JP2020146777A - Surface-coated cutting tool exerting excellent chipping resistance and wear resistance in heavy-load cutting process - Google Patents

Surface-coated cutting tool exerting excellent chipping resistance and wear resistance in heavy-load cutting process Download PDF

Info

Publication number
JP2020146777A
JP2020146777A JP2019044680A JP2019044680A JP2020146777A JP 2020146777 A JP2020146777 A JP 2020146777A JP 2019044680 A JP2019044680 A JP 2019044680A JP 2019044680 A JP2019044680 A JP 2019044680A JP 2020146777 A JP2020146777 A JP 2020146777A
Authority
JP
Japan
Prior art keywords
layer
ray diffraction
hard coating
content ratio
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019044680A
Other languages
Japanese (ja)
Other versions
JP7216914B2 (en
Inventor
峻 佐藤
Shun Sato
峻 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019044680A priority Critical patent/JP7216914B2/en
Publication of JP2020146777A publication Critical patent/JP2020146777A/en
Application granted granted Critical
Publication of JP7216914B2 publication Critical patent/JP7216914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a surface-coated cutting tool having a hard coating layer exerting excellent chipping resistance and wear resistance in a heavy-load cutting process.SOLUTION: In a surface-coated cutting tool, a hard coating layer comprising the alternate lamination structure by the layers A and B is provided on the surface of a tool substrate. The layer A has an average component composition of (Al1-xCrx)N (here, 0.20≤x≤0.60 in atomic ratio) and the layer B has that composition of (Al1-a-bCraSib)N (here, 0.20≤a≤0.60 and 0.01≤b≤0.20 in the atomic ratio. The absolute value of difference in grating constants of crystal grains composing the layers A and B is 0.05(Å) or less. Besides, the full width at half maximum of I(200) is 0.3 to 1.0 (degree), and I(200) and I(111) satisfy 1<I(200)/I(111)<10 when defining the X-ray diffraction peak intensities from (200) and (111) planes obtained by X-ray diffraction about whole alternate lamination structure as I(200) and I(111), respectively.SELECTED DRAWING: Figure 1

Description

この発明は、切れ刃に高負荷が作用する高負荷切削加工(例えば、高速高送り深穴ドリル加工)において、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を示し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関する。 According to the present invention, the hard coating layer exhibits excellent chipping resistance and abrasion resistance in high-load cutting (for example, high-speed high-feed deep hole drilling) in which a high load acts on the cutting edge, and is excellent over a long period of use. It relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, surface-coated cutting tools include slow-away chips that are detachably attached to the tip of a cutting tool for turning and planing of various types of work materials such as steel and cast iron, and drilling and cutting of the work materials. There are drills and miniature drills used for machining, solid type end mills used for surface cutting, grooving, shoulder machining, etc. of the work material, and the solid with the throwaway tip detachably attached. Slow-away end mill tools that perform cutting in the same way as type end mills are known.

また、被覆工具として、AlとCrの複合窒化物層、あるいは、TiとAlの複合窒化物層からなる硬質被覆層を、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化硼素焼結体(以下、cBNで示す)からなる基体(以下、これらを総称して工具基体という)の表面に、アークイオンプレーティング法により、被覆形成した被覆工具が知られている。
そして、被覆工具の切削性能を改善するために、多くの提案がなされている。
Further, as a coating tool, a hard coating layer made of a composite nitride layer of Al and Cr or a composite nitride layer of Ti and Al is used as a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (titanium carbon nitride). The surface of a substrate made of a base cermet (hereinafter referred to as TiCN) or a cubic boron nitride sintered body (hereinafter referred to as cBN) (hereinafter collectively referred to as a tool substrate) is coated by an arc ion plating method. The formed covering tool is known.
Many proposals have been made to improve the cutting performance of the covering tool.

例えば、特許文献1には、工具基体表面に、CrとAlを主成分とする金属成分と、C、N、O、Bから選択される少なくとも1種以上の元素とから構成される硬質層を1層以上被覆した硬質皮膜被覆工具において、前記硬質層はSiを含有し、かつ、前記硬質層を相対的にSiに富みアモルファスである化合物相と、相対的にSiに乏しい結晶質の化合物相とから構成することが提案されており、そして、この硬質皮膜被覆工具は、高硬度鋼の切削加工の乾式化、高速化に対応し得る耐アブレッシブ摩耗性及び耐酸化摩耗性を有するとされている。 For example, Patent Document 1 describes a hard layer composed of a metal component containing Cr and Al as main components and at least one element selected from C, N, O, and B on the surface of a tool substrate. In a hard film coating tool coated with one or more layers, the hard layer contains Si, and the hard layer is relatively rich in Si and amorphous, and a crystalline compound phase relatively poor in Si. It has been proposed that this hard film coating tool has absorptive wear resistance and oxidation wear resistance that can cope with dry cutting and high speed of cutting of high hardness steel. There is.

