WO2023136094A1 - Tripod-type constant-velocity universal joint - Google Patents

Tripod-type constant-velocity universal joint Download PDF

Info

Publication number
WO2023136094A1
WO2023136094A1 PCT/JP2022/047563 JP2022047563W WO2023136094A1 WO 2023136094 A1 WO2023136094 A1 WO 2023136094A1 JP 2022047563 W JP2022047563 W JP 2022047563W WO 2023136094 A1 WO2023136094 A1 WO 2023136094A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
roller
peripheral surface
tapered surface
joint
Prior art date
Application number
PCT/JP2022/047563
Other languages
French (fr)
Japanese (ja)
Inventor
卓 板垣
達朗 杉山
将太 河田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023136094A1 publication Critical patent/WO2023136094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part

Definitions

  • the present invention relates to tripod-type constant velocity universal joints used for power transmission in automobiles and various industrial machines.
  • a sliding constant velocity universal joint is connected to the inboard side (center side in the vehicle width direction) of the intermediate shaft, and the outboard side (end in the vehicle width direction) side) is often connected to a fixed constant velocity universal joint.
  • the sliding constant velocity universal joint referred to here permits both angular displacement and axial relative movement between two axes
  • the fixed constant velocity universal joint permits angular displacement between two axes. However, it does not allow relative axial movement between the two axes.
  • a tripod type constant velocity universal joint is known as a sliding constant velocity universal joint.
  • a single roller type and a double roller type exist as this tripod type constant velocity universal joint.
  • the single roller type a roller inserted into the track groove of the outer joint member is rotatably attached to the leg shaft of the tripod member via a plurality of needle rollers.
  • the double roller type includes a roller inserted into the track groove of the outer joint member, and an inner ring that fits over the leg shaft of the tripod member and supports the roller rotatably. Since the double roller type allows the rollers to oscillate about the leg shaft, the induced thrust (axial force induced by friction between parts inside the joint) and sliding resistance are reduced compared to the single roller type. It has the advantage of being able to reduce each.
  • Patent Document 1 discloses an example of a double roller type tripod type constant velocity universal joint.
  • rollers are rotatably arranged on the outer periphery of an inner ring via needle rollers.
  • the needle roller and inner ring are retained by a pair of snap rings attached to the inner peripheral surface of the roller. That is, a pair of mounting grooves are formed on the inner peripheral surface of the roller and spaced apart in the leg axis direction at intervals corresponding to the length of the needle rollers, and snap rings are fitted in the respective mounting grooves.
  • This snap ring is elastically reduced in diameter and installed in the roller mounting groove.
  • Japanese Patent Laid-Open No. 2002-200000 discloses that when the snap ring is assembled into the mounting groove 111a, the edge portion 115 is positioned inside the roller 111 so that the snap ring does not get caught on the edge portion 115 of the mounting groove 111a. It is disclosed that the cross-sectional shape is an R-curved surface with the peripheral surface 111b and the inner wall surface 111a1 of the mounting groove 111a as tangents.
  • the above problems can be avoided by sufficiently reducing the diameter of the snap ring when assembling it into the mounting groove.
  • the snap ring is plastically deformed and becomes unusable. Therefore, it is necessary to minimize the amount of diameter reduction of the snap ring during assembly. Since there is a limit to the amount of diameter reduction that can be allowed for the snap ring, it is difficult to solve the above problems with the current configuration.
  • the present invention which has been made based on the above findings, has track grooves extending in the axial direction of the joint at three locations in the circumferential direction.
  • a tripod member having an outer joint member, a trunk portion having a center hole, three leg shafts projecting in the radial direction of the trunk portion, rollers attached to each of the leg shafts, and an outer and an inner ring that is fitted and rotatably supports the roller, the roller is movable along the roller guide surface in the axial direction of the outer joint member, and the roller and the inner ring
  • a roller unit is configured to be swingable with respect to the leg shaft, a snap ring is provided on the inner periphery of the roller for restricting movement of the inner ring in the axial direction of the leg shaft, and the snap ring is attached to the roller.
  • a tripod type constant velocity universal joint fitted in a mounting groove formed on an inner peripheral surface, a first tapered surface and a second tapered surface with different inclination angles are provided at corners between the end surface and
  • the angle between the two surfaces of the end face of the roller and the first tapered surface, the angle between the two surfaces of the first tapered surface and the second tapered surface, and the angle between the two surfaces of the second tapered surface and the inner peripheral surface of the roller are Both are large obtuse angles. Therefore, when the snap ring moves between the two adjacent surfaces, it is possible to prevent the snap ring from being caught by the edge, thereby improving the assembling workability of the snap ring.
  • the snap ring can move from the first tapered surface to the It is possible to more effectively prevent the snap ring from being caught until it transitions to the second tapered surface.
  • the inclination angle of the first tapered surface with respect to the end surface of the outer ring and the inclination angle of the second tapered surface with respect to the inner peripheral surface of the outer ring are both preferably set to 10° to 25°.
  • the angle between the two surfaces at the boundary between the first tapered surface and the end surface and the boundary between the second tapered surface and the inner peripheral surface is increased, and the angle between the two surfaces between the first tapered surface and the second tapered surface is increased. This makes it even more difficult for the snap ring to get caught.
  • the inner peripheral surface of the inner ring is arcuately convex in the longitudinal section of the inner ring, and the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg shaft.
  • the cross section perpendicular to the axis has a substantially elliptical shape, and the outer peripheral surface of the leg shaft contacts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the inner ring in the axial direction of the joint. It is preferable that a gap is formed between the inner peripheral surface of the
  • Needle rollers for example, can be used as the rolling elements.
  • FIG. 2 is a cross-sectional view in the joint axial direction showing a double roller type tripod constant velocity universal joint.
  • FIG. 2 is a cross-sectional view taken along line KK of FIG. 1;
  • FIG. 2 is a cross-sectional view taken along line LL of FIG. 1;
  • FIG. 2 is a cross-sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 has an operating angle;
  • FIG. 3 is a plan view of the roller unit attached to the leg shaft as viewed from direction A in FIG. 2 ;
  • FIG. 4 is a cross-sectional view of the roller unit along the axial direction of the leg shaft;
  • FIG. 4 is a plan view of a snap ring;
  • FIG. 8 is a cross-sectional view taken along line MM of FIG. 7;
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring;
  • FIG. 10 is a cross-sectional view along the axial direction of the leg shaft showing a step of attaching the snap ring to the roller unit.
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring;
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring;
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring;
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring;
  • FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the
  • FIG. 1 An embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 An embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 An embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 An embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 17.
  • the tripod type constant velocity universal joint 1 of this embodiment shown in FIGS. 1 to 4 is of double roller type.
  • 1 is an axial cross-sectional view of a double roller type tripod type constant velocity universal joint
  • FIG. 2 is a cross-sectional view taken along line KK of FIG. 3 is a cross-sectional view taken along line LL in FIG. 1
  • FIG. 4 is an axial cross-sectional view showing the tripod type constant velocity universal joint when the operating angle is taken.
  • the axial direction of the joint and the circumferential direction of the joint respectively mean the axial direction and the circumferential direction of the tripod type constant velocity universal joint when the operating angle is set to 0°.
  • this tripod type constant velocity universal joint 1 is mainly composed of an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member.
  • the outer joint member 2 has a cup shape with one end opened, and three linear track grooves 5 extending in the joint axial direction are formed on the inner peripheral surface at regular intervals in the joint circumferential direction.
  • a roller guide surface 6 is formed in each track groove 5 so as to face each other in the joint circumferential direction of the outer joint member 2 and extend in the joint axial direction.
  • a tripod member 3 and a roller unit 4 are housed inside the outer joint member 2 .
  • the tripod member 3 includes a body portion 31 (trunnion body portion) having a central hole 30 and three leg shafts 32 (trunnion shafts) protruding radially from trisecting positions in the joint circumferential direction of the outer peripheral surface of the body portion 31 (trunnion body portion). journal).
  • the tripod member 3 is coupled to the shaft 8 so that torque can be transmitted by fitting a male spline 81 formed on the shaft 8 as an axis into a female spline 34 formed in the center hole 30 of the trunk portion 31 . .
  • the end surface of the tripod member 3 on one side in the joint axial direction is engaged with the shoulder portion 82 provided on the shaft 8, and the retaining ring 10 attached to the tip of the shaft 8 is engaged with the end surface of the tripod member 3 on the other side in the joint axial direction. By doing so, the tripod member 3 is fixed to the shaft 8 in the joint axial direction.
  • the roller unit 4 includes an outer ring 11, which is an annular roller centered on the axis of the leg shaft 32, and an annular inner ring 12, which is arranged on the inner diameter side of the outer ring 11 and fitted onto the leg shaft 32. , and a large number of rolling elements 13 interposed between the outer ring 11 and the inner ring 12 .
  • rolling elements 13 needle rollers in a full complement state without a retainer are used.
  • the roller unit 4 is housed in the track groove 5 of the outer joint member 2 .
  • the roller unit 4 consisting of the outer ring 11, the inner ring 12 and the needle rollers 13 has a structure that does not naturally decompose due to steel snap rings 14 and 15, as will be described later in detail.
  • the outer peripheral surface of the outer ring 11 (see FIG. 2) is a convex curved surface whose generatrix is an arc having the center of curvature on the axis of the leg shaft 32 .
  • the outer peripheral surface of the outer ring 11 is in angular contact with the roller guide surface 6 .
  • the needle rollers 13 are free to roll between the outer raceway surface of the outer ring 11 and the inner raceway surface of the inner ring 12, respectively. placed in
  • each leg shaft 32 of the tripod member 3 has a straight shape in the axial direction of the leg shaft 32 in a cross section in any direction including the axis of the leg shaft 32 . Further, as shown in FIG. 3 , the outer peripheral surface of the leg shaft 32 has a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft 32 .
  • the outer peripheral surface of the leg shaft 32 contacts the inner peripheral surface 12a of the inner ring 12 in a direction orthogonal to the joint axial direction, that is, in the direction of the long axis a.
  • a gap m is formed between the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 in the direction of the joint axis, that is, the direction of the minor axis b.
  • the intermediate portion 33 between the trunk portion 31 of the tripod member 3 and the leg shaft 32 is formed to draw a concave curve in any cross section including the axis of the leg shaft 32.
  • the inner peripheral surface 12a of the inner ring 12 has a convex arc shape in any cross section including the axis of the inner ring 12.
  • the cross-sectional shape of the leg shaft 32 is substantially elliptical as described above, and the predetermined gap m is provided between the leg shaft 32 and the inner ring 12. 32 can be swung.
  • the inner ring 12 and the outer ring 11 are assembled to be relatively rotatable via the needle rollers 13, so that the outer ring 11 can swing integrally with the inner ring 12 with respect to the leg shaft 32. is. That is, the axes of the outer ring 11 and the inner ring 12 can be tilted with respect to the axis of the leg shaft 32 within a plane including the axis of the leg shaft 32 (see FIG. 4).
  • the cross section (transverse cross section) of the leg shaft 32 is substantially elliptical, and the cross section (vertical cross section) of the inner peripheral surface 12a of the inner ring 12 is an arcuate convex cross section.
  • the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 on the torque load side are in point contact at the contact point X (including contact in a narrow area close to point contact). Therefore, the force that tends to incline the roller unit 4 is reduced, and the stability of the posture of the outer ring 11 is improved.
  • FIG. 5 is a plan view of the roller unit 4 attached to the leg shaft 32 as seen from direction A in FIG. 2, and FIG. 6 is a sectional view of the roller unit 4 along the axial direction of the leg shaft 32.
  • FIG. 6 is a sectional view of the roller unit 4 along the axial direction of the leg shaft 32.
  • mounting grooves 11 a are provided on the inner peripheral surface of the outer ring 11 so as to be spaced apart in the axial direction of the leg shaft 32 .
  • the snap rings 14 and 15 are attached to the inner peripheral surface 11b of the outer ring 11 so as to be separated from each other in the axial direction of the leg shaft 32 by fitting them into the attachment grooves 11a.
  • the snap rings 14 , 15 are opposed to the end surfaces of the needle rollers 13 and the inner ring 12 on both axial sides of the leg shaft 32 . relative movement in the axial direction is restricted by snap rings 14 and 15 . Accordingly, natural disassembly of the roller unit 4 is restricted by the snap rings 14,15.
  • FIG. 7 is a plan view of snap rings 14 and 15, and FIG. 8 is a cross-sectional view of snap rings 14 and 15 taken along line MM in FIG.
  • the snap rings 14 and 15 have a slit C (a gap in the circumferential direction) and are formed in a ring shape with ends divided by the slit C.
  • the snap rings 14 and 15 have a shape in which a band plate is wound around an axis extending in the thickness direction.
  • the slit C extends in a direction inclined with respect to the radial direction of the snap rings 14,15.
  • the snap rings 14 and 15 have a width b, a thickness t, and a rectangular cross-section satisfying b>t.
  • FIG. 9 is a cross-sectional view showing an enlarged inner diameter corner portion on one side in the axial direction of the outer ring 11 .
  • a boundary surface 11d is formed which includes two different annular tapered surfaces 11d1 and 11d2 and an annular first circular arc portion 11d3 interposed between the two tapered surfaces 11d1 and 11d2.
  • the first tapered surface 11d1 and the second tapered surface 11d2 are located at different positions in the axial direction of the outer ring 11 (hereinafter referred to as "ring axial direction") so that both tapered surfaces 11d1 and 11d2 form a peak. Lined up. Both the first tapered surface 11d1 and the second tapered surface 11d2 extend in the tangential direction of the first circular arc portion 11d3.
  • the first tapered surface 11d1 is connected to the end surface 11c on one side in the axial direction of the ring, and the second tapered surface 11d2 is connected to the inner peripheral surface (flange surface) 11b of the outer ring 11.
  • a boundary 11e between the first tapered surface 11d1 and the end surface 11c forms an edge
  • a boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11c forms an edge.
  • the inclination angle ⁇ 1 of the first tapered surface 11d1 with respect to the end surface 11c and the inclination angle ⁇ 2 of the second tapered surface 11d2 with respect to the inner peripheral surface 11b are both set within the range of 10° to 25°.
  • a pair of inner wall surfaces 11a1 and 11a2 facing each other in the ring axial direction are formed in the mounting groove 11a.
  • An annular second arc portion 11g is formed between the inner peripheral surface 11b of the outer ring 11 and the inner wall surface 11a1 of the mounting groove 11a on one side in the ring axial direction.
  • the boundary between the second arc portion 11g and the inner peripheral surface 11b and the boundary between the second arc portion 11g and the inner wall surface 11a1 on one side in the ring axial direction both form edges.
  • the inner peripheral surface 11b and the boundary surface 11d of the outer ring 11 are turned surfaces finished by turning or ground surfaces finished by grinding.
  • the first tapered surface 11d1, the second tapered surface 11d2, and the first arcuate portion 11d3 are formed by turning, or are simultaneously ground by a forming grindstone having a shape corresponding to these surfaces.
  • the boundary surface 11d can be formed as a smooth surface (a surface without edges).
  • the bottom surface of the mounting groove 11a, the inner wall surface 11a1, and the second circular arc portion 11g are turned surfaces finished by turning.
  • the length dimension P of the boundary surface 11d in the ring axial direction is preferably smaller than the thickness dimension t of the snap ring 14 (P ⁇ t).
  • the length dimension P of the interface 11d is preferably about 0.2 mm to 0.6 mm.
  • the width dimension Q of the boundary surface 11d in the ring radial direction is preferably about 0.2 mm to 0.6 mm, similarly to the length dimension P.
  • the radius of curvature of the first circular arc portion 11d3 is preferably about 0.1 mm to 0.6 mm.
  • the shape of the outer ring 11 near the inner diameter corner on one side in the ring axial direction has been described, but the outer ring 11 near the inner diameter corner on the other side in the ring axial direction also has the same shape as in FIG. That is, on both sides of the outer ring 11 in the ring axial direction, the contours of the mounting groove 11a, the inner peripheral surface 11b, and the boundary surface 11d are symmetrical about the center line OO (see FIG. 6) in the width direction of the outer ring 11. There is a symmetrical relationship with
  • FIG. 10 shows a step of attaching the snap ring 14 to the roller unit 4 in a cross-sectional view along the axial direction of the leg shaft 32. As shown in FIG. Although the process of attaching the snap ring 14 on the outer diameter side of the joint will be described below, the snap ring 15 on the inner diameter side of the joint is also attached through the same process.
  • the snap ring 14 is assembled with the outer ring 11, the inner ring 12, and the needle rollers 13 by using a jig 51 arranged on the end face 11c of the outer ring 11.
  • the snap ring 14 is attached to the mounting groove 11a of the inner peripheral surface 11b of the outer ring 11 by applying an axial pressing force F to the snap ring 14 using an actuator or the like.
  • this attachment work is automated.
  • 11 to 15 are cross-sectional views showing an enlarged inner diameter corner portion on one side in the axial direction of the outer ring 11, and illustration of the jig 51 is omitted in any of the figures.
  • the snap ring 14 in the natural state is accommodated in the inner circumference of the jig 51, and the snap ring 14 is arranged on the end surface 11c of the outer ring 11 on one side in the axial direction.
  • the outer peripheral surface of the snap ring 14 is located on the outer diameter side of the outer diameter end of the first tapered surface 11d1.
  • the jig 51 is used to reduce the diameter of the snap ring 14 while applying an axial pressing force F to the snap ring 14 .
  • the snap ring 14 is reduced in diameter, crosses the edge-shaped boundary 11e, and slides on the first tapered surface 11d1.
  • the angle between the first tapered surface 11d1 and the end surface 11c is an obtuse angle (less than 180°).
  • the snap ring 14 moves onto the first tapered surface 11d1 without being caught by the boundary 11e.
  • the snap ring 14 By further reducing the diameter of the snap ring 14 with the jig 51 while applying an axial pressing force F to the snap ring 14, as shown in FIG. It slides on the surface 11d2. Even when the snap ring 14 rides over the first circular arc portion 11d3, the angle between the first tapered surface 11d1 and the second tapered surface 11d2 is an obtuse angle. Since the first circular arc portion 11d3 having the tangential direction of 11d2 intervenes, the snap ring 14 can be reduced in diameter without being caught by the first circular arc portion 11d3, and can be transferred onto the second tapered surface 11d2.
  • the snap ring 14 When the snap ring 14 is further reduced in diameter by the jig 51 while applying an axial pressing force F to the snap ring 14, as shown in FIG. It slides on the inner peripheral surface 11b. Even when the snap ring 14 gets over the boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11b, the angle between the second tapered surface 11d2 and the inner peripheral surface 11b is an obtuse angle. The diameter can be reduced and transferred to the inner peripheral surface 11b without being caught at the boundary 11f. Application of the diameter-reducing force to the snap ring 14 by the jig 51 ends at this stage.
  • the roller unit 4 is completed by inverting the roller unit 4 in the axial direction and attaching the snap ring 15 on the other axial side to the mounting groove 11a on the other axial side in the same manner.
  • the order in which the snap ring 14 on the outer diameter side of the joint and the snap ring 15 on the inner diameter side of the joint shown in FIG. 1 are attached to the outer ring 11 is arbitrary. is attached.
  • the diameter-reducing force applied to the snap rings 14, 15 is predominantly the diameter-reducing force applied from the jig 51.
  • the horizontal component force of the pressing force F generated by being pressed against the second tapered surface 11d2 also constitutes a part of the diameter reducing force.
  • the first arc portion 11d3 is arranged between the first tapered surface 11d1 and the second tapered surface 11d2, and the first tapered surface 11d1 and the second tapered surface 11d1 and the second tapered surface 11d3 are arranged along the tangential direction of both ends of the first arc portion 11d3. Since the tapered surface 11d2 is arranged, it is possible to more effectively prevent the snap ring 14 from being caught during the transition from the first tapered surface 11d1 to the second tapered surface 11d2.
  • FIG. 16 and 17 show comparative examples for this embodiment.
  • FIG. 16 shows a comparative example in which the inner peripheral surface 11b' and the end surface 11c' of the outer ring 11' are directly connected without intervening a boundary surface
  • FIG. It is a comparative example provided.
  • the boundary surface 11d having a first tapered surface 11d1 and a second tapered surface 11d2 between the inner peripheral surface 11b and the end surface 11c of the outer ring 11
  • the angles between two surfaces at the boundary 11e between the first tapered surface 11d1 and the end surface 11c and the boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11b are greater than the angles between the two surfaces at the edges E2 and E3 of the comparative example shown in FIG. also grow larger. Therefore, the snap ring 14 is less likely to get caught on the boundaries 11e and 11f.
  • the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex circular cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a cylindrical surface.
  • the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex arcuate cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a concave spherical surface that fits with the outer peripheral surface of the leg shaft.
  • the tripod type constant velocity universal joint 1 described above is not limited to application to drive shafts of automobiles, but can be widely used in power transmission paths of automobiles, industrial equipment, and the like.

