JP2020150610A - 電源装置及びこれを備えた空気調和機 - Google Patents

電源装置及びこれを備えた空気調和機 Download PDF

Info

Publication number
JP2020150610A
JP2020150610A JP2019044335A JP2019044335A JP2020150610A JP 2020150610 A JP2020150610 A JP 2020150610A JP 2019044335 A JP2019044335 A JP 2019044335A JP 2019044335 A JP2019044335 A JP 2019044335A JP 2020150610 A JP2020150610 A JP 2020150610A
Authority
JP
Japan
Prior art keywords
voltage
switching
change time
unit
overvoltage protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019044335A
Other languages
English (en)
Other versions
JP7172759B2 (ja
Inventor
青木 洋
Hiroshi Aoki
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019044335A priority Critical patent/JP7172759B2/ja
Publication of JP2020150610A publication Critical patent/JP2020150610A/ja
Application granted granted Critical
Publication of JP7172759B2 publication Critical patent/JP7172759B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】スイッチング周期に同期して発生するリップル電圧に対応してAC電圧の上昇を検出して過電圧から機器を保護する過電圧保護手段を備えた電源装置を提供する。【解決手段】電源装置10において、過電圧保護部20は、スイッチング制御部5からスイッチングパルス信号とDC電圧信号が入力されている。過電圧保護部20は、リップル電圧と変化時間をそれぞれを監視し、スイッチングパルス信号の立下りタイミングからDC電圧に含まれるリップル電圧波形の山又は谷までの変化時間の長さに基づいて電圧閾値を変化させる。ここで、電圧閾値を第1電圧閾値と、これよりも小さい第2電圧閾値とした時、過電圧保護部20は、変化時間が予め定めた変化時間閾値未満の時に第2電圧閾値を、変化時間が予め定めた前記変化時間閾値以上の時に第1電圧閾値を用いる。過電圧保護部20は、DC電圧がいずれかの電圧閾値以上になった時、コンバータ10を停止させる。【選択図】図2