特許文献2には、アーク放電式イオンプレーティング法により被覆された硬質皮膜であって、該硬質皮膜は(AlCr1−x−ySi)(N1−α−β−γαβγ)但し、x、y、α、β、γは夫々原子比率を示し、0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0、0≦α<0.15、0≦β<0.65、0.003<γ<0.2、0<α+β+γ<1.0で示される少なくとも1層以上からなり、X線回折測定において岩塩構造型の結晶構造を有し、(111)面又は(200)面の何れかの回折ピークの2θの半価幅が0.5度以上、2.0度以下であり、該硬質皮膜内の酸素は、結晶粒子内部よりも結晶粒子界面に多く存在する硬質皮膜が提案されており、この硬質皮膜は、切削工具基体との密着性に優れ、また、耐高温酸化特性に優れ、高硬度を有するとされている。 Patent Document 2 describes a hard film coated by an arc discharge type ion plating method, wherein the hard film is (Al x Cr 1-xy S y ) (N 1-α-β-γ B α). C β O γ ) However, x, y, α, β, and γ each indicate an atomic ratio, and 0.45 <x <0.85, 0 ≦ y <0.35, 0.50 ≦ x + y <1.0. , 0 ≦ α <0.15, 0 ≦ β <0.65, 0.003 <γ <0.2, 0 <α + β + γ <1.0, and consists of at least one layer, which is a rock salt in X-ray diffraction measurement. It has a structural type crystal structure, and the half-value width of 2θ of the diffraction peak on either the (111) plane or the (200) plane is 0.5 degrees or more and 2.0 degrees or less, and is contained in the hard film. A hard film has been proposed in which more oxygen is present at the crystal particle interface than inside the crystal particles, and this hard film has excellent adhesion to the cutting tool substrate, excellent high temperature oxidation resistance, and high hardness. It is said to have.

特許文献3には、被覆切削工具の耐久性の改善を目的として、基材の表面に硬質皮膜を被覆した被覆切削工具において、前記硬質皮膜は、前記基材の上に配置され、ナノビーム回折パターンからWCの結晶構造に指数付けされ、C、W、Tiおよび不可避成分からなる炭化物からなるa層と、前記a層の上に配置され、金属(半金属を含む)元素のうちAlの含有比率(原子%)が最も多く、Alの含有比率(原子%)が50%以上、Crの含有比率(原子%)が20%以上、AlとCrの合計の含有比率(原子%)が85%以上、Siの含有比率(原子%)が5%〜15%である窒化物又は炭窒化物からなるb層と、を含み、前記b層はNaCl型の結晶構造であり、前記a層の膜厚は、1nm〜30nmである被覆切削工具が提案されている。 In Patent Document 3, in a coated cutting tool in which a hard film is coated on the surface of a base material for the purpose of improving the durability of the coated cutting tool, the hard film is arranged on the base material and a nanobeam diffraction pattern is provided. Indexed to the crystal structure of WC, a layer consisting of carbides consisting of C, W, Ti and unavoidable components, and an A content ratio of Al among metal (including semi-metal) elements arranged on the a layer. (Atomic%) is the largest, Al content ratio (atomic%) is 50% or more, Cr content ratio (atomic%) is 20% or more, and total content ratio (atomic%) of Al and Cr is 85% or more. , A layer b made of a nitride or a carbide having a Si content ratio (atomic%) of 5% to 15%, and the layer b has a NaCl-type crystal structure, and the film thickness of the layer a Has proposed a coated cutting tool having a diameter of 1 nm to 30 nm.

特許文献4には、超硬合金基体に圧縮応力を有する硬質皮膜を被覆した硬質皮膜被覆工具において、第1硬質皮膜及び第2硬質皮膜が被覆され、第1硬質皮膜は、(AlCr1−a−bSi、a及びbは原子%、c及びdは原子比を表し、50≦a≦70、0≦b<15及び0.85≦c/d≦1.25であり、第2硬質皮膜は、(Ti1−eSi、eは原子%、f及びgは原子比を表し、1≦e≦20及び0.85≦f/g≦1.25であり、第1硬質皮膜と該第2硬質皮膜のX線回折における(200)面の面間隔(nm)を夫々、d1及びd2とした時に、0.965≦d1/d2≦0.990である硬質皮膜被覆工具が提案されており、この硬質皮膜被覆工具によれば、厚膜化した硬質皮膜における圧縮応力の低減と密着性を確保しつつ、耐摩耗性を向上させることができるとされている。 According to Patent Document 4, in a hard film coating tool in which a cemented carbide substrate is coated with a hard film having compressive stress, the first hard film and the second hard film are coated, and the first hard film is (Al a Cr 1). -A-b Si b ) c N d , a and b represent atomic%, c and d represent atomic ratios, 50 ≦ a ≦ 70, 0 ≦ b <15 and 0.85 ≦ c / d ≦ 1.25 In the second hard film, (Ti 1-e S e ) f N g , e represents atomic%, f and g represent atomic ratios, and 1 ≦ e ≦ 20 and 0.85 ≦ f / g ≦ 1. It is .25, and 0.965 ≦ d1 / d2 ≦ 0. When the surface spacing (nm) of the (200) planes in the X-ray diffraction of the first hard film and the second hard film is d1 and d2, respectively. A hard film coating tool of 990 has been proposed, and according to this hard film coating tool, it is possible to improve wear resistance while reducing compressive stress and ensuring adhesion in a thickened hard film. It is said that.

特開2002−337007号公報JP-A-2002-337007 特開2005−126736号公報Japanese Unexamined Patent Publication No. 2005-126736 国際公開第2014/156699号International Publication No. 2014/156699 特開2011−93085号公報Japanese Unexamined Patent Publication No. 2011-93085

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工条件はより厳しいものとなっている。
前記特許文献1〜4で提案されている従来被覆工具においては、これを鋼や鋳鉄の通常条件での切削に用いた場合には格別問題はないが、特に、切れ刃に高負荷が作用する過酷な切削加工条件で用いた場合には、チッピング等が発生しやすく、また、耐摩耗性も満足できるものではないため、比較的短時間で使用寿命に至るのが現状である。
In recent years, the performance of cutting equipment has been remarkably improved, while there are strong demands for labor saving, energy saving, and cost reduction for cutting, and the cutting conditions have become stricter accordingly.
In the conventional covering tools proposed in Patent Documents 1 to 4, there is no particular problem when this is used for cutting steel or cast iron under normal conditions, but a high load acts on the cutting edge in particular. When used under harsh cutting conditions, chipping and the like are likely to occur, and the wear resistance is not satisfactory. Therefore, the service life is currently reached in a relatively short time.

例えば、前記特許文献1、2で提案されている被覆工具におけるAlとCrとSiの複合窒化物(以下、「(Al,Cr,Si)N」で示す)層は、高硬度で耐酸化性、耐摩耗性にすぐれる皮膜であるが、高速高送り深穴ドリル加工のように切れ刃に連続的な高負荷が作用する切削加工に供した場合には、耐チッピング性が低下するという問題があった。
また、前記特許文献3では、(Al,Cr,Si)N層の下部に、W,Tiを含む炭化物層を設けることで密着性を改善し、また、前記特許文献4では、(Al,Cr,Si)N層をTiとSiの複合窒化物(以下、「(Ti,Si)N」で示す)層と積層することで耐摩耗性を改善しているが、いずれの被覆工具も、切れ刃に高負荷が作用する過酷な切削加工条件で用いた場合には、硬質被覆層のチッピング発生を避けることができず、これが原因で工具寿命が短命となるという問題があった。
For example, the composite nitride of Al, Cr, and Si (hereinafter referred to as "(Al, Cr, Si) N") layer in the coating tool proposed in Patent Documents 1 and 2 has high hardness and oxidation resistance. Although it is a film with excellent wear resistance, there is a problem that chipping resistance is reduced when it is used for cutting such as high-speed high-feed deep-hole drilling in which a continuous high load acts on the cutting edge. was there.
Further, in Patent Document 3, the adhesion is improved by providing a carbide layer containing W and Ti under the (Al, Cr, Si) N layer, and in Patent Document 4, (Al, Cr). , Si) Abrasion resistance is improved by laminating the N layer with the composite nitride of Ti and Si (hereinafter referred to as "(Ti, Si) N"), but all coating tools are cut. When used under harsh cutting conditions in which a high load acts on the blade, it is unavoidable that chipping of the hard coating layer occurs, which causes a problem that the tool life is shortened.

そこで、本発明者等は、上述のような観点から、切れ刃に高負荷が作用する高負荷切削加工、例えば、炭素鋼、合金鋼、ステンレス鋼等の被削材の高速高送り深穴ドリル加工で、硬質被覆層がすぐれた耐チッピング性を発揮すると同時に、長期の使用にわたって、すぐれた耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を重ねたところ、次のような知見を得た。 Therefore, from the above viewpoint, the present inventors have performed high-load cutting in which a high load acts on the cutting edge, for example, a high-speed high-feed deep hole drill for a work material such as carbon steel, alloy steel, or stainless steel. As a result of intensive research, the following findings were obtained in order to develop a coating tool that exhibits excellent chipping resistance for the hard coating layer during processing and at the same time exhibits excellent wear resistance over a long period of use. Obtained.

前記特許文献1〜4で提案されている(Al,Cr,Si)N層は、該層を構成する成分であるAlが高温硬さと耐熱性を向上させ、Crは高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、Siは耐熱性を向上させる作用を有するが、Si成分が含有されていることによって、(Al,Cr,Si)N層の格子歪みが大きくなるために、高負荷が作用した際、(Al,Cr,Si)N層はこれに耐え得る十分な靱性を備えておらず、そのため、チッピングを発生しやすいことを見出した。
特に、工具基体表面に被覆形成する硬質被覆層を、前記(Al,Cr,Si)N層と他の硬質皮膜との積層構造として形成した場合には、(Al,Cr,Si)N層自体の靱性の低さに加え、他の硬質層との積層界面の格子不整合による大きな歪が発生するため、硬質被覆層全体としての靱性が一段と低下し、チッピング発生を避けることはできない。
In the (Al, Cr, Si) N layer proposed in Patent Documents 1 to 4, Al, which is a component constituting the layer, improves high-temperature hardness and heat resistance, and Cr improves high-temperature strength and Cr. In the state where Cr and Al coexist and are contained, there is an action of improving high temperature oxidation resistance, and Si has an action of improving heat resistance. However, due to the inclusion of the Si component, (Al, Cr, Si) ) Due to the large lattice strain of the N layer, when a high load is applied, the (Al, Cr, Si) N layer does not have sufficient toughness to withstand this, and therefore chipping is likely to occur. I found.
In particular, when the hard coating layer to be coated on the surface of the tool substrate is formed as a laminated structure of the (Al, Cr, Si) N layer and another hard film, the (Al, Cr, Si) N layer itself. In addition to the low toughness of the hard coating layer, large strain occurs due to lattice mismatch at the laminated interface with other hard layers, so that the toughness of the hard coating layer as a whole is further lowered, and the occurrence of chipping cannot be avoided.