Abstract

In a tripod-type constant-velocity universal joint 1 of a double-roller type, snap rings 14, 15 that restrict the movement of an inner ring 12 in the axial direction of a leg shaft 32 are provided on the inner circumference of an outer ring 11, and the snap rings 14, 15 engage with an attachment groove 11a that is formed in the inner circumferential surface of the outer ring 11. At a corner part between an end surface 11c and an inner circumferential surface 11b of the outer ring 11, a first tapered surface 11d1 and a second tapered surface 11d2 having different inclination angles are formed.

Description

トリポード型等速自在継手Tripod type constant velocity universal joint
 本発明は、自動車や各種産業機械の動力伝達用に用いられるトリポード型等速自在継手に関する。 The present invention relates to tripod-type constant velocity universal joints used for power transmission in automobiles and various industrial machines.
 自動車の動力伝達系で使用されるドライブシャフトにおいては、中間軸のインボード側(車幅方向の中央側)に摺動式等速自在継手を結合し、アウトボード側(車幅方向の端部側)に固定式等速自在継手を結合する場合が多い。ここでいう摺動式等速自在継手は、二軸間の角度変位および軸方向相対移動の双方を許容するものであり、固定式等速自在継手は、二軸間での角度変位を許容するが、二軸間の軸方向相対移動は許容しないものである。 In the drive shaft used in the power transmission system of automobiles, a sliding constant velocity universal joint is connected to the inboard side (center side in the vehicle width direction) of the intermediate shaft, and the outboard side (end in the vehicle width direction) side) is often connected to a fixed constant velocity universal joint. The sliding constant velocity universal joint referred to here permits both angular displacement and axial relative movement between two axes, and the fixed constant velocity universal joint permits angular displacement between two axes. However, it does not allow relative axial movement between the two axes.
 摺動式等速自在継手としてトリポード型等速自在継手が公知である。このトリポード型等速自在継手としては、シングルローラタイプとダブルローラタイプとが存在する。シングルローラタイプは、外側継手部材のトラック溝に挿入されるローラを、トリポード部材の脚軸に複数の針状ころを介して回転可能に取り付けたものである。ダブルローラタイプは、外側継手部材のトラック溝に挿入されるローラと、トリポード部材の脚軸に外嵌して前記ローラを回転自在に支持するインナリングとを備えるものである。ダブルローラタイプは、ローラを脚軸に対して揺動させることが可能となるため、シングルローラタイプに比べ、誘起スラスト(継手内部での部品間の摩擦により誘起される軸力)とスライド抵抗をそれぞれ低減できるという利点を有する。 A tripod type constant velocity universal joint is known as a sliding constant velocity universal joint. A single roller type and a double roller type exist as this tripod type constant velocity universal joint. In the single roller type, a roller inserted into the track groove of the outer joint member is rotatably attached to the leg shaft of the tripod member via a plurality of needle rollers. The double roller type includes a roller inserted into the track groove of the outer joint member, and an inner ring that fits over the leg shaft of the tripod member and supports the roller rotatably. Since the double roller type allows the rollers to oscillate about the leg shaft, the induced thrust (axial force induced by friction between parts inside the joint) and sliding resistance are reduced compared to the single roller type. It has the advantage of being able to reduce each.
 下記の特許文献1にダブルローラタイプのトリポード型等速自在継手の一例が開示されている。このようなダブルローラタイプのトリポード型等速自在継手では、ローラが針状ころを介してインナリングの外周に回転可能に配置される。針状ころとインナリングは、ローラの内周面に装着した一対のスナップリングによって抜け止めがなされている。すなわち、ローラの内周面に、針状ころの長さに対応する間隔で脚軸方向に離間させた一対の取り付け溝を形成し、この取り付け溝にそれぞれスナップリングを嵌合させている。 Patent Document 1 below discloses an example of a double roller type tripod type constant velocity universal joint. In such a double-roller tripod type constant velocity universal joint, rollers are rotatably arranged on the outer periphery of an inner ring via needle rollers. The needle roller and inner ring are retained by a pair of snap rings attached to the inner peripheral surface of the roller. That is, a pair of mounting grooves are formed on the inner peripheral surface of the roller and spaced apart in the leg axis direction at intervals corresponding to the length of the needle rollers, and snap rings are fitted in the respective mounting grooves.
 このスナップリングは、弾性的に縮径させてローラの取り付け溝に装着される。下記の特許文献2は、図18に示すように、取り付け溝111aにスナップリングを組み付ける際に、スナップリングが取り付け溝111aのエッジ部115に引っ掛からないように、エッジ部115を、ローラ111の内周面111bと取り付け溝111aの内壁面111a1を接線とするR曲面の断面形状とすることを開示している。 This snap ring is elastically reduced in diameter and installed in the roller mounting groove. As shown in FIG. 18, Japanese Patent Laid-Open No. 2002-200000 discloses that when the snap ring is assembled into the mounting groove 111a, the edge portion 115 is positioned inside the roller 111 so that the snap ring does not get caught on the edge portion 115 of the mounting groove 111a. It is disclosed that the cross-sectional shape is an R-curved surface with the peripheral surface 111b and the inner wall surface 111a1 of the mounting groove 111a as tangents.
特開2000-320563号公報JP-A-2000-320563 特開2006-97853号公報JP-A-2006-97853
 しかしながら、特許文献2の構成では、スナップリングをローラの内周に挿入する際の入口側となる内周面の端部Sの形状によっては、スナップリングがローラに引っ掛かり、スナップリングを取り付け溝に円滑に組み付けられない事態が起こり得る。また、スナップリングは軟質鋼で形成され、ローラは焼入れされた硬質鋼で形成されるため、取り付け時の引っ掛かりによりスナップリングからバリが生じ、これが異物となってトリポード型等速自在継手の作動性を害する恐れもある。 However, in the configuration of Patent Document 2, depending on the shape of the end portion S of the inner peripheral surface, which is the entrance side when inserting the snap ring into the inner periphery of the roller, the snap ring may be caught by the roller, causing the snap ring to fit into the mounting groove. A situation may arise in which smooth assembly is not possible. Also, since the snap ring is made of soft steel and the roller is made of quenched hard steel, burrs are generated from the snap ring due to catching during installation, which becomes foreign matter and affects the operability of the tripod type constant velocity universal joint. There is also the danger of harming
 取り付け溝への組み付け時にスナップリングを十分に縮径させれば、以上の問題を回避することも可能であるが、組み付け作業を自動化する際に、少しでも過剰にスナップリングを縮径させると、スナップリングが塑性変形し、使用に耐えないものとなる。従って、組み付け時のスナップリングの縮径量は最小限に留める必要がある。このようにスナップリングに許容される縮径量には限界があるため、現状の構成のままで上記課題を解決することは難しい。 The above problems can be avoided by sufficiently reducing the diameter of the snap ring when assembling it into the mounting groove. The snap ring is plastically deformed and becomes unusable. Therefore, it is necessary to minimize the amount of diameter reduction of the snap ring during assembly. Since there is a limit to the amount of diameter reduction that can be allowed for the snap ring, it is difficult to solve the above problems with the current configuration.
 そこで、本発明は、スナップリングの取り付け溝への取り付け作業性を向上させたトリポード型等速自在継手を提供することを目的とする。 Therefore, an object of the present invention is to provide a tripod type constant velocity universal joint in which workability for mounting snap rings to mounting grooves is improved.
 以上の知見に基づいてなされた本発明は、円周方向の三カ所に継手軸方向に延びるトラック溝を備え、各トラック溝が継手円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、中心孔を有する胴部と、当該胴部の半径方向に突出した三つの脚軸と備えたトリポード部材と、前記各脚軸に装着されるローラと、前記脚軸に外嵌され、前記ローラを回転自在に支持するインナリングとを有し、前記ローラが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能であり、前記ローラと前記インナリングが、前記脚軸に対して揺動可能のローラユニットを構成し、前記ローラの内周に、前記脚軸の軸方向への前記インナリングの移動を規制するスナップリングを設け、前記スナップリングを前記ローラの内周面に形成した取り付け溝に嵌合したトリポード型等速自在継手において、前記ローラの端面と内周面の間の角部に、傾斜角度の異なる第一テーパ面および第二テーパ面を設けたことを特徴とする。 The present invention, which has been made based on the above findings, has track grooves extending in the axial direction of the joint at three locations in the circumferential direction. a tripod member having an outer joint member, a trunk portion having a center hole, three leg shafts projecting in the radial direction of the trunk portion, rollers attached to each of the leg shafts, and an outer and an inner ring that is fitted and rotatably supports the roller, the roller is movable along the roller guide surface in the axial direction of the outer joint member, and the roller and the inner ring A roller unit is configured to be swingable with respect to the leg shaft, a snap ring is provided on the inner periphery of the roller for restricting movement of the inner ring in the axial direction of the leg shaft, and the snap ring is attached to the roller. In a tripod type constant velocity universal joint fitted in a mounting groove formed on an inner peripheral surface, a first tapered surface and a second tapered surface with different inclination angles are provided at corners between the end surface and the inner peripheral surface of the roller. characterized by
 係る構成から、ローラの端面と第一テーパ面の二面間角度、第一テーパ面と第二テーパ面の二面間角度、および第二テーパ面とローラ内周面の二面間角度、が何れも大きな鈍角となる。そのため、スナップリングが隣接する二面間を移動する際に、エッジと引っ掛かるような事態を抑制し、スナップリングの組み付け作業性を高めることができる。 From this configuration, the angle between the two surfaces of the end face of the roller and the first tapered surface, the angle between the two surfaces of the first tapered surface and the second tapered surface, and the angle between the two surfaces of the second tapered surface and the inner peripheral surface of the roller are Both are large obtuse angles. Therefore, when the snap ring moves between the two adjacent surfaces, it is possible to prevent the snap ring from being caught by the edge, thereby improving the assembling workability of the snap ring.
 前記第一テーパ面と第二テーパ面の間に円弧部を設け、当該円弧部の両端の接線方向に第一テーパ面および第二テーパ面を配置することにより、スナップリングが第一テーパ面から第二テーパ面に移行するまでの間のスナップリングの引っ掛かりをより効果的に防止することができる。 By providing an arc portion between the first tapered surface and the second tapered surface and arranging the first tapered surface and the second tapered surface in the tangential direction of both ends of the arc portion, the snap ring can move from the first tapered surface to the It is possible to more effectively prevent the snap ring from being caught until it transitions to the second tapered surface.
 前記アウタリングの端面に対する第一テーパ面の傾斜角度、および、前記アウタリングの内周面に対する第二テーパ面の傾斜角度を、何れも10°~25°に設定するのが好ましい。これにより、第一テーパ面と端面の境界、および第二テーパ面と内周面の境界における二面間角度を大きくし、さらには第一テーパ面と第二テーパ面の二面間角度を大きくすることができ、スナップリングの引っ掛かりがより一層生じ難くなる。 The inclination angle of the first tapered surface with respect to the end surface of the outer ring and the inclination angle of the second tapered surface with respect to the inner peripheral surface of the outer ring are both preferably set to 10° to 25°. As a result, the angle between the two surfaces at the boundary between the first tapered surface and the end surface and the boundary between the second tapered surface and the inner peripheral surface is increased, and the angle between the two surfaces between the first tapered surface and the second tapered surface is increased. This makes it even more difficult for the snap ring to get caught.
 前記インナリングの内周面がインナリングの縦断面において円弧状凸面に形成され、前記脚軸の外周面が、脚軸の軸線を含んだ縦断面においてはストレート形状で、かつ、前記脚軸の軸線と直交する横断面においては略楕円形状であり、前記脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と当接すると共に、継手の軸線方向で前記インナリングの内周面との間にすきまが形成されているのが好ましい。 The inner peripheral surface of the inner ring is arcuately convex in the longitudinal section of the inner ring, and the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg shaft. The cross section perpendicular to the axis has a substantially elliptical shape, and the outer peripheral surface of the leg shaft contacts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the inner ring in the axial direction of the joint. It is preferable that a gap is formed between the inner peripheral surface of the
 前記インナリングと前記ローラとの間に複数の転動体を配置するのが好ましい。この転動体として、例えば針状ころを使用することができる。 It is preferable to arrange a plurality of rolling elements between the inner ring and the roller. Needle rollers, for example, can be used as the rolling elements.
 本発明によれば、スナップリングの取り付け溝への取り付け作業性を向上させたトリポード型等速自在継手を提供することができる。 According to the present invention, it is possible to provide a tripod-type constant velocity universal joint with improved workability for attaching the snap ring to the attachment groove.
ダブルローラタイプのトリポード型等速自在継手を示す継手軸方向の断面図である。FIG. 2 is a cross-sectional view in the joint axial direction showing a double roller type tripod constant velocity universal joint. 図1のK-K線で矢視した断面図である。FIG. 2 is a cross-sectional view taken along line KK of FIG. 1; 図1のL-L線における断面図である。FIG. 2 is a cross-sectional view taken along line LL of FIG. 1; 図1のトリポード型等速自在継手が作動角をとった状態を表す断面図である。FIG. 2 is a cross-sectional view showing a state in which the tripod-type constant velocity universal joint of FIG. 1 has an operating angle; 脚軸に取り付けたローラユニットを図2のA方向から見た平面図である。FIG. 3 is a plan view of the roller unit attached to the leg shaft as viewed from direction A in FIG. 2 ; 脚軸の軸線方向に沿ったローラユニットの断面図である。FIG. 4 is a cross-sectional view of the roller unit along the axial direction of the leg shaft; スナップリングの平面図である。FIG. 4 is a plan view of a snap ring; 図7のM-M線での断面図である。FIG. 8 is a cross-sectional view taken along line MM of FIG. 7; アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; ローラユニットにスナップリングを取り付ける際の取り付け工程を、脚軸の軸線方向に沿う断面で表した図である。FIG. 10 is a cross-sectional view along the axial direction of the leg shaft showing a step of attaching the snap ring to the roller unit. アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; アウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing an inner diameter corner portion on one side in the axial direction of the outer ring; 比較例におけるアウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 5 is a cross-sectional view showing an enlarged inner diameter corner portion on one axial side of an outer ring in a comparative example; 比較例におけるアウタリングの軸方向一方側の内径角部を拡大して示す断面図である。FIG. 5 is a cross-sectional view showing an enlarged inner diameter corner portion on one axial side of an outer ring in a comparative example; 従来のアウタリングを示す断面図である。FIG. 10 is a cross-sectional view showing a conventional outer ring;
 本発明に係るトリポード型等速自在継手の実施形態を図1~図17に基づいて説明する。 An embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 17. FIG.
 図1~図4に示す本実施形態のトリポード型等速自在継手1はダブルローラタイプである。なお、図1は、ダブルローラタイプのトリポード型等速自在継手の軸方向の断面図であり、図2は図1のK-K線で矢視した断面図である。図3は、図1のL-L線における断面図であり、図4は、作動角をとった時のトリポード型等速自在継手を示す軸方向の断面図である。なお、以下の説明において、継手軸方向および継手円周方向は、それぞれ作動角を0°の状態とした時のトリポード型等速自在継手の軸方向および円周方向をそれぞれ意味する。 The tripod type constant velocity universal joint 1 of this embodiment shown in FIGS. 1 to 4 is of double roller type. 1 is an axial cross-sectional view of a double roller type tripod type constant velocity universal joint, and FIG. 2 is a cross-sectional view taken along line KK of FIG. 3 is a cross-sectional view taken along line LL in FIG. 1, and FIG. 4 is an axial cross-sectional view showing the tripod type constant velocity universal joint when the operating angle is taken. In the following description, the axial direction of the joint and the circumferential direction of the joint respectively mean the axial direction and the circumferential direction of the tripod type constant velocity universal joint when the operating angle is set to 0°.
 図1および図2に示すように、このトリポード型等速自在継手1は、外側継手部材2と、内側継手部材としてのトリポード部材3と、トルク伝達部材としてのローラユニット4とで主要部が構成されている。外側継手部材2は、一端が開口したカップ状をなし、内周面に継手軸方向に延びる3本の直線状トラック溝5が継手円周方向で等間隔に形成される。各トラック溝5には、外側継手部材2の継手円周方向に対向して配置され、それぞれ継手軸方向に延びるローラ案内面6が形成されている。外側継手部材2の内部には、トリポード部材3とローラユニット4が収容されている。 As shown in FIGS. 1 and 2, this tripod type constant velocity universal joint 1 is mainly composed of an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member. It is The outer joint member 2 has a cup shape with one end opened, and three linear track grooves 5 extending in the joint axial direction are formed on the inner peripheral surface at regular intervals in the joint circumferential direction. A roller guide surface 6 is formed in each track groove 5 so as to face each other in the joint circumferential direction of the outer joint member 2 and extend in the joint axial direction. A tripod member 3 and a roller unit 4 are housed inside the outer joint member 2 .
 トリポード部材3は、中心孔30を有する胴部31(トラニオン胴部)と、胴部31の外周面の継手円周方向の三等分位置から半径方向に突出する3本の脚軸32(トラニオンジャーナル)とを一体に有する。トリポード部材3は、胴部31の中心孔30に形成された雌スプライン34に、軸としてのシャフト8に形成された雄スプライン81を嵌合させることで、シャフト8とトルク伝達可能に結合される。シャフト8に設けた肩部82にトリポード部材3の継手軸方向一方側の端面を係合させ、シャフト8の先端に装着した止め輪10をトリポード部材3の継手軸方向他方側の端面と係合させることで、トリポード部材3がシャフト8に対して継手軸方向に固定される。 The tripod member 3 includes a body portion 31 (trunnion body portion) having a central hole 30 and three leg shafts 32 (trunnion shafts) protruding radially from trisecting positions in the joint circumferential direction of the outer peripheral surface of the body portion 31 (trunnion body portion). journal). The tripod member 3 is coupled to the shaft 8 so that torque can be transmitted by fitting a male spline 81 formed on the shaft 8 as an axis into a female spline 34 formed in the center hole 30 of the trunk portion 31 . . The end surface of the tripod member 3 on one side in the joint axial direction is engaged with the shoulder portion 82 provided on the shaft 8, and the retaining ring 10 attached to the tip of the shaft 8 is engaged with the end surface of the tripod member 3 on the other side in the joint axial direction. By doing so, the tripod member 3 is fixed to the shaft 8 in the joint axial direction.
 ローラユニット4は、脚軸32の軸線を中心とした円環状のローラであるアウタリング11と、このアウタリング11の内径側に配置されて脚軸32に外嵌された円環状のインナリング12と、アウタリング11とインナリング12との間に介在された多数の転動体13とで主要部が構成されている。本実施形態では、転動体13の一例として、保持器のない総ころ状態の針状ころが使用されている。ローラユニット4は、外側継手部材2のトラック溝5に収容されている。アウタリング11、インナリング12、および針状ころ13からなるローラユニット4は、後で詳細に述べるように、鋼製のスナップリング14、15により、自然には分解しない構造となっている。 The roller unit 4 includes an outer ring 11, which is an annular roller centered on the axis of the leg shaft 32, and an annular inner ring 12, which is arranged on the inner diameter side of the outer ring 11 and fitted onto the leg shaft 32. , and a large number of rolling elements 13 interposed between the outer ring 11 and the inner ring 12 . In this embodiment, as an example of the rolling elements 13, needle rollers in a full complement state without a retainer are used. The roller unit 4 is housed in the track groove 5 of the outer joint member 2 . The roller unit 4 consisting of the outer ring 11, the inner ring 12 and the needle rollers 13 has a structure that does not naturally decompose due to steel snap rings 14 and 15, as will be described later in detail.