Description

本発明は、電源装置に係わり、より詳細には、昇圧型コンバータにおける出力電圧の過電圧保護に関する。
従来、昇圧型のコンバータは、例えば図5に示す空気調和機に備えられている(例えば、特許文献1参照。)。
図5に示す空気調和機90は、室外機80と、これに通信接続された室内機40で構成されている。
室外機80はAC電源34を入力としDC電圧を出力する電源装置であるコンバータ100と、コンバータ100が出力するDC電圧が入力されるインバータ31と、インバータ31で駆動される圧縮機32と、入力されたAC電源34の交流電圧を検出して交流電圧検出信号として出力する交流電圧検出部35と、これらを制御する制御部33を備えている。
コンバータ100は、AC電源34が接続される入力端101aと入力端101bと、DC電圧が出力される出力端108aと出力端108bと、出力されるDC電圧の目標電圧指示信号が入力される端子109aと、交流電圧検出信号が入力される端子109cと、出力されるDC電圧を示すDC電圧信号を出力する出力端109bとを備えている。また、コンバータ100は入力された電圧を整流する整流器102と、整流されたDC電圧を昇圧するスイッチング部103と、昇圧したDC電圧を平滑する平滑コンデンサ107と、DC電圧を検出するDC電圧検出部106と、スイッチング部103へスイッチングパルス信号を出力するスイッチング制御部105と、過電圧保護部120を備えている。
コンバータ100は、DC電圧検出部106で検出された電圧がDC電圧信号として過電圧保護部120へ出力されており、過電圧保護部120はDC電圧が過電圧となった時に停止指示信号をスイッチング制御部105へ出力する。この信号が入力されたスイッチング制御部105は、スイッチングパルス信号をオフにすることでコンバータ100の動作を停止させる。
また、コンバータ100のDC電圧が出力される出力端108aと出力端108bとはインバータ31の入力端に接続されており、また、インバータ31の三相出力が圧縮機32に接続されている。一方、制御部33はコンバータ100へ目標電圧指示信号を出力し、コンバータ100からDC電圧信号が、また、交流電圧検出部35から交流電圧検出信号が、それぞれ入力される。また、制御部33はインバータ31へ駆動信号を出力する。
ところで、一般的なコンバータでは出力されるDC電圧をフードバック制御しており、負荷の変動やAC電圧の変動があってもDC電圧が指示された目標電圧値となるように制御している。このフィードバック制御によるフィードバックが早すぎるとDC電圧にハンチングが発生するため、フィードバックに遅延を設けて制御している。このため、瞬時電圧変動による電圧低下から急激に電圧が復帰した場合、AC電圧が元の電圧に復帰しているにも関わらず、フィードバック制御がこれに追従できず、DC電圧が異常な高電圧(過電圧)となる場合がある。このため、特許文献1には記載がないが、一般的なコンバータには前述した過電圧保護部が備えられている。
前述したようにフィードバック特性により、瞬時電圧変動が終了して急激に元の電圧に復帰した場合や、このタイミングで負荷が急激に軽くなった場合、DC電圧が過電圧となる場合がある。このため、過電圧保護部120は、例えば出力するDC電圧が550ボルト(第1電圧閾値)以上になった時、スイッチング部103の内部に備えた図示しない耐圧が600ボルトのスイッチング素子を保護するため、スイッチング制御部105を介してスイッチング素子を強制的にオフにする。
次に図6の説明図を用いてコンバータ100の動作を説明する。図6において横軸は時間である。また、縦軸に関して、図6(1)はAC電源電圧を、図6(2)はDC電圧を、図6(3)は目標電圧値を、図6(4)はコンバータ100の動作状態を、それぞれ示している。なお、t81〜t86は時刻である。
図6(1)に示すようにAC電源電圧において、t81からt83の期間に瞬時電圧変動による一時的な電圧低下が発生している。制御部33はAC電圧の半周期のピーク電圧の増減により瞬時電圧変動を検出している。このため、制御部33はこの半周期が経過するt82まで瞬時電圧変動を検出できない。従って制御部33は、t82まで目標電圧値を400ボルトとしてコンバータ100へ指示しているが、t82で瞬時電圧変動による電圧低下が発生したと判断する。このため制御部33は目標電圧値を一時的に400ボルトから350ボルトへ低下させる。また、制御部33は、t84でAC電圧が復帰したと判断し、目標電圧値を350ボルトから400ボルトに復帰させる。
この時、前述したようにフィードバック遅れによるDC電圧の上昇と、AC電圧の急激な上昇が重なったため、t85でDC電圧が第1電圧閾値(550ボルト)以上になっている。このため過電圧保護部120はスイッチング素子をオフにするが、インダクタに蓄積されたエネルギーが逆起電力を発生させ、t86の時点でDC電圧が610ボルトとなっている。この場合、スイッチング素子の耐圧:600ボルトを超えているためスイッチング素子が破壊される場合がある。
このように、t84でAC電圧が急激に復帰して、DC電圧が550ボルト以上になった場合、コンバータ100は過電圧保護部120によりスイッチングを停止する。これはスイッチングを停止した時、図示しないインダクタに蓄積された逆起電力により上昇する最大DC電圧を600ボルト以下と想定したものである。
ところで、DC電圧はスイッチングによる最大約50ボルトのリップル電圧が含まれており、また、過電圧保護部120はリップル電圧のピーク電圧を監視している。このため、スイッチング素子の耐圧である600Vに対して前述した50Vのマージンを差し引いた550ボルトを第1電圧閾値とし、過電圧保護部120は、DC電圧が第1電圧閾値以上になったらスイッチング素子をオフにする。