そこで、本発明者らは、(Al,Cr,Si)N層について、成分添加量を調整することによって、格子歪みが発生しにくい格子定数に定めるとともに、他の硬質層と積層した場合に、積層界面での格子不整合を極小とし、かつ、工具基体及び(Al,Cr,Si)N層のいずれに対しても密着性のよい他の硬質層との積層構造を採用することで、硬質被覆層の付着強度を向上させつつ、硬質被覆層全体としての高靱性化を図り、高負荷が作用する切削加工条件であっても、耐チッピング性と耐摩耗性にすぐれた被覆工具が得られることを見出したのである。 Therefore, the present inventors set the lattice constant of the (Al, Cr, Si) N layer so that lattice distortion is unlikely to occur by adjusting the amount of the component added, and when laminated with another hard layer, the present inventors set the lattice constant. Hard by minimizing the lattice mismatch at the laminated interface and adopting a laminated structure with other hard layers that have good adhesion to both the tool substrate and the (Al, Cr, Si) N layers. While improving the adhesion strength of the coating layer, the toughness of the hard coating layer as a whole is improved, and a coating tool with excellent chipping resistance and abrasion resistance can be obtained even under cutting conditions where a high load acts. I found that.

即ち、本発明の被覆工具は、具体的には、工具基体表面にA層とB層を少なくとも1層ずつ交互に積層して硬質被覆層を形成し、所定組成のAlとCrの複合窒化物(以下、「(Al,Cr)N」で示す)層をA層、また、所定組成の(Al,Cr,Si)N層をB層とし、A層を構成する結晶粒の格子定数(aA)とB層を構成する結晶粒の格子定数(aB)の差の絶対値(|aA−aB|)を小さな値とすることで格子不整合による靱性低下を抑制する。
また、A層およびB層からなる硬質被覆層全体についてX線回折した際、各層を構成する岩塩型立方晶構造の結晶粒の(200)面からの回折ピークを総括した回折ピーク強度I(200)の半値全幅を所定数値範囲内にすることで、硬質被覆層全体としての結晶性を高める。
さらに、A層及びB層を構成する岩塩型立方晶構造の結晶粒の(111)面からの回折ピークを総括した回折ピーク強度I(111)と、前記I(200)の比の値(I(200)/I(111))を所定数値範囲内にすることで、硬質被覆層の硬さと靱性をバランスさせる。
そして、本発明の被覆工具の硬質被覆層を、前記のA層とB層の交互積層構造として形成することにより、切れ刃に高負荷が作用する高負荷切削加工、例えば、炭素鋼、合金鋼、ステンレス鋼等の被削材の高速高送り深穴ドリル加工において、すぐれた耐チッピング性と耐摩耗性を発揮するのである。
That is, specifically, in the coating tool of the present invention, at least one layer A and one layer B are alternately laminated on the surface of the tool substrate to form a hard coating layer, and a composite nitride of Al and Cr having a predetermined composition. The layer (hereinafter referred to as "(Al, Cr) N") is the A layer, and the (Al, Cr, Si) N layer having a predetermined composition is the B layer, and the lattice constant (aA) of the crystal grains constituting the A layer is used. ) And the absolute value (| aA-aB |) of the difference between the lattice constants (aB) of the crystal grains constituting the B layer are set to a small value to suppress the decrease in toughness due to the lattice mismatch.
Further, when the entire hard coating layer composed of the A layer and the B layer is subjected to X-ray diffraction, the diffraction peak intensity I (200) summarizing the diffraction peaks from the (200) plane of the crystal grains of the rock salt type cubic structure constituting each layer. ) Is set within a predetermined numerical range to enhance the crystallinity of the hard coating layer as a whole.
Further, the value (I) of the ratio (I) of the diffraction peak intensity I (111) summarizing the diffraction peaks from the (111) plane of the crystal grains of the rock salt type cubic structure constituting the A layer and the B layer and the above I (200). By keeping (200) / I (111)) within a predetermined numerical range, the hardness and toughness of the hard coating layer are balanced.
Then, by forming the hard coating layer of the coating tool of the present invention as the alternating laminated structure of the A layer and the B layer, a high load cutting process in which a high load acts on the cutting edge, for example, carbon steel or alloy steel In high-speed, high-feed deep-hole drilling of work materials such as stainless steel, it exhibits excellent chipping resistance and wear resistance.

また、本発明の被覆工具は、前記A層とB層の交互積層の最表面であって、かつ、B層の直上に、TiとSiとWの複合窒化物(以下、「(Ti,Si,W)N」で示す)層からなるC層を形成し、前記C層からなる硬質被覆層のI(200)/I(111)の値を所定の範囲に定めることによって、一段とすぐれた耐チッピング性、耐摩耗性を発揮することができるのである。 Further, the covering tool of the present invention is a composite nitride of Ti, Si and W (hereinafter, "(Ti, Si)" on the outermost surface of the alternating lamination of the A layer and the B layer and directly above the B layer. , W) N ”) is formed, and the value of I (200) / I (111) of the hard coating layer composed of the C layer is set within a predetermined range to further improve the resistance. It can exhibit chipping resistance and abrasion resistance.

さらに、本発明の被覆工具は、前記交互積層の最表面を構成するB層と前記C層との界面に、Si成分の組成変調構造を有するD層を形成することによって、さらに一段とすぐれた耐チッピング性、耐摩耗性を発揮することができるのである。 Further, the covering tool of the present invention has further excellent resistance by forming a D layer having a composition modulation structure of Si component at the interface between the B layer and the C layer forming the outermost surface of the alternating lamination. It can exhibit chipping resistance and abrasion resistance.

この発明は、上記の研究結果に基づいてなされたものであって、次のような特徴を有する。
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体の何れかからなる工具基体の表面に、0.5〜8.0μmの合計層厚の硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、0.005〜4.0μmの1層平均層厚のA層と0.005〜4.0μmの1層平均層厚のB層が、それぞれ少なくとも1層以上交互に積層された交互積層構造を含み、
(b)前記A層は、
組成式:(Al1−xCr)N
で表した場合に、0.20≦x≦0.60(但し、xは原子比によるCrの含有割合を示す)を満足する平均組成を有するAlとCrの複合窒化物層、
(c)前記B層は、
組成式:(Al1−a−bCrSi)N
で表した場合に、0.20≦a≦0.60、0.01≦b≦0.20(但し、aは原子比によるCrの含有割合、bは原子比によるSiの含有割合を示す)を満足する平均組成を有するAlとCrとSiの複合窒化物層であり、
(d)前記交互積層構造を構成するA層及びB層は、岩塩型立方晶構造の結晶粒を含んでおり、
(e)前記A層の岩塩型立方晶構造の結晶粒及び前記B層の岩塩型立方晶構造の結晶粒について、結晶粒の格子定数を、それぞれaA(Å)、aB(Å)としたとき、aA(Å)とaB(Å)の差の絶対値|aA−aB|は、|aA−aB|≦0.05(Å)を満足し、
(f)前記A層とB層からなる交互積層構造全体についてのX線回折によって得られる総括した(200)面からのX線回折ピーク強度をI(200)、また、総括した(111)面からのX線回折ピーク強度をI(111)とした場合、I(200)の半値全幅は0.3〜1.0(度)であり、前記I(200)とI(111)の比の値は、1<I(200)/I(111)<10を満足することを特徴とする表面被覆切削工具、
(2)前記交互積層構造を構成するA層とB層の最表面であって、かつ、B層の直上に、0.1〜4.0μmの層厚のC層が設けられ、前記C層は、
組成式:(Ti1−α−βSiαβ)N
で表した場合に、0.01≦α≦0.20、0.01≦β≦0.10(但し、αは原子比によるSiの含有割合、βは原子比によるWの含有割合を示す)を満足する平均組成を有するTiとSiとWの複合窒化物層であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記C層からなる硬質被覆層について、X線回折によって得られる(200)面からのX線回折ピーク強度をIc(200)、また、(111)面からのX線回折ピーク強度をIc(111)とした場合、前記Ic(200)とIc(111)の比の値は、1<Ic(200)/Ic(111)<50を満足することを特徴とする前記(2)に記載の表面被覆切削工具。
(4)前記A層とB層からなる交互積層の最表面であるB層と、このB層の直上に設けられた前記C層との界面には0.1〜2.0μmの層厚のD層が設けられ、D層は
組成式:(Al1−k−l-m-nTiCrSi)N
で表した際、0.20≦k≦0.65、0.10≦l≦0.35、0<m≦0.15、0<n≦0.05(ただし、k,l,m,nは原子比で、0<(1−k−l−m−n))の平均組成を満足し、Si成分の含有割合が層厚方向に沿って変化する組成変調構造が形成されていることを特徴とする前記(2)または(3)に記載の表面被覆切削工具。」
The present invention has been made based on the above research results and has the following features.
"(1) A hard coating layer having a total layer thickness of 0.5 to 8.0 μm on the surface of a tool substrate made of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride sintered body. In the surface coating cutting tool provided with
(A) In the hard coating layer, at least one layer A having an average layer thickness of 0.005 to 4.0 μm and a layer B having an average layer thickness of 0.005 to 4.0 μm are alternately arranged. Including alternating laminated structure laminated in
(B) The A layer is
Composition formula: (Al 1-x Cr x ) N
A composite nitride layer of Al and Cr having an average composition satisfying 0.20 ≦ x ≦ 0.60 (where x indicates the content ratio of Cr according to the atomic ratio) when represented by.
(C) The B layer is
Composition formula: (Al 1-ab Cr a Si b ) N
When represented by, 0.20 ≦ a ≦ 0.60, 0.01 ≦ b ≦ 0.20 (where a indicates the Cr content ratio according to the atomic ratio, and b indicates the Si content ratio according to the atomic ratio). It is a composite nitride layer of Al, Cr and Si having an average composition satisfying the above.
(D) The layers A and B constituting the alternating laminated structure contain crystal grains having a rock salt-type cubic structure.
(E) When the lattice constants of the crystal grains of the rock salt type cubic structure of the A layer and the crystal grains of the rock salt type cubic structure of the B layer are aA (Å) and aB (Å), respectively. , The absolute value of the difference between aA (Å) and aB (Å) | aA-aB | satisfies | aA-aB | ≤0.05 (Å).
(F) The X-ray diffraction peak intensity from the summarized (200) plane obtained by X-ray diffraction for the entire alternating laminated structure composed of the A layer and the B layer is the summarized (200) plane and the summarized (111) plane. When the X-ray diffraction peak intensity from I (111) is I (111), the half-value total width of I (200) is 0.3 to 1.0 (degrees), and the ratio of the ratio of I (200) to I (111). A surface-coated cutting tool, characterized in that the value satisfies 1 <I (200) / I (111) <10.
(2) A layer C having a layer thickness of 0.1 to 4.0 μm is provided on the outermost surfaces of the layers A and B constituting the alternating laminated structure and directly above the layer B, and the layer C is provided. Is
Composition formula: (Ti 1-α-β Si α W β ) N
When represented by, 0.01 ≤ α ≤ 0.20, 0.01 ≤ β ≤ 0.10. (However, α indicates the Si content ratio according to the atomic ratio, and β indicates the W content ratio according to the atomic ratio). The surface coating cutting tool according to (1) above, which is a composite nitride layer of Ti, Si and W having an average composition satisfying the above.
(3) For the hard coating layer composed of the C layer, the X-ray diffraction peak intensity from the (200) plane obtained by X-ray diffraction is Ic (200), and the X-ray diffraction peak intensity from the (111) plane is determined. In the case of Ic (111), the value of the ratio of the Ic (200) to the Ic (111) is the above (2), which satisfies 1 <Ic (200) / Ic (111) <50. The surface coating cutting tool described.
(4) A layer thickness of 0.1 to 2.0 μm is provided at the interface between the B layer, which is the outermost surface of the alternating stack consisting of the A layer and the B layer, and the C layer provided directly above the B layer. D layer is provided, D layer composition formula: (Al 1-k-lmn Ti k Cr l Si m W n) n
When represented by, 0.20 ≦ k ≦ 0.65, 0.10 ≦ l ≦ 0.35, 0 <m ≦ 0.15, 0 <n ≦ 0.05 (where k, l, m, n) Satisfies the average composition of 0 <(1-k-l-mn)) in terms of atomic ratio, and the composition modulation structure in which the content ratio of the Si component changes along the layer thickness direction is formed. The surface coating cutting tool according to (2) or (3) above. "

