JP2023161283A - Slide type constant velocity universal joint - Google Patents

Slide type constant velocity universal joint Download PDF

Info

Publication number
JP2023161283A
JP2023161283A JP2022071571A JP2022071571A JP2023161283A JP 2023161283 A JP2023161283 A JP 2023161283A JP 2022071571 A JP2022071571 A JP 2022071571A JP 2022071571 A JP2022071571 A JP 2022071571A JP 2023161283 A JP2023161283 A JP 2023161283A
Authority
JP
Japan
Prior art keywords
joint member
annular groove
outer joint
diameter
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022071571A
Other languages
Japanese (ja)
Inventor
和弘 東
Kazuhiro Azuma
里奈 近藤
Rina Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2022071571A priority Critical patent/JP2023161283A/en
Publication of JP2023161283A publication Critical patent/JP2023161283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)

Abstract

To improve workability when handing a slide type constant velocity universal joint equipped with a slipping-out preventive mechanism locking a retainer ring to a tapered surface.SOLUTION: An annular groove 23 has a tapered surface 27 decreasing a diameter toward an opening side of an outside joint member 11. A tangent line L1 at a contact point α between a ball 13 and a retainer ring 24, and a tangent line L2 at a contact point β between the retainer ring 24 and the tapered surface 27 has a wedge angle θ1 opening from the opening side toward a deep side of the outside joint member 11. A diameter difference ΔD between an outer diameter D1 of the retainer ring 24 installed to the annular groove 23 and an inner diameter D2 of an opening side part (cylindrical surface 22) with respect to the annular groove 23 of the outside joint member 11 is 40% or more of a diameter D of a wire material forming the retainer ring 24.SELECTED DRAWING: Figure 4

Description

本発明は、摺動式等速自在継手に関する。 The present invention relates to a sliding constant velocity universal joint.

自動車の動力伝達系で使用されるドライブシャフトにおいては、中間軸のインボード側(車幅方向の中央側)に摺動式等速自在継手を結合し、アウトボード側(車幅方向の端部側)に固定式等速自在継手を結合する場合が多い。ここでいう摺動式等速自在継手は、二軸間の角度変位および軸方向相対移動の双方を許容するものであり、固定式等速自在継手は、二軸間での角度変位を許容するが、二軸間の軸方向相対移動は許容しないものである。 In drive shafts used in automobile power transmission systems, a sliding constant velocity universal joint is connected to the inboard side (the center side in the vehicle width direction) of the intermediate shaft, and the sliding constant velocity universal joint is connected to the outboard side (the end in the vehicle width direction). A fixed constant velocity universal joint is often connected to the side). The sliding type constant velocity universal joint referred to here allows both angular displacement and axial relative movement between two axes, while the fixed type constant velocity universal joint allows angular displacement between two axes. However, relative movement in the axial direction between the two axes is not permitted.

摺動式等速自在継手としては、回転トルクを伝達する転動体としてボールを用いたダブルオフセット型等速自在継手(DOJ)やクロスグルーブ型等速自在継手(LJ)が知られている。 As sliding constant velocity universal joints, double offset type constant velocity universal joints (DOJ) and cross groove type constant velocity universal joints (LJ), which use balls as rolling elements to transmit rotational torque, are known.

ここで、ドライブシャフトを車体に組み付けるに際しては、前述の摺動式等速自在継手をエンジン側(インボード側)に組み付けた後、固定式等速自在継手を車輪側(アウトボード側)に組み付ける。その車輪側では、固定式等速自在継手に車輪用軸受を組み付け、ナックルにより車体の懸架装置に組み付ける。 When assembling the drive shaft to the vehicle body, first assemble the sliding type constant velocity universal joint mentioned above to the engine side (inboard side), then assemble the fixed type constant velocity universal joint to the wheel side (outboard side). . On the wheel side, wheel bearings are attached to fixed constant velocity universal joints, and then attached to the suspension system of the vehicle body using knuckles.

ドライブシャフトの摺動式等速自在継手を車体のエンジン側に組み付けた時点では、固定式等速自在継手が車輪側の車輪用軸受に組み付けられていない。そのため、摺動式等速自在継手には、固定式等速自在継手およびシャフトからなるドライブシャフトの自重が大きな荷重となってスライドアウト方向へかかる場合がある。このような状態になると、摺動式等速自在継手の内部部品(内側継手部材、ボール、及び保持器)が外側継手部材の開口端部から飛び出すスライドオーバーが生じることがある。 At the time when the sliding type constant velocity universal joint of the drive shaft is assembled to the engine side of the vehicle body, the fixed type constant velocity universal joint is not assembled to the wheel bearing on the wheel side. Therefore, the sliding constant velocity universal joint may be subjected to a large load in the slide-out direction due to the dead weight of the drive shaft made up of the fixed type constant velocity universal joint and the shaft. In such a state, a slide-over may occur in which the internal components of the sliding constant velocity universal joint (inner joint member, ball, and retainer) protrude from the open end of the outer joint member.

下記の特許文献1には、摺動式等速自在継手の内部部品のスライドオーバーを防止するために、外側継手部材に対する内部部品の軸方向変位量を規制する抜け止め機構が設けられている。具体的には、図8に示すように、外側継手部材111の開口端部付近の内周面に環状溝123を形成し、この環状溝123に装着したサークリップ124をボール113と干渉させることで、ボール113を含む内部部品の開口側(図中右側)への軸方向移動を規制している。 In Patent Document 1 listed below, in order to prevent the internal components of a sliding constant velocity universal joint from sliding over, a retaining mechanism is provided that restricts the amount of axial displacement of the internal components with respect to the outer joint member. Specifically, as shown in FIG. 8, an annular groove 123 is formed on the inner peripheral surface near the open end of the outer joint member 111, and the circlip 124 attached to this annular groove 123 is caused to interfere with the ball 113. This restricts the axial movement of internal components including the ball 113 toward the opening side (right side in the figure).