 この実施形態において、アウタリング11の外周面(図2参照)は、脚軸32の軸線上に曲率中心を有する円弧を母線とする凸曲面である。アウタリング11の外周面は、ローラ案内面6とアンギュラコンタクトしている。 In this embodiment, the outer peripheral surface of the outer ring 11 (see FIG. 2) is a convex curved surface whose generatrix is an arc having the center of curvature on the axis of the leg shaft 32 . The outer peripheral surface of the outer ring 11 is in angular contact with the roller guide surface 6 .
 針状ころ13は、アウタリング11の円筒状内周面を外側軌道面とし、インナリング12の円筒状外周面を内側軌道面として、これらの外側軌道面と内側軌道面の間に転動自在に配置される。 The needle rollers 13 are free to roll between the outer raceway surface of the outer ring 11 and the inner raceway surface of the inner ring 12, respectively. placed in
 トリポード部材3の各脚軸32の外周面は、脚軸32の軸線を含む任意の方向の断面において脚軸32の軸方向でストレート形状をなす。また、図3に示すように、脚軸32の外周面は、脚軸32の軸線と直交する断面において略楕円形状をなす。脚軸32の外周面は、継手軸方向と直交する方向、すなわち長軸aの方向でインナリング12の内周面12aと接触する。継手軸方向、すなわち短軸bの方向では、脚軸32の外周面とインナリング12の内周面12aとの間に隙間mが形成されている。 The outer peripheral surface of each leg shaft 32 of the tripod member 3 has a straight shape in the axial direction of the leg shaft 32 in a cross section in any direction including the axis of the leg shaft 32 . Further, as shown in FIG. 3 , the outer peripheral surface of the leg shaft 32 has a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft 32 . The outer peripheral surface of the leg shaft 32 contacts the inner peripheral surface 12a of the inner ring 12 in a direction orthogonal to the joint axial direction, that is, in the direction of the long axis a. A gap m is formed between the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 in the direction of the joint axis, that is, the direction of the minor axis b.
 図1及び2に示すように、トリポード部材3の胴部31と脚軸32の間の中間部33は、脚軸32の軸線を含む任意の断面において、凹状曲線を描くように形成される。 As shown in FIGS. 1 and 2, the intermediate portion 33 between the trunk portion 31 of the tripod member 3 and the leg shaft 32 is formed to draw a concave curve in any cross section including the axis of the leg shaft 32.
 インナリング12の内周面12aは、インナリング12の軸線を含む任意の断面において凸円弧状をなす。このことと、脚軸32の横断面形状が上述のように略楕円形状であり、脚軸32とインナリング12の間に所定の隙間mを設けてあることから、インナリング12は、脚軸32に対して揺動可能となる。上述のとおりインナリング12とアウタリング11が針状ころ13を介して相対回転自在にアセンブリとされているため、アウタリング11はインナリング12と一体となって脚軸32に対して揺動可能である。つまり、脚軸32の軸線を含む平面内で、脚軸32の軸線に対してアウタリング11およびインナリング12の軸線は傾くことができる(図4参照)。 The inner peripheral surface 12a of the inner ring 12 has a convex arc shape in any cross section including the axis of the inner ring 12. In addition to this, the cross-sectional shape of the leg shaft 32 is substantially elliptical as described above, and the predetermined gap m is provided between the leg shaft 32 and the inner ring 12. 32 can be swung. As described above, the inner ring 12 and the outer ring 11 are assembled to be relatively rotatable via the needle rollers 13, so that the outer ring 11 can swing integrally with the inner ring 12 with respect to the leg shaft 32. is. That is, the axes of the outer ring 11 and the inner ring 12 can be tilted with respect to the axis of the leg shaft 32 within a plane including the axis of the leg shaft 32 (see FIG. 4).
 図4に示すように、トリポード型等速自在継手1が作動角をとって回転すると、外側継手部材2の軸線に対してトリポード部材3の軸線は傾斜するが、ローラユニット4が揺動可能であるため、アウタリング11とローラ案内面6とが斜交した状態になることを回避することができる。これにより、アウタリング11がローラ案内面6に対して水平に転動するので、誘起スラストやスライド抵抗の低減を図ることができ、トリポード型等速自在継手1の低振動化を実現することができる。 As shown in FIG. 4, when the tripod-type constant velocity universal joint 1 rotates at an operating angle, the axis of the tripod member 3 is inclined with respect to the axis of the outer joint member 2, but the roller unit 4 can swing. Therefore, it is possible to prevent the outer ring 11 and the roller guide surface 6 from obliquely crossing each other. As a result, the outer ring 11 rolls horizontally on the roller guide surface 6, so that the induced thrust and the slide resistance can be reduced, and the vibration of the tripod type constant velocity universal joint 1 can be reduced. can.
 また、既に述べたように、脚軸32の断面(横断面)が略楕円状で、インナリング12の内周面12aの断面(縦断面)が円弧状凸断面であることから、図3に示すように、トルク負荷側での脚軸32の外周面とインナリング12の内周面12aとは、接触点Xにて、点接触(点接触に近い狭い面積で接触場合も含む)する。よって、ローラユニット4を傾かせようとする力が小さくなり、アウタリング11の姿勢の安定性が向上する。 Further, as already described, the cross section (transverse cross section) of the leg shaft 32 is substantially elliptical, and the cross section (vertical cross section) of the inner peripheral surface 12a of the inner ring 12 is an arcuate convex cross section. As shown, the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 on the torque load side are in point contact at the contact point X (including contact in a narrow area close to point contact). Therefore, the force that tends to incline the roller unit 4 is reduced, and the stability of the posture of the outer ring 11 is improved.
 図5は、脚軸32に取り付けたローラユニット4を図2のA方向から見た平面図であり、図6は、脚軸32の軸線方向に沿ったローラユニット4の断面図である。 5 is a plan view of the roller unit 4 attached to the leg shaft 32 as seen from direction A in FIG. 2, and FIG. 6 is a sectional view of the roller unit 4 along the axial direction of the leg shaft 32. FIG.
 図5および図6に示すように、ローラユニット4では、アウタリング11の内周面に脚軸32の軸芯方向に離間して取り付け溝11aが設けられる。スナップリング14,15は、この取り付け溝11aに嵌合させることで、アウタリング11の内周面11bに脚軸32の軸線方向に離間して取り付けられる。このスナップリング14,15は、針状ころ13およびインナリング12の、脚軸32の軸方向両側の端面と対向しており、アウタリング11に対する、針状ころ13およびインナリング12の脚軸32の軸方向への相対移動がスナップリング14,15によって規制されている。従って、ローラユニット4の自然な分解がスナップリング14,15によって規制される。 As shown in FIGS. 5 and 6 , in the roller unit 4 , mounting grooves 11 a are provided on the inner peripheral surface of the outer ring 11 so as to be spaced apart in the axial direction of the leg shaft 32 . The snap rings 14 and 15 are attached to the inner peripheral surface 11b of the outer ring 11 so as to be separated from each other in the axial direction of the leg shaft 32 by fitting them into the attachment grooves 11a. The snap rings 14 , 15 are opposed to the end surfaces of the needle rollers 13 and the inner ring 12 on both axial sides of the leg shaft 32 . relative movement in the axial direction is restricted by snap rings 14 and 15 . Accordingly, natural disassembly of the roller unit 4 is restricted by the snap rings 14,15.
 図7は、スナップリング14,15の平面図であり、図8は、図7のM-M線でのスナップリング14,15の断面図である。図7に示すように、スナップリング14,15は、スリットC(円周方向の隙間)を有し、スリットCによって分断された有端リング状に形成される。スナップリング14,15は、帯板を、その厚さ方向に延びる軸を中心として、その周りに周回させた形状を有する。スリットCは、スナップリング14,15の半径方向に対して傾斜する方向に延びている。図8に示すように、スナップリング14,15は幅b、厚さtを有し、かつb>tの矩形断面状に形成される。 FIG. 7 is a plan view of snap rings 14 and 15, and FIG. 8 is a cross-sectional view of snap rings 14 and 15 taken along line MM in FIG. As shown in FIG. 7 , the snap rings 14 and 15 have a slit C (a gap in the circumferential direction) and are formed in a ring shape with ends divided by the slit C. As shown in FIG. The snap rings 14 and 15 have a shape in which a band plate is wound around an axis extending in the thickness direction. The slit C extends in a direction inclined with respect to the radial direction of the snap rings 14,15. As shown in FIG. 8, the snap rings 14 and 15 have a width b, a thickness t, and a rectangular cross-section satisfying b>t.
 以下、本実施形態の特徴的構成を説明する。
 図9は、アウタリング11の軸方向一方側の内径角部を拡大して示す断面図である。図9に示すように、アウタリング11の円筒状の内周面11bと、アウタリング11の軸方向一方側の端面11cとの間には、共通の基準面(例えば端面11c)に対する傾斜角度を異にした二つの環状のテーパ面11d1,11d2と、二つのテーパ面11d1,11d2の間に介在する環状の第一円弧部11d3とを備えた境界面11dが形成される。第一テーパ面11d1と第二テーパ面11d2は、アウタリング11の軸方向(以下、「リング軸方向」と呼ぶ)で異なる位置にあって、両テーパ面11d1,11d2が山を形成するように並んでいる。第一テーパ面11d1および第二テーパ面11d2は、何れも第一円弧部11d3の接線方向に延びている。
The characteristic configuration of this embodiment will be described below.
FIG. 9 is a cross-sectional view showing an enlarged inner diameter corner portion on one side in the axial direction of the outer ring 11 . As shown in FIG. 9, between the cylindrical inner peripheral surface 11b of the outer ring 11 and the end surface 11c on one axial side of the outer ring 11, there is an inclination angle with respect to a common reference surface (for example, the end surface 11c). A boundary surface 11d is formed which includes two different annular tapered surfaces 11d1 and 11d2 and an annular first circular arc portion 11d3 interposed between the two tapered surfaces 11d1 and 11d2. The first tapered surface 11d1 and the second tapered surface 11d2 are located at different positions in the axial direction of the outer ring 11 (hereinafter referred to as "ring axial direction") so that both tapered surfaces 11d1 and 11d2 form a peak. Lined up. Both the first tapered surface 11d1 and the second tapered surface 11d2 extend in the tangential direction of the first circular arc portion 11d3.
 第一テーパ面11d1は、リング軸方向一方側の端面11cとつながっており、第二テーパ面11d2はアウタリング11の内周面(鍔面)11bとつながっている。第一テーパ面11d1と端面11cの境界11eはエッジを形成し、第二テーパ面11d2と内周面11cの境界11fはエッジを形成している。端面11cに対する第一テーパ面11d1の傾斜角度α1、並びに、内周面11bに対する第二テーパ面11d2の傾斜角度α2は、何れも10°~25°の範囲に設定される。 The first tapered surface 11d1 is connected to the end surface 11c on one side in the axial direction of the ring, and the second tapered surface 11d2 is connected to the inner peripheral surface (flange surface) 11b of the outer ring 11. A boundary 11e between the first tapered surface 11d1 and the end surface 11c forms an edge, and a boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11c forms an edge. The inclination angle α1 of the first tapered surface 11d1 with respect to the end surface 11c and the inclination angle α2 of the second tapered surface 11d2 with respect to the inner peripheral surface 11b are both set within the range of 10° to 25°.
 取り付け溝11aには、リング軸方向で対向する一対の内壁面11a1、11a2が形成される。アウタリング11の内周面11bと取り付け溝11aのリング軸方向一方側の内壁面11a1との間には、環状の第二円弧部11gが形成される。第二円弧部11gと内周面11bの境界、並びに、第二円弧部11gとリング軸方向一方側の内壁面11a1との境界は、何れもエッジを形成している。 A pair of inner wall surfaces 11a1 and 11a2 facing each other in the ring axial direction are formed in the mounting groove 11a. An annular second arc portion 11g is formed between the inner peripheral surface 11b of the outer ring 11 and the inner wall surface 11a1 of the mounting groove 11a on one side in the ring axial direction. The boundary between the second arc portion 11g and the inner peripheral surface 11b and the boundary between the second arc portion 11g and the inner wall surface 11a1 on one side in the ring axial direction both form edges.
 アウタリング11の内周面11bおよび境界面11dは、旋削加工により仕上げられた旋削面、または研削加工により仕上げられた研削面である。第一テーパ面11d1、第二テーパ面11d2、および第一円弧部11d3は旋削で形成され、もしくはこれらの面に対応した形状を備える総形砥石により同時研削される。総形砥石による同時研削の場合、境界面11dを平滑面(エッジが存在しない面)として形成することができる。取り付け溝11aの溝底面および内壁面11a1、並びに第二円弧部11gは、旋削によって仕上げられた旋削面となる。 The inner peripheral surface 11b and the boundary surface 11d of the outer ring 11 are turned surfaces finished by turning or ground surfaces finished by grinding. The first tapered surface 11d1, the second tapered surface 11d2, and the first arcuate portion 11d3 are formed by turning, or are simultaneously ground by a forming grindstone having a shape corresponding to these surfaces. In the case of simultaneous grinding with a formed grindstone, the boundary surface 11d can be formed as a smooth surface (a surface without edges). The bottom surface of the mounting groove 11a, the inner wall surface 11a1, and the second circular arc portion 11g are turned surfaces finished by turning.
 境界面11dのリング軸方向の長さ寸法Pは、スナップリング14の厚さ寸法tよりも小さくするのが好ましい(P<t)。具体的には、境界面11dの長さ寸法Pは0.2mm~0.6mm程度が好ましい。境界面11dのリング半径方向の幅寸法Qは、長さ寸法Pと同様に、0.2mm~0.6mm程度が好ましい。さらに第一円弧部11d3の曲率半径は、0.1mm~0.6mm程度が好ましい。 The length dimension P of the boundary surface 11d in the ring axial direction is preferably smaller than the thickness dimension t of the snap ring 14 (P<t). Specifically, the length dimension P of the interface 11d is preferably about 0.2 mm to 0.6 mm. The width dimension Q of the boundary surface 11d in the ring radial direction is preferably about 0.2 mm to 0.6 mm, similarly to the length dimension P. Furthermore, the radius of curvature of the first circular arc portion 11d3 is preferably about 0.1 mm to 0.6 mm.
 以上の説明では、アウタリング11のリング軸方向一方側の内径角部付近の形状を説明したが、アウタリング11のリング軸方向他方側の内径角部付近も図9と同じ形状を有する。すなわち、アウタリング11のリング軸方向両側において、取り付け溝11a、内周面11b、および境界面11dの各輪郭は、アウタリング11の幅方向の中心線O-O(図6参照)を対称軸とする線対称の関係にある。 In the above description, the shape of the outer ring 11 near the inner diameter corner on one side in the ring axial direction has been described, but the outer ring 11 near the inner diameter corner on the other side in the ring axial direction also has the same shape as in FIG. That is, on both sides of the outer ring 11 in the ring axial direction, the contours of the mounting groove 11a, the inner peripheral surface 11b, and the boundary surface 11d are symmetrical about the center line OO (see FIG. 6) in the width direction of the outer ring 11. There is a symmetrical relationship with
 図10は、ローラユニット4へのスナップリング14の取り付け工程を、脚軸32の軸線方向に沿う断面図にて表している。なお、以下では、継手外径側のスナップリング14の取付け工程を説明するが、継手内径側のスナップリング15も同じ取り付け工程を経て取り付けられる。 FIG. 10 shows a step of attaching the snap ring 14 to the roller unit 4 in a cross-sectional view along the axial direction of the leg shaft 32. As shown in FIG. Although the process of attaching the snap ring 14 on the outer diameter side of the joint will be described below, the snap ring 15 on the inner diameter side of the joint is also attached through the same process.
 図10に示すように、スナップリング14は、アウタリング11、インナリング12、および針状ころ13をアセンブリにした状態で、アウタリング11の端面11cに配置した治具51を用いてスナップリング14に縮径力を与えつつ、アクチュエータ等を用いてスナップリング14に軸方向の押圧力Fを与えることで、アウタリング11の内周面11bの取り付け溝11aに取り付けられる。本実施形態において、この取り付け作業は自動化されている。治具51からスナップリング14に縮径力を与えることで、両端21,22(図7参照)が重なり、かつスナップリング14の外径寸法φD(外力を与えない自然状態での直径寸法)がアウタリング11の内径寸法φd以下となるまで、スナップリング14が矢印Y方向に弾性的に縮径して螺旋状に変形する。この状態で、アウタリング11の内周にスナップリング14を挿入することで、取り付け溝11aへのスナップリング14の取付けが行われる。なお、図10における治具51は概念的に表されており、実際の構成とは異なる。 As shown in FIG. 10, the snap ring 14 is assembled with the outer ring 11, the inner ring 12, and the needle rollers 13 by using a jig 51 arranged on the end face 11c of the outer ring 11. , the snap ring 14 is attached to the mounting groove 11a of the inner peripheral surface 11b of the outer ring 11 by applying an axial pressing force F to the snap ring 14 using an actuator or the like. In this embodiment, this attachment work is automated. By applying a force to reduce the diameter of the snap ring 14 from the jig 51, both ends 21 and 22 (see FIG. 7) are overlapped and the outer diameter dimension φD of the snap ring 14 (the diameter dimension in the natural state when no external force is applied) is reduced to The snap ring 14 is elastically contracted in the direction of the arrow Y and spirally deformed until the inner diameter dimension φd of the outer ring 11 or less is reached. By inserting the snap ring 14 into the inner circumference of the outer ring 11 in this state, the snap ring 14 is attached to the attachment groove 11a. Note that the jig 51 in FIG. 10 is conceptually represented and differs from the actual configuration.
 以下、スナップリング14の詳細な取り付け工程を、図11~図15に基づいて説明する。なお、図11~図15は、アウタリング11の軸方向一方側の内径角部を拡大して示す断面図であり、何れの図でも治具51の図示は省略されている。 The detailed mounting process of the snap ring 14 will be described below with reference to FIGS. 11 to 15. 11 to 15 are cross-sectional views showing an enlarged inner diameter corner portion on one side in the axial direction of the outer ring 11, and illustration of the jig 51 is omitted in any of the figures.
 先ず、図11に示すように、治具51の内周に自然状態のスナップリング14を収容し、アウタリング11の軸方向一方側の端面11c上にスナップリング14を配置する。この状態では、第一テーパ面11d1の外径端よりも外径側にスナップリング14の外周面が位置する。次に、スナップリング14に軸方向の押圧力Fを与えながら治具51によりスナップリング14を縮径させる。これにより、図12に示すように、スナップリング14が縮径してエッジ状の境界11eを乗り越え、第一テーパ面11d1上を摺動する。スナップリング14が第一テーパ面11d1と端面11cの間のエッジ状の境界11eを乗り越える際にも、第一テーパ面11d1と端面11cの二面間角度が鈍角(180°未満)であるため、スナップリング14は境界11eで引っ掛かることなく第一テーパ面11d1上に移動する。 First, as shown in FIG. 11, the snap ring 14 in the natural state is accommodated in the inner circumference of the jig 51, and the snap ring 14 is arranged on the end surface 11c of the outer ring 11 on one side in the axial direction. In this state, the outer peripheral surface of the snap ring 14 is located on the outer diameter side of the outer diameter end of the first tapered surface 11d1. Next, the jig 51 is used to reduce the diameter of the snap ring 14 while applying an axial pressing force F to the snap ring 14 . As a result, as shown in FIG. 12, the snap ring 14 is reduced in diameter, crosses the edge-shaped boundary 11e, and slides on the first tapered surface 11d1. Even when the snap ring 14 gets over the edge-like boundary 11e between the first tapered surface 11d1 and the end surface 11c, the angle between the first tapered surface 11d1 and the end surface 11c is an obtuse angle (less than 180°). The snap ring 14 moves onto the first tapered surface 11d1 without being caught by the boundary 11e.
 スナップリング14に軸方向の押圧力Fを与えながら治具51によりスナップリング14をさらに縮径させることで、図13に示すように、スナップリング14が第一円弧部11d3を超えて第二テーパ面11d2上を摺動する。スナップリング14が第一円弧部11d3を乗り越える際にも、第一テーパ面11d1と第二テーパ面11d2の二面間角度が鈍角であること、さらには、両テーパ面間に両テーパ面11d1,11d2を接線方向とする第一円弧部11d3が介在していること、からスナップリング14は第一円弧部11d3で引っ掛かることなく縮径し、第二テーパ面11d2上に移行することができる。 By further reducing the diameter of the snap ring 14 with the jig 51 while applying an axial pressing force F to the snap ring 14, as shown in FIG. It slides on the surface 11d2. Even when the snap ring 14 rides over the first circular arc portion 11d3, the angle between the first tapered surface 11d1 and the second tapered surface 11d2 is an obtuse angle. Since the first circular arc portion 11d3 having the tangential direction of 11d2 intervenes, the snap ring 14 can be reduced in diameter without being caught by the first circular arc portion 11d3, and can be transferred onto the second tapered surface 11d2.
