝の継手軸方向のスライド範囲中央部に対して、奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成したこと。
(2)中央範囲におけるローラ案内面とローラの外周面との間にトラックすきまを形成したこと。
(3)中央範囲における3つのトラック溝のトラックすきまの最小値を0.010mm以上とし、0.100mm以下としたこと。
(4)中央範囲における3つのトラック溝のトラック径の相互差を0.150mm以下としたこと。
In the tripod type constant velocity universal joint 1 of the present embodiment, as in the double roller type tripod type constant velocity universal joint 1 of the first embodiment described above, the following characteristic configurations (1) to (4) It has
(1) With respect to the center of the slide range in the joint axial direction of the track groove, the range from 10 mm on the back side to 10 mm on the opening side is defined as the center range, and the track diameter, which is the width dimension between the roller guide surfaces, is defined in the center range. Forming a part where is the smallest.
(2) A track gap is formed between the roller guide surface and the outer peripheral surface of the roller in the central area.
(3) The minimum value of the track clearance of the three track grooves in the central range is set to 0.010 mm or more and 0.100 mm or less.
(4) The mutual difference in the track diameters of the three track grooves in the central range is 0.150 mm or less.
 上記の特徴的な構成(1)~(4)が相俟って、鍛造、熱処理の実用精度レベルを基に、外側継手部材のトラック径に対するローラの選択組合せを実用可能にし、かつ、車両への装着時の摺動抵抗による取り扱い性が良好で、かつ、実車で最も使用する頻度の高いスライド範囲の中央範囲Wにおける円周方向ガタを抑制することができ、耐久性、強度、NVH特性(低振動特性)を確保できる。上記の特徴的な構成(1)~(4)について第1の実施形態のトリポード型等速自在継手で説明した内容は、本実施形態のトリポード型等速自在継手でも同様であるので準用する。 Combined with the above characteristic configurations (1) to (4), based on the practical accuracy level of forging and heat treatment, it is possible to practically select and combine rollers for the track diameter of the outer joint member, and to the vehicle. It is easy to handle due to the sliding resistance when installed, and it is possible to suppress the circumferential play in the central range W of the slide range that is most frequently used in the actual vehicle, durability, strength, NVH characteristics ( low vibration characteristics) can be ensured. The characteristic configurations (1) to (4) described above for the tripod-type constant velocity universal joint of the first embodiment are the same for the tripod-type constant velocity universal joint of the present embodiment, and therefore apply mutatis mutandis.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is by no means limited to the embodiments described above, and can of course be embodied in various forms without departing from the gist of the present invention. and includes equivalent meanings and all changes within the scope of the claims.
1    トリポード型等速自在継手
2    外側継手部材
3    トリポード部材
4    ローラユニット
5    トラック溝
5x   トラック溝の中心線
6    ローラ案内面
6a   トラック径が最小となる部位
7    脚軸
7x   脚軸の軸線
11   ローラ
11a  外周面
12   インナリング
12a  内周面
13   針状ころ
C    スライド範囲中央部
L    トラック径
Lmax トラック径の最大値
Lmin トラック径の最小値
PC   トラック溝のピッチ円
T    交点
W    中央範囲
X-X  水平線
a    長軸
b    短軸
m    隙間
α    接触角
δ    トラックすきま
δmax トラックすきまの最大値
δmin トラックすきまの最小値
1 tripod type constant velocity universal joint 2 outer joint member 3 tripod member 4 roller unit 5 track groove 5x center line of track groove 6 roller guide surface 6a portion where track diameter is smallest 7 leg shaft 7x leg shaft axis 11 roller 11a outer periphery Surface 12 Inner ring 12a Inner peripheral surface 13 Needle roller C Center of slide range L Track diameter Lmax Maximum track diameter Lmin Minimum track diameter PC Track groove pitch circle T Intersection point W Center range XX Horizontal line a Major axis b Minor axis m Gap α Contact angle δ Track clearance δmax Maximum track clearance δmin Minimum track clearance

Claims (8)

