WO2023189123A1 - Tripod-type constant-velocity universal joint - Google Patents

Tripod-type constant-velocity universal joint Download PDF

Info

Publication number
WO2023189123A1
WO2023189123A1 PCT/JP2023/007433 JP2023007433W WO2023189123A1 WO 2023189123 A1 WO2023189123 A1 WO 2023189123A1 JP 2023007433 W JP2023007433 W JP 2023007433W WO 2023189123 A1 WO2023189123 A1 WO 2023189123A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
snap ring
roller
velocity universal
universal joint
Prior art date
Application number
PCT/JP2023/007433
Other languages
French (fr)
Japanese (ja)
Inventor
卓 板垣
達朗 杉山
将太 河田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023189123A1 publication Critical patent/WO2023189123A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part

Definitions

  • the present invention relates to a tripod type constant velocity universal joint.
  • a sliding constant velocity universal joint is connected to the inboard side (center side in the vehicle width direction) of the intermediate shaft, and the sliding constant velocity universal joint is connected to the outboard side (outside in the vehicle width direction).
  • a fixed constant velocity universal joint is often combined with a fixed type constant velocity universal joint.
  • the sliding type constant velocity universal joint referred to here allows both angular displacement and axial relative movement between two axes, while the fixed type constant velocity universal joint allows angular displacement between two axes. However, relative movement in the axial direction between the two axes is not permitted.
  • a tripod type constant velocity universal joint is known as a sliding type constant velocity universal joint.
  • this tripod type constant velocity universal joint there are a single roller type and a double roller type.
  • a roller inserted into the track groove of the outer joint member is rotatably attached to the leg shaft of the tripod member via a plurality of needle rollers.
  • the double roller type includes a roller that is inserted into a track groove of an outer joint member, and an inner ring that is fitted onto the leg shaft of a tripod member and rotatably supports the roller.
  • the double roller type allows the roller to swing relative to the leg axis, so it reduces induced thrust (axial force induced by friction between parts inside the joint) and sliding resistance compared to the single roller type. It has the advantage that it can be reduced.
  • rollers are rotatably arranged on the outer periphery of the inner ring via needle rollers.
  • the needle roller and inner ring are prevented from coming off by a pair of snap rings attached to the inner peripheral surface of the roller. That is, a pair of mounting grooves are formed on the inner circumferential surface of the roller and spaced apart in the leg axis direction at an interval corresponding to the length of the needle roller, and snap rings are fitted into the respective mounting grooves.
  • the snap ring has an end shape with a slit at one location in the circumferential direction, and is attached to a mounting groove on the inner circumferential surface of the roller while being elastically reduced in diameter.
  • the circumferential ends of the snap rings are chamfered to prevent the circumferential ends of the snap rings from interfering with each other when the snap rings are attached to the inner peripheral surface of the roller.
  • Snap rings are often formed by shearing (press molding).
  • the shearing process is performed by punching the metal plate 100 using a die 201 and a punch 202, as shown in FIGS. 10 to 13. Specifically, by lowering the punch 202 and making it bite into the metal plate 100, a sag 101 is formed on the metal plate 100 (see FIG. 10). Thereafter, by further lowering the punch 202, a sheared surface 102 is formed in the metal plate 100 and a crack 103a is generated (see FIG. 11). By further lowering the punch 202, the cracks 103a are connected to form a fracture surface 103 (see FIG. 12), and the metal plate 100 is divided into a product portion 100A and a scrap portion 100B (see FIG. 13).
  • the cut surface of the product part 100A thus formed has a sag 101 and a groove from one side in the thickness direction (upper side in the figure) to the other side in the thickness direction (lower side in the figure).
  • a cross section 102 and a fractured surface 103 are formed in this order.
  • a burr (also called burr) 104 that protrudes downward in the figure is formed at the lower end of the fracture surface 103 in the figure.
  • a burr is formed at the end of the cut surface (inner peripheral surface, outer peripheral surface, and end surfaces facing each other through the slit) on the fracture surface side.
  • the snap ring slides on the end face of the needle roller while the roller unit (roller, inner ring, and needle roller integrated with the snap ring) Rotate about the leg axis.
  • the burr interferes with the end surface of the needle roller, inhibiting the rotation of the roller unit, deteriorating the vibration characteristics of the constant velocity universal joint, and reducing the durability of the roller unit. This may lead to a decline.
  • an object of the present invention is to prevent deterioration of the vibration characteristics of a double roller type tripod type constant velocity universal joint and a decrease in durability of the roller unit.
  • the present invention provides an outer joint member in which track grooves extending in the axial direction are formed at three locations in the circumferential direction of the inner peripheral surface, and a track groove arranged on the inner circumference of the outer joint member,
  • a tripod member having three leg shafts protruding radially toward the groove, and three roller units rotatably supported by the leg shafts and housed in the track groove,
  • the roller unit includes a roller, an inner ring fitted onto the leg shaft, a plurality of rolling elements disposed between an inner circumferential surface of the roller and an outer circumferential surface of the inner ring, and an inner ring of the roller.
  • a tripod type constant velocity universal joint having a snap ring attached to a mounting groove formed on a peripheral surface and regulating movement of the inner ring and the leg shafts of the plurality of rolling elements in the axial direction
  • the snap ring has a cut surface formed by shearing, The cut surface has a sheared surface provided in a region on one side in the thickness direction and a fractured surface provided in a region on the other side in the thickness direction, One surface of the snap ring in the thickness direction faces the plurality of rolling elements.
  • one surface of the snap ring in the thickness direction faces the rolling element
  • the surface of the snap ring on the other side in the thickness direction i.e., the fracture surface side
  • the burrs formed at the end of the cut surface of the snap ring on the fracture surface side are placed on the opposite side of the rolling elements (for example, needle rollers), thereby preventing the burrs from interfering with the rolling elements. It can be avoided.
  • the snap ring has an end shape with a slit at one location in the circumferential direction, and this slit can be inclined with respect to the radial direction of the snap ring.
  • the punching direction of the snap ring that is, the front and back sides of the snap ring (which side is the sheared surface side) can be recognized by the inclination direction of the slit. Therefore, when the snap ring is installed in the mounting groove of the roller, the front and back sides of the snap ring can be easily confirmed by the inclined direction of the slit.
  • the inner circumferential surface of the inner ring has an arcuate convex surface that is convex toward the inner diameter side in a cross section including the axis of the inner ring
  • the outer circumferential surface of the leg shaft has In a cross section including the axis of the leg shaft, the leg shaft has a straight shape parallel to the axis, and in a cross section orthogonal to the axis of the leg shaft, it has a substantially elliptical shape, and the outer circumferential surface of the leg shaft is parallel to the axis in the torque load direction. It can be configured such that it comes into contact with the inner circumferential surface of the inner ring, and a gap is formed between the inner circumferential surface of the inner ring and the inner circumferential surface of the inner ring in the joint axial direction.
  • the present invention it is possible to avoid interference between the burrs formed on the snap ring and the rolling elements, so it is possible to prevent deterioration of vibration characteristics and decrease in durability of the roller unit.
  • FIG. 2 is a cross-sectional view in the joint axial direction showing a double roller type tripod constant velocity universal joint.
  • 2 is a sectional view taken along line KK in FIG. 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line LL in FIG. 1.
  • FIG. FIG. 2 is a sectional view showing a state in which the tripod type constant velocity universal joint of FIG. 1 assumes an operating angle.
  • FIG. 3 is a plan view of the roller unit attached to the leg shaft, seen from the direction A in FIG. 2;
  • FIG. 3 is a cross-sectional view of the roller unit along the axial direction of the leg shaft. It is a top view of a snap ring.
  • FIG. 3 is a perspective view of a cut surface of the snap ring.
  • FIG. 8 is a cross-sectional view of the roller unit taken along line MM in FIG. 7.
  • FIG. FIG. 3 is a cross-sectional view showing the procedure of shearing.
  • FIG. 3 is a cross-sectional view showing the procedure of shearing.
  • FIG. 3 is a cross-sectional view showing the procedure of shearing.
  • FIG. 3 is a cross-sectional view showing the procedure of shearing.
  • FIG. 3 is a cross-sectional view of a cut surface obtained by shearing.
  • the tripod type constant velocity universal joint 1 of this embodiment shown in FIGS. 1 to 4 is a double roller type.
  • the axial direction of the joint and the circumferential direction of the joint mean the axial direction and the circumferential direction of the tripod constant velocity universal joint when the operating angle is 0°, respectively.
  • this tripod type constant velocity universal joint 1 includes an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member.
  • the outer joint member 2 has a cup shape with one end open, and three linear track grooves 5 extending in the joint axial direction are formed on the inner peripheral surface at equal intervals in the joint circumferential direction.
  • Each track groove 5 is provided with a roller guide surface 6 that is disposed opposite to each other in the joint circumferential direction of the outer joint member 2 and extends in the joint axial direction.
  • a tripod member 3 and a roller unit 4 are housed inside the outer joint member 2.
  • the tripod member 3 includes a body portion 31 (trunnion body portion) having a center hole 30, and three leg shafts 32 (trunnion body portions) that protrude in the radial direction from three equal parts in the joint circumferential direction on the outer peripheral surface of the body portion 31. journal).
  • the tripod member 3 is coupled to the shaft 8 so that torque can be transmitted by fitting the male spline 81 formed on the shaft 8 as an axis into the female spline 34 formed in the center hole 30 of the body 31. .
  • the end surface of the tripod member 3 on one side in the axial direction of the joint is engaged with the shoulder portion 82 provided on the shaft 8, and the retaining ring 10 attached to the tip of the shaft 8 is engaged with the end surface of the tripod member 3 on the other side in the axial direction of the joint. By doing so, the tripod member 3 is fixed to the shaft 8 in the joint axial direction.
  • the roller unit 4 includes an outer ring 11 that is an annular roller centered on the axis of the leg shaft 32, and an annular inner ring 12 that is arranged on the inner periphery of the outer ring 11 and fitted onto the leg shaft 32. , a large number of rolling elements 13 interposed between an outer ring 11 and an inner ring 12. In this embodiment, as an example of the rolling elements 13, full-roller needle rollers without a cage are used.
  • the roller unit 4 is accommodated in the track groove 5 of the outer joint member 2.
  • the roller unit 4 made up of the outer ring 11, the inner ring 12, and the needle rollers 13 has a structure that does not naturally disassemble due to the pair of snap rings 14, as will be described in detail later.
  • the outer peripheral surface of the outer ring 11 (see FIG. 2) is a convex curved surface whose generatrix is an arc having a center of curvature on the axis of the leg shaft 32.
  • the outer peripheral surface of the outer ring 11 is in angular contact with the roller guide surface 6.
  • the needle rollers 13 have the cylindrical inner circumferential surface of the outer ring 11 as an outer raceway surface, the cylindrical outer circumferential surface of the inner ring 12 as an inner raceway surface, and can freely roll between these outer raceway surfaces and inner raceway surfaces.
  • each leg shaft 32 of the tripod member 3 has a straight shape parallel to the axis of the leg shaft 32 in a cross section in any direction including the axis of the leg shaft 32. Further, as shown in FIG. 3, the outer peripheral surface of the leg shaft 32 has a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft 32.
  • the outer peripheral surface of the leg shaft 32 contacts the inner peripheral surface 12a of the inner ring 12 in the torque load direction, that is, in the direction of the long axis a.
  • a gap m is formed between the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 in the joint axial direction, that is, in the direction of the short axis b.
  • the inner circumferential surface 12a of the inner ring 12 has a convex arc shape in any cross section including the axis of the inner ring 12. Because of this and because the cross-sectional shape of the leg shaft 32 is approximately elliptical as described above, and a predetermined gap m is provided between the leg shaft 32 and the inner ring 12, the inner ring 12 It becomes possible to swing with respect to 32. As described above, since the inner ring 12 and the outer ring 11 are assembled as a relatively rotatable assembly via the needle rollers 13, the outer ring 11 can swing together with the inner ring 12 with respect to the leg shaft 32. It is. That is, the axes of the outer ring 11 and the inner ring 12 can be inclined with respect to the axis of the leg shaft 32 within a plane including the axis of the leg shaft 32 (see FIG. 4).
  • the cross section (transverse section) of the leg shaft 32 is approximately elliptical, and the cross section (vertical section) of the inner circumferential surface 12a of the inner ring 12 is an arcuate convex cross section.
  • the outer circumferential surface of the leg shaft 32 and the inner circumferential surface 12a of the inner ring 12 on the torque load side make point contact (including cases where they contact in a narrow area close to point contact) at a contact point X. . Therefore, the force that tends to tilt the roller unit 4 is reduced, and the stability of the posture of the outer ring 11 is improved.
  • FIG. 5 is a plan view of the roller unit 4 attached to the leg shaft 32 viewed from the direction A in FIG. 2, and FIG. 6 is a sectional view of the roller unit 4 along the axial direction of the leg shaft 32.
  • a pair of mounting grooves 11a are provided on the inner peripheral surface of the outer ring 11, spaced apart in the axial direction of the leg shaft 32.
  • the pair of snap rings 14 are attached to the inner circumferential surface 11b of the outer ring 11 spaced apart in the axial direction of the leg shaft 32 by fitting into the respective attachment grooves 11a.
  • the snap ring 14 faces end surfaces of the needle roller 13 and the inner ring 12 on both sides of the leg shaft 32 in the axial direction. Relative movement of the needle rollers 13 and the leg shafts 32 of the inner ring 12 in the axial direction with respect to the outer ring 11 is regulated by a pair of snap rings 14 . Therefore, natural disassembly of the roller unit 4 is restricted by the pair of snap rings 14.
  • the snap ring 14 has a slit C (circumferential gap) at one location in the circumferential direction, and is formed into an end ring shape separated by the slit C.
  • the snap ring 14 has a shape in which a band plate having a rectangular cross section is wound around an axis extending in the thickness direction of the band plate.
  • the slit C extends in a direction oblique to the radial direction of the snap ring 14.
  • the slit C of the snap ring 14 is formed by shearing, and is generally formed by punching a metal material (for example, a steel plate) with a die and a punch (see FIGS. 10 to 13).
  • the edge of the flat snap ring 14, specifically, the circumferentially opposite ends 14c of the snap ring 14 (the end faces facing each other in the circumferential direction via the slit C) are provided with a cut surface A by shearing.
  • the cut surface A may also be provided on the inner circumferential surface 14a and the outer circumferential surface 14b of the snap ring 14. As shown in FIG.
  • these cut surfaces A include a surface from one side in the thickness direction (hereinafter referred to as the "front surface 14d") to a surface on the other side in the thickness direction (hereinafter referred to as the "back surface 14e"). ), a sag A1, a sheared surface A2, a fractured surface A3, and a burr A4 are formed in this order.
  • the sag A1 is a curved surface having a substantially arc-shaped cross section that smoothly connects the surface 14d of the snap ring 14 and the sheared surface A2.
  • the sheared surface A2 is a flat surface substantially parallel to the shearing direction (thickness direction), is shiny, and has fine streaks in the shearing direction.
  • the fractured surface A3 is a rough surface with more unevenness than the sheared surface A2.
  • the burr A4 consists of a projection protruding from the back surface 14e of the snap ring 14.
  • the outer diameter end of the snap ring 14 fits into the mounting groove 11a of the outer ring 11, and the inner diameter end of the snap ring 14 contacts the end surface of the inner ring 12 from the axial direction of the leg shaft 32.
  • a radially intermediate portion of the snap ring 14 (a region excluding the outer diameter end and the inner diameter end) contacts the end surface of the needle roller 13 from the axial direction of the leg shaft 32.
  • the front surface 14d of the snap ring 14 (the surface from which the burr A4 does not protrude) is made to face the end surface of the needle roller 13, and the back surface 14e from which the burr A4 protrudes is arranged in a needle-like shape. It is arranged on the opposite side from roller 13.
  • the roller unit 4 includes an inner ring 12 disposed on the inner periphery of an outer ring 11, and a large number of needle rollers 13 disposed between these in a full roller state. It can be assembled by attaching.
  • the front and back sides of the snap ring 14 are checked before attaching the snap ring 14 to the mounting groove 11a on the inner peripheral surface of the outer ring 11, the front and back sides of the snap ring 14 are checked. Since the sheared surface A2 and the fractured surface A3 have different surface properties, it is also possible to confirm the front and back sides of the snap ring 14 by visually checking the cut surface A. However, since the area of the cut surface A is small, visual confirmation as described above is not easy, takes time, and is prone to mistakes.
  • the front and back sides of the snap ring 14 are confirmed by the inclination direction of the slit C of the snap ring 14. That is, the inclination direction of the slit C is different when the snap ring 14 is viewed from the front surface 14d side (sheared surface A2 side) and when viewed from the back surface 14e side (fractured surface A3 side). Specifically, when the snap ring 14 is viewed from the back surface 14e side, the slit C is inclined to one side in the circumferential direction with respect to the radial direction (see FIG.
  • the slit C is inclined to one side in the circumferential direction with respect to the radial direction (see FIG. 7). It is inclined toward the other side in the circumferential direction (the opposite side to FIG. 7) with respect to the radial direction. Therefore, as shown in FIGS.
  • the front surface is the back surface 14e ( It can be confirmed that the surface on the side of the fracture surface A3) is the surface 14d (the surface on the side of the sheared surface A2), and the surface on the back side is the surface 14d (the surface on the side of the sheared surface A2).
  • the inclination direction of the slit C may be checked visually by an operator, or automatically by an assembly device.
  • the snap ring 14 is installed in the mounting groove 11a of the outer ring 11 in a predetermined direction (see FIG. 9).
  • the snap ring 14 is attached to the mounting groove 11a of the outer ring 11 with the slit C inclined toward one side in the circumferential direction when the roller unit 4 is viewed from the outside in the axial direction. do.
  • the snap ring 14 is held in a state in which the front surface 14d of the snap ring 14 faces the needle rollers 13 and the back surface 14e of the snap ring 14 is disposed on the opposite side from the needle rollers 13. It can be assembled to the outer ring 11.
  • the pair of snap rings 14 have the same configuration (punched with the same mold). Therefore, no matter which side of the assembly the roller unit 4 is viewed from in the axial direction, the slit C of the snap ring 14 is inclined toward one side in the circumferential direction with respect to the radial direction (see FIG. 5).
  • the present invention is not limited to the above embodiments.
  • the snap ring 14 is arranged on both sides of the needle roller 13 in the axial direction, but by providing a collar on either end of the outer ring in the axial direction, one snap ring 14 can be disposed on both sides of the needle roller 13 in the axial direction.
  • the ring 14 can also be omitted.
  • the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a spherical surface), and the inner peripheral surface 12a of the inner ring 12 may be formed into a cylindrical surface.
  • the outer circumferential surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex arc-shaped cross section), and the inner circumferential surface 12a of the inner ring 12 may be formed into a concave spherical surface that fits with the outer circumferential surface of the leg shaft.
  • the tripod type constant velocity universal joint 1 described above is not limited to application to drive shafts of automobiles, but can be widely used in power transmission paths of automobiles, industrial equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A snap ring 14 has a cut surface A obtained by shearing. The cut surface A has a shear surface A2 that is provided in a region on the front surface 14d side and a fracture surface A3 that is provided in a region on the back surface 14e side. The front surface 14d of the snap ring14 faces a plurality of needle rollers 13.

Description

トリポード型等速自在継手Tripod type constant velocity universal joint
 本発明は、トリポード型等速自在継手に関する。 The present invention relates to a tripod type constant velocity universal joint.
 自動車の動力伝達系で使用されるドライブシャフトにおいては、中間軸のインボード側(車幅方向の中央側)に摺動式等速自在継手を結合し、アウトボード側(車幅方向の外側)に固定式等速自在継手を結合する場合が多い。ここでいう摺動式等速自在継手は、二軸間の角度変位および軸方向相対移動の双方を許容するものであり、固定式等速自在継手は、二軸間での角度変位を許容するが、二軸間の軸方向相対移動は許容しないものである。 In drive shafts used in automobile power transmission systems, a sliding constant velocity universal joint is connected to the inboard side (center side in the vehicle width direction) of the intermediate shaft, and the sliding constant velocity universal joint is connected to the outboard side (outside in the vehicle width direction). A fixed constant velocity universal joint is often combined with a fixed type constant velocity universal joint. The sliding type constant velocity universal joint referred to here allows both angular displacement and axial relative movement between two axes, while the fixed type constant velocity universal joint allows angular displacement between two axes. However, relative movement in the axial direction between the two axes is not permitted.
 摺動式等速自在継手としてトリポード型等速自在継手が公知である。このトリポード型等速自在継手としては、シングルローラタイプとダブルローラタイプとが存在する。シングルローラタイプは、外側継手部材のトラック溝に挿入されるローラを、トリポード部材の脚軸に複数の針状ころを介して回転可能に取り付けたものである。ダブルローラタイプは、外側継手部材のトラック溝に挿入されるローラと、トリポード部材の脚軸に外嵌して前記ローラを回転自在に支持するインナリングとを備えるものである。ダブルローラタイプは、ローラを脚軸に対して揺動させることが可能となるため、シングルローラタイプに比べ、誘起スラスト(継手内部での部品間の摩擦により誘起される軸力)とスライド抵抗を低減できるという利点を有する。 A tripod type constant velocity universal joint is known as a sliding type constant velocity universal joint. As this tripod type constant velocity universal joint, there are a single roller type and a double roller type. In the single roller type, a roller inserted into the track groove of the outer joint member is rotatably attached to the leg shaft of the tripod member via a plurality of needle rollers. The double roller type includes a roller that is inserted into a track groove of an outer joint member, and an inner ring that is fitted onto the leg shaft of a tripod member and rotatably supports the roller. The double roller type allows the roller to swing relative to the leg axis, so it reduces induced thrust (axial force induced by friction between parts inside the joint) and sliding resistance compared to the single roller type. It has the advantage that it can be reduced.
 下記の特許文献1にダブルローラタイプのトリポード型等速自在継手の一例が開示されている。このようなダブルローラタイプのトリポード型等速自在継手では、ローラが針状ころを介してインナリングの外周に回転可能に配置される。針状ころとインナリングは、ローラの内周面に装着した一対のスナップリングによって抜け止めがなされている。すなわち、ローラの内周面に、針状ころの長さに対応する間隔で脚軸方向に離間させた一対の取付溝を形成し、この取付溝にそれぞれスナップリングを嵌合させている。 An example of a double roller type tripod constant velocity universal joint is disclosed in Patent Document 1 below. In such a double roller type tripod type constant velocity universal joint, the rollers are rotatably arranged on the outer periphery of the inner ring via needle rollers. The needle roller and inner ring are prevented from coming off by a pair of snap rings attached to the inner peripheral surface of the roller. That is, a pair of mounting grooves are formed on the inner circumferential surface of the roller and spaced apart in the leg axis direction at an interval corresponding to the length of the needle roller, and snap rings are fitted into the respective mounting grooves.
 スナップリングは、周方向一箇所にスリットを有する有端状を成し、弾性的に縮径させてローラの内周面の取付溝に装着される。下記の特許文献2では、スナップリングの周方向端部に面取りを施すことで、スナップリングをローラの内周面に装着する際にスナップリングの周方向端部が干渉しないようにしている。 The snap ring has an end shape with a slit at one location in the circumferential direction, and is attached to a mounting groove on the inner circumferential surface of the roller while being elastically reduced in diameter. In Patent Document 2 listed below, the circumferential ends of the snap rings are chamfered to prevent the circumferential ends of the snap rings from interfering with each other when the snap rings are attached to the inner peripheral surface of the roller.
特開2000-320563号公報Japanese Patent Application Publication No. 2000-320563 特開2007-10086号公報Japanese Patent Application Publication No. 2007-10086
 スナップリングは、せん断加工(プレス成形)で形成されることが多い。一般に、せん断加工は、図10~13に示すように、ダイ201とパンチ202を用いて金属板100を打ち抜くことにより行われる。具体的に、パンチ202を降下させて金属板100に食い込ませることで、金属板100にダレ101が形成される(図10参照)。その後、さらにパンチ202を降下させることで、金属板100にせん断面102が形成されると共にクラック103aが生じる(図11参照)。さらにパンチ202を降下させることで、クラック103aが繋がって破断面103が形成され(図12参照)、金属板100が製品部100Aとスクラップ部100Bとに分断される(図13参照)。 Snap rings are often formed by shearing (press molding). Generally, the shearing process is performed by punching the metal plate 100 using a die 201 and a punch 202, as shown in FIGS. 10 to 13. Specifically, by lowering the punch 202 and making it bite into the metal plate 100, a sag 101 is formed on the metal plate 100 (see FIG. 10). Thereafter, by further lowering the punch 202, a sheared surface 102 is formed in the metal plate 100 and a crack 103a is generated (see FIG. 11). By further lowering the punch 202, the cracks 103a are connected to form a fracture surface 103 (see FIG. 12), and the metal plate 100 is divided into a product portion 100A and a scrap portion 100B (see FIG. 13).
 こうして形成された製品部100Aの切断面には、図4に示すように、厚さ方向一方側(図中上側)から厚さ方向他方側(図中下側)に向けて、ダレ101、せん断面102、及び破断面103が順に形成される。破断面103の図中下側の端部には、図中下方に突出したカエリ(バリとも呼ばれる)104が形成される。 As shown in FIG. 4, the cut surface of the product part 100A thus formed has a sag 101 and a groove from one side in the thickness direction (upper side in the figure) to the other side in the thickness direction (lower side in the figure). A cross section 102 and a fractured surface 103 are formed in this order. A burr (also called burr) 104 that protrudes downward in the figure is formed at the lower end of the fracture surface 103 in the figure.
 スナップリングをせん断加工で形成すると、その切断面(内周面、外周面、及びスリットを介して対向する端面)の破断面側の端部にカエリが形成される。トリポード型等速自在継手でトルク伝達を行う際には、スナップリングが針状ころの端面と摺動しながら、ローラユニット(スナップリングで一体化されたローラ、インナリング、及び針状ころ)が脚軸に対して回転する。このとき、スナップリングにカエリが形成されていると、このカエリが針状ころの端面と干渉することでローラユニットの回転が阻害され、等速自在継手の振動特性の悪化やローラユニットの耐久性低下を招く恐れがある。 When a snap ring is formed by shearing, a burr is formed at the end of the cut surface (inner peripheral surface, outer peripheral surface, and end surfaces facing each other through the slit) on the fracture surface side. When transmitting torque with a tripod type constant velocity universal joint, the snap ring slides on the end face of the needle roller while the roller unit (roller, inner ring, and needle roller integrated with the snap ring) Rotate about the leg axis. At this time, if a burr is formed on the snap ring, the burr interferes with the end surface of the needle roller, inhibiting the rotation of the roller unit, deteriorating the vibration characteristics of the constant velocity universal joint, and reducing the durability of the roller unit. This may lead to a decline.
 そこで、本発明は、ダブルローラタイプのトリポード型等速自在継手の振動特性の悪化やローラユニットの耐久性低下を防止することを目的とする。 Therefore, an object of the present invention is to prevent deterioration of the vibration characteristics of a double roller type tripod type constant velocity universal joint and a decrease in durability of the roller unit.
 前記課題を解決するために、本発明は、内周面の周方向の三箇所に軸方向に延びるトラック溝が形成された外側継手部材と、前記外側継手部材の内周に配され、前記トラック溝に向けて半径方向に突出した三つの脚軸を有するトリポード部材と、前記脚軸に回転自在に支持されると共に前記トラック溝に収容される三つのローラユニットとを備え、
 前記ローラユニットは、ローラと、前記脚軸に外嵌されたインナリングと、前記ローラの内周面と前記インナリングの外周面との間に配された複数の転動体と、前記ローラの内周面に形成された取付溝に装着され、前記インナリング及び前記複数の転動体の前記脚軸の軸心方向の移動を規制するスナップリングとを有するトリポード型等速自在継手において、
 前記スナップリングが、せん断加工による切断面を有し、
 前記切断面が、厚さ方向一方側の領域に設けられたせん断面と、厚さ方向他方側の領域に設けられた破断面とを有し、
 前記スナップリングの厚さ方向一方側の面が、前記複数の転動体と対向したことを特徴とする。
In order to solve the above problems, the present invention provides an outer joint member in which track grooves extending in the axial direction are formed at three locations in the circumferential direction of the inner peripheral surface, and a track groove arranged on the inner circumference of the outer joint member, A tripod member having three leg shafts protruding radially toward the groove, and three roller units rotatably supported by the leg shafts and housed in the track groove,
The roller unit includes a roller, an inner ring fitted onto the leg shaft, a plurality of rolling elements disposed between an inner circumferential surface of the roller and an outer circumferential surface of the inner ring, and an inner ring of the roller. A tripod type constant velocity universal joint having a snap ring attached to a mounting groove formed on a peripheral surface and regulating movement of the inner ring and the leg shafts of the plurality of rolling elements in the axial direction,
The snap ring has a cut surface formed by shearing,
The cut surface has a sheared surface provided in a region on one side in the thickness direction and a fractured surface provided in a region on the other side in the thickness direction,
One surface of the snap ring in the thickness direction faces the plurality of rolling elements.
 このように、本発明では、スナップリングの厚さ方向一方側(すなわち、せん断面側)の面を転動体と対向させ、スナップリングの厚さ方向他方側(すなわち、破断面側)の面を転動体と反対側に配した。これにより、スナップリングの切断面の破断面側の端部に形成されるカエリが、転動体(例えば、針状ころ)と反対側に配されるため、このカエリが転動体と干渉する事態を回避できる。 In this way, in the present invention, one surface of the snap ring in the thickness direction (i.e., the shear surface side) faces the rolling element, and the surface of the snap ring on the other side in the thickness direction (i.e., the fracture surface side) is arranged to face the rolling element. Placed on the opposite side from the rolling element. As a result, the burrs formed at the end of the cut surface of the snap ring on the fracture surface side are placed on the opposite side of the rolling elements (for example, needle rollers), thereby preventing the burrs from interfering with the rolling elements. It can be avoided.
 スナップリングは、例えば、周方向一箇所にスリットを有する有端状を成し、このスリットを、スナップリングの半径方向に対して傾斜させることができる。この場合、スリットの傾斜方向によって、スナップリングの打ち抜き方向、すなわち、スナップリングの表裏(どちらの面がせん断面側の面であるか)を認識することができる。従って、スナップリングをローラの取付溝に装着する際、スリットの傾斜方向によりスナップリングの表裏を容易に確認することができる。 For example, the snap ring has an end shape with a slit at one location in the circumferential direction, and this slit can be inclined with respect to the radial direction of the snap ring. In this case, the punching direction of the snap ring, that is, the front and back sides of the snap ring (which side is the sheared surface side) can be recognized by the inclination direction of the slit. Therefore, when the snap ring is installed in the mounting groove of the roller, the front and back sides of the snap ring can be easily confirmed by the inclined direction of the slit.
 上記のトリポード型等速自在継手は、前記インナリングの内周面が、前記インナリングの軸線を含む断面において内径側に凸を成した円弧状凸面を有し、前記脚軸の外周面が、前記脚軸の軸線を含む断面において該軸線と平行なストレート形状であり、且つ、前記脚軸の軸線と直交する断面において略楕円形状であり、前記脚軸の外周面が、トルク負荷方向で前記インナリングの内周面と当接すると共に、継手軸線方向では前記インナリングの内周面との間に隙間が形成された構成とすることができる。 In the above tripod type constant velocity universal joint, the inner circumferential surface of the inner ring has an arcuate convex surface that is convex toward the inner diameter side in a cross section including the axis of the inner ring, and the outer circumferential surface of the leg shaft has In a cross section including the axis of the leg shaft, the leg shaft has a straight shape parallel to the axis, and in a cross section orthogonal to the axis of the leg shaft, it has a substantially elliptical shape, and the outer circumferential surface of the leg shaft is parallel to the axis in the torque load direction. It can be configured such that it comes into contact with the inner circumferential surface of the inner ring, and a gap is formed between the inner circumferential surface of the inner ring and the inner circumferential surface of the inner ring in the joint axial direction.
 以上のように、本発明によれば、スナップリングに形成されるカエリと転動体の干渉を回避できるため、振動特性の悪化やローラユニットの耐久性低下を防止することができる。 As described above, according to the present invention, it is possible to avoid interference between the burrs formed on the snap ring and the rolling elements, so it is possible to prevent deterioration of vibration characteristics and decrease in durability of the roller unit.
ダブルローラタイプのトリポード型等速自在継手を示す継手軸方向の断面図である。FIG. 2 is a cross-sectional view in the joint axial direction showing a double roller type tripod constant velocity universal joint. 図1のK-K線で矢視した断面図である。2 is a sectional view taken along line KK in FIG. 1. FIG. 図1のL-L線における断面図である。FIG. 2 is a cross-sectional view taken along line LL in FIG. 1. FIG. 図1のトリポード型等速自在継手が作動角をとった状態を表す断面図である。FIG. 2 is a sectional view showing a state in which the tripod type constant velocity universal joint of FIG. 1 assumes an operating angle. 脚軸に取り付けたローラユニットを図2のA方向から見た平面図である。FIG. 3 is a plan view of the roller unit attached to the leg shaft, seen from the direction A in FIG. 2; 脚軸の軸線方向に沿ったローラユニットの断面図である。FIG. 3 is a cross-sectional view of the roller unit along the axial direction of the leg shaft. スナップリングの平面図である。It is a top view of a snap ring. スナップリングの切断面の斜視図である。FIG. 3 is a perspective view of a cut surface of the snap ring. 図7のM-M線で矢視したローラユニットの断面図である。8 is a cross-sectional view of the roller unit taken along line MM in FIG. 7. FIG. せん断加工の手順を示す断面図である。FIG. 3 is a cross-sectional view showing the procedure of shearing. せん断加工の手順を示す断面図である。FIG. 3 is a cross-sectional view showing the procedure of shearing. せん断加工の手順を示す断面図である。FIG. 3 is a cross-sectional view showing the procedure of shearing. せん断加工の手順を示す断面図である。FIG. 3 is a cross-sectional view showing the procedure of shearing. せん断加工による切断面の断面図である。FIG. 3 is a cross-sectional view of a cut surface obtained by shearing.
 本発明の一実施形態に係るトリポード型等速自在継手の実施形態を、図面に基づいて説明する。 An embodiment of a tripod type constant velocity universal joint according to an embodiment of the present invention will be described based on the drawings.
 図1~図4に示す本実施形態のトリポード型等速自在継手1はダブルローラタイプである。なお、以下の説明において、継手軸方向および継手円周方向は、それぞれ作動角を0°の状態とした時のトリポード型等速自在継手の軸方向および円周方向をそれぞれ意味する。 The tripod type constant velocity universal joint 1 of this embodiment shown in FIGS. 1 to 4 is a double roller type. In the following description, the axial direction of the joint and the circumferential direction of the joint mean the axial direction and the circumferential direction of the tripod constant velocity universal joint when the operating angle is 0°, respectively.
 図1および図2に示すように、このトリポード型等速自在継手1は、外側継手部材2と、内側継手部材としてのトリポード部材3と、トルク伝達部材としてのローラユニット4とを備える。外側継手部材2は、一端が開口したカップ状をなし、内周面に継手軸方向に延びる3本の直線状トラック溝5が継手円周方向で等間隔に形成される。各トラック溝5には、外側継手部材2の継手円周方向に対向して配置され、それぞれ継手軸方向に延びるローラ案内面6が形成されている。外側継手部材2の内部には、トリポード部材3とローラユニット4が収容されている。 As shown in FIGS. 1 and 2, this tripod type constant velocity universal joint 1 includes an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member. The outer joint member 2 has a cup shape with one end open, and three linear track grooves 5 extending in the joint axial direction are formed on the inner peripheral surface at equal intervals in the joint circumferential direction. Each track groove 5 is provided with a roller guide surface 6 that is disposed opposite to each other in the joint circumferential direction of the outer joint member 2 and extends in the joint axial direction. A tripod member 3 and a roller unit 4 are housed inside the outer joint member 2.
 トリポード部材3は、中心孔30を有する胴部31(トラニオン胴部)と、胴部31の外周面の継手円周方向の三等分位置から半径方向に突出する3本の脚軸32(トラニオンジャーナル)とを一体に有する。トリポード部材3は、胴部31の中心孔30に形成された雌スプライン34に、軸としてのシャフト8に形成された雄スプライン81を嵌合させることで、シャフト8とトルク伝達可能に結合される。シャフト8に設けた肩部82にトリポード部材3の継手軸方向一方側の端面を係合させ、シャフト8の先端に装着した止め輪10をトリポード部材3の継手軸方向他方側の端面と係合させることで、トリポード部材3がシャフト8に対して継手軸方向に固定される。 The tripod member 3 includes a body portion 31 (trunnion body portion) having a center hole 30, and three leg shafts 32 (trunnion body portions) that protrude in the radial direction from three equal parts in the joint circumferential direction on the outer peripheral surface of the body portion 31. journal). The tripod member 3 is coupled to the shaft 8 so that torque can be transmitted by fitting the male spline 81 formed on the shaft 8 as an axis into the female spline 34 formed in the center hole 30 of the body 31. . The end surface of the tripod member 3 on one side in the axial direction of the joint is engaged with the shoulder portion 82 provided on the shaft 8, and the retaining ring 10 attached to the tip of the shaft 8 is engaged with the end surface of the tripod member 3 on the other side in the axial direction of the joint. By doing so, the tripod member 3 is fixed to the shaft 8 in the joint axial direction.
 ローラユニット4は、脚軸32の軸線を中心とした円環状のローラであるアウタリング11と、アウタリング11の内周に配置されて脚軸32に外嵌された円環状のインナリング12と、アウタリング11とインナリング12との間に介在された多数の転動体13とを備える。本実施形態では、転動体13の一例として、保持器のない総ころ状態の針状ころが使用されている。ローラユニット4は、外側継手部材2のトラック溝5に収容されている。アウタリング11、インナリング12、および針状ころ13からなるローラユニット4は、後で詳細に述べるように、一対のスナップリング14により、自然には分解しない構造となっている。 The roller unit 4 includes an outer ring 11 that is an annular roller centered on the axis of the leg shaft 32, and an annular inner ring 12 that is arranged on the inner periphery of the outer ring 11 and fitted onto the leg shaft 32. , a large number of rolling elements 13 interposed between an outer ring 11 and an inner ring 12. In this embodiment, as an example of the rolling elements 13, full-roller needle rollers without a cage are used. The roller unit 4 is accommodated in the track groove 5 of the outer joint member 2. The roller unit 4 made up of the outer ring 11, the inner ring 12, and the needle rollers 13 has a structure that does not naturally disassemble due to the pair of snap rings 14, as will be described in detail later.
 この実施形態において、アウタリング11の外周面(図2参照)は、脚軸32の軸線上に曲率中心を有する円弧を母線とする凸曲面である。アウタリング11の外周面は、ローラ案内面6とアンギュラコンタクトしている。 In this embodiment, the outer peripheral surface of the outer ring 11 (see FIG. 2) is a convex curved surface whose generatrix is an arc having a center of curvature on the axis of the leg shaft 32. The outer peripheral surface of the outer ring 11 is in angular contact with the roller guide surface 6.
 針状ころ13は、アウタリング11の円筒状内周面を外側軌道面とし、インナリング12の円筒状外周面を内側軌道面として、これらの外側軌道面と内側軌道面の間に転動自在に配置される。 The needle rollers 13 have the cylindrical inner circumferential surface of the outer ring 11 as an outer raceway surface, the cylindrical outer circumferential surface of the inner ring 12 as an inner raceway surface, and can freely roll between these outer raceway surfaces and inner raceway surfaces. will be placed in
 トリポード部材3の各脚軸32の外周面は、脚軸32の軸線を含む任意の方向の断面において脚軸32の軸線と平行なストレート形状をなす。また、図3に示すように、脚軸32の外周面は、脚軸32の軸線と直交する断面において略楕円形状をなす。脚軸32の外周面は、トルク負荷方向、すなわち長軸aの方向でインナリング12の内周面12aと接触する。継手軸方向、すなわち短軸bの方向では、脚軸32の外周面とインナリング12の内周面12aとの間に隙間mが形成されている。 The outer peripheral surface of each leg shaft 32 of the tripod member 3 has a straight shape parallel to the axis of the leg shaft 32 in a cross section in any direction including the axis of the leg shaft 32. Further, as shown in FIG. 3, the outer peripheral surface of the leg shaft 32 has a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft 32. The outer peripheral surface of the leg shaft 32 contacts the inner peripheral surface 12a of the inner ring 12 in the torque load direction, that is, in the direction of the long axis a. A gap m is formed between the outer peripheral surface of the leg shaft 32 and the inner peripheral surface 12a of the inner ring 12 in the joint axial direction, that is, in the direction of the short axis b.
 インナリング12の内周面12aは、インナリング12の軸線を含む任意の断面において凸円弧状をなす。このことと、脚軸32の横断面形状が上述のように略楕円形状であり、脚軸32とインナリング12の間に所定の隙間mを設けてあることから、インナリング12は、脚軸32に対して揺動可能となる。上述のとおりインナリング12とアウタリング11が針状ころ13を介して相対回転自在なアセンブリとされているため、アウタリング11はインナリング12と一体となって脚軸32に対して揺動可能である。つまり、脚軸32の軸線を含む平面内で、脚軸32の軸線に対してアウタリング11およびインナリング12の軸線は傾くことができる(図4参照)。 The inner circumferential surface 12a of the inner ring 12 has a convex arc shape in any cross section including the axis of the inner ring 12. Because of this and because the cross-sectional shape of the leg shaft 32 is approximately elliptical as described above, and a predetermined gap m is provided between the leg shaft 32 and the inner ring 12, the inner ring 12 It becomes possible to swing with respect to 32. As described above, since the inner ring 12 and the outer ring 11 are assembled as a relatively rotatable assembly via the needle rollers 13, the outer ring 11 can swing together with the inner ring 12 with respect to the leg shaft 32. It is. That is, the axes of the outer ring 11 and the inner ring 12 can be inclined with respect to the axis of the leg shaft 32 within a plane including the axis of the leg shaft 32 (see FIG. 4).
 図4に示すように、トリポード型等速自在継手1が作動角をとって回転すると、外側継手部材2の軸線に対してトリポード部材3の軸線は傾斜するが、ローラユニット4が揺動可能であるため、アウタリング11とローラ案内面6とが斜交した状態になることを回避することができる。これにより、アウタリング11がローラ案内面6に対して水平に転動するので、誘起スラストやスライド抵抗の低減を図ることができ、トリポード型等速自在継手1の低振動化を実現することができる。 As shown in FIG. 4, when the tripod type constant velocity universal joint 1 rotates at an operating angle, the axis of the tripod member 3 is inclined with respect to the axis of the outer joint member 2, but the roller unit 4 is swingable. Therefore, it is possible to avoid a situation where the outer ring 11 and the roller guide surface 6 are obliquely crossed. As a result, the outer ring 11 rolls horizontally with respect to the roller guide surface 6, so that induced thrust and sliding resistance can be reduced, and the vibration of the tripod type constant velocity universal joint 1 can be reduced. can.
 また、既に述べたように、脚軸32の断面(横断面)が略楕円状で、インナリング12の内周面12aの断面(縦断面)が円弧状凸断面であることから、図3に示すように、トルク負荷側での脚軸32の外周面とインナリング12の内周面12aとは、接触点Xにて、点接触(点接触に近い狭い面積で接触する場合も含む)する。よって、ローラユニット4を傾かせようとする力が小さくなり、アウタリング11の姿勢の安定性が向上する。 Furthermore, as already mentioned, the cross section (transverse section) of the leg shaft 32 is approximately elliptical, and the cross section (vertical section) of the inner circumferential surface 12a of the inner ring 12 is an arcuate convex cross section. As shown, the outer circumferential surface of the leg shaft 32 and the inner circumferential surface 12a of the inner ring 12 on the torque load side make point contact (including cases where they contact in a narrow area close to point contact) at a contact point X. . Therefore, the force that tends to tilt the roller unit 4 is reduced, and the stability of the posture of the outer ring 11 is improved.
 図5は、脚軸32に取り付けたローラユニット4を図2のA方向から見た平面図であり、図6は、脚軸32の軸線方向に沿ったローラユニット4の断面図である。 5 is a plan view of the roller unit 4 attached to the leg shaft 32 viewed from the direction A in FIG. 2, and FIG. 6 is a sectional view of the roller unit 4 along the axial direction of the leg shaft 32.
 図6に示すように、ローラユニット4では、アウタリング11の内周面に脚軸32の軸線方向に離間して一対の取付溝11aが設けられる。一対のスナップリング14は、各取付溝11aに嵌合させることで、アウタリング11の内周面11bに脚軸32の軸線方向に離間して取り付けられる。このスナップリング14は、針状ころ13およびインナリング12の、脚軸32の軸線方向両側の端面と対向している。アウタリング11に対する、針状ころ13およびインナリング12の脚軸32の軸線方向への相対移動が、一対のスナップリング14によって規制されている。従って、ローラユニット4の自然な分解が一対のスナップリング14によって規制される。 As shown in FIG. 6, in the roller unit 4, a pair of mounting grooves 11a are provided on the inner peripheral surface of the outer ring 11, spaced apart in the axial direction of the leg shaft 32. The pair of snap rings 14 are attached to the inner circumferential surface 11b of the outer ring 11 spaced apart in the axial direction of the leg shaft 32 by fitting into the respective attachment grooves 11a. The snap ring 14 faces end surfaces of the needle roller 13 and the inner ring 12 on both sides of the leg shaft 32 in the axial direction. Relative movement of the needle rollers 13 and the leg shafts 32 of the inner ring 12 in the axial direction with respect to the outer ring 11 is regulated by a pair of snap rings 14 . Therefore, natural disassembly of the roller unit 4 is restricted by the pair of snap rings 14.
 図7に示すように、スナップリング14は、円周方向一箇所にスリットC(円周方向の隙間)を有し、スリットCによって分断された有端リング状に形成される。スナップリング14は、断面矩形状の帯板を、その厚さ方向に延びる軸を中心として、その周りに周回させた形状を有する。スリットCは、スナップリング14の半径方向に対して傾斜する方向に延びている。 As shown in FIG. 7, the snap ring 14 has a slit C (circumferential gap) at one location in the circumferential direction, and is formed into an end ring shape separated by the slit C. The snap ring 14 has a shape in which a band plate having a rectangular cross section is wound around an axis extending in the thickness direction of the band plate. The slit C extends in a direction oblique to the radial direction of the snap ring 14.
 スナップリング14のスリットCは、せん断加工により形成され、一般的には金属素材(例えば鋼板)に、ダイ及びパンチで打ち抜き加工を施すことにより形成される(図10~13参照)。平板状のスナップリング14の縁、具体的には、スナップリング14の周方向両端部14c(スリットCを介して周方向に対向する端面)には、せん断加工による切断面Aが設けられる。尚、加工方法によっては、さらに、スナップリング14の内周面14a及び外周面14bにも切断面Aが設けられることもある。これらの切断面Aには、図8に示すように、厚さ方向一方側の面(以下、「表面14d」と言う。)から厚さ方向他方側の面(以下、「裏面14e」と言う。)に向けて、ダレA1、せん断面A2、破断面A3、カエリA4が順に形成されている。ダレA1は、スナップリング14の表面14dとせん断面A2とを滑らかに連続する断面略円弧状の曲面である。せん断面A2は、せん断方向(厚さ方向)と略平行な平坦面であり、光沢があり、せん断方向の細かい筋が形成されている。破断面A3は、せん断面A2よりも凹凸が激しい粗い面となっている。カエリA4は、スナップリング14の裏面14eから突出した突起からなる。 The slit C of the snap ring 14 is formed by shearing, and is generally formed by punching a metal material (for example, a steel plate) with a die and a punch (see FIGS. 10 to 13). The edge of the flat snap ring 14, specifically, the circumferentially opposite ends 14c of the snap ring 14 (the end faces facing each other in the circumferential direction via the slit C) are provided with a cut surface A by shearing. Depending on the processing method, the cut surface A may also be provided on the inner circumferential surface 14a and the outer circumferential surface 14b of the snap ring 14. As shown in FIG. 8, these cut surfaces A include a surface from one side in the thickness direction (hereinafter referred to as the "front surface 14d") to a surface on the other side in the thickness direction (hereinafter referred to as the "back surface 14e"). ), a sag A1, a sheared surface A2, a fractured surface A3, and a burr A4 are formed in this order. The sag A1 is a curved surface having a substantially arc-shaped cross section that smoothly connects the surface 14d of the snap ring 14 and the sheared surface A2. The sheared surface A2 is a flat surface substantially parallel to the shearing direction (thickness direction), is shiny, and has fine streaks in the shearing direction. The fractured surface A3 is a rough surface with more unevenness than the sheared surface A2. The burr A4 consists of a projection protruding from the back surface 14e of the snap ring 14.
 図6に示すように、スナップリング14の外径端はアウタリング11の取付溝11aに嵌合し、スナップリング14の内径端はインナリング12の端面に脚軸32の軸方向から当接する。そして、スナップリング14の半径方向中間部(外径端及び内径端を除く領域)は、針状ころ13の端面に脚軸32の軸方向から当接する。等速自在継手1が回転すると、スナップリング14の半径方向中間部と針状ころ13の端面とが摺動しながら、ローラユニット4が脚軸32の周りで回転する。このとき、スナップリング14の裏面14e(カエリA4が突出している面)が針状ころ13の端面と対向していると、針状ころ13(図7に点線で一部の針状ころ13のみを示している。)がスナップリング14のスリットCを跨いで摺動する際に、スナップリング14の周方向端部14cに設けられたカエリA4と針状ころ13とが干渉する恐れがある。 As shown in FIG. 6, the outer diameter end of the snap ring 14 fits into the mounting groove 11a of the outer ring 11, and the inner diameter end of the snap ring 14 contacts the end surface of the inner ring 12 from the axial direction of the leg shaft 32. A radially intermediate portion of the snap ring 14 (a region excluding the outer diameter end and the inner diameter end) contacts the end surface of the needle roller 13 from the axial direction of the leg shaft 32. When the constant velocity universal joint 1 rotates, the roller unit 4 rotates around the leg shaft 32 while the radially intermediate portion of the snap ring 14 and the end surface of the needle roller 13 slide. At this time, if the back surface 14e of the snap ring 14 (the surface from which the burr A4 protrudes) faces the end surface of the needle rollers 13, the needle rollers 13 (indicated by dotted lines in FIG. 7) ) slides across the slit C of the snap ring 14, there is a risk that the burr A4 provided at the circumferential end 14c of the snap ring 14 and the needle roller 13 may interfere with each other.
 そこで、本実施形態では、図9に示すように、スナップリング14の表面14d(カエリA4が突出していない面)を針状ころ13の端面と対向させ、カエリA4が突出した裏面14eを針状ころ13と反対側に配している。これにより、等速自在継手1の回転時に針状ころ13とスナップリング14とが摺動したときに、スナップリング14のカエリA4が針状ころ13と干渉することがないため、トリポード型等速自在継手の振動特性の悪化やローラユニットの耐久性低下を防止することができる。 Therefore, in this embodiment, as shown in FIG. 9, the front surface 14d of the snap ring 14 (the surface from which the burr A4 does not protrude) is made to face the end surface of the needle roller 13, and the back surface 14e from which the burr A4 protrudes is arranged in a needle-like shape. It is arranged on the opposite side from roller 13. As a result, when the needle rollers 13 and the snap ring 14 slide during rotation of the constant velocity universal joint 1, the burr A4 of the snap ring 14 does not interfere with the needle rollers 13, so the tripod type constant velocity It is possible to prevent deterioration of the vibration characteristics of the universal joint and deterioration of the durability of the roller unit.
 ここで、ローラユニット4の組立方法を説明する。ローラユニット4は、アウタリング11の内周にインナリング12を配すると共に、これらの間に多数の針状ころ13を総ころ状態で配した後、アウタリング11の取付溝11aにスナップリング14を装着することで組み立てられる。 Here, the method of assembling the roller unit 4 will be explained. The roller unit 4 includes an inner ring 12 disposed on the inner periphery of an outer ring 11, and a large number of needle rollers 13 disposed between these in a full roller state. It can be assembled by attaching.
 本実施形態では、スナップリング14をアウタリング11の内周面の取付溝11aに装着する前に、スナップリング14の表裏を確認する。せん断面A2と破断面A3とは表面性状が異なっているため、切断面Aを目視で確認することでスナップリング14の表裏を確認することも可能である。しかし、切断面Aの面積は小さいため、上記のような目視による確認は容易ではなく、手間がかかり、且つミスも起こりやすい。 In this embodiment, before attaching the snap ring 14 to the mounting groove 11a on the inner peripheral surface of the outer ring 11, the front and back sides of the snap ring 14 are checked. Since the sheared surface A2 and the fractured surface A3 have different surface properties, it is also possible to confirm the front and back sides of the snap ring 14 by visually checking the cut surface A. However, since the area of the cut surface A is small, visual confirmation as described above is not easy, takes time, and is prone to mistakes.
 そこで、本実施形態では、スナップリング14のスリットCの傾斜方向により、スナップリング14の表裏を確認する。すなわち、スナップリング14を表面14d側(せん断面A2側)から見たときと裏面14e側(破断面A3側)から見たときとで、スリットCの傾斜方向が異なる。具体的に、スナップリング14を裏面14e側から見ると、スリットCが半径方向に対して周方向一方側に傾斜し(図7参照)、スナップリング14を表面14d側から見ると、スリットCが半径方向に対して周方向他方側(図7と反対側)に傾斜している。従って、図5及び図7に示すように、スナップリング14を軸線方向から見たとき、スリットCが半径方向に対して周方向一方側に傾斜していれば、手前側の面が裏面14e(破断面A3側の面)であり、奥側の面が表面14d(せん断面A2側の面)であることを確認できる。このように、スリットCの傾斜方向により、スナップリング14の表裏を容易に確認することができる。このようなスリットCの傾斜方向の確認は、作業者が目視で行ってもよいし、組立装置により自動で行ってもよい。 Therefore, in this embodiment, the front and back sides of the snap ring 14 are confirmed by the inclination direction of the slit C of the snap ring 14. That is, the inclination direction of the slit C is different when the snap ring 14 is viewed from the front surface 14d side (sheared surface A2 side) and when viewed from the back surface 14e side (fractured surface A3 side). Specifically, when the snap ring 14 is viewed from the back surface 14e side, the slit C is inclined to one side in the circumferential direction with respect to the radial direction (see FIG. 7), and when the snap ring 14 is viewed from the surface 14d side, the slit C is inclined to one side in the circumferential direction with respect to the radial direction (see FIG. 7). It is inclined toward the other side in the circumferential direction (the opposite side to FIG. 7) with respect to the radial direction. Therefore, as shown in FIGS. 5 and 7, when the snap ring 14 is viewed from the axial direction, if the slit C is inclined to one side in the circumferential direction with respect to the radial direction, the front surface is the back surface 14e ( It can be confirmed that the surface on the side of the fracture surface A3) is the surface 14d (the surface on the side of the sheared surface A2), and the surface on the back side is the surface 14d (the surface on the side of the sheared surface A2). In this way, depending on the direction of inclination of the slit C, it is possible to easily check the front and back sides of the snap ring 14. The inclination direction of the slit C may be checked visually by an operator, or automatically by an assembly device.
 こうしてスナップリング14の表裏を確認した後、スナップリング14を所定の向きでアウタリング11の取付溝11aに装着する(図9参照)。本実施形態では、図5に示すように、ローラユニット4を軸方向外側から見たときにスリットCが周方向一方側に傾斜する向きで、スナップリング14をアウタリング11の取付溝11aに装着する。これにより、図9に示すように、スナップリング14の表面14dが針状ころ13と対向し、スナップリング14の裏面14eが針状ころ13と反対側に配された状態で、スナップリング14をアウタリング11に組み付けることができる。 After confirming the front and back sides of the snap ring 14, the snap ring 14 is installed in the mounting groove 11a of the outer ring 11 in a predetermined direction (see FIG. 9). In this embodiment, as shown in FIG. 5, the snap ring 14 is attached to the mounting groove 11a of the outer ring 11 with the slit C inclined toward one side in the circumferential direction when the roller unit 4 is viewed from the outside in the axial direction. do. As a result, as shown in FIG. 9, the snap ring 14 is held in a state in which the front surface 14d of the snap ring 14 faces the needle rollers 13 and the back surface 14e of the snap ring 14 is disposed on the opposite side from the needle rollers 13. It can be assembled to the outer ring 11.
 尚、本実施形態では、一対のスナップリング14として、同じ構成のもの(同じ金型で打ち抜いたもの)を使用している。従って、組立後のローラユニット4を軸方向どちら側から見ても、スナップリング14のスリットCが半径方向に対して周方向一方側に傾斜している(図5参照)。 Note that in this embodiment, the pair of snap rings 14 have the same configuration (punched with the same mold). Therefore, no matter which side of the assembly the roller unit 4 is viewed from in the axial direction, the slit C of the snap ring 14 is inclined toward one side in the circumferential direction with respect to the radial direction (see FIG. 5).
 本発明は上記の実施形態に限られない。例えば、上記の実施形態では、針状ころ13の軸方向両側にスナップリング14を配した場合を示したが、アウタリングの軸方向何れか一方の端部に鍔を設けることにより、一方のスナップリング14を省略することもできる。 The present invention is not limited to the above embodiments. For example, in the above embodiment, the snap ring 14 is arranged on both sides of the needle roller 13 in the axial direction, but by providing a collar on either end of the outer ring in the axial direction, one snap ring 14 can be disposed on both sides of the needle roller 13 in the axial direction. The ring 14 can also be omitted.
 以上に述べた本発明の実施形態は、他の構成を有するダブルローラタイプのトリポード型等速自在継手にも適用することができる。例えば、脚軸32の外周面を凸曲面(例えば球面)に形成し、インナリング12の内周面12aを円筒面状に形成することもできる。また、脚軸32の外周面を凸曲面(例えば断面凸円弧状)に形成し、インナリング12の内周面12aを脚軸外周面と嵌合する凹球面に形成することもできる。 The embodiments of the present invention described above can also be applied to double roller type tripod constant velocity universal joints having other configurations. For example, the outer peripheral surface of the leg shaft 32 may be formed into a convex curved surface (for example, a spherical surface), and the inner peripheral surface 12a of the inner ring 12 may be formed into a cylindrical surface. Alternatively, the outer circumferential surface of the leg shaft 32 may be formed into a convex curved surface (for example, a convex arc-shaped cross section), and the inner circumferential surface 12a of the inner ring 12 may be formed into a concave spherical surface that fits with the outer circumferential surface of the leg shaft.
 以上に述べたトリポード型等速自在継手1は、自動車のドライブシャフトに限って適用されるものではなく、自動車や産業機器等の動力伝達経路に広く用いることができる。 The tripod type constant velocity universal joint 1 described above is not limited to application to drive shafts of automobiles, but can be widely used in power transmission paths of automobiles, industrial equipment, etc.
1     トリポード型等速自在継手
2     外側継手部材
3     トリポード部材
4     ローラユニット
5     トラック溝
6     ローラ案内面
8     シャフト
11   アウタリング(ローラ)
11a 取付溝
12   インナリング
13   針状ころ(転動体)
14   スナップリング
14c 周方向端部(端面)
14d 表面
14e 裏面
31   胴部
32   脚軸
A     切断面
A1   ダレ
A2   せん断面
A3   破断面
A4   カエリ
C     スリット
1 Tripod type constant velocity universal joint 2 Outer joint member 3 Tripod member 4 Roller unit 5 Track groove 6 Roller guide surface 8 Shaft 11 Outer ring (roller)
11a Mounting groove 12 Inner ring 13 Needle roller (rolling element)
14 Snap ring 14c Circumferential end (end surface)
14d Front surface 14e Back surface 31 Body section 32 Leg shaft A Cut surface A1 Sag A2 Shear surface A3 Fracture surface A4 Burr C Slit

Claims (4)

  1.  内周面の周方向の三箇所に軸方向に延びるトラック溝が形成された外側継手部材と、
     前記外側継手部材の内周に配され、前記トラック溝に向けて半径方向に突出した三つの脚軸を有するトリポード部材と、
     前記脚軸に回転自在に支持されると共に前記トラック溝に収容される三つのローラユニットとを備え、
     前記ローラユニットは、
      ローラと、
      前記脚軸に外嵌されたインナリングと、
      前記ローラの内周面と前記インナリングの外周面との間に配された複数の転動体と、
      前記ローラの内周面に形成された取付溝に装着され、前記インナリング及び前記複数の転動体の前記脚軸の軸心方向の移動を規制するスナップリングとを有するトリポード型等速自在継手において、
     前記スナップリングが、せん断加工による切断面を有し、
     前記切断面が、厚さ方向一方側の領域に設けられたせん断面と、厚さ方向他方側の領域に設けられた破断面とを有し、
     前記スナップリングの厚さ方向一方側の面が、前記複数の転動体と対向したトリポード型等速自在継手。
    an outer joint member in which track grooves extending in the axial direction are formed at three locations in the circumferential direction of the inner peripheral surface;
    a tripod member having three leg shafts disposed on the inner periphery of the outer joint member and protruding in a radial direction toward the track groove;
    three roller units rotatably supported by the leg shaft and housed in the track groove;
    The roller unit is
    Laura and
    an inner ring fitted onto the leg shaft;
    a plurality of rolling elements arranged between the inner circumferential surface of the roller and the outer circumferential surface of the inner ring;
    A tripod type constant velocity universal joint having a snap ring attached to a mounting groove formed on an inner circumferential surface of the roller and regulating movement of the inner ring and the leg shafts of the plurality of rolling elements in the axial direction. ,
    The snap ring has a cut surface formed by shearing,
    The cut surface has a sheared surface provided in a region on one side in the thickness direction and a fractured surface provided in a region on the other side in the thickness direction,
    A tripod type constant velocity universal joint in which one surface of the snap ring in the thickness direction faces the plurality of rolling elements.
  2.  前記スナップリングが、周方向一箇所にスリットを有する有端状を成し、
     前記スリットが、前記スナップリングの半径方向に対して傾斜している請求項1に記載のトリポード型等速自在継手。
    The snap ring has an end shape with a slit at one location in the circumferential direction,
    The tripod type constant velocity universal joint according to claim 1, wherein the slit is inclined with respect to the radial direction of the snap ring.
  3.  前記インナリングの内周面が、前記インナリングの軸線を含む断面において内径側に凸を成した円弧状凸面を有し、
     前記脚軸の外周面が、前記脚軸の軸線を含む断面において該軸線と平行なストレート形状であり、且つ、前記脚軸の軸線と直交する断面において略楕円形状であり、
     前記脚軸の外周面が、トルク負荷方向で前記インナリングの内周面と当接すると共に、継手軸線方向では前記インナリングの内周面との間に隙間が形成された請求項1又は2に記載のトリポード型等速自在継手。
    The inner circumferential surface of the inner ring has an arc-shaped convex surface that is convex toward the inner diameter side in a cross section including the axis of the inner ring,
    The outer circumferential surface of the leg shaft has a straight shape parallel to the axis in a cross section including the axis of the leg shaft, and has a substantially elliptical shape in a cross section perpendicular to the axis of the leg shaft,
    According to claim 1 or 2, the outer circumferential surface of the leg shaft contacts the inner circumferential surface of the inner ring in the torque load direction, and a gap is formed between the outer circumferential surface of the leg shaft and the inner circumferential surface of the inner ring in the joint axis direction. The tripod type constant velocity universal joint described.
  4.  前記転動体が針状ころである請求項1~3の何れか1項に記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to any one of claims 1 to 3, wherein the rolling elements are needle rollers.
PCT/JP2023/007433 2022-03-28 2023-02-28 Tripod-type constant-velocity universal joint WO2023189123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051640 2022-03-28
JP2022051640A JP2023144585A (en) 2022-03-28 2022-03-28 Tripod type constant velocity universal joint

Publications (1)

Publication Number Publication Date
WO2023189123A1 true WO2023189123A1 (en) 2023-10-05

Family

ID=88200627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007433 WO2023189123A1 (en) 2022-03-28 2023-02-28 Tripod-type constant-velocity universal joint

Country Status (2)

Country Link
JP (1) JP2023144585A (en)
WO (1) WO2023189123A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010086A (en) * 2005-07-01 2007-01-18 Ntn Corp Constant velocity universal joint
JP2008082394A (en) * 2006-09-26 2008-04-10 Ntn Corp Tripod type constant velocity universal joint
JP2010071393A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Constant velocity universal joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010086A (en) * 2005-07-01 2007-01-18 Ntn Corp Constant velocity universal joint
JP2008082394A (en) * 2006-09-26 2008-04-10 Ntn Corp Tripod type constant velocity universal joint
JP2010071393A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Constant velocity universal joint

Also Published As

Publication number Publication date
JP2023144585A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP4833976B2 (en) Longitudinal sliding unit with cage retainer
EP3168490B1 (en) Tripod-type constant-velocity universal joint
EP1394430B1 (en) Cross coupling
EP3252328B1 (en) Ball-type constant velocity joint
US20220090635A1 (en) Tripod-type constant velocity universal joint
WO2023189123A1 (en) Tripod-type constant-velocity universal joint
JP4184185B2 (en) Tripod type constant velocity universal joint
CN100447439C (en) Constant velocity universal joint
EP1597489B1 (en) Universal joint with retention mechanism
US7371179B2 (en) Tripod constant-velocity universal joint
JP2020046063A (en) Tripod-type constant velocity universal joint
EP1726839A1 (en) Constant velocity joint
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP2598939Y2 (en) Constant velocity universal joint
WO2023136094A1 (en) Tripod-type constant-velocity universal joint
EP2423525A1 (en) Tripod constant-velocity universal joint and method for producing the same
JP2024037485A (en) Tripod type constant velocity universal joint
JP7233497B1 (en) Tripod type constant velocity universal joint
EP2873885A1 (en) Tripod-type constant-velocity joint and method for manufacturing same
JP2008190621A (en) Tripod type constant velocity universal joint
JP6824729B2 (en) Tripod type constant velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP4210510B2 (en) Tripod type constant velocity universal joint
US20170241481A1 (en) Constant velocity joint
WO2021246129A1 (en) Tripod-type constant-velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779153

Country of ref document: EP

Kind code of ref document: A1