なお、前記(1)でいう「総括した(200)面からのX線回折ピーク強度をI(200)、また、総括した(111)面からのX線回折ピーク強度をI(111)」とは、A層とB層との交互積層について、A層単独、あるいは、B層単独ではなく、A層とB層が重なりあった状態でX線回折することによって得られる交互積層構造全体について測定された(200)面あるいは(111)面からのX線回折ピーク強度をいう。 The X-ray diffraction peak intensity from the summarized (200) plane is I (200), and the X-ray diffraction peak intensity from the summarized (111) plane is I (111). Measures the alternating lamination of the A layer and the B layer for the entire alternating lamination structure obtained by X-ray diffraction in a state where the A layer and the B layer are overlapped, not the A layer alone or the B layer alone. It refers to the X-ray diffraction peak intensity from the (200) plane or the (111) plane.

本発明の被覆工具は、硬質被覆層が、(Al1−xCr)NからなるA層と(Al1−a−bCrSi)NからなるB層のそれぞれが、少なくとも1層ずつ交互に積層された交互積層を含み、A層の結晶粒の(200)面の回折ピーク角度から算出される格子定数aA(Å)と、B層の結晶粒の(200)面の回折ピーク角度から算出される格子定数aB(Å)との差を小さくしてA層とB層の格子不整合による靱性低下を抑制し、また、硬質被覆層全体としての総括した(200)面の回折ピーク強度の半値全幅を0.3〜1.0(度)の範囲内に定めて硬質被覆層全体としての結晶性を高めるとともに、A層とB層の岩塩型立方晶構造の結晶粒の総括した(111)面からのX線回折ピーク強度I(111)と総括した(200)面からのX線回折ピーク強度I(200)の比の値を、1<I(200)/I(111)<10と定めることで、硬質被覆層の硬さと靱性をバランスさせている。
これにより、切れ刃に高負荷が作用する炭素鋼、合金鋼、ステンレス鋼等の高負荷切削加工において、すぐれた耐チッピング性と耐摩耗性を発揮し、工具寿命の延命化が図られる。
In the coating tool of the present invention, the hard coating layer is at least one layer each of the A layer composed of (Al 1-x Cr x ) N and the B layer composed of (Al 1-ab Cr a Si b ) N. The lattice constant aA (Å) calculated from the diffraction peak angle of the (200) plane of the crystal grains of the A layer and the diffraction peak of the (200) plane of the crystal grains of the B layer are included, including alternating stacking in which they are laminated alternately. The difference from the lattice constant aB (Å) calculated from the angle is reduced to suppress the decrease in toughness due to the lattice mismatch between the A layer and the B layer, and the overall (200) plane diffraction of the hard coating layer as a whole. The half-value full width of the peak intensity is set within the range of 0.3 to 1.0 (degrees) to enhance the crystallinity of the hard coating layer as a whole, and the crystal grains of the rock salt type cubic structure of the A layer and the B layer are summarized. The value of the ratio of the X-ray diffraction peak intensity I (111) from the (111) plane to the X-ray diffraction peak intensity I (200) from the (200) plane is 1 <I (200) / I (111). ) <10, the hardness and toughness of the hard coating layer are balanced.
As a result, excellent chipping resistance and wear resistance are exhibited in high-load cutting of carbon steel, alloy steel, stainless steel, etc., in which a high load acts on the cutting edge, and the life of the tool can be extended.

また、本発明の被覆工具は、好ましくは、交互積層構造を構成するA層とB層の最表面であって、かつ、B層の直上に、(Ti1−α−βSiαβ)Nという平均組成を有するC層を形成し、C層からなる硬質被覆層の岩塩型立方晶構造の結晶粒のX線回折によって得られる(200)面からのX線回折ピーク強度をIc(200)、また、(111)面からのX線回折ピーク強度をIc(111)とした場合のIc(111)とIc(200)の比の値を1<Ic(200)/Ic(111)<50と定めることによって、よりすぐれた耐チッピング性と耐摩耗性が発揮される。
さらに好ましくは、前記B層と前記C層の界面にSiの組成変調構造を有するD層を形成することによって、より一段とすぐれた耐チッピング性と耐摩耗性が発揮され、より一段と工具寿命の延命化が図られる。
Further, the covering tool of the present invention is preferably the outermost surface of the A layer and the B layer constituting the alternating laminated structure, and directly above the B layer (Ti 1-α-β Si α W β ). The C layer having an average composition of N is formed, and the X-ray diffraction peak intensity from the (200) plane obtained by X-ray diffraction of the crystal grains of the rock salt type cubic structure of the hard coating layer composed of the C layer is Ic (200). ), And the value of the ratio of Ic (111) to Ic (200) when the X-ray diffraction peak intensity from the (111) plane is Ic (111) is 1 <Ic (200) / Ic (111) < By setting it to 50, better chipping resistance and abrasion resistance are exhibited.
More preferably, by forming the D layer having a Si composition modulation structure at the interface between the B layer and the C layer, further excellent chipping resistance and abrasion resistance are exhibited, and the life of the tool is further extended. Is planned.

本発明被覆工具の硬質被覆層の一つの態様の縦断面概略模式図を示す。A schematic vertical cross-sectional view of one aspect of the hard coating layer of the coating tool of the present invention is shown. (a)、(b)は、本発明被覆工具の硬質被覆層の別の態様の縦断面概略模式図を示す。(A) and (b) show schematic longitudinal sectional views of another aspect of the hard coating layer of the coating tool of the present invention. 硬質被覆層の形成に用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer is shown, (a) is a schematic plan view, and (b) is a schematic front view. 本発明被覆工具について測定したX線回折チャートの一例を示す。An example of the X-ray diffraction chart measured about the covering tool of this invention is shown. 本発明被覆工具のD層における組成変調構造の一つの態様の縦断面概略模式図を示す。A schematic vertical cross-sectional view of one aspect of the composition modulation structure in the D layer of the covering tool of the present invention is shown.

つぎに、この発明の被覆工具について、より詳細に説明する。 Next, the covering tool of the present invention will be described in more detail.

A層:
図1に、本発明被覆工具の硬質被覆層の縦断面概略模式図を示すが、交互積層構造からなる硬質被覆層のA層を構成する(Al,Cr)N層は、Alが高温硬さと耐熱性を向上させ、Crは高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用を有する。
前記(Al,Cr)NからなるA層の平均組成を、
組成式:(Al1−xCr)N
で表した場合に、Crの含有割合を示すx値(原子比)が0.20未満では、高温強度が低下するため耐チッピング性の劣化を招き、また、相対的なAl含有割合の増加により、六方晶構造の結晶粒が出現することによって硬さが低下し、耐摩耗性も低下する。
一方、x値(原子比)が0.60を超えると、相対的なAl含有割合の減少により、十分な高温硬さと耐熱性を確保することができなくなり、耐摩耗性が低下する。
したがって、A層におけるCrの含有割合x値(原子比)を、0.20≦z≦0.60と定めた。
Layer A:
FIG. 1 shows a schematic schematic vertical cross-sectional view of the hard coating layer of the coating tool of the present invention. Al is high temperature hardness in the (Al, Cr) N layer constituting the A layer of the hard coating layer having an alternating laminated structure. It has the effect of improving heat resistance, improving high temperature strength, and improving high temperature oxidation resistance in a state where Cr and Al coexist and contain.
The average composition of the A layer composed of (Al, Cr) N is
Composition formula: (Al 1-x Cr x ) N
When the x value (atomic ratio) indicating the Cr content ratio is less than 0.20, the high temperature strength decreases, which causes deterioration of chipping resistance, and the relative increase in Al content ratio causes the deterioration of chipping resistance. The appearance of crystal grains having a hexagonal structure reduces the hardness and wear resistance.
On the other hand, when the x value (atomic ratio) exceeds 0.60, sufficient high-temperature hardness and heat resistance cannot be ensured due to the relative decrease in the Al content ratio, and the wear resistance is lowered.
Therefore, the Cr content ratio x value (atomic ratio) in the A layer was set to 0.20 ≦ z ≦ 0.60.

B層:
A層との交互積層を構成する(Al,Cr,Si)N層からなるB層におけるCrは、A層の場合と同様に、高温強度を向上させ、硬質被覆層の耐チッピング性を向上させるとともに、Al成分との共存含有によって、高温耐酸化性向上にも寄与し、耐摩耗性を向上させる。
また、B層の構成成分であるSiは、耐熱性、耐熱塑性変形性を向上する作用を有するが、同時に、B層の格子歪を増加し、その結果、B層の耐チッピング性を低下させることになる。
前記(Al,Cr,Si)NからなるB層の平均組成を、
組成式:(Al1−a−bCrSi)N
で表した場合、Crの含有割合を示すa値(原子比)が0.20未満では、高温強度が低下するため耐チッピング性の劣化を招き、また、相対的なAl含有割合の増加により、六方晶構造の結晶粒が出現することによって硬さが低下し、耐摩耗性も低下する。
一方、a値(原子比)が0.60を超えると、相対的なAl含有割合の減少により、十分な高温硬さと耐熱性を確保することができなくなり、耐摩耗性が低下する。
また、Siの含有割合を示すb値(原子比)が0.01未満では、B層における耐熱性、耐熱塑性変形性の向上効果は少なく、一方、b値(原子比)が0.20を超えると、耐摩耗性向上効果に低下傾向がみられるようになると同時に、B層の格子歪みが増加するため、A層とB層間での格子不整合が増大し、その結果として、高負荷切削加工条件下での耐チッピング性が低下する。
したがって、B層におけるCrの含有割合a値(原子比)を、0.40≦a≦0.80と定め、また、Siの含有割合b値(原子比)を、0,01≦b≦0.20と定めた。
Layer B:
Cr in the B layer composed of the N layers (Al, Cr, Si) constituting the alternating lamination with the A layer improves the high temperature strength and the chipping resistance of the hard coating layer as in the case of the A layer. At the same time, the coexistence and content with the Al component contributes to the improvement of high temperature oxidation resistance and improves the wear resistance.
Further, Si, which is a constituent component of the B layer, has an action of improving heat resistance and heat-resistant plastic deformation, but at the same time, increases the lattice strain of the B layer, and as a result, lowers the chipping resistance of the B layer. It will be.
The average composition of the B layer composed of (Al, Cr, Si) N is
Composition formula: (Al 1-ab Cr a Si b ) N
When represented by, if the a value (atomic ratio) indicating the Cr content ratio is less than 0.20, the high temperature strength decreases, which causes deterioration of chipping resistance, and the relative increase in the Al content ratio causes the deterioration of the chipping resistance. The appearance of crystal grains having a hexagonal structure reduces the hardness and wear resistance.
On the other hand, when the a value (atomic ratio) exceeds 0.60, sufficient high-temperature hardness and heat resistance cannot be ensured due to the relative decrease in the Al content ratio, and the wear resistance is lowered.
Further, when the b value (atomic ratio) indicating the Si content ratio is less than 0.01, the effect of improving the heat resistance and heat-resistant plastic deformation in the B layer is small, while the b value (atomic ratio) is 0.20. If it exceeds the limit, the effect of improving the wear resistance tends to decrease, and at the same time, the lattice strain of the B layer increases, so that the lattice mismatch between the A layer and the B layer increases, and as a result, high load cutting Chipping resistance under processing conditions decreases.
Therefore, the Cr content ratio a value (atomic ratio) in the B layer is set to 0.40 ≦ a ≦ 0.80, and the Si content ratio b value (atomic ratio) is set to 0.01 ≦ b ≦ 0. It was set to .20.