また、下記の特許文献2では、図9に示すように、サークリップ224が装着される環状溝223にテーパ面227を形成している。テーパ面227に当接させたサークリップ224をボール213と干渉させることで、ボール213を含む内部部品の抜け止めを行っている。ボール213がサークリップ224に当接した状態で、サークリップ224とボール213との接触点α’での軸方向断面における接線L1’と、サークリップ224とテーパ面227との接触点β’での軸方向断面における接線L2’とが、外側継手部材211の奥側(図中左側)に向けて開いた楔角度θ’を有している。これにより、断面矩形の環状溝123が形成された図8の外側継手部材111と比べて、外側継手部材211の環状溝223よりも開口側部分の軸方向寸法E1を短くすることができるため(E1<E0)、等速自在継手のコンパクト化及び軽量化が図られる。 Furthermore, in Patent Document 2 below, as shown in FIG. 9, a tapered surface 227 is formed in an annular groove 223 into which a circlip 224 is mounted. By causing the circlip 224 in contact with the tapered surface 227 to interfere with the ball 213, internal components including the ball 213 are prevented from coming off. With the ball 213 in contact with the circlip 224, a tangent L1' in the axial cross section at the contact point α' between the circlip 224 and the ball 213 and a contact point β' between the circlip 224 and the tapered surface 227. The tangent L2' in the axial cross section has a wedge angle θ' that opens toward the back side (left side in the figure) of the outer joint member 211. As a result, the axial dimension E1 of the opening side portion of the outer joint member 211 can be made shorter than the annular groove 223 of the outer joint member 211, compared to the outer joint member 111 of FIG. 8 in which the annular groove 123 with a rectangular cross section is formed. E1<E0), the constant velocity universal joint can be made more compact and lighter.

特許第4637723号公報Patent No. 4637723 特開2017-207198号公報JP2017-207198A

図9の等速自在継手では、サークリップ224がテーパ面227に当接した状態で係止される。そのため、外側継手部材211の軸方向寸法をできるだけ短くするためには、テーパ面227の軸方向長さを、サークリップ224との接触点β’を確保できる範囲でなるべく短くすることが好ましいと考えられていた。 In the constant velocity universal joint shown in FIG. 9, the circlip 224 is locked in contact with the tapered surface 227. Therefore, in order to make the axial dimension of the outer joint member 211 as short as possible, it is considered preferable to make the axial length of the tapered surface 227 as short as possible within a range that can ensure the contact point β' with the circlip 224. It was getting worse.

しかし、上記の等速自在継手を車両へ組み付けるときや運搬するときに、少しでもどこかにぶつけたりすると、このときの衝撃荷重によりボール213がサークリップ224に衝突し、サークリップ224が開口側(図中右側)に僅かに移動することがある。このとき、テーパ面227の長さが短いと、サークリップ224がテーパ面227の内径端まで達して環状溝223から外れてしまい、その結果、ボール213を含む内部部品が外側継手部材211から飛び出す恐れがある。従って、摺動式等速自在継手を取り扱う際には、上記のような事態が生じないように細心の注意を要するため、作業性が低下する。 However, if the above-mentioned constant velocity universal joint is bumped into something even slightly when it is assembled into a vehicle or transported, the ball 213 will collide with the circlip 224 due to the impact load at this time, and the circlip 224 will move toward the open side. It may move slightly to the right side in the figure. At this time, if the length of the tapered surface 227 is short, the circlip 224 will reach the inner diameter end of the tapered surface 227 and come off the annular groove 223, and as a result, the internal parts including the ball 213 will protrude from the outer joint member 211. There is a fear. Therefore, when handling the sliding type constant velocity universal joint, great care must be taken to avoid the above situation, which reduces work efficiency.

そこで、本発明は、テーパ面で止め輪を係止する抜け止め機構を備えた摺動式等速自在継手を取り扱う際の作業性を高めることを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve workability when handling a sliding constant velocity universal joint equipped with a retaining mechanism that locks a retaining ring on a tapered surface.

前記課題を解決するために、本発明は、軸方向一端を開口し、内周面に複数の直線状のトラック溝が形成された外側継手部材と、前記外側継手部材の内周に配され、外周面に複数の直線状のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に配された複数のボールとを備え、前記内側継手部材の前記外側継手部材に対する軸方向変位及び角度変位を許容した摺動式等速自在継手において、
前記外側継手部材の内周面の開口側端部付近に形成された環状溝と、前記環状溝に装着され、前記ボールが軸方向から当接する止め輪とを備えた抜け止め機構を有し、
前記環状溝が、前記外側継手部材の開口側へ行くにつれて縮径したテーパ面を有し、
前記ボールを前記止め輪に当接させると共に、前記止め輪を前記テーパ面に当接させた状態で、前記ボールと前記止め輪との接触点での軸方向断面における接線と、前記止め輪と前記テーパ面との接触点での軸方向断面における接線とが、前記外側継手部材の開口側から奥側に向けて開いた楔角度を有し、
前記環状溝に装着された前記止め輪の外径と、前記外側継手部材の前記環状溝よりも開口側部分の内径との径差が、前記止め輪を形成する線材の直径の40%以上であることを特徴とする。
In order to solve the above problems, the present invention provides an outer joint member that is open at one end in the axial direction and has a plurality of linear track grooves formed on the inner circumferential surface, and an outer joint member disposed on the inner circumference of the outer joint member, The inner joint member includes an inner joint member having a plurality of linear track grooves formed on an outer circumferential surface, and a plurality of balls arranged between the track grooves of the outer joint member and the track grooves of the inner joint member. In a sliding constant velocity universal joint that allows axial displacement and angular displacement of a joint member with respect to the outer joint member,
a retaining mechanism including an annular groove formed near the opening side end of the inner circumferential surface of the outer joint member, and a retaining ring attached to the annular groove and with which the ball abuts from the axial direction;
The annular groove has a tapered surface whose diameter decreases toward the opening side of the outer joint member,
With the ball in contact with the retaining ring and the retaining ring in contact with the tapered surface, a tangent in the axial cross section at the contact point between the ball and the retaining ring and the retaining ring A tangent in the axial cross section at the point of contact with the tapered surface has a wedge angle that opens from the opening side of the outer joint member toward the back side,
The difference in diameter between the outer diameter of the retaining ring attached to the annular groove and the inner diameter of a portion of the outer joint member that is closer to the opening than the annular groove is 40% or more of the diameter of the wire forming the retaining ring. characterized by something.

このように、本発明では、環状溝に装着された止め輪の外径D1と、外側継手部材の環状溝よりも開口側部分の内径D2との径差ΔDが、止め輪を形成する線材の直径Dの40%以上とした(図4参照)。これにより、外側継手部材の開口側部分の、止め輪の外径に対する高さ(径差)を十分に確保することができるため、衝撃荷重が加わった場合でも止め輪が環状溝から外れにくくなる。 As described above, in the present invention, the diameter difference ΔD between the outer diameter D1 of the retaining ring attached to the annular groove and the inner diameter D2 of the portion of the outer joint member on the opening side of the annular groove is determined by the diameter difference ΔD of the wire forming the retaining ring. The diameter was set to be 40% or more of the diameter D (see FIG. 4). This ensures a sufficient height (diameter difference) of the opening side of the outer joint member relative to the outer diameter of the retaining ring, making it difficult for the retaining ring to come off from the annular groove even when an impact load is applied. .

上記の等速自在継手において、外側継手部材の環状溝よりも開口側部分の内径が大きすぎると、外側継手部材を開口側から見たときに、環状溝に装着された止め輪の大部分が外側継手部材の開口側部分で隠れてしまう。この場合、止め輪が環状溝に正常に装着されているか否かを外側継手部材の開口側から目視しにくくなる。 In the constant velocity universal joint described above, if the inner diameter of the opening side part is too large than the annular groove of the outer joint member, most of the retaining ring attached to the annular groove will be damaged when the outer joint member is viewed from the opening side. It is hidden by the opening side portion of the outer joint member. In this case, it becomes difficult to visually check whether the retaining ring is properly installed in the annular groove from the opening side of the outer joint member.

そこで、環状溝に装着された止め輪の外径D1と、外側継手部材の開口側部分の内径D2との径差ΔDを、止め輪を形成する線材の直径Dの60%以下とすることが好ましい。これにより、環状溝に装着された止め輪が、外側継手部材の開口側部分よりも内径側に十分に突出するため、止め輪の環状溝への装着状態を外側継手部材の開口側から容易に目視することができる。 Therefore, the diameter difference ΔD between the outer diameter D1 of the retaining ring attached to the annular groove and the inner diameter D2 of the opening side portion of the outer joint member should be set to 60% or less of the diameter D of the wire forming the retaining ring. preferable. As a result, the retaining ring installed in the annular groove protrudes sufficiently inward from the opening side of the outer joint member, so that the retaining ring installed in the annular groove can be easily checked from the opening side of the outer joint member. Can be visually observed.

外側継手部材の軸線方向に対する環状溝のテーパ面の傾斜角度を25°以下とすれば、テーパ面を有する環状溝を、一工程の旋削加工で形成することができる。また、外側継手部材の軸方向寸法を短くするためには、外側継手部材の軸線方向に対する環状溝のテーパ面の傾斜角度を20°以上とすることが好ましい。 If the angle of inclination of the tapered surface of the annular groove with respect to the axial direction of the outer joint member is 25 degrees or less, the annular groove having the tapered surface can be formed in one turning process. Further, in order to shorten the axial dimension of the outer joint member, it is preferable that the inclination angle of the tapered surface of the annular groove with respect to the axial direction of the outer joint member is 20° or more.

以上のように、本発明によれば、テーパ面を有する環状溝から止め輪が外れにくくなるため、摺動式等速自在継手を取り扱う際の作業性が高められる。 As described above, according to the present invention, the retaining ring is difficult to come off from the annular groove having a tapered surface, so that the workability when handling the sliding type constant velocity universal joint is improved.

本発明の一実施形態に係る摺動式等速自在継手の軸方向断面図である。FIG. 1 is an axial cross-sectional view of a sliding constant velocity universal joint according to an embodiment of the present invention. 図1の等速自在継手の内部部品が開口側に移動した状態を示す軸方向断面図である。FIG. 2 is an axial cross-sectional view showing a state in which internal components of the constant velocity universal joint in FIG. 1 have moved toward the opening side. 図2の拡大断面図である。FIG. 3 is an enlarged sectional view of FIG. 2; 図3のA部の拡大断面図である。FIG. 4 is an enlarged sectional view of section A in FIG. 3; 図1の等速自在継手の外側継手部材をその開口側から見た側面図である。FIG. 2 is a side view of the outer joint member of the constant velocity universal joint shown in FIG. 1, viewed from the opening side thereof. (A)は外側継手部材をその開口側から見た側面図、(B)は(A)のP-P線に沿う断面図である。(A) is a side view of the outer joint member as seen from its opening side, and (B) is a sectional view taken along line PP in (A). 図6(B)のB部分の拡大断面図である。FIG. 6B is an enlarged sectional view of portion B in FIG. 6(B). 従来の摺動式等速自在継手の抜け止め機構を示す断面図である。FIG. 2 is a sectional view showing a retaining mechanism of a conventional sliding type constant velocity universal joint. 従来の他の摺動式等速自在継手の抜け止め機構を示す断面図である。FIG. 7 is a cross-sectional view showing a retaining mechanism of another conventional sliding type constant velocity universal joint.

本発明に係る摺動式等速自在継手の実施形態を、図面に基づいて以下に詳述する。 Embodiments of a sliding constant velocity universal joint according to the present invention will be described in detail below based on the drawings.

図1は、車両のドライブシャフトに組み付けられた摺動式等速自在継手の一つであるダブルオフセット型等速自在継手(以下、単に等速自在継手と称す)の全体構成を示す。 FIG. 1 shows the overall configuration of a double offset type constant velocity universal joint (hereinafter simply referred to as a constant velocity universal joint), which is one type of sliding constant velocity universal joint assembled to a drive shaft of a vehicle.

この実施形態の等速自在継手は、軸方向一端を開口したカップ状の外側継手部材11と、内側継手部材12と、転動体である複数個のボール13と、ケージ14とを備えている。内側継手部材12、ボール13およびケージ14からなる内部部品15が外側継手部材11の内周に軸方向変位可能に収容されている。内側継手部材12の軸孔16にシャフト17の一方の軸端部がスプライン嵌合により結合されている。 The constant velocity universal joint of this embodiment includes a cup-shaped outer joint member 11 with one axial end open, an inner joint member 12, a plurality of balls 13 as rolling elements, and a cage 14. An internal component 15 consisting of an inner joint member 12, a ball 13, and a cage 14 is accommodated on the inner periphery of the outer joint member 11 so as to be axially displaceable. One shaft end of the shaft 17 is connected to the shaft hole 16 of the inner joint member 12 by spline fitting.

外側継手部材11の内周面19には、軸方向に延びる直線状トラック溝18が円周方向複数箇所に等間隔で形成されている。内側継手部材12の外周面21には、軸方向に延びる直線状トラック溝20が円周方向複数箇所に等間隔で形成されている。ボール13は、半径方向で対向する外側継手部材11のトラック溝18と内側継手部材12のトラック溝20との間に配されて、両継手部材11,12の間で回転トルクを伝達する。ケージ14は、円周方向複数箇所に等間隔で配されたポケット14aを有する。各ポケット14aには、ボール13が一つずつ保持される。 In the inner circumferential surface 19 of the outer joint member 11, linear track grooves 18 extending in the axial direction are formed at a plurality of positions at equal intervals in the circumferential direction. On the outer circumferential surface 21 of the inner joint member 12, linear track grooves 20 extending in the axial direction are formed at a plurality of circumferential locations at equal intervals. The ball 13 is disposed between the track groove 18 of the outer joint member 11 and the track groove 20 of the inner joint member 12 that face each other in the radial direction, and transmits rotational torque between the two joint members 11 and 12. The cage 14 has a plurality of pockets 14a arranged at equal intervals in the circumferential direction. Each pocket 14a holds one ball 13.

ケージ14の外周面には、外側継手部材11の内周面19と摺動する球面部14bが形成され、ケージ14の内周面には、内側継手部材12の外周面21と摺動する球面部14cが形成される。ケージ14の外周面の球面部14bの曲率中心と、内周面の球面部14cの曲率中心は、継手中心に対して軸方向反対側に等距離だけオフセットしている。そのため、外側継手部材11と内側継手部材12との間に作動角が付与されたとき、ケージ14のポケット14aに保持されたボール13は、どの作動角においても常にその作動角の二等分面内に維持され、これにより外側継手部材11と内側継手部材12との間での等速性が確保される。また、ケージ14に保持されたボール13が外側継手部材11のトラック溝18上を転動することにより、外側継手部材11に対して内部部品15が軸方向摺動自在となっている。 A spherical surface portion 14b that slides on the inner circumferential surface 19 of the outer joint member 11 is formed on the outer circumferential surface of the cage 14, and a spherical surface portion 14b that slides on the outer circumferential surface 21 of the inner joint member 12 is formed on the inner circumferential surface of the cage 14. A portion 14c is formed. The center of curvature of the spherical portion 14b on the outer peripheral surface of the cage 14 and the center of curvature of the spherical portion 14c on the inner peripheral surface are offset by an equal distance on the opposite side in the axial direction with respect to the joint center. Therefore, when a working angle is given between the outer joint member 11 and the inner joint member 12, the ball 13 held in the pocket 14a of the cage 14 always faces the bisector of the working angle at any working angle. This ensures constant velocity between the outer joint member 11 and the inner joint member 12. Furthermore, the balls 13 held by the cage 14 roll on the track grooves 18 of the outer joint member 11, thereby allowing the internal component 15 to freely slide in the axial direction with respect to the outer joint member 11.

なお、この等速自在継手では、図示しないが、継手内部に封入されたグリース等の潤滑剤の漏洩を防止すると共に継手外部からの異物侵入を防止するため、樹脂製あるいはゴム製の伸縮自在な蛇腹状ブーツを、外側継手部材11とシャフト17との間に張設することにより、外側継手部材11の開口部を閉塞している。 Although not shown in the figures, this constant velocity universal joint is equipped with a retractable resin or rubber joint in order to prevent the leakage of lubricants such as grease sealed inside the joint and to prevent foreign matter from entering from outside the joint. By stretching the bellows-like boot between the outer joint member 11 and the shaft 17, the opening of the outer joint member 11 is closed.

この等速自在継手は、内部部品15が外側継手部材11の開口端部から飛び出すスライドオーバーを防止する抜け止め機構25を有する。 This constant velocity universal joint has a retaining mechanism 25 that prevents the internal component 15 from sliding over from the open end of the outer joint member 11.

抜け止め機構25は、図1および図2に示すように、外側継手部材11のトラック溝18および内周面19の開口側端部付近に形成された環状溝23と、その環状溝23に嵌着された止め輪としてのサークリップ24とで構成されている。サークリップ24は、断面円形の線材をリング状に曲げてなり、周方向一部を不連続とした有端リング状とされる(図5参照)。 As shown in FIGS. 1 and 2, the retaining mechanism 25 includes an annular groove 23 formed near the opening side end of the track groove 18 and the inner circumferential surface 19 of the outer joint member 11, and an annular groove 23 that fits into the annular groove 23. It is composed of a circlip 24 as a retaining ring attached thereto. The circlip 24 is formed by bending a wire rod having a circular cross section into a ring shape, and has an end ring shape that is partially discontinuous in the circumferential direction (see FIG. 5).

図3および図4は、内部部品15の軸方向変位によりボール13がサークリップ24に当接した状態を示す。図4に示すように、抜け止め機構25の環状溝23は、外側継手部材11の開口側へ行くにつれて縮径したテーパ面27を有する。本実施形態の環状溝23は、テーパ面27と、外側継手部材11のトラック溝18の開口側端部から外径側に延びる平坦面28と、テーパ面27の外径端と平坦面28の外径端とを繋ぐ円筒面29とを備える。 3 and 4 show a state in which the ball 13 is brought into contact with the circlip 24 due to the axial displacement of the internal component 15. As shown in FIG. 4, the annular groove 23 of the retaining mechanism 25 has a tapered surface 27 whose diameter decreases toward the opening side of the outer joint member 11. As shown in FIG. The annular groove 23 of this embodiment includes a tapered surface 27, a flat surface 28 extending from the opening side end of the track groove 18 of the outer joint member 11 to the outer diameter side, and a portion between the outer diameter end of the tapered surface 27 and the flat surface 28. It has a cylindrical surface 29 that connects the outer diameter end.

サークリップ24と円筒面29との接触点γから平坦面28までの軸方向寸法Gは、サークリップ24を構成する線材の半径Rよりも長い。これにより、サークリップ24を環状溝23の円筒面29に確実に接触させることができる。尚、円筒面29の軸方向寸法が大きすぎると、その分、トラック溝18の軸方向寸法が短くなり、ボール13の有効摺動長さを確保することができない恐れがある。従って、円筒面29の軸方向寸法は、上記のようにサークリップ24を円筒面29に確実に接触させることができる範囲で、なるべく短くすることが好ましい。 The axial dimension G from the contact point γ between the circlip 24 and the cylindrical surface 29 to the flat surface 28 is longer than the radius R of the wire constituting the circlip 24. Thereby, the circlip 24 can be brought into reliable contact with the cylindrical surface 29 of the annular groove 23. Note that if the axial dimension of the cylindrical surface 29 is too large, the axial dimension of the track groove 18 will be correspondingly shortened, and there is a possibility that the effective sliding length of the ball 13 cannot be ensured. Therefore, it is preferable that the axial dimension of the cylindrical surface 29 be as short as possible within a range that allows the circlip 24 to reliably contact the cylindrical surface 29 as described above.

ボール13がサークリップ24に当接した状態で、サークリップ24は、接触点αでボール13と接触すると共に、接触点βでテーパ面27と接触している。ボール13とサークリップ24との接触点αでの軸方向断面における接線L1と、サークリップ24とテーパ面27との接触点βでの軸方向断面における接線L2との間には、外側継手部材11の開口側から奥側に向けて開いた楔角度θ1が形成されている。尚、接線L2の方向は、テーパ面27の延在方向と一致している。 With the ball 13 in contact with the circlip 24, the circlip 24 contacts the ball 13 at a contact point α and the tapered surface 27 at a contact point β. Between the tangent L1 in the axial cross section at the contact point α between the ball 13 and the circlip 24 and the tangent L2 in the axial cross section at the contact point β between the circlip 24 and the tapered surface 27, there is an outer joint member. A wedge angle θ1 is formed that opens from the opening side of 11 toward the back side. Note that the direction of the tangent line L2 coincides with the direction in which the tapered surface 27 extends.

楔角度θ1は5°~25°の範囲に設定するのが良い。楔角度θが5°より小さくなると、テーパ面27によりサークリップ24を係止する力が十分でなくなり、内部部品のスライドオーバーを確実に防止することが困難となる。一方、楔角度θが25°より大きくなると、サークリップ24から外側継手部材11の環状溝23にかかる荷重方向がスライド方向に近くなり、溝強度の点で不利となり重量削減が困難となる。 The wedge angle θ1 is preferably set within a range of 5° to 25°. If the wedge angle θ is smaller than 5°, the force for locking the circlip 24 by the tapered surface 27 will not be sufficient, making it difficult to reliably prevent the internal components from sliding over. On the other hand, when the wedge angle θ is larger than 25°, the direction of the load applied from the circlip 24 to the annular groove 23 of the outer joint member 11 becomes close to the sliding direction, which is disadvantageous in terms of groove strength and makes weight reduction difficult.

本実施形態では、環状溝23に装着された状態のサークリップ24の外径D1と、外側継手部材11の環状溝23よりも開口側部分の最小内径(図示例では、円筒面22の内径D2)との径差ΔD(=D1-D2)が、全周において、サークリップ24を形成する線材の直径Dの40%~60%となっている。図4に実線で示す円筒面22の内径D2とサークリップ24の外径D1との径差ΔDは、サークリップ24を形成する線材の直径Dの40%であり、同図に点線で示す円筒面22の内径とサークリップ24の外径D1との径差ΔDは、サークリップ24を形成する線材の直径Dの60%である。すなわち、円筒面22は、図4に実線で示す半径方向位置と点線で示す半径方向位置との間に設けられる。 In this embodiment, the outer diameter D1 of the circlip 24 attached to the annular groove 23 and the minimum inner diameter of the portion of the outer joint member 11 on the opening side of the annular groove 23 (in the illustrated example, the inner diameter D2 of the cylindrical surface 22 ) is 40% to 60% of the diameter D of the wire forming the circlip 24 over the entire circumference. The diameter difference ΔD between the inner diameter D2 of the cylindrical surface 22 and the outer diameter D1 of the circlip 24, shown by a solid line in FIG. 4, is 40% of the diameter D of the wire forming the circlip 24. The diameter difference ΔD between the inner diameter of the surface 22 and the outer diameter D1 of the circlip 24 is 60% of the diameter D of the wire forming the circlip 24. That is, the cylindrical surface 22 is provided between the radial position shown by the solid line and the radial position shown by the dotted line in FIG.

以上の構成からなる抜け止め機構25では、内部部品15に大きな荷重がスライドアウト方向へかかった場合、内部部品15のボール13がサークリップ24と当接することにより、ボール13の軸方向変位量を規制する(図3および図4参照)。 In the retaining mechanism 25 having the above configuration, when a large load is applied to the internal component 15 in the slide-out direction, the ball 13 of the internal component 15 comes into contact with the circlip 24, thereby reducing the amount of axial displacement of the ball 13. (See Figures 3 and 4).

このとき、ボール13とサークリップ24との接触点αでの接線L1と、サークリップ24と環状溝23のテーパ面27との接触点βでの接線L2とが、外側継手部材11の開口側から奥側に向けて拡開する楔角度θ1をなす。これにより、環状溝23に保持された状態のサークリップ24にボール13を干渉させることで、内部部品15の軸方向変位量を確実に規制することができる。 At this time, the tangent L1 at the contact point α between the ball 13 and the circlip 24 and the tangent L2 at the contact point β between the circlip 24 and the tapered surface 27 of the annular groove 23 are on the opening side of the outer joint member 11. A wedge angle θ1 is formed that expands toward the back side. Thereby, by causing the ball 13 to interfere with the circlip 24 held in the annular groove 23, the amount of axial displacement of the internal component 15 can be reliably regulated.

また、サークリップ24の外径D1と外側継手部材11の円筒面22の内径D2との径差ΔDが、サークリップ24を形成する線材の直径Dの40%以上であることにより、サークリップ24の外径端(すなわち、環状溝23の円筒面29)に対する円筒面22の高さ(径差)を十分に確保することができる。また、環状溝23のテーパ面27の軸方向長さも十分に確保することができ、例えば、テーパ面27のうち、サークリップ24との接触点βよりも開口側領域の軸方向断面における長さCを、サークリップ24を形成する線材の半径Rよりも長くすることができる。以上により、衝撃荷重等によりサークリップ24が外側継手部材11に対して開口側に僅かに移動した場合でも、テーパ面27を乗り越えにくくなるため、環状溝23から外れにくくなる。 Further, since the diameter difference ΔD between the outer diameter D1 of the circlip 24 and the inner diameter D2 of the cylindrical surface 22 of the outer joint member 11 is 40% or more of the diameter D of the wire forming the circlip 24, the circlip 24 A sufficient height (diameter difference) of the cylindrical surface 22 with respect to the outer diameter end (that is, the cylindrical surface 29 of the annular groove 23) can be ensured. Further, the axial length of the tapered surface 27 of the annular groove 23 can be ensured sufficiently, for example, the length in the axial cross section of the region of the tapered surface 27 on the opening side from the contact point β with the circlip 24. C can be made longer than the radius R of the wire forming the circlip 24. As a result of the above, even if the circlip 24 moves slightly toward the opening side with respect to the outer joint member 11 due to an impact load or the like, it becomes difficult to get over the tapered surface 27 and therefore difficult to come off from the annular groove 23.

また、サークリップ24の外径D1と外側継手部材11の円筒面22の内径D2との径差ΔDが、サークリップ24を形成する線材の直径Dの60%以下であることにより、環状溝23に装着されたサークリップ24の、外側継手部材11の円筒面22から内径側への突出量を十分に(直径Dの40%以上)確保できる。これにより、外側継手部材11を開口側(図4の右側)から見たときに、図5に示すように、環状溝23に装着されたサークリップ24が見えやすくなるため、サークリップ24の環状溝23への装着状態(正常に装着されているか否か)を外側継手部材11の開口側から容易に確認することができる。本実施形態では、環状溝23に嵌着されたサークリップ24の全周が、外側継手部材11の円筒面22よりも内径側に突出しているため、環状溝23へのサークリップ24の装着状態をより確認しやすくなる。 Furthermore, the annular groove 2 A sufficient amount of protrusion (40% or more of the diameter D) of the circlip 24 attached to the outer joint member 11 from the cylindrical surface 22 of the outer joint member 11 can be ensured. As a result, when the outer joint member 11 is viewed from the opening side (right side in FIG. 4), the circlip 24 attached to the annular groove 23 can be easily seen as shown in FIG. The state of attachment to the groove 23 (whether or not it is attached normally) can be easily confirmed from the opening side of the outer joint member 11. In this embodiment, the entire circumference of the circlip 24 fitted in the annular groove 23 protrudes inwardly from the cylindrical surface 22 of the outer joint member 11, so that the state in which the circlip 24 is attached to the annular groove 23 is It becomes easier to check.

外側継手部材11の環状溝23よりも開口側部分(円筒面22)がトラック溝18よりも内径側に突出していると、外側継手部材11の内周に内部部品を組み込む際にボール13が外側継手部材11の開口部に干渉して組み込むことができない恐れがある。従って、外側継手部材11の円筒面22は、トラック溝18の底部(最外径部)の延長線上か、それよりも外径側に配される。 If the opening side portion (cylindrical surface 22) of the outer joint member 11 protrudes more radially inward than the annular groove 23 than the track groove 18, the ball 13 will be pushed outward when the internal parts are assembled into the inner periphery of the outer joint member 11. There is a possibility that it may interfere with the opening of the joint member 11 and cannot be assembled. Therefore, the cylindrical surface 22 of the outer joint member 11 is arranged on the extension line of the bottom (outermost diameter part) of the track groove 18 or on the outer diameter side thereof.

上記のように、サークリップ24の外径D1と外側継手部材11の円筒面22の内径D2との径差ΔDをサークリップ24の線材の直径Dの40%以上確保する際に、外側継手部材11の軸線方向に対するテーパ面27の傾斜角度θ2が小さすぎると、テーパ面27の軸方向寸法が長くなり、外側継手部材11の軸方向寸法が大きくなってしまう。従って、テーパ面27の傾斜角度θ2は20°以上とすることが好ましい。 As described above, when ensuring the diameter difference ΔD between the outer diameter D1 of the circlip 24 and the inner diameter D2 of the cylindrical surface 22 of the outer joint member 11 to be 40% or more of the diameter D of the wire of the circlip 24, the outer joint member If the inclination angle θ2 of the tapered surface 27 with respect to the axial direction of the outer joint member 11 is too small, the axial dimension of the tapered surface 27 becomes long, and the axial dimension of the outer joint member 11 becomes large. Therefore, it is preferable that the inclination angle θ2 of the tapered surface 27 is 20° or more.

環状溝23は、旋削加工により形成することができる。例えば、図6(A)(B)および図7に示すように、外側継手部材11の開口側端面26を旋削チップ30により加工することで、環状溝23が形成される(図7の矢印参照)。具体的には、外側継手部材11を軸線周りに回転させた状態で、旋削チップ30を、外側継手部材11の端面26に開口側から当接させ、円筒面22、テーパ面27、円筒面29、及び平坦面28の形状に沿って連続的に移動させながら切削することにより、環状溝23を形成することができる。図示例では、旋削チップ30で環状溝23を形成した後、そのまま旋削チップ30を平坦面28に沿って内周面19に達するまで移動させ、環状溝23を内周面19に開口させている。 The annular groove 23 can be formed by turning. For example, as shown in FIGS. 6A, 6B and 7, an annular groove 23 is formed by machining the opening side end surface 26 of the outer joint member 11 with a turning tip 30 (see the arrow in FIG. 7). ). Specifically, with the outer joint member 11 rotated around the axis, the turning tip 30 is brought into contact with the end surface 26 of the outer joint member 11 from the opening side, and the cylindrical surface 22, the tapered surface 27, and the cylindrical surface 29 are , and the annular groove 23 can be formed by cutting while continuously moving it along the shape of the flat surface 28 . In the illustrated example, after forming the annular groove 23 with the turning tip 30, the turning tip 30 is moved along the flat surface 28 until it reaches the inner circumferential surface 19, and the annular groove 23 is opened in the inner circumferential surface 19. .

このとき、テーパ面27の傾斜角度θ2(図4参照)が大きすぎると、上記のように旋削チップ30により一工程で加工することができない恐れがある。そのため、テーパ面27の傾斜角度θ2は25°以下とすることが好ましい。 At this time, if the inclination angle θ2 (see FIG. 4) of the tapered surface 27 is too large, there is a possibility that processing cannot be performed in one step with the turning tip 30 as described above. Therefore, it is preferable that the inclination angle θ2 of the tapered surface 27 is 25° or less.

以上の実施形態では、環状溝23のテーパ面27と平坦面28との間に円筒面29を設けた場合を示したが、これに限らず、例えば、図9に示す従来品と同様に、テーパ面27と平坦面28とを断面円弧状の曲面で連続してもよい。 In the above embodiment, the case where the cylindrical surface 29 was provided between the tapered surface 27 and the flat surface 28 of the annular groove 23 was shown, but the present invention is not limited to this, and for example, similar to the conventional product shown in FIG. The tapered surface 27 and the flat surface 28 may be continuous with a curved surface having an arcuate cross section.