  1.  円周方向に対向して配置されたローラ案内面を有する3つのトラック溝が形成された外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、前記外側継手部材のトラック溝に転動自在に嵌挿されたローラを有し、前記脚軸に支持されたトルク伝達部材とを備えたトリポード型等速自在継手において、
     前記トラック溝の継手軸方向のスライド範囲中央部に対して奥側に10mmから開口側に10mmの範囲を中央範囲とし、当該中央範囲に、前記ローラ案内面間の幅寸法であるトラック径が最小となる部位を形成し、
     前記中央範囲におけるローラ案内面と前記ローラの外周面との間にトラックすきまを形成し、前記中央範囲における3つのトラック溝の前記トラックすきまの最小値を0.010mm以上とし、0.100mm以下とすると共に、
     前記中央範囲における3つのトラック溝の前記トラック径の相互差を0.150mm以下としたことを特徴とするトリポード型等速自在継手。
    An outer joint member formed with three track grooves having roller guide surfaces arranged opposite in the circumferential direction, a tripod member having three radially protruding leg shafts, and a track of the outer joint member. A tripod type constant velocity universal joint comprising: a torque transmission member supported by the leg shaft;
    A range from 10 mm on the back side to 10 mm on the opening side with respect to the center of the slide range of the track groove in the joint axial direction is defined as a center range, and the track diameter, which is the width dimension between the roller guide surfaces, is the minimum in the center range. Forming a part that becomes
    A track clearance is formed between the roller guide surface and the outer peripheral surface of the roller in the central area, and the minimum value of the track clearance of the three track grooves in the central area is 0.010 mm or more and 0.100 mm or less. Along with
    A tripod type constant velocity universal joint, wherein a mutual difference in track diameters of the three track grooves in the central region is 0.150 mm or less.
  2.  前記中央範囲における3つのトラック溝のトラック径の相互差を0.100mm以下としたことを特徴とする請求項1に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 1, characterized in that the mutual difference in the track diameters of the three track grooves in the central region is 0.100 mm or less.
  3.  前記ローラを回転自在に支持するインナリングを備え、当該インナリングが前記脚軸に外嵌され、ローラがローラ案内面に沿って外側継手部材の軸方向に移動可能であることを特徴とする請求項1又は請求項2に記載のトリポード型等速自在継手。 An inner ring that rotatably supports the roller is provided, the inner ring is fitted onto the leg shaft, and the roller is movable along the roller guide surface in the axial direction of the outer joint member. The tripod type constant velocity universal joint according to claim 1 or 2.
  4.  前記インナリングの内周面が当該インナリングの縦断面において円弧状凸面に形成され、前記脚軸の外周面が、当該脚軸の軸線を含んだ縦断面においてはストレート形状で、かつ、前記脚軸の軸線と直交する横断面においては略楕円形状であり、前記脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と当接すると共に、継手の軸線方向で前記インナリングの内周面との間にすきまが形成されており、前記ローラが前記トラック溝内で傾斜可能であることを特徴とする請求項1~3のいずれか一項に記載のトリポード型等速自在継手。 The inner peripheral surface of the inner ring is formed into an arc-shaped convex surface in the longitudinal section of the inner ring, the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg shaft, and the leg The cross section perpendicular to the axis of the shaft has a substantially elliptical shape, and the outer peripheral surface of the leg shaft abuts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the axial direction of the joint. 4. The tripod type or the like according to any one of claims 1 to 3, wherein a clearance is formed between the roller and the inner peripheral surface of the inner ring, and the roller can be tilted within the track groove. Quick universal joint.
  5.  前記インナリングとローラとの間に複数の転動体を配置したことを特徴とする請求項3又は請求項4に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 3 or 4, characterized in that a plurality of rolling elements are arranged between the inner ring and the roller.
  6.  前記転動体が針状ころであることを特徴とする請求項5に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 5, wherein the rolling elements are needle rollers.
  7.  前記ローラと前記ローラ案内面とがアンギュラコンタクトすることを特徴とする請求項1に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 1, characterized in that said roller and said roller guide surface are in angular contact.
  8.  前記ローラと前記ローラ案内面とがサーキュラコンタクトすることを特徴とする請求項1に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 1, characterized in that said rollers and said roller guide surfaces are in circular contact.
PCT/JP2022/036825 2021-10-22 2022-09-30 Tripod-type constant-velocity universal joint WO2023068018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173118 2021-10-22
JP2021173118A JP2023062929A (en) 2021-10-22 2021-10-22 Tripod type constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2023068018A1 true WO2023068018A1 (en) 2023-04-27

Family

ID=86018071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036825 WO2023068018A1 (en) 2021-10-22 2022-09-30 Tripod-type constant-velocity universal joint

Country Status (3)

Country Link
JP (1) JP2023062929A (en)
CN (2) CN116006589A (en)
WO (1) WO2023068018A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292418A (en) * 1990-04-06 1991-12-24 Toyota Motor Corp Manufacture of outer member of constant velocity universal joint
JP2000179565A (en) * 1998-12-18 2000-06-27 Ntn Corp Constant-velocity universal joint
JP2001132766A (en) * 1999-11-05 2001-05-18 Ntn Corp Constant velocity universal joint
JP2018071757A (en) * 2016-11-04 2018-05-10 Ntn株式会社 Tripod type constant velocity universal joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292418A (en) * 1990-04-06 1991-12-24 Toyota Motor Corp Manufacture of outer member of constant velocity universal joint
JP2000179565A (en) * 1998-12-18 2000-06-27 Ntn Corp Constant-velocity universal joint
JP2001132766A (en) * 1999-11-05 2001-05-18 Ntn Corp Constant velocity universal joint
JP2018071757A (en) * 2016-11-04 2018-05-10 Ntn株式会社 Tripod type constant velocity universal joint

Also Published As

Publication number Publication date
CN219809306U (en) 2023-10-10
CN116006589A (en) 2023-04-25
JP2023062929A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
EP3168490B1 (en) Tripod-type constant-velocity universal joint
US7217194B2 (en) Constant velocity universal joint
WO2023189702A1 (en) Tripod-type constant-velocity universal joint
WO2023068018A1 (en) Tripod-type constant-velocity universal joint
WO2011078103A1 (en) Tripod constant-velocity universal joint
JP2010255801A (en) Tripod type constant velocity joint
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2008190621A (en) Tripod type constant velocity universal joint
WO2023243319A1 (en) Sliding-type constant velocity universal joint
WO2019111903A1 (en) Tripod constant velocity universal joint
JP2011501068A (en) Tripod joint and roller body for tripod joint
JP2024090755A (en) Sliding constant velocity joint
JP7233497B1 (en) Tripod type constant velocity universal joint
WO2023026831A1 (en) Sliding-type constant-velocity joint
WO2021246129A1 (en) Tripod-type constant-velocity universal joint
WO2023189289A1 (en) Tripod-type constant-velocity universal joint
JP2001208090A (en) Constant speed universal coupling
JP2009156401A (en) Tripod type constant velocity universal joint
WO2023136094A1 (en) Tripod-type constant-velocity universal joint
JP2024086273A (en) Tripod type constant velocity joint
JP2023041415A (en) Sliding-type constant velocity universal joint
JP6582564B2 (en) Toroidal continuously variable transmission
JP5165488B2 (en) Inner joint member of constant velocity universal joint
CN118242366A (en) Tripod constant velocity universal joint
JP2021188742A (en) Tripod-type constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE