JP2020152585A - Method of crushing gallium nitride - Google Patents

Method of crushing gallium nitride Download PDF

Info

Publication number
JP2020152585A
JP2020152585A JP2019049927A JP2019049927A JP2020152585A JP 2020152585 A JP2020152585 A JP 2020152585A JP 2019049927 A JP2019049927 A JP 2019049927A JP 2019049927 A JP2019049927 A JP 2019049927A JP 2020152585 A JP2020152585 A JP 2020152585A
Authority
JP
Japan
Prior art keywords
gallium
crushing
gallium nitride
medium
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049927A
Other languages
Japanese (ja)
Other versions
JP7257830B2 (en
Inventor
将治 鈴木
Masaharu Suzuki
将治 鈴木
美育 高野
Miku Takano
美育 高野
増田 賢太
Kenta Masuda
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019049927A priority Critical patent/JP7257830B2/en
Publication of JP2020152585A publication Critical patent/JP2020152585A/en
Application granted granted Critical
Publication of JP7257830B2 publication Critical patent/JP7257830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method of crushing gallium nitride, capable of preventing gallium nitride from being contaminated with impurities, when a medium crusher is used for crushing.SOLUTION: The method of crushing gallium nitride comprises a step of crushing gallium nitride at a temperature lower than the melting point of gallium, using a medium crusher with the surface of a crushing medium and the inner surface of a crushing container coated with a gallium film.SELECTED DRAWING: None

Description

本発明は、窒化ガリウムの粉砕方法に関する。 The present invention relates to a method for pulverizing gallium nitride.

窒化ガリウム等の窒化物粉末は、通常窒化物バルクを粉砕媒体により粉砕して製造されている。しかしながら、バルクの粉砕時に粉砕媒体由来の不純物が混入しやすい。実際に、窒化ケイ素バルクを窒化ケイ素製ボールにてボールミル粉砕すると、窒化ケイ素ボールに含まれる焼結助剤(8mass% ,MgAl2O4)が混入し、窒化ケイ素が汚染されたとの報告がある(非特許文献1)。 Nitride powder such as gallium nitride is usually produced by pulverizing a nitride bulk with a pulverizing medium. However, impurities derived from the pulverization medium are likely to be mixed in when pulverizing the bulk. In fact, it has been reported that when silicon nitride bulk was ball-milled with silicon nitride balls, the sintering aid (8mass%, MgAl2O4) contained in the silicon nitride balls was mixed in and the silicon nitride was contaminated (non-patented). Document 1).

従来、粉砕時の不純物の混入による汚染を防止する技術が検討され、例えば、粉砕容器や粉砕媒体を樹脂でコーティングすることで、金属やセラミックスの混入を抑制できることが報告されている(特許文献1〜3)。 Conventionally, a technique for preventing contamination due to the mixing of impurities during crushing has been studied, and it has been reported that, for example, by coating a crushing container or a crushing medium with a resin, the mixing of metals and ceramics can be suppressed (Patent Document 1). ~ 3).

実開平3−7940号公報Jikkenhei 3-7940 特開2000−33282号公報Japanese Unexamined Patent Publication No. 2000-33282 特開2002−121077号公報JP-A-2002-121077

Journal of the Ceramic Society of Japan, 104, 4(1996)Journal of the Ceramic Society of Japan, 104, 4 (1996)

窒化ガリウム等の窒化物粉末は半導体原料として使用されており、不純物で汚染されていない高純度のものが求められている。しかしながら、硬度の高い窒化物を特許文献1〜3に記載の方法を適用して粉砕すると、樹脂の削れや剥がれを生じ、不純物として混入してしまう。窒化物に混入した樹脂は、酸やアルカリに溶解しないため、酸やアルカリによって除去することができない。また、焼成すれば、混入した樹脂を除去できるが、同時に窒化物が酸化されるため、焼成によって樹脂を除去することは困難である。
本発明の課題は、媒体粉砕装置を用いて粉砕したときの不純物の混入が抑制された窒化ガリウムの粉砕方法、並びに粉砕窒化ガリウムの高純度方法及び高純度粉砕窒化ガリウムの製造方法を提供することにある。
Nitride powders such as gallium nitride are used as semiconductor raw materials, and high-purity powders that are not contaminated with impurities are required. However, when a nitride having high hardness is pulverized by applying the methods described in Patent Documents 1 to 3, the resin is scraped or peeled off and mixed as an impurity. Since the resin mixed in the nitride is insoluble in acid or alkali, it cannot be removed by acid or alkali. Further, although the mixed resin can be removed by firing, it is difficult to remove the resin by firing because the nitride is oxidized at the same time.
An object of the present invention is to provide a method for pulverizing gallium nitride in which contamination of impurities is suppressed when pulverized using a medium pulverizer, and a method for producing high-purity gallium nitride and a method for producing high-purity pulverized gallium nitride. It is in.

本発明者らは、媒体粉砕装置の粉砕媒体表面及び粉砕容器内面をガリウム膜で被覆し、かつ粉砕時の温度を制御して窒化ガリウムを粉砕することで、不純物の混入が抑えられることを見出した。 The present inventors have found that the mixing of impurities can be suppressed by covering the surface of the crushing medium and the inner surface of the crushing container of the medium crushing apparatus with a gallium film and crushing gallium nitride by controlling the temperature at the time of crushing. It was.

すなわち、本発明は、次の〔1〕〜〔6〕を提供するものである。
〔1〕 窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕する、窒化ガリウムの粉砕方法。
〔2〕 粉砕後、粉砕物をガリウムの融点以上の温度に加熱する、前記〔1〕記載の窒化ガリウムの粉砕方法。
〔3〕 ミルを用いて粉砕する、前記〔1〕又は〔2〕記載の窒化ガリウムの粉砕方法。
〔4〕 粉砕後の窒化ガリウムの平均粒子径が30μm以下である、前記〔1〕〜〔3〕のいずれか一に記載の窒化ガリウムの粉砕方法。
〔5〕 窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕し、粉砕物をガリウムの融点以上の温度で加熱する、粉砕窒化ガリウムの高純度方法。
〔6〕 窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕し、粉砕物をガリウムの融点以上の温度で加熱する、高純度粉砕窒化ガリウムの製造方法。
That is, the present invention provides the following [1] to [6].
[1] A method for pulverizing gallium nitride, which comprises pulverizing gallium nitride at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film.
[2] The method for pulverizing gallium nitride according to the above [1], wherein after pulverization, the pulverized product is heated to a temperature equal to or higher than the melting point of gallium.
[3] The method for crushing gallium nitride according to the above [1] or [2], which is pulverized using a mill.
[4] The method for crushing gallium nitride according to any one of [1] to [3] above, wherein the average particle size of gallium nitride after pulverization is 30 μm or less.
[5] Gallium nitride is pulverized at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film, and the pulverized product is pulverized at a temperature equal to or higher than the melting point of gallium. A high-purity method of milled gallium nitride to heat.
[6] Gallium nitride is pulverized at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film, and the pulverized product is pulverized at a temperature equal to or higher than the melting point of gallium. A method for producing high-purity pulverized gallium nitride to be heated.

本明細書において「高純度」とは、周期表第14族元素及び周期表第4周期の元素の含有量が窒化ガリウム中に15質量ppm未満であることをいい、好ましくは10質量ppm未満、更に好ましくは5質量ppmである。 In the present specification, "high purity" means that the content of the elements of Group 14 of the periodic table and the elements of the 4th period of the periodic table is less than 15 parts by mass in gallium nitride, preferably less than 10 parts by mass. More preferably, it is 5 mass ppm.

本発明の窒化ガリウムの粉砕方法によれば、媒体粉砕装置を用いて粉砕したときの不純物の混入が抑制され、粉砕窒化ガリウムを高純度化できるため、高純度粉砕窒化ガリウムを簡便な操作で製造することができる。 According to the method for pulverizing gallium nitride of the present invention, contamination of impurities when pulverized using a medium pulverizer is suppressed and the pulverized gallium nitride can be highly purified. Therefore, high-purity pulverized gallium nitride can be produced by a simple operation. can do.

以下、本発明について詳細に説明する。
本発明の窒化ガリウムの粉砕方法は、窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕するものである。
Hereinafter, the present invention will be described in detail.
The method for crushing gallium nitride of the present invention is to crush gallium nitride at a temperature lower than the melting point of gallium by using a medium crushing device in which the surface of the crushing medium and the inner surface of the crushing container are coated with a gallium film.

(窒化ガリウム)
窒化ガリウムは、ガリウムから合成したものでも、市販品でもよい。なお、窒化ガリウムの合成方法は、公知の方法を採用することができる。
また、窒化ガリウムは、単結晶でも、多結晶でもよく、これらの混合物を用いることもできる。
(Gallium nitride)
The gallium nitride may be a synthetic product from gallium or a commercially available product. As a method for synthesizing gallium nitride, a known method can be adopted.
Further, the gallium nitride may be a single crystal or a polycrystal, and a mixture thereof can be used.

(粉砕)
粉砕は、媒体粉砕装置を使用する。
媒体粉砕装置としては、内部に空間を有し、密閉可能な粉砕容器と、該粉砕容器の内部に配置された粉砕媒体を備えるものであれば特に限定されない。
媒体粉砕装置は、例えば、転動式、振動式及び遊星式のいずれでもよいが、粉砕速度、小粒径化の観点から、遊星式が好ましい。また、媒体粉砕装置は、バッチ式でも、連続式でもよい。
(Crushing)
For crushing, a medium crushing device is used.
The medium crushing device is not particularly limited as long as it has a crushing container having a space inside and can be sealed, and a crushing medium arranged inside the crushing container.
The medium crushing device may be, for example, a rolling type, a vibration type or a planetary type, but the planetary type is preferable from the viewpoint of crushing speed and small particle size. Further, the medium crushing device may be a batch type or a continuous type.

粉砕媒体としては、例えば、棒状媒体(ロッド)、球状媒体(ボール)、円筒状媒体(リング)が挙げられ、これらを1種又は2種以上組み合わせて用いることもできる。中でも、粉砕速度、小粒径化の観点から、球状媒体が好ましい。
粉砕媒体の大きさは、粉砕容器の大きさに応じて適宜選択可能であるが、例えば、球状媒体の場合、衝突力、粉砕速度の向上の観点から、好ましくは0.5mm以上、より好ましくは1mm以上、更に好ましくは5mm以上であって、好ましくは40mm以下、より好ましくは30mm以下、更に好ましくは20mm以下である。なお、球状媒体の大きさとは、球の直径を意味する。
粉砕媒体の材質は窒化ガリウムを粉砕できれば特に限定されないが、例えば、鉄、高クロム鋼、ステンレススチール等の金属や合金、セラミックスを挙げることができる。
Examples of the pulverizing medium include a rod-shaped medium (rod), a spherical medium (ball), and a cylindrical medium (ring), and one type or a combination of two or more of these can be used. Of these, a spherical medium is preferable from the viewpoint of pulverization speed and particle size reduction.
The size of the crushing medium can be appropriately selected according to the size of the crushing container. For example, in the case of a spherical medium, it is preferably 0.5 mm or more, more preferably 0.5 mm or more, from the viewpoint of improving the collision force and the crushing speed. It is 1 mm or more, more preferably 5 mm or more, preferably 40 mm or less, more preferably 30 mm or less, still more preferably 20 mm or less. The size of the spherical medium means the diameter of the sphere.
The material of the pulverization medium is not particularly limited as long as gallium nitride can be pulverized, and examples thereof include metals such as iron, high chrome steel, and stainless steel, alloys, and ceramics.

容器の内部の空間の形状は、均一に粉砕を行う観点から、底面が正円や楕円等の略円形の円柱形であることが好ましい。
容器の大きさは、粉砕媒体を収容し、窒化ガリウムを粉砕できれば特に限定されないが、例えば、前述の球状媒体を使用する場合、容器の容量が、好ましくは10〜25000cc、より好ましくは50〜1000cc、更に好ましくは100〜500ccである。
容器の材質は、粉砕媒体の材質と同様のものを挙げることができる。
The shape of the space inside the container is preferably a cylindrical shape having a substantially circular bottom surface such as a perfect circle or an ellipse from the viewpoint of uniformly pulverizing.
The size of the container is not particularly limited as long as it can accommodate the pulverizing medium and pulverize gallium nitride. For example, when the above-mentioned spherical medium is used, the capacity of the container is preferably 10 to 25000 cc, more preferably 50 to 1000 cc. , More preferably 100 to 500 cc.
The material of the container may be the same as the material of the crushing medium.

このような媒体粉砕装置としては、例えば、ミルを挙げることができる。具体例としては、例えば、遊星ボールミル、ボールミル、ディスクミル等を挙げることができる。 Examples of such a medium crushing device include a mill. Specific examples include, for example, planetary ball mills, ball mills, disc mills, and the like.

本発明で使用する媒体粉砕装置は、粉砕時に窒化ガリウムが接触する部分がガリウム膜で被覆されている。即ち、粉砕媒体は、その表面がガリウム膜で被覆されている。また、粉砕容器は、少なくとも内面がガリウム膜で被覆されていれば、それ以外の部分がガリウム膜で被覆されていても構わない。
被覆方法としては特に限定されないが、例えば、浸漬、蒸着を挙げることができる。例えば、ガリウムを融点以上の温度、例えば、50℃程度に加熱し、ガリウム液に粉砕媒体及び粉砕容器を浸漬すればよい。浸漬は、複数回行うことができる。
In the medium crushing apparatus used in the present invention, the portion that comes into contact with gallium nitride during crushing is covered with a gallium film. That is, the surface of the pulverization medium is coated with a gallium film. Further, as long as the inner surface of the crushing container is at least coated with the gallium film, the other portion may be coated with the gallium film.
The coating method is not particularly limited, and examples thereof include immersion and vapor deposition. For example, gallium may be heated to a temperature equal to or higher than the melting point, for example, about 50 ° C., and the crushing medium and the crushing container may be immersed in the gallium solution. The immersion can be performed a plurality of times.

粉砕条件は、媒体粉砕装置の種類、製造スケールにより適宜設定可能であるが、例えば、窒化物1kgをミルで粉砕する場合、通常回転数50〜400rpmで、1〜60分である。
粉砕温度は、ガリウムの融点よりも低い温度である。これにより、粉砕媒体及び粉砕容器に被覆したガリウムの融解が防止され、粉砕物へのガリウムの混入を抑制することができる。
本発明においては、ガリウムの融点が約30℃であるため、その温度を超えないように粉砕時の温度を管理する。例えば、粉砕雰囲気温度をガリウムの融点よりも低い温度とし、粉砕時に最も高温となる媒体粉砕装置のモーター近辺の温度をモニタリングしながら、粉砕容器内の温度もガリウムの融点を超えないように管理する。粉砕雰囲気温度及び粉砕容器内の温度がガリウムの融点を超える可能性がある場合には、粉砕を一時中断して冷却し、冷却後に再度粉砕を続けても構わない。粉砕雰囲気温度及び粉砕容器内の温度は、15℃以下が好ましく、10℃以下がより好ましく、5℃以下が更に好ましい。
The crushing conditions can be appropriately set depending on the type of the medium crushing device and the production scale. For example, when crushing 1 kg of nitride with a mill, the rotation speed is usually 50 to 400 rpm for 1 to 60 minutes.
The crushing temperature is lower than the melting point of gallium. As a result, melting of gallium coated on the crushing medium and the crushing container can be prevented, and mixing of gallium into the crushed product can be suppressed.
In the present invention, since the melting point of gallium is about 30 ° C., the temperature at the time of pulverization is controlled so as not to exceed that temperature. For example, the crushing atmosphere temperature is set to be lower than the melting point of gallium, and the temperature inside the crushing container is controlled so as not to exceed the melting point of gallium while monitoring the temperature near the motor of the medium crushing device, which is the highest temperature during crushing. .. If there is a possibility that the crushing atmosphere temperature and the temperature inside the crushing container exceed the melting point of gallium, crushing may be temporarily suspended to cool, and crushing may be continued after cooling. The crushing atmosphere temperature and the temperature inside the crushing container are preferably 15 ° C. or lower, more preferably 10 ° C. or lower, and even more preferably 5 ° C. or lower.

粉砕時の雰囲気は、酸素非含有雰囲気下が好ましい。酸素非含有雰囲気としては、例えば、不活性ガス雰囲気が挙げられ、具体的には、窒素ガス雰囲気、アルゴンガス雰囲気、窒素水素混合ガス雰囲気、アルゴン水素混合ガス雰囲気等を挙げることができる。なお、窒素水素混合ガス又はアルゴン水素混合ガスを用いる場合は、水素を3〜5体積%とすることが好ましい。
粉砕時の雰囲気を酸素非含有雰囲気とするには、例えば、ミルを使用する場合、酸素非含有雰囲気のグローブボックス内で、ガリウム膜被覆粉砕容器内の気相を置換した後、該粉砕容器にガリウム膜被覆粉砕媒体及び窒化ガリウムを収容し、ガリウム膜被覆粉砕容器の開口部を密閉すればよい。
The atmosphere at the time of pulverization is preferably an oxygen-free atmosphere. Examples of the oxygen-free atmosphere include an inert gas atmosphere, and specific examples thereof include a nitrogen gas atmosphere, an argon gas atmosphere, a nitrogen-hydrogen mixed gas atmosphere, and an argon-hydrogen mixed gas atmosphere. When a nitrogen-hydrogen mixed gas or an argon-hydrogen mixed gas is used, the hydrogen content is preferably 3 to 5% by volume.
To make the atmosphere at the time of crushing an oxygen-free atmosphere, for example, when a mill is used, the gas phase in the gallium film-coated pulverization vessel is replaced in the gallium-free atmosphere glove box, and then the pulverization vessel is charged. The gallium film-coated pulverization medium and gallium nitride may be contained, and the opening of the gallium film-coated pulverization container may be sealed.

(後処理)
粉砕後、粉砕物をガリウムの融点以上の温度に加熱することができる。
粉砕物には、粉砕媒体や粉砕容器から剥離したガリウムが不純物として含まれることがある。粉砕物をガリウムの融点以上の温度に加熱し、粉砕物中に含まれるガリウムを溶融させて除去することで、より高純度の窒化ガリウムとすることができる。例えば、粉砕物を篩上に置き、ガリウムを融点以上の温度、例えば、50℃程度に加熱し、粉砕物に含まれるガリウムを溶融させ、窒化ガリウムとガリウムとに分離することができる。篩の目開きは、窒化ガリウムと溶融したガリウムを分離することができれば特に限定されないが、通常10〜500メッシュである。
後処理後、回収した窒化ガリウムを乾燥してもよい。乾燥方法としては特に限定されないが、例えば、熱風乾燥法、冷風乾燥法を挙げることができる。
(Post-processing)
After pulverization, the pulverized product can be heated to a temperature equal to or higher than the melting point of gallium.
The crushed product may contain gallium exfoliated from the crushing medium or crushing container as an impurity. Higher purity gallium nitride can be obtained by heating the pulverized product to a temperature equal to or higher than the melting point of gallium and melting and removing the gallium contained in the pulverized product. For example, the pulverized product can be placed on a sieve and gallium is heated to a temperature equal to or higher than the melting point, for example, about 50 ° C. to melt the gallium contained in the pulverized product and separate it into gallium nitride and gallium. The mesh size of the sieve is not particularly limited as long as gallium nitride and molten gallium can be separated, but is usually 10 to 500 meshes.
After the post-treatment, the recovered gallium nitride may be dried. The drying method is not particularly limited, and examples thereof include a hot air drying method and a cold air drying method.

このようにして得られた窒化ガリウムは、不純物の混入が抑えられているため、高純度化されている。具体的には、本発明の方法により得られる窒化ガリウムは、周期表第14族元素及び周期表第4周期の元素の含有量が通常15質量ppm未満、好ましくは10質量ppm未満、更に好ましくは5質量ppmとすることができる。なお、これら元素の含有量は、例えば、ICP発光分光分析装置用いて測定することが可能である。 The gallium nitride thus obtained is highly purified because the inclusion of impurities is suppressed. Specifically, the gallium nitride obtained by the method of the present invention contains elements of Group 14 of the periodic table and elements of the 4th period of the periodic table, usually less than 15 parts by mass, preferably less than 10 parts by mass, more preferably less than 10 parts by mass. It can be 5 mass ppm. The content of these elements can be measured using, for example, an ICP emission spectroscopic analyzer.

また、粉砕後の窒化ガリウムは、平均粒子径が30μm以下であることが好ましく、20μm以下がより好ましく、10μm以下が更に好ましい。なお、かかる平均粒子径の下限は特に限定されないが、生産効率の観点から、0.1μm以上が好ましく、1μm以上が更に好ましい。ここで、本明細書において「平均粒子径」とは、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して試料の粒度分布を体積基準で作成したときに積算分布曲線の50%に相当する粒子径(d50)を意味する。なお、レーザ回折・散乱法による粒子径分布測定装置として、例えば、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用することができる。 Further, the gallium nitride after pulverization preferably has an average particle diameter of 30 μm or less, more preferably 20 μm or less, and further preferably 10 μm or less. The lower limit of the average particle size is not particularly limited, but from the viewpoint of production efficiency, 0.1 μm or more is preferable, and 1 μm or more is more preferable. Here, the term "average particle size" as used herein refers to the case where the particle size distribution of a sample is prepared on a volume basis in accordance with JIS R 1629 "Method for measuring particle size distribution by laser diffraction / scattering method for fine ceramic materials". It means the particle size (d 50 ) corresponding to 50% of the integrated distribution curve. As a particle size distribution measuring device by a laser diffraction / scattering method, for example, Microtrack MT3300EX II (manufactured by Microtrack Bell) can be used.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

1.不純物の分析
窒化ガリウム粉末5gを、100mLのポリテトラフルオロエチレン製容器(三愛科学社製HU−100)に入れ、5mLの硝酸(関東化学社製、試薬、特級)と共に、加圧容器で240℃に加熱して24時間の加圧酸分解処理を行った。得られた溶解液を100mLにメスアップした。この溶液をICP発光分光分析装置(HORIBA/JOVIN YVON社製ULTIMA II)で測定し、周期表第14族元素及び周期表第4周期の元素の含有量を算出した。
なお、金属ガリウムの含有量の測定は、次の方法により行った。窒化ガリウム粉末5gを、100mLのポリテトラフルオロエチレン製のビーカーに入れ、6Nの塩酸(関東化学社製、試薬、特級)と蒸留水を1:1で混合した3Nの塩酸30mLに12時間酸浸漬を行った。酸溶解後、窒化ガリウム粉末を分離して、得られた溶解液を100mLにメスアップした。この溶液をICP発光分光分析装置(HORIBA/JOVIN YVON社製ULTIMA II)で測定し、金属ガリウムの含有量を算出した。
1. 1. Impurity analysis 5 g of gallium nitride powder is placed in a 100 mL polytetrafluoroethylene container (HU-100 manufactured by San-Ai Kagaku Co., Ltd.), and together with 5 mL nitric acid (Kanto Chemical Co., Ltd., reagent, special grade), 240 ° C. in a pressurized container. Was heated to a pressure acid decomposition treatment for 24 hours. The obtained solution was made up to 100 mL. This solution was measured with an ICP emission spectrophotometer (ULTIMA II manufactured by HORIBA / JOVIN YVON), and the contents of the elements of Group 14 of the periodic table and the elements of the 4th period of the periodic table were calculated.
The content of metallic gallium was measured by the following method. 5 g of gallium nitride powder was placed in a 100 mL beaker made of polytetrafluoroethylene, and acid-immersed in 30 mL of 3N hydrochloric acid, which was a 1: 1 mixture of 6N hydrochloric acid (manufactured by Kanto Chemical Co., Inc., reagent, special grade) and distilled water. Was done. After acid dissolution, the gallium nitride powder was separated, and the obtained solution was dispensed to 100 mL. This solution was measured with an ICP emission spectrophotometer (ULTIMA II manufactured by HORIBA / JOVIN YVON), and the content of metallic gallium was calculated.

2.平均粒子径の測定
窒化ガリウムの粒度分布を、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して体積基準で作成した。そして、積算分布曲線の50%に相当する粒子径(d50)を求めた。なお、レーザ回折・散乱法による粒子径分布測定装置として、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用した。
2. 2. Measurement of average particle size The particle size distribution of gallium nitride was prepared on a volume basis in accordance with JIS R 1629 “Method for measuring particle size distribution by laser diffraction / scattering method for fine ceramic materials”. Then, the particle diameter (d 50 ) corresponding to 50% of the integrated distribution curve was obtained. A Microtrack MT3300EX II (manufactured by Microtrack Bell) was used as a particle size distribution measuring device by a laser diffraction / scattering method.

製造例1
窒化ガリウムバルクの製造
金属ガリウム10gを計量しアルミナボートに入れ、φ50mm、長さ600mmの炉心管にセットする。炉心管内を真空引きし窒素ガス置換し、ガスをアンモニアに切り替え0.5L/minにて15分間フローし、炉心管内をアンモニア雰囲気とした。昇温速度5℃/minにて1050℃まで昇温後、12時間保持し、窒化した。窒化後は、室温まで徐冷し、窒化ガリウムバルクを回収した。
Manufacturing example 1
Manufacture of gallium nitride bulk Weigh 10 g of metal gallium, put it in an alumina boat, and set it in a core tube having a diameter of 50 mm and a length of 600 mm. The inside of the core tube was evacuated and replaced with nitrogen gas, and the gas was switched to ammonia and flowed at 0.5 L / min for 15 minutes to create an ammonia atmosphere inside the core tube. After raising the temperature to 1050 ° C. at a heating rate of 5 ° C./min, the mixture was held for 12 hours and nitrided. After nitriding, the mixture was slowly cooled to room temperature to recover the gallium nitride bulk.

製造例2
ガリウム膜被覆粉砕媒体及びガリウム膜被覆粉砕容器の製造
媒体粉砕装置として、遊星ボールミル(フリッチュ・ジャパン株式会社製、P-5)を用いた。
先ず、室温5℃以下の環境下にて、約50℃に加熱したガリウム溶液中に粉砕媒体である高クロム鋼製粉砕ボール(φ10mm)を浸した後、直ぐに溶液から引き上げるという作業を5回繰り返し、粉砕ボールにガリウムを被膜させて、ガリウム膜被覆高クロム鋼製粉砕ボールを得た。
次に、同じく室温5℃以下の環境下にて、50℃程度にまで加熱したガリウム溶液を粉砕容器(高クロム鋼製、125cc)内に入れた後、蓋を閉め、容器内側に万遍無くガリウムでコートされるよう振った。その後、コートされずに残ったガリウム溶液を、加熱したガリウム溶液容器に戻した。この作業を5回繰り返し、粉砕容器内にガリウムを被膜させて、ガリウム膜被覆高クロム鋼製粉砕容器を得た。
Manufacturing example 2
Manufacture of gallium film-coated crushing medium and gallium film-coated crushing container A planetary ball mill (manufactured by Fritsch Japan Co., Ltd., P-5) was used as a medium crushing device.
First, in an environment of room temperature of 5 ° C. or lower, a high chrome steel crushing ball (φ10 mm), which is a crushing medium, is immersed in a gallium solution heated to about 50 ° C., and then immediately pulled out of the solution, which is repeated 5 times. , The crushed balls were coated with gallium to obtain crushed balls made of high chrome steel coated with gallium film.
Next, in the same environment of room temperature of 5 ° C. or lower, a gallium solution heated to about 50 ° C. was placed in a crushing container (high chrome steel, 125 cc), the lid was closed, and the inside of the container was evenly distributed. Shake to coat with gallium. Then, the uncoated gallium solution was returned to the heated gallium solution container. This operation was repeated 5 times, and gallium was coated in the crushing container to obtain a gallium film-coated high chrome steel crushing container.

実施例1
露点−90℃以下に保たれた酸素非含有雰囲気のグローブボックス内にて、製造例2で得たガリウム膜被覆高クロム鋼製容器(125cc)に、製造例1で得られた窒化ガリウムバルク10g及びガリウム膜被覆高クロム鋼製ボール(φ10mm)100gを入れ、密閉した。その後、それをグローブボックスより取出し、室温5℃の恒温室にて、遊星ボールミル(P−5、フリッチュ・ジャパン株式会社製)を用い、100rpmにて粉砕した。なお、装置がガリウムの融点である29℃を超えないよう、約10℃に保ちながら粉砕した。温度の管理は、粉砕中最も高温となるモーター近辺の温度をモニタリングし、10℃を超えそうになったときに粉砕を一時中断し冷却し、冷却後に再度続けるといった方法を採用し、合計10分間粉砕した。
粉砕後、酸素非含有雰囲気のグローブボックス内にて密閉した粉砕容器から粉砕物を取り出し、回収した粉砕物を目開き325meshのJIS篩(直径75mm)上に移し、篩を50℃に加熱した。次いで、粉砕物中に含まれるガリウムを液化させ、篩下の受け皿へガリウムを分離して粉砕窒化ガリウムを得た。
そして、粉砕窒化ガリウム中の不純物について、ICP発光分光分析装置を用いて分析し、平均粒子径を測定した。その結果を表1に示す。なお、表1中の不純物の分析結果については周期表第14族元素及び周期表第4周期の主要元素の含有量を示したが、これら以外の元素の含有量はいずれも1ppm未満(検出限界以下)であった。なお、ガリウムも1ppm未満であり、窒化ガリウム粉末中に金属ガリウムはなく、加熱により分離、除去ができていることを確認した。
Example 1
10 g of the gallium nitride bulk obtained in Production Example 1 was placed in a gallium film-coated high chrome steel container (125 cc) obtained in Production Example 2 in a glove box having an oxygen-free atmosphere maintained at a dew point of −90 ° C. or lower. And 100 g of gallium film-coated high chrome steel balls (φ10 mm) were placed and sealed. Then, it was taken out from a glove box and pulverized at 100 rpm using a planetary ball mill (P-5, manufactured by Fritsch Japan Co., Ltd.) in a thermostatic chamber at room temperature of 5 ° C. The apparatus was pulverized while maintaining the temperature at about 10 ° C. so that the temperature did not exceed the melting point of gallium, 29 ° C. The temperature is controlled by monitoring the temperature near the motor, which is the hottest during crushing, suspending crushing when it is about to exceed 10 ° C, cooling it, and continuing after cooling for a total of 10 minutes. Crushed.
After pulverization, the pulverized material was taken out from a closed pulverized container in a glove box having an oxygen-free atmosphere, and the collected pulverized material was transferred onto a JIS sieve (diameter 75 mm) having a mesh size of 325 mesh, and the sieve was heated to 50 ° C. Next, the gallium contained in the pulverized product was liquefied, and the gallium was separated into a saucer under the sieve to obtain pulverized gallium nitride.
Then, the impurities in the pulverized gallium nitride were analyzed using an ICP emission spectroscopic analyzer, and the average particle size was measured. The results are shown in Table 1. Regarding the analysis results of impurities in Table 1, the contents of the 14th group elements of the periodic table and the main elements of the 4th period of the periodic table are shown, but the contents of all other elements are less than 1 ppm (detection limit). Below). It was confirmed that gallium was also less than 1 ppm, there was no metallic gallium in the gallium nitride powder, and it could be separated and removed by heating.

比較例1
粉砕媒体としてガリウム膜で被覆されていない高クロム鋼製粉砕ボール(φ10mm)を、粉砕容器としてガリウム膜で被覆されていない高クロム鋼容器(125cc)を、それぞれ用いたこと以外は、実施例1と同様の操作により粉砕窒化ガリウムを得た。なお、粉砕後にガリウムの除去操作は行わなかった。そして、粉砕窒化ガリウム中の不純物について、ICP発光分光分析装置を用いて分析し、平均粒子径を測定した。その結果を表1に示す。なお、表1中の不純物の分析結果については周期表第14族元素及び周期表第4周期の主要元素の含有量を示したが、これら以外の元素の含有量はいずれも1ppm未満(検出限界以下)であった。
Comparative Example 1
Example 1 except that a high chrome steel crushing ball (φ10 mm) not coated with a gallium film was used as the crushing medium and a high chrome steel container (125 cc) not coated with a gallium film was used as the crushing container. Grinded gallium nitride was obtained by the same operation as in the above. No gallium removal operation was performed after pulverization. Then, the impurities in the pulverized gallium nitride were analyzed using an ICP emission spectroscopic analyzer, and the average particle size was measured. The results are shown in Table 1. Regarding the analysis results of impurities in Table 1, the contents of the 14th group elements of the periodic table and the main elements of the 4th period of the periodic table are shown, but the contents of all other elements are less than 1 ppm (detection limit). Below).

比較例2
粉砕媒体として窒化ケイ素ボール(φ5mm)250gを、粉砕容器として窒化ケイ素製容器(250cc)それぞれ用いたこと以外は、実施例1と同様の操作により粉砕窒化ガリウムを得た。なお、粉砕後にガリウムの除去操作は行わなかった。そして、粉砕窒化ガリウム中の不純物について、ICP発光分光分析装置を用いて分析し、平均粒子径を測定した。その結果を表1に示す。なお、表1中の不純物の分析結果については周期表第14族元素及び周期表第4周期の主要元素の含有量を示したが、これら以外の元素の含有量はいずれも1ppm未満(検出限界以下)であった。
Comparative Example 2
A pulverized gallium nitride was obtained by the same operation as in Example 1 except that 250 g of silicon nitride balls (φ5 mm) was used as the pulverization medium and a silicon nitride container (250 cc) was used as the pulverization container. No gallium removal operation was performed after pulverization. Then, the impurities in the pulverized gallium nitride were analyzed using an ICP emission spectroscopic analyzer, and the average particle size was measured. The results are shown in Table 1. Regarding the analysis results of impurities in Table 1, the contents of the 14th group elements of the periodic table and the main elements of the 4th period of the periodic table are shown, but the contents of all other elements are less than 1 ppm (detection limit). Below).

Figure 2020152585
Figure 2020152585

表1から、窒化ガリウムを、粉砕媒体表面及び容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕することで、不純物で汚染されていない高純度の粉砕窒化物が得られることがわかる。 From Table 1, gallium nitride is pulverized at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverizing medium and the inner surface of the container are coated with a gallium film to achieve high purity without being contaminated with impurities. It can be seen that the pulverized nitride of is obtained.

Claims (6)

窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕する、窒化ガリウムの粉砕方法。 A method for pulverizing gallium nitride, which comprises pulverizing gallium nitride at a temperature lower than the melting point of gallium using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film. 粉砕後、粉砕物をガリウムの融点以上の温度に加熱する、請求項1記載の窒化ガリウムの粉砕方法。 The method for pulverizing gallium nitride according to claim 1, wherein after pulverization, the pulverized product is heated to a temperature equal to or higher than the melting point of gallium. ミルを用いて粉砕する、請求項1又は2記載の窒化ガリウムの粉砕方法。 The method for pulverizing gallium nitride according to claim 1 or 2, wherein the gallium nitride is pulverized using a mill. 粉砕後の窒化ガリウムの平均粒子径が30μm以下である、請求項1〜3のいずれか1項に記載の窒化ガリウムの粉砕方法。 The method for pulverizing gallium nitride according to any one of claims 1 to 3, wherein the average particle size of gallium nitride after pulverization is 30 μm or less. 窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕し、粉砕物をガリウムの融点以上の温度で加熱する、粉砕窒化ガリウムの高純度方法。 Gallium nitride is pulverized at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film, and the pulverized product is heated at a temperature equal to or higher than the melting point of gallium. High-purity method for pulverized gallium nitride. 窒化ガリウムを、粉砕媒体表面及び粉砕容器内面がガリウム膜で被覆された媒体粉砕装置を用い、かつガリウムの融点よりも低い温度にて粉砕し、粉砕物をガリウムの融点以上の温度で加熱する、高純度粉砕窒化ガリウムの製造方法。 Gallium nitride is pulverized at a temperature lower than the melting point of gallium by using a medium pulverizer in which the surface of the pulverization medium and the inner surface of the pulverization vessel are coated with a gallium film, and the pulverized product is heated at a temperature equal to or higher than the melting point of gallium. A method for producing high-purity pulverized gallium nitride.
JP2019049927A 2019-03-18 2019-03-18 Grinding method of gallium nitride Active JP7257830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049927A JP7257830B2 (en) 2019-03-18 2019-03-18 Grinding method of gallium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049927A JP7257830B2 (en) 2019-03-18 2019-03-18 Grinding method of gallium nitride

Publications (2)

Publication Number Publication Date
JP2020152585A true JP2020152585A (en) 2020-09-24
JP7257830B2 JP7257830B2 (en) 2023-04-14

Family

ID=72557639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049927A Active JP7257830B2 (en) 2019-03-18 2019-03-18 Grinding method of gallium nitride

Country Status (1)

Country Link
JP (1) JP7257830B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955534A (en) * 1972-10-03 1974-05-29
JPS6365960A (en) * 1986-09-08 1988-03-24 株式会社東芝 Manufacture of ceramics material
JP2003160380A (en) * 2001-11-22 2003-06-03 Nikko Materials Co Ltd HEAT GENERATOR HAVING MAIN INGREDIENT OF MoSi2
JP2012523305A (en) * 2008-04-09 2012-10-04 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッド Method for producing stable oxygen-terminated semiconductor nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955534A (en) * 1972-10-03 1974-05-29
JPS6365960A (en) * 1986-09-08 1988-03-24 株式会社東芝 Manufacture of ceramics material
JP2003160380A (en) * 2001-11-22 2003-06-03 Nikko Materials Co Ltd HEAT GENERATOR HAVING MAIN INGREDIENT OF MoSi2
JP2012523305A (en) * 2008-04-09 2012-10-04 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッド Method for producing stable oxygen-terminated semiconductor nanoparticles

Also Published As

Publication number Publication date
JP7257830B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
JP7042250B2 (en) Manufacture of Tungsten Carbide (WC) Spherical Powder
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP6573629B2 (en) High purity refractory metal powders and their use in sputtering targets that can have disordered texture
JP2006265023A (en) Method for rendering lithium hydroxide monohydrate anhydrous
TW200838804A (en) Alloy casting apparatuses and chalcogenide compound synthesis methods
US20200391294A1 (en) Metal-ceramic composite powders
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
JP6815388B2 (en) Methods for recovering metal-containing materials from composites
JP5640749B2 (en) Gallium oxide and method for producing the same
FR2563511A1 (en) PROCESS FOR MANUFACTURING POROUS PRODUCTS IN BORON OR BORON COMPOUNDS
JP7257830B2 (en) Grinding method of gallium nitride
CN108691007A (en) The manufacturing method of metal single crystal particle
US20230322562A1 (en) Preparation method of high purity sic powder
JP6690735B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP6354367B2 (en) Silicon nitride powder for release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder for release agent of casting mold of polycrystalline silicon ingot, and casting mold for polycrystalline silicon ingot and manufacturing method thereof
US9908782B2 (en) Method for synthesis of boron suboxide
JP6792412B2 (en) Method for manufacturing silicon carbide powder
JP2003112977A (en) Method for producing high purity silicon nitride powder
JPS6183608A (en) Production of aluminum nitride
KR101124708B1 (en) Fabrication Method of Silicon Powder by Combustion Synthesis using Molten Salt
Khajelakzay et al. Synthesis and spark plasma sintering of Mg2Si nanopowder by mechanical alloying and heat treatment
Pan et al. Structure formation and densification of TiB2-TiC-Ni composites produced by chemical reaction of Ti-B4C system in high-gravity field
TW202408927A (en) Silicon carbide powder, method for manufacturing the same and method for manufacturing silicon carbide wafer using the same
JP2020152584A (en) Nitride crushing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7257830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150