しかしながら、AC電圧が急激に復帰した場合、連続するリップル電圧の一周期毎にリップル電圧のピーク電圧が50ボルト以上上昇する場合があるため、今回のリップル電圧のピークが550ボルト以下であっても次の周期のリップル電圧のピークが600ボルト以上になり、過電圧保護部120がここでスイッチング素子をオフにしても前述したインダクタの逆起電力により、スイッチング素子が破壊される場合があった。特にインターリーブ方式のスイッチング回路の場合、複数のインダクタを備えているため、過電圧でスイッチングを停止した場合に、インダクタの逆起電力が大きくなる問題があった。
一方、瞬時電圧変動からの復帰時の逆起電力発生を考慮して第1電圧閾値を500ボルトに設定した場合、瞬時電圧変動が発生していない場合であってもこの電圧がコンバータ100の最大出力電圧となるため、高電圧の利用に制限がかかり、一方、DC電圧を550ボルト以上で使用する場合はスイッチング素子の耐圧が高いものを選択しなければならず、コストが上昇する問題があった。
このため、瞬時電圧変動によるAC電圧低下からの復帰時にのみ第1電圧閾値よりも低い閾値を設定する必要がある。しかしながら、リップル電圧の発生は高速なスイッチング周波数(数キロヘルツ)に同期して発生するため、この周波数に対応する周期毎に交流電圧検出部35を用いてAC電圧の上昇を検出することは非常に困難であった。このため、リップル電圧の変化によりAC電圧の上昇を検出して過電圧から機器を保護する過電圧保護手段が望まれていた。
また、このようなコンバータ(電源装置)は空気調和機に組み込まれている。空気調和機は圧縮機を備えており、この圧縮機の回転数により大きく負荷が変動する。負荷が大きく変動した場合、電源装置から出力されるDC電圧のリップル電圧が変動し、瞬時電圧変動による電圧低下からの復帰時に前述した過電圧が発生しやすい問題があった。
特開2010−11533号公報(段落番号0033〜0040)
本発明は以上述べた問題点を解決し、スイッチング周期に同期して発生するリップル電圧に対応してAC電圧の上昇を検出して過電圧から機器を保護する過電圧保護手段を備えた電源装置を提供することを目的とする。
本発明は上述の課題を解決するため、本発明の請求項1に記載の電源装置は、
AC電源を入力して整流する整流器と、スイッチング素子とインダクタとを備えて前記スイッチング素子のスイッチングにより前記整流器から出力される電圧を昇圧してDC電圧として出力するスイッチング部と、前記スイッチング部から出力される前記DC電圧を平滑する平滑コンデンサと、前記スイッチング部の前記スイッチング素子を駆動するスイッチングパルス信号を出力するスイッチング制御部と、前記DC電圧を検出してDC電圧信号として出力するDC電圧検出部と、前記DC電圧が予め定めた電圧閾値以上になった時、前記スイッチングを停止させる過電圧保護手段とを備え、
前記過電圧保護手段は、
前記スイッチングパルス信号と前記DC電圧信号が入力されており、
前記スイッチングパルス信号によって駆動される前記スイッチング素子がオフとなるタイミングから前記DC電圧に含まれるリップル電圧波形の山又は谷までの変化時間を測定し、前記変化時間の長さに基づいて前記電圧閾値を変化させることを特徴とする。
また、本発明の請求項2に記載の電源装置は、
前記電圧閾値を第1電圧閾値と、これよりも小さい第2電圧閾値とした時、
前記過電圧保護手段は、測定した前記変化時間が予め定めた変化時間閾値以上の時に前記第1電圧閾値を用い、測定した前記変化時間が前記変化時間閾値未満の時に前記第2電圧閾値を用いることを特徴とする。
また、本発明の請求項3に記載の空気調和機は、前記電源装置を備えたことを特徴とする。
以上の手段を用いることにより、本発明によれば、過電圧保護手段を備えた電源装置において、スイッチング周期に同期して発生するリップル電圧に対応してAC電圧の上昇を検出して過電圧から機器を保護することができる。
本発明による空気調和機の実施例を示すブロック図である。 本発明によるコンバータ(電源装置)の実施例を示すブロック図である。 空気調和機の動作を説明する説明図である。 過電圧保護部の動作を説明する説明図である。 従来の空気調和機を示すブロック図である。 従来の空気調和機の動作を説明する説明図である。
以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。なお、本発明と直接関係のない冷媒回路などは図示と説明を省略する。
図1に示す空気調和機50は、室外機30と、これに通信接続された室内機40で構成されている。
室外機30はAC電源34を入力としDC電圧を出力する昇圧型のコンバータ10と、コンバータ10が出力するDC電圧が入力されるインバータ31と、インバータ31で駆動される圧縮機32と、入力されたAC電源34の交流電圧を検出して交流電圧検出信号として出力する交流電圧検出部35と、これらを制御する制御部33を備えている。
コンバータ10は、AC電源34が接続される入力端1aと入力端1bと、DC電圧が出力される出力端8aと出力端8bと、出力されるDC電圧の目標電圧指示信号が入力される入力端9aと、交流電圧検出信号が入力される入力端9cと、出力されるDC電圧を示すDC電圧信号を出力する出力端9bとを備えている。なお、コンバータ10は図示しないスイッチング方式の昇圧回路と過電圧保護部(過電圧保護手段)20を備えており、出力するDC電圧が過電圧となった時にコンバータ10の動作を停止させる。なお、コンバータ10はインターリーブ方式で動作し、スイッチング周波数は5キロヘルツである。従ってスイッチング周期は200マイクロセカンドとなる。
そして、コンバータ10のDC電圧が出力される出力端8aと出力端8bとはインバータ31の入力端に接続されており、また、インバータ31の三相出力が圧縮機32に接続されている。一方、制御部33はコンバータ10へ目標電圧指示信号を出力し、コンバータ10からDC電圧信号が、また、交流電圧検出部35から交流電圧検出信号が、それぞれ入力される。また、制御部33はインバータ31へ駆動信号を出力する。