 スナップリング14に軸方向の押圧力Fを与えながら治具51によりスナップリング14をさらに縮径させると、図14に示すように、スナップリング14がエッジ状の境界11fを乗り越え、アウタリング11の内周面11b上で摺動する。スナップリング14が第二テーパ面11d2と内周面11bの間の境界11fを乗り越える際にも、第二テーパ面11d2と内周面11bの二面間角度が鈍角であるため、スナップリング14は境界11fで引っ掛かることなく縮径して内周面11bに移行することができる。治具51によるスナップリング14への縮径力の付与はこの段階で終了する。 When the snap ring 14 is further reduced in diameter by the jig 51 while applying an axial pressing force F to the snap ring 14, as shown in FIG. It slides on the inner peripheral surface 11b. Even when the snap ring 14 gets over the boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11b, the angle between the second tapered surface 11d2 and the inner peripheral surface 11b is an obtuse angle. The diameter can be reduced and transferred to the inner peripheral surface 11b without being caught at the boundary 11f. Application of the diameter-reducing force to the snap ring 14 by the jig 51 ends at this stage.
 さらにスナップリング14に軸方向の押圧力Fを与えることで、図15に示すように、スナップリング14が第二円弧部11g上を摺動し、弾性的に拡径して取り付け溝11aに嵌合する。これにより、スナップリング14の取り付けが完了する。取り付け後のスナップリング14の外周面は、取り付け溝11aの溝底面と接触する。 Further, by applying an axial pressing force F to the snap ring 14, as shown in FIG. match. This completes the attachment of the snap ring 14 . The outer peripheral surface of the snap ring 14 after attachment contacts the groove bottom surface of the attachment groove 11a.
 次いで、ローラユニット4を軸方向で反転させ、軸方向他方側のスナップリング15を同様の手順で軸方向他方側の取り付け溝11aに取り付けることで、ローラユニット4が完成する。なお、図1に示す継手外径側のスナップリング14と継手内径側のスナップリング15のアウタリング11に対する取付け順序は任意であり、どちらか一方のスナップリングを取り付けた後で、他方のスナップリングが取り付けられる。 Next, the roller unit 4 is completed by inverting the roller unit 4 in the axial direction and attaching the snap ring 15 on the other axial side to the mounting groove 11a on the other axial side in the same manner. The order in which the snap ring 14 on the outer diameter side of the joint and the snap ring 15 on the inner diameter side of the joint shown in FIG. 1 are attached to the outer ring 11 is arbitrary. is attached.
 以上に述べた取り付け工程において、スナップリング14,15に付与される縮径力としては、治具51から与えられる縮径力が支配的であるが、スナップリング14,15を第一テーパ面11d1および第二テーパ面11d2に押し付けられることで生じる押圧力Fの水平分力も縮径力の一部を構成する。 In the attachment process described above, the diameter-reducing force applied to the snap rings 14, 15 is predominantly the diameter-reducing force applied from the jig 51. And the horizontal component force of the pressing force F generated by being pressed against the second tapered surface 11d2 also constitutes a part of the diameter reducing force.
 既に述べたように、本実施形態では、アウタリング11の内周面11bと端面11cの間の角部に、第一テーパ面11d1および第二テーパ面11d2を有する境界面11dを設けている。また、両テーパ面11d1,11d2を、第一テーパ面11d1から第二テーパ面にかけてアウタリング11の内径寸法が徐々に小さくなるように配置している。この場合、端面11cと第一テーパ面11d1の二面間角度、第一テーパ面11d1と第二テーパ面11d2の二面間角度、および第二テーパ面11d2と内周面11bの二面間角度、が何れも180°未満の大きな鈍角となる。そのため、スナップリングが隣接する二面間を移動する際に、エッジと引っ掛かるような事態を抑制し、スナップリング14の組み付け作業性を高めることができる。 As already described, in the present embodiment, the boundary surface 11d having the first tapered surface 11d1 and the second tapered surface 11d2 is provided at the corner between the inner peripheral surface 11b and the end surface 11c of the outer ring 11. Both tapered surfaces 11d1 and 11d2 are arranged so that the inner diameter dimension of the outer ring 11 gradually decreases from the first tapered surface 11d1 to the second tapered surface. In this case, the angle between the end surface 11c and the first tapered surface 11d1, the angle between the first tapered surface 11d1 and the second tapered surface 11d2, and the angle between the second tapered surface 11d2 and the inner peripheral surface 11b , are both large obtuse angles of less than 180°. Therefore, when the snap ring moves between the two adjacent surfaces, it is possible to prevent the snap ring from being caught by the edge, and the workability of assembling the snap ring 14 can be improved.
 特に本実施形態では、第一テーパ面11d1と第二テーパ面11d2の間に第一円弧部11d3を配置し、第一円弧部11d3の両端の接線方向に沿って第一テーパ面11d1と第二テーパ面11d2を配置しているため、スナップリング14が第一テーパ面11d1から第二テーパ面11d2に移行するまでの間のスナップリング14の引っ掛かりをより効果的に防止することができる。 In particular, in this embodiment, the first arc portion 11d3 is arranged between the first tapered surface 11d1 and the second tapered surface 11d2, and the first tapered surface 11d1 and the second tapered surface 11d1 and the second tapered surface 11d3 are arranged along the tangential direction of both ends of the first arc portion 11d3. Since the tapered surface 11d2 is arranged, it is possible to more effectively prevent the snap ring 14 from being caught during the transition from the first tapered surface 11d1 to the second tapered surface 11d2.
 図16および図17は、本実施形態に対する比較例を示すものである。図16は、アウタリング11’の内周面11b’と端面11c’を、境界面を介在させることなく直接つなげた比較例であり、図17は、両面11b’、11c’間に面取り53を設けた比較例である。 16 and 17 show comparative examples for this embodiment. FIG. 16 shows a comparative example in which the inner peripheral surface 11b' and the end surface 11c' of the outer ring 11' are directly connected without intervening a boundary surface, and FIG. It is a comparative example provided.
 図16の比較例では、スナップリング14を挿入する際に、内周面11b’と端面11c’の間のエッジE1でスナップリング14’が引っ掛かり易くなる。図17の比較例では、面取り53と端面11c’の二面間角度、および面取り53と内周面11b’の二面間角度が小さいため、それぞれのエッジE2,E3で取り付け作業中のスナップリングが引っ掛かり易くなる。これに対して、本実施形態のように、アウタリング11の内周面11bと端面11cの間に、第一テーパ面11d1および第二テーパ面11d2を備えた境界面11dを設けることで、第一テーパ面11d1と端面11cの境界11eおよび第二テーパ面11d2と内周面11bの境界11fにおける各二面間角度が、図17に示す比較例のエッジE2,E3での二面間角度よりもそれぞれ大きくなる。そのため、各境界11e、11fでのスナップリング14の引っ掛かりがより一層生じ難くなる。 In the comparative example of FIG. 16, when inserting the snap ring 14, the snap ring 14' is easily caught by the edge E1 between the inner peripheral surface 11b' and the end surface 11c'. In the comparative example of FIG. 17, the angle between the chamfer 53 and the end surface 11c' and the angle between the chamfer 53 and the inner peripheral surface 11b' are small, so that the snap ring during the mounting operation is at the respective edges E2 and E3. becomes easier to catch. In contrast, as in the present embodiment, by providing a boundary surface 11d having a first tapered surface 11d1 and a second tapered surface 11d2 between the inner peripheral surface 11b and the end surface 11c of the outer ring 11, the The angles between two surfaces at the boundary 11e between the first tapered surface 11d1 and the end surface 11c and the boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11b are greater than the angles between the two surfaces at the edges E2 and E3 of the comparative example shown in FIG. also grow larger. Therefore, the snap ring 14 is less likely to get caught on the boundaries 11e and 11f.
 第一テーパ面11d1と端面11cの境界11e、および第二テーパ面11d2と内周面11bの境界11fにおける二面間角度を大きくするため、さらには第一テーパ面11d1と第二テーパ面11d2の二面間角度を大きくするため、端面11cに対する第一テーパ面11d1の傾斜角度α1、および内周面11bに対する第二テーパ面11d2の傾斜角度α2は、何れも10°~25°の範囲に設定するのが好ましい。 In order to increase the angle between the two surfaces at the boundary 11e between the first tapered surface 11d1 and the end surface 11c and the boundary 11f between the second tapered surface 11d2 and the inner peripheral surface 11b, In order to increase the angle between the two surfaces, the inclination angle α1 of the first tapered surface 11d1 with respect to the end surface 11c and the inclination angle α2 of the second tapered surface 11d2 with respect to the inner peripheral surface 11b are both set within the range of 10° to 25°. preferably.
 以上に述べた本発明の実施形態は、他の構成を有するダブルローラタイプのトリポード型等速自在継手にも適用することができる。 The embodiments of the present invention described above can also be applied to double roller type tripod type constant velocity universal joints having other configurations.
 例えば、脚軸32の外周面を凸曲面(例えば断面凸円弧状)に形成し、インナリング12の内周面12aを円筒面状に形成することもできる。また、脚軸32の外周面を凸曲面(例えば断面凸円弧状)に形成し、インナリング12の内周面12aを脚軸外周面と嵌合する凹球面に形成することもできる。この際、少なくともアウタリングの両端部のうち、何れか一方に鍔を設けることにより、何れか一方のスナップリング14を不要とすることもできる。 For example, the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex circular cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a cylindrical surface. Alternatively, the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex arcuate cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a concave spherical surface that fits with the outer peripheral surface of the leg shaft. At this time, by providing a flange on at least one of both ends of the outer ring, one of the snap rings 14 can be dispensed with.
 以上に述べたトリポード型等速自在継手1は、自動車のドライブシャフトに限って適用されるものではなく、自動車や産業機器等の動力伝達経路に広く用いることができる。 The tripod type constant velocity universal joint 1 described above is not limited to application to drive shafts of automobiles, but can be widely used in power transmission paths of automobiles, industrial equipment, and the like.
1     トリポード型等速自在継手
2     外側継手部材
3     トリポード部材
4     ローラユニット
5     トラック溝
6     ローラ案内面
11    ローラ(アウタリング)
11a   取り付け溝
11b   内周面
11c   端面
11d   境界面
11d1  第一テーパ面
11d2  第二テーパ面
11d3  円弧部(第一円弧部)
12    インナリング
13    針状ころ
14    スナップリング
15    スナップリング
31    胴部
32    脚軸
1 tripod type constant velocity universal joint 2 outer joint member 3 tripod member 4 roller unit 5 track groove 6 roller guide surface 11 roller (outer ring)
11a mounting groove 11b inner peripheral surface 11c end surface 11d boundary surface 11d1 first tapered surface 11d2 second tapered surface 11d3 arc portion (first arc portion)
12 Inner ring 13 Needle roller 14 Snap ring 15 Snap ring 31 Body 32 Leg axle

Claims (6)

  1.  円周方向の三カ所に継手軸方向に延びるトラック溝を備え、各トラック溝が継手円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、
     中心孔を有する胴部と、当該胴部の半径方向に突出した三つの脚軸と備えたトリポード部材と、
     前記各脚軸に装着されるローラと、
     前記脚軸に外嵌され、前記ローラを回転自在に支持するインナリングとを有し、
     前記ローラが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能であり、 前記ローラと前記インナリングが、前記脚軸に対して揺動可能のローラユニットを構成し、
     前記ローラの内周に、前記脚軸の軸方向への前記インナリングの移動を規制するスナップリングを設け、前記スナップリングを前記ローラの内周面に形成した取り付け溝に嵌合したトリポード型等速自在継手において、
     前記ローラの端面と内周面の間の角部に、傾斜角度の異なる第一テーパ面および第二テーパ面を設けたことを特徴とするトリポード型等速自在継手。
    an outer joint member having track grooves extending in the axial direction of the joint at three locations in the circumferential direction, each track groove having a pair of roller guide surfaces arranged to face each other in the circumferential direction of the joint;
    a tripod member comprising a trunk having a central hole and three leg shafts projecting radially from the trunk;
    a roller mounted on each leg shaft;
    an inner ring fitted on the leg shaft and rotatably supporting the roller;
    The roller is movable along the roller guide surface in the axial direction of the outer joint member, and the roller and the inner ring constitute a roller unit that can swing with respect to the leg shaft,
    A tripod type or the like in which a snap ring is provided on the inner circumference of the roller to restrict movement of the inner ring in the axial direction of the leg shaft, and the snap ring is fitted into a mounting groove formed on the inner circumference of the roller. In quick universal joints,
    A tripod type constant velocity universal joint, wherein a first tapered surface and a second tapered surface having different inclination angles are provided at a corner between an end surface and an inner peripheral surface of the roller.
  2.  前記第一テーパ面と第二テーパ面の間に円弧部を設け、当該円弧部の両端の接線方向に第一テーパ面および第二テーパ面を配置した請求項1に記載のトリポード型等速自在継手。 2. The tripod type constant velocity variable according to claim 1, wherein an arc portion is provided between the first tapered surface and the second tapered surface, and the first tapered surface and the second tapered surface are arranged in the tangential direction of both ends of the arc portion. fittings.
  3.  前記アウタリングの端面に対する第一テーパ面の傾斜角度、および、前記アウタリングの内周面に対する第二テーパ面の傾斜角度を、何れも10°~25°に設定した請求項1または2に記載のトリポード型等速自在継手。 3. The apparatus according to claim 1, wherein both the inclination angle of the first tapered surface with respect to the end surface of the outer ring and the inclination angle of the second tapered surface with respect to the inner peripheral surface of the outer ring are set to 10° to 25°. tripod type constant velocity universal joint.
  4.  前記インナリングの内周面がリングの縦断面において円弧状凸面に形成され、前記脚軸の外周面が、脚軸の軸線を含んだ縦断面においてはストレート形状で、かつ、前記脚軸の軸線と直交する横断面においては略楕円形状であり、前記脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と当接すると共に、継手の軸線方向で前記リングの内周面との間にすきまが形成されている請求項1~3何れか1項に記載のトリポード型等速自在継手。 The inner peripheral surface of the inner ring is formed into an arc-shaped convex surface in the longitudinal section of the ring, and the outer peripheral surface of the leg shaft is straight in the longitudinal section including the axis of the leg and the axis of the leg. The outer peripheral surface of the leg shaft contacts the inner peripheral surface of the inner ring in the direction perpendicular to the axis of the joint, and the inner peripheral surface of the ring in the axial direction of the joint. The tripod type constant velocity universal joint according to any one of claims 1 to 3, wherein a clearance is formed between the tripod type constant velocity universal joint and the peripheral surface.
  5.  前記インナリングと前記ローラとの間に複数の転動体を配置した請求項1~4何れか1項に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to any one of claims 1 to 4, wherein a plurality of rolling elements are arranged between the inner ring and the roller.
  6.  前記転動体が針状ころである請求項5に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 5, wherein the rolling elements are needle rollers.
PCT/JP2022/047563 2022-01-14 2022-12-23 Tripod-type constant-velocity universal joint WO2023136094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004522A JP2023103794A (en) 2022-01-14 2022-01-14 Tripod type constant velocity universal joint
JP2022-004522 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023136094A1 true WO2023136094A1 (en) 2023-07-20

Family

ID=87278999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047563 WO2023136094A1 (en) 2022-01-14 2022-12-23 Tripod-type constant-velocity universal joint

Country Status (2)

Country Link
JP (1) JP2023103794A (en)
WO (1) WO2023136094A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435101A (en) * 1987-07-28 1989-02-06 Aisin Aw Co Accumulator
JP2000274410A (en) * 1999-03-24 2000-10-03 Sanjo Kinzoku Kk Bar/linear body fixing tool and bar/linear body holding fixing tool
JP2006266324A (en) * 2005-03-22 2006-10-05 Ntn Corp Constant velocity universal joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435101A (en) * 1987-07-28 1989-02-06 Aisin Aw Co Accumulator
JP2000274410A (en) * 1999-03-24 2000-10-03 Sanjo Kinzoku Kk Bar/linear body fixing tool and bar/linear body holding fixing tool
JP2006266324A (en) * 2005-03-22 2006-10-05 Ntn Corp Constant velocity universal joint

Also Published As

Publication number Publication date
JP2023103794A (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US7357723B2 (en) Tripod type constant velocity joint
KR20010043326A (en) Constant velocity universal joint
JP4334754B2 (en) Tripod type constant velocity joint
JP2001295855A (en) Uniform universal coupling
JP4015822B2 (en) Constant velocity universal joint
US6682434B2 (en) Constant velocity universal joint
WO2023136094A1 (en) Tripod-type constant-velocity universal joint
EP1489323B1 (en) Constant velocity universal joint
US20090199405A1 (en) Tripod type constant velocity universal joint
US7878914B2 (en) Constant velocity joint of tripod type
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP7233497B1 (en) Tripod type constant velocity universal joint
US7641558B2 (en) Constant velocity joint
JP2004257418A (en) Tripod uniform velocity universal joint
WO2023068018A1 (en) Tripod-type constant-velocity universal joint
WO2023189123A1 (en) Tripod-type constant-velocity universal joint
WO2021246129A1 (en) Tripod-type constant-velocity universal joint
KR890001516B1 (en) Power transmitting shaft coupling
JP2024037485A (en) Tripod type constant velocity universal joint
JP2023161283A (en) Slide type constant velocity universal joint
JP2000257643A (en) Constant velocity universal joint
JP2008075683A (en) Tripod type constant velocity universal joint
JP2008190626A (en) Tripod constant velocity universal joint
JP2000240674A (en) Tripod type constant velocity universal joint
JP2008267406A (en) Tripod type constant velocity universal joint and retaining ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920611

Country of ref document: EP

Kind code of ref document: A1