また、以上の実施形態では、本発明をダブルオフセット型等速自在継手に適用した場合を例示したが、他のボールタイプの摺動式等速自在継手(例えば、クロスグルーブ型等速自在継手)にも適用可能である。 In addition, in the above embodiment, the case where the present invention is applied to a double offset type constant velocity universal joint is illustrated, but other ball type sliding type constant velocity universal joints (for example, cross groove type constant velocity universal joint) It is also applicable to

11 外側継手部材
12 内側継手部材
13 ボール
14 ケージ
15 内部部品
17 シャフト
18 トラック溝
19 内周面
20 トラック溝
21 外周面
22 円筒面(開口側部分)
23 環状溝
24 サークリップ(止め輪)
25 抜け止め機構
26 開口側端面
27 テーパ面
28 平坦面
29 円筒面
30 旋削チップ
11 Outer joint member 12 Inner joint member 13 Ball 14 Cage 15 Internal component 17 Shaft 18 Track groove 19 Inner circumferential surface 20 Track groove 21 Outer circumferential surface 22 Cylindrical surface (opening side part)
23 Annular groove 24 Circlip (retaining ring)
25 Retaining mechanism 26 Opening side end surface 27 Tapered surface 28 Flat surface 29 Cylindrical surface 30 Turning tip

Claims (3)

軸方向一端を開口し、内周面に複数の直線状のトラック溝が形成された外側継手部材と、前記外側継手部材の内周に配され、外周面に複数の直線状のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に配された複数のボールとを備え、前記内側継手部材の前記外側継手部材に対する軸方向変位及び角度変位を許容した摺動式等速自在継手において、
前記外側継手部材の内周面の開口側端部付近に形成された環状溝と、前記環状溝に装着され、前記ボールが軸方向から当接する止め輪とを備えた抜け止め機構を有し、
前記環状溝が、前記外側継手部材の開口側へ行くにつれて縮径したテーパ面を有し、
前記ボールを前記止め輪に当接させると共に、前記止め輪を前記テーパ面に当接させた状態で、前記ボールと前記止め輪との接触点での軸方向断面における接線と、前記止め輪と前記テーパ面との接触点での軸方向断面における接線とが、前記外側継手部材の開口側から奥側に向けて開いた楔角度を有し、
前記環状溝に装着された前記止め輪の外径と、前記外側継手部材の前記環状溝よりも開口側部分の内径との径差が、前記止め輪を形成する線材の直径の40%以上である摺動式等速自在継手。
an outer joint member that is open at one end in the axial direction and has a plurality of linear track grooves formed on its inner peripheral surface; and an outer joint member that is arranged on the inner periphery of the outer joint member and has a plurality of linear track grooves formed on its outer peripheral surface. and a plurality of balls disposed between track grooves of the outer joint member and track grooves of the inner joint member, the inner joint member has an axial displacement of the inner joint member with respect to the outer joint member and In sliding constant velocity universal joints that allow angular displacement,
a retaining mechanism including an annular groove formed near the opening side end of the inner circumferential surface of the outer joint member, and a retaining ring attached to the annular groove and with which the ball abuts from the axial direction;
The annular groove has a tapered surface whose diameter decreases toward the opening side of the outer joint member,
With the ball in contact with the retaining ring and the retaining ring in contact with the tapered surface, a tangent in the axial cross section at the contact point between the ball and the retaining ring and the retaining ring A tangent in the axial cross section at the point of contact with the tapered surface has a wedge angle that opens from the opening side of the outer joint member toward the back side,
The difference in diameter between the outer diameter of the retaining ring attached to the annular groove and the inner diameter of a portion of the outer joint member that is closer to the opening than the annular groove is 40% or more of the diameter of the wire forming the retaining ring. A sliding type constant velocity universal joint.
前記径差が、前記止め輪を形成する線材の直径の60%以下である請求項1に記載の摺動式等速自在継手。 The sliding constant velocity universal joint according to claim 1, wherein the diameter difference is 60% or less of the diameter of the wire forming the retaining ring. 前記外側継手部材の軸線方向に対する前記テーパ面の傾斜角度が20~25°である請求項1又は2に記載の摺動式等速自在継手。 3. The sliding constant velocity universal joint according to claim 1, wherein the tapered surface has an inclination angle of 20 to 25 degrees with respect to the axial direction of the outer joint member.
JP2022071571A 2022-04-25 2022-04-25 Slide type constant velocity universal joint Pending JP2023161283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022071571A JP2023161283A (en) 2022-04-25 2022-04-25 Slide type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022071571A JP2023161283A (en) 2022-04-25 2022-04-25 Slide type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2023161283A true JP2023161283A (en) 2023-11-07

Family

ID=88650009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022071571A Pending JP2023161283A (en) 2022-04-25 2022-04-25 Slide type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2023161283A (en)

Similar Documents

Publication Publication Date Title
US8771092B2 (en) Fixed type constant velocity universal joint
US8079913B2 (en) Slide-type constant velocity universal joint
US20130303292A1 (en) Sliding ball type constant velocity joint for vehicle
US10962063B2 (en) Fixed constant velocity universal joint
JP2023161283A (en) Slide type constant velocity universal joint
EP1881218A1 (en) Fixed type constant velocity universal joint
US8257186B2 (en) Sliding-type tripod-shaped constant-velocity universal joint
JP2012189190A (en) Sliding-type constant-velocity universal joint
CN110360238B (en) Constant velocity joint
CN108026977B (en) Fixed constant velocity universal joint and bearing device for wheel
US20090298599A1 (en) Dual Type Constant Velocity Universal Joint
US20210033152A1 (en) Fixed type constant velocity universal joint
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
EP4394200A1 (en) Plunging type constant velocity universal joint
JP5163930B2 (en) Ball type constant velocity joint
JP2023041415A (en) Sliding-type constant velocity universal joint
WO2017141731A1 (en) Stationary constant-velocity universal joint
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP2011226588A (en) Sliding constant velocity universal joint
WO2023136094A1 (en) Tripod-type constant-velocity universal joint
JP2002250359A (en) Constant velocity universal joint
WO2023100522A1 (en) Sliding-type constant-velocity joint
JP2017203538A (en) Slide-type constant velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP2020159458A (en) Fixed type constant-velocity universal joint