図2は本発明によるコンバータ10の実施例を示すブロック図である。コンバータ10は、AC電源34が接続される入力端1aと入力端1bと、DC電圧が出力される出力端8aと出力端8bと、入力端1aと入力端1bの間に接続されたAC電源34の出力電圧を整流する整流器2と、入力端1bと整流器2の間に直列に接続され、検出した入力電流を入力電流信号として出力する入力電流検出部11と、出力端8aと出力端8bの間に接続され、整流器3の出力電圧を平滑する平滑コンデンサ7と、入力端3eと入力端3hと出力端3fと共通端3gを備えた第1スイッチング部3と、入力端4eと入力端4hと出力端4fと共通端4gを備えた第2スイッチング部4を備えている。
また、コンバータ10は、平滑コンデンサ7の両端電圧を検出してDC電圧信号として出力端9bへ出力するDC電圧検出部6と、第1スイッチング部3を駆動するスイッチングパルス信号Aを入力端3hへ出力し、また、第2スイッチング部4を駆動するスイッチングパルス信号Bを入力端4hにそれぞれ出力するスイッチング制御部5と、DC電圧を監視して過電圧となった時にスイッチングパルス信号Aとスイッチングパルス信号Bの出力を停止してコンバータ10の動作を停止させる過電圧保護部20を備えている。
そして、整流器2の正極に第1スイッチング部3の入力端3eと第2スイッチング部4の入力端4eが、整流器2の負極に第1スイッチング部3の共通端3gと第2スイッチング部4の共通端4gと平滑コンデンサ7の負極端がそれぞれ接続されている。このように、第1スイッチング部3と第2スイッチング部4は並列に接続されている。
各スイッチング部は、スイッチング素子とインダクタとを備えており、このスイッチング素子のスイッチングにより整流器2から出力される電圧を昇圧してDC電圧として出力する。
一方、第1スイッチング部3は、入力端3eに一端が接続されたインダクタ3aと、同インダクタ3aの他端がアノード端子に接続されカソード端子が出力端3fに接続されたダイオード3bと、インダクタ3aの他端と共通端3gとの間に接続され、入力されたスイッチングパルス信号Aによりオン/オフするスイッチング素子であるIGBT3cを備えている。一方、IGBT3cのコレクタ端子はインダクタ3aの他端に接続され、また、エミッタ端子は共通端3gに接続され、ゲート端子は入力端3hに接続されている。
同様に、第2スイッチング部4は、入力端4eに一端が接続されたインダクタ4aと、同インダクタ4aの他端がアノード端子に接続されカソード端子が出力端4fに接続されたダイオード4bと、インダクタ4aの他端と共通端4gとの間に接続され、入力されたスイッチングパルス信号Bによりオン/オフするスイッチング素子であるIGBT4cを備えている。一方、IGBT4cのコレクタ端子はインダクタ4aの他端に接続され、また、エミッタ端子は共通端4gに接続され、ゲート端子は入力端4hに接続されている。この第1スイッチング部3と第2スイッチング部4は、整流器3から整流された電圧が入力され、各IGBTが短絡状態の時に対応するインダクタに電流が流れてエネルギーとして蓄積され、次に各IGBTが開放された時に蓄積されたエネルギーが電流となって対応するインダクタから出力される構成になっている。
スイッチング制御部5は、交流電圧検出部35から出力される瞬時電圧を示す交流電圧検出信号と、DC電圧検出部6から出力されるDC電圧信号と、入力電流検出部11から出力される入力電流検出信号と、入力端9aから入力され、目標とする出力端8aと出力端8bとの間のDC電圧(コンバータ10の出力電圧)を指示する目標電圧指示信号と、過電圧保護部20が出力する停止指示信号がそれぞれ入力されている。
このスイッチング制御部5は、出力端8aと出力端8bとの間のDC電圧(出力電圧)が目標電圧指示信号で指示された目標電圧になるように、また、コンバータ10に入力された交流電圧と、コンバータ10に流れる入力電流の位相が同じとなるように制御する。そしてスイッチング制御部5は、前述した制御を行うためにスイッチングパルス信号Aとスイッチングパルス信号BをPWM制御により生成して各スイッチング部へ個別に出力する。なお各スイッチングパルス信号はハイレベルで各IGBTがオン、ローレベルでオフとなる。
過電圧保護部20は、スイッチングパルス信号Aとスイッチングパルス信号BとDC電圧信号が入力され、DC電圧に重畳されるリップル電圧が変化する時間(変化時間と呼称する)を出力する変化時間測定部21と、この変化時間が入力され、この時間に従って予め記憶している電圧閾値が出力される閾値記憶部22と、この電圧閾値とDC電圧信号が入力され、DC電圧信号が電圧閾値以上となった時にスイッチング制御部の動作を停止させる停止指示信号を出力する停止判定部23を備えている。
変化時間測定部21はDC電圧信号によりDC電圧に含まれるリップル電圧を監視し、スイッチングパルス信号A又はスイッチングパルス信号Bがハイレベルからローレベルに変化したタイミングから、つまり、各IGBTがオンからオフになったタイミングから、次にリップル電圧波形の谷(最低電圧)が来るまでの時間である変化時間を計測して閾値記憶部22へ出力する。リップル電圧の周期はスイッチングパルス信号の周期と同じであるが、入力されるAC電圧の上昇/下降に対応してこの変化時間が短く/長くなる。
AC電圧が上昇している場合は整流器2から出力される整流電圧も上昇する。この上昇した電圧にスイッチングによるリップル電圧を含んだ電圧が重畳される。このため、リップル電圧波形の谷の電圧がAC電圧の変化が無い場合に比較して高くなる。つまり、AC電圧の変化が無い場合に比較して短い時間で谷に到達することになり、変化時間が短くなる。一方、これとは逆にAC電圧が下降している場合はリップル電圧波形の谷の電圧がAC電圧の変化が無い場合に比較して低くなる。つまり、AC電圧の変化が無い場合に比較して長い時間で谷に到達することになり変化時間が長くなる。
なお、変化時間測定部21の動作に関しては後で詳細に説明する。
閾値記憶部22は電圧閾値として出力する2つの閾値である第1電圧閾値(550ボルト)及び第2電圧閾値(500ボルト)と、AC電圧の変化がない場合の変化時間である120マイクロセカンドを基準とし、これより短い変化時間閾値(110マイクロセカンド)を予め記憶している。閾値記憶部22は、入力された変化時間が変化時間閾値以上の時に第1電圧閾値を、入力された変化時間が変化時間閾値未満の時に第2電圧閾値を電圧閾値として出力する。
停止判定部23は入力された電圧閾値である第2電圧閾値又は第1電圧閾値と、DC電圧信号で示されるDC電圧を比較し、DC電圧がいずれかの電圧閾値以上となった時に停止指示信号をローレベルからハイレベルにしてスイッチング制御部5に出力する。この結果、コンバータ10は動作を停止する。
スイッチング制御部5は、停止指示信号がローレベルからハイレベルになった時、IGBT3cとIGBT4cを共にオフさせる。この時、電流が平滑コンデンサ7に向かって流れ、インダクタ3aとインダクタ4aに蓄積されているエネルギーが平滑コンデンサ7に蓄積される。この結果、電圧閾値の値によっては平滑コンデンサ7の電圧、つまりDC電圧が一時的に上昇し、各IGBTの耐圧を超える場合がある。本発明による過電圧保護部20は、AC電圧が上昇中には第1電圧閾値より小さい第2電圧閾値を用いることでDC電圧が各IGBTの耐圧を超えないようにしている。
図3は本発明による室外機30の動作を説明する説明図である。
図3の説明図を用いてコンバータ10の動作を説明する。図3において横軸は時間である。また、縦軸に関して、図3(1)はAC電源電圧を、図3(2)はDC電圧を、図3(3)は目標電圧値を、図3(4)はコンバータ10の動作状態を、それぞれ示している。なお、t41〜t46は時刻である。
図3(1)に示すようにAC電源電圧において、t41からt43の期間に瞬時電圧変動による一時的な電圧低下が発生している。制御部33はAC電圧の半周期のピーク電圧の増減により瞬時電圧変動を検出している。このため、制御部33はこの半周期が経過するt42まで瞬時電圧変動を検出できない。従って制御部33はt42まで目標電圧値を400ボルトとしてコンバータ10へ指示しているが、t42で瞬時電圧変動による電圧低下が発生したと判断する。このため制御部33は目標電圧値を一時的に400ボルトから350ボルトへ低下させる。また、制御部33は、t44でAC電圧が復帰したと判断し、目標電圧値を350ボルトから400ボルトに復帰させる。
この時、前述したようにフィードバック遅れによるDC電圧の上昇と、AC電圧の急激な上昇が重なったため、過電圧保護部20は、t44でそれまで用いていた第1電圧閾値から第2電圧閾値に切り替えてDC電圧を監視している。一方、t45でDC電圧が第2電圧閾値(500ボルト)以上になっている。このため過電圧保護部20はt45で各IGBTをオフにするが、インダクタ3aやインダクタ4aに蓄積されたエネルギーにより、t46の時点でDC電圧が570ボルトとなっている。この場合、IGBTの耐圧:600ボルトを超えていないためIGBTが破壊されることがない。
次に図4の過電圧保護部20の説明図を用いて本発明の動作原理を説明する。図4(A)はAC電圧の変動がなく一定の電圧の場合を、図4(B)はAC電圧が急激に上昇している場合を、図4(C)はAC電圧が急激に低下している場合を、それぞれ示している。なお、図4の各図において横軸は時間である。また、縦軸に関して、(1)はスイッチングパルス信号Aを、(2)はスイッチングパルス信号Bを、(3)はDC電圧のリップル電圧を、(4)はコンバータ停止信号を、それぞれ示している。 なお、前述したようにスイッチング周期は200マイクロセカンドであるため、半周期は100マイクロセカンドとなる。
図4(A)に示すように、AC電圧が一定の場合において、スイッチング制御部5がインターリーブ方式で各スイッチング部を制御すると、DC電圧のリップル電圧はスイッチング周期の半周期ごと、例えばt1〜t2の間に発生する。なお、リップル電圧の大きさはコンバータ10の負荷や入力AC電圧によって変化し、例えば最大で50ボルト程度になる。
図4(A)(2)に示すように、スイッチングパルス信号Bがt2でハイレベルからローレベル、つまり、IGBT4cがオフになった時、オフとなったIGBT4cに接続されているインダクタ4aに蓄積されているエネルギーにより発生する電流がインダクタ4a、つまり、インダクダンス成分を持った部品を通して平滑コンデンサ7へ流れ込むことで、リップル電圧波形の山(リップル電圧の最高値)がt2から遅れたt3で発生する。そして、その後、逆起電力により発生する電流が徐々に低下し、t5でリップル電圧波形の谷(リップル電圧の最低値)となる。本実施例では各スイッチングパルス信号がハイレベルからローレベルになった時、つまり、各IGBTがオフになった時からリップル電圧波形が谷になるまでの例えばt2からt5までを変化時間と呼称している。
なお、図4(A)において変化時間測定部21が出力する変化時間はすべて120マイクロセカンドである。閾値記憶部22は入力された変化時間が110マイクロセカンド以上の時に、電圧閾値として第1電圧閾値を出力する。
図4(A)(3)に示すように、t4以前のリップル電圧波形の山は第1電圧閾値:550ボルト以下であるが、t4以降にコンバータ10の負荷が急激に軽くなったため、t6でリップル電圧が第1電圧閾値:550ボルトを超えている。このため、停止判定部23は、t6でコンバータ停止信号をローレベル(動作可能)からハイレベル(動作停止)にする。この結果、コンバータ10は停止する。なお、この場合、インダクタ4aの逆起電力により発生する電圧は50ボルト以下であり、この電圧に第1電圧閾値を加算したDC電圧の最大値が各IGBTの定格電圧以下となるため、IGBTが壊れることがない。
図4(B)に示すようにAC電圧が急激に上昇している場合、各スイッチング部に入力されるDC電圧も急激に上昇する。このため、例えば図4(B)(3)に示すように、スイッチングパルス信号Aがt11でハイレベルからローレベルになった時、徐々にリップル電圧は上昇し、その後、t13でリップル電圧波形の谷となる。この時、t11からt13の変化時間は112マイクロセカンドである。従って変化時間測定部21は、112マイクロセカンドの変化時間を出力する。この結果、閾値記憶部22は電圧閾値として第1電圧閾値を出力する。
次にスイッチングパルス信号Bがt12でハイレベルからローレベルになった時、徐々にリップル電圧が上昇し、ピークを過ぎた後に下降し、t15でリップル電圧波形が谷となる。この時、t12からt15の変化時間は108マイクロセカンドである。従って変化時間測定部21は、108マイクロセカンドの変化時間を出力する。この結果、閾値記憶部22はt15で電圧閾値として第2電圧閾値を出力する。
そして、停止判定部23はt16でリップル電圧が第2電圧閾値:500ボルト以上になったため、コンバータ停止信号をローレベル(動作可能)からハイレベル(動作停止)にする。この結果、コンバータ10は停止する。なお、この場合、インダクタ3aの逆起電力により発生する電圧は50ボルト以下であり、さらにインダクタ4aの逆起電力により発生する電圧:20ボルト(最大50ボルト)がこれに加算されたとしてもDC電圧の最大値が570ボルトになり、IGBT4cの定格電圧:600ボルト以下であるため、各IGBTが壊れることがない。図4(B)においてDC電圧の最大値は、t18にて570ボルトになっている。
一方、本発明による第2電圧閾値を用いないで第1電圧閾値のみを使用する従来回路(図5で説明)の場合、t17でリップル電圧のピークが550ボルト未満の時、実際にコンバータが停止するのはt19でリップル電圧が第1電圧閾値以上になってからである。この場合、インダクタ3aとインダクタ4aの逆起電力により発生する電圧:最大50ボルトがそれぞれ第1電圧閾値に加算されることになり、DC電圧の最大値がIGBTの定格電圧:600ボルトを超えることでIGBTが破壊されてしまう場合がある。
図4(C)はAC電圧がt22まで変動がなく、t22以降、急激に低下している例を示すものである。図4(A)で説明したようにt23までの変化時間は120マイクロセカンドである。このため、変化時間測定部21は、120マイクロセカンドの変化時間を出力する。この結果、閾値記憶部22は電圧閾値として第1電圧閾値を出力する。
一方、t23以降においてt22からt26の変化時間は125マイクロセカンドであり、変化時間測定部21は、125マイクロセカンドの変化時間を出力する。この結果、閾値記憶部22は引き続き電圧閾値として第1電圧閾値を出力する。このため、例えばt24でリップル電圧が第2電圧閾値を超えたとしても、停止判定部23はコンバータ停止信号をハイレベル(コンバータ停止)にすることがない。
このように、過電圧保護部20は、AC電圧が急激に上昇中と、AC電圧が安定もしくは低下している場合を区別し、それぞれに最適な電圧閾値を用いるため、AC電圧がどのような状態であってもIGBTの耐圧を超えないようにすることができる。
以上説明したように、コンバータ(電源装置)10は、スイッチング周期に同期して発生するリップル電圧に基づいてAC電圧の上昇や下降を検出することができる。このため、瞬時電圧変動によるAC電圧低下からの復帰時に発生するDC電圧の急激な上昇時にのみ第1電圧閾値よりも低い閾値である第2電圧閾値を設定することができる。従って、AC電圧の上昇時のみ耐圧に余裕をもってスイッチングを停止できるため、高い耐圧のIGBT(スイッチング素子)を採用する必要がない。
また、空気調和機50に本発明によるコンバータ10を組み込んでいるため、圧縮機32の回転数の変化による大きな負荷の変動で発生するリップル電圧の上昇がある場合であっても、瞬時電圧変動による電圧低下からの復帰時に過電圧による部品の破壊を防止することができる。
本実施例ではスイッチングパルス信号A又はスイッチングパルス信号Bがハイレベルからローレベルに変化したタイミングから、次にリップル電圧波形の谷(最低電圧)が来るまでの時間を変化時間とし、この変化時間の長短でAC電圧の上昇か否かを判定している。しかしながら、これに限るものでなく、スイッチングパルス信号A又はスイッチングパルス信号Bがハイレベルからローレベルに変化したタイミングから、次にリップル電圧波形の山(最高電圧)が来るまでの時間を変化時間として用いても同様の効果を得ることができる。
また、本実施例ではインターリーブ方式のコンバータを例に説明しているが、これに限るものでなく、スイッチング方式のコンバータであれば同様の効果を得ることができる。
1a 入力端
1b 入力端
2 整流器
3 第1スイッチング部
3a インダクタ
3b ダイオード
3c IGBT(スイッチング素子)
3e 入力端
3f 出力端
3g 共通端
3h 入力端
4 第2スイッチング部
4a インダクタ
4b ダイオード
4c IGBT(スイッチング素子)
4e 入力端
4f 出力端
4g 共通端
4h 入力端
6 DC電圧検出部
7 平滑コンデンサ
8a 出力端
8b 出力端
9a 入力端
9b 出力端
9c 入力端
10 コンバータ
20 過電圧保護部(過電圧保護手段)
21 変化時間測定部
22 閾値記憶部
23 停止判定部
31 インバータ
32 圧縮機
33 制御部
34 AC電源
35 交流電圧検出部

Claims (3)

  1. AC電源を入力して整流する整流器と、スイッチング素子とインダクタとを備えて前記スイッチング素子のスイッチングにより前記整流器から出力される電圧を昇圧してDC電圧として出力するスイッチング部と、前記スイッチング部から出力される前記DC電圧を平滑する平滑コンデンサと、前記スイッチング部の前記スイッチング素子を駆動するスイッチングパルス信号を出力するスイッチング制御部と、前記DC電圧を検出してDC電圧信号として出力するDC電圧検出部と、前記DC電圧が予め定めた電圧閾値以上になった時、前記スイッチングを停止させる過電圧保護手段とを備え、
    前記過電圧保護手段は、
    前記スイッチングパルス信号と前記DC電圧信号が入力されており、
    前記スイッチングパルス信号によって駆動される前記スイッチング素子がオフとなるタイミングから前記DC電圧に含まれるリップル電圧波形の山又は谷までの変化時間を測定し、前記変化時間の長さに基づいて前記電圧閾値を変化させることを特徴とする電源装置。
  2. 前記電圧閾値を第1電圧閾値と、これよりも小さい第2電圧閾値とした時、
    前記過電圧保護手段は、測定した前記変化時間が予め定めた変化時間閾値以上の時に前記第1電圧閾値を用い、測定した前記変化時間が前記変化時間閾値未満の時に前記第2電圧閾値を用いることを特徴とする請求項1記載の電源装置。
  3. 請求項1又は請求項2に記載の前記電源装置を備えたことを特徴とする空気調和機。

JP2019044335A 2019-03-12 2019-03-12 電源装置及びこれを備えた空気調和機 Active JP7172759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044335A JP7172759B2 (ja) 2019-03-12 2019-03-12 電源装置及びこれを備えた空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044335A JP7172759B2 (ja) 2019-03-12 2019-03-12 電源装置及びこれを備えた空気調和機

Publications (2)

Publication Number Publication Date
JP2020150610A true JP2020150610A (ja) 2020-09-17
JP7172759B2 JP7172759B2 (ja) 2022-11-16

Family

ID=72430820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044335A Active JP7172759B2 (ja) 2019-03-12 2019-03-12 電源装置及びこれを備えた空気調和機

Country Status (1)

Country Link
JP (1) JP7172759B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160897A (ja) * 2006-12-20 2008-07-10 D & M Holdings Inc スイッチング電源装置
JP2010011533A (ja) * 2008-06-24 2010-01-14 Fujitsu General Ltd 電源装置、及びこれを備えた機器
JP2011166917A (ja) * 2010-02-08 2011-08-25 Panasonic Corp スイッチング電源装置
JP2015035890A (ja) * 2013-08-08 2015-02-19 株式会社東芝 電気車用電力変換装置
JP2017123261A (ja) * 2016-01-07 2017-07-13 岩崎電気株式会社 Led用電源装置及びled照明装置
US20170290107A1 (en) * 2016-03-29 2017-10-05 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for overvoltage protection for led lighting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160897A (ja) * 2006-12-20 2008-07-10 D & M Holdings Inc スイッチング電源装置
JP2010011533A (ja) * 2008-06-24 2010-01-14 Fujitsu General Ltd 電源装置、及びこれを備えた機器
JP2011166917A (ja) * 2010-02-08 2011-08-25 Panasonic Corp スイッチング電源装置
JP2015035890A (ja) * 2013-08-08 2015-02-19 株式会社東芝 電気車用電力変換装置
JP2017123261A (ja) * 2016-01-07 2017-07-13 岩崎電気株式会社 Led用電源装置及びled照明装置
US20170290107A1 (en) * 2016-03-29 2017-10-05 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for overvoltage protection for led lighting

Also Published As

Publication number Publication date
JP7172759B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
KR101699214B1 (ko) 전력변환장치 및 공기조화장치
US9564848B2 (en) Power converter
US9502963B2 (en) Switching power supply device, switching power supply control method and electronic apparatus
JP5997677B2 (ja) 電力変換装置及び空気調和装置
JP5151729B2 (ja) 電源装置、及びこれを備えた機器
JP5106484B2 (ja) 可変電源装置とモータ駆動制御装置とそれらの保護回路動作方法
JP2017175886A (ja) 停電検出条件設定機能を有するモータ制御装置
JP6387530B2 (ja) 電源制御装置
WO2015056403A1 (ja) 電力変換装置及び空気調和装置
JP2009261161A (ja) 瞬時電圧低下保護装置
JP7172759B2 (ja) 電源装置及びこれを備えた空気調和機
JP2014161195A (ja) 直流電源装置
JP6827300B2 (ja) 整流装置、電源装置、及び、整流装置の制御方法
JP7471442B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
TW201917986A (zh) 不斷電電源裝置
US7283377B2 (en) Method for controlling firing angle under line dip situations
JP2019007709A (ja) 電子機器
JP7049770B2 (ja) 電力変換装置ならびモータ駆動システム
JP7271767B1 (ja) 同期発電機用の自動電圧調整装置
JP2015180129A (ja) 電源装置
JP6319120B2 (ja) 空気調和機
JP6630424B2 (ja) インバータ制御方法
JP2005341746A (ja) 直流電源装置
JPWO2018216144A1 (ja) 電力変換装置
JP2021145517A (ja) 電源装置およびモータ駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R151 Written notification of patent or utility model registration

Ref document number: 7172759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151