A層とB層とからなる交互積層:
交互積層を構成するA層及びB層の一層平均層厚は0.005〜4.0μmとするが、これは、A層とB層の格子不整合を緩和すると同時に、A層及びB層の備える作用を十分に発揮させ、硬質被覆層全体としての耐チッピング性、耐摩耗性を発揮させるためである。
また、A層とB層とを、それぞれ少なくとも1層ずつ交互に積層することによって、合計層厚0.5〜8.0μmの硬質被覆層を構成するが、これは、硬質被覆層の合計層厚が0.5μm未満では、長期にわたる十分な耐摩耗性を発揮することができず、一方、合計層厚が8.0μmを超えるとチッピング、欠損、剥離等の異常損傷を発生しやすくなることから、硬質被覆層の合計層厚は0.5〜8.0μmとするものである。
なお、後述するように、A層とB層からなる交互積層の最表面であって、かつ、B層の直上に、0.1〜4.0μmの層厚のC層を設けて硬質被覆層とする場合がある(図2(a)参照)が、この場合には、交互積層構造を構成するA層とB層の合計層厚にC層の層厚を加えた層厚を、硬質被覆層の合計層厚とする。
Alternating lamination consisting of A layer and B layer:
The average layer thickness of the A layer and the B layer constituting the alternating stack is 0.005 to 4.0 μm, which alleviates the lattice mismatch between the A layer and the B layer and at the same time reduces the lattice mismatch of the A layer and the B layer. This is to fully exert the provided action and to exhibit the chipping resistance and abrasion resistance of the hard coating layer as a whole.
Further, at least one layer A and one layer B are alternately laminated to form a hard coating layer having a total layer thickness of 0.5 to 8.0 μm, which is a total layer of hard coating layers. If the thickness is less than 0.5 μm, sufficient wear resistance for a long period of time cannot be exhibited, while if the total layer thickness exceeds 8.0 μm, abnormal damage such as chipping, chipping, and peeling is likely to occur. Therefore, the total thickness of the hard coating layer is 0.5 to 8.0 μm.
As will be described later, a hard coating layer is provided with a C layer having a layer thickness of 0.1 to 4.0 μm, which is the outermost surface of the alternate lamination composed of the A layer and the B layer and directly above the B layer. In this case, the total layer thickness of the A layer and the B layer constituting the alternating laminated structure plus the layer thickness of the C layer is hard-coated. The total layer thickness.

A層とB層からなる交互積層を構成するにあたり、工具基体の表面直上にA層を形成することによって、工具基体と硬質被覆層の密着強度を確保することができ、また、硬質被覆層の最表面にB層を形成することによって、高負荷切削加工における耐チッピング性を確保することができる。
したがって、交互積層を構成するにあたり、工具基体の表面直上にA層を、また、硬質被覆層の最表面にB層を形成することが望ましい。
なお、後述するように、最表面のB層の直上に、組成式:(Ti1−α−βSiαβ)Nで表される平均組成を有するTiとSiとWの複合窒化物からなるC層(ただし、0.01≦α≦0.20、0.01≦β≦0.10であり、α、βは、それぞれ原子比によるSiの含有割合、Wの含有割合を示す)を形成することが好ましい(図2(a)参照)。
また、前記B層と前記C層の界面には、Si成分の含有割合が層厚方向に沿って変化する組成変調構造を有するD層が形成されていることがさらに好ましい(図2(b)、図5参照)。
In forming the alternating laminate consisting of the A layer and the B layer, the adhesion strength between the tool substrate and the hard coating layer can be ensured by forming the A layer directly on the surface of the tool substrate, and the hard coating layer By forming the B layer on the outermost surface, chipping resistance in high-load cutting can be ensured.
Therefore, it is desirable to form the A layer directly above the surface of the tool substrate and the B layer on the outermost surface of the hard coating layer in constructing the alternating lamination.
As will be described later, from a composite nitride of Ti, Si, and W having an average composition represented by the composition formula: (Ti 1-α-β Si α W β ) N directly above the B layer on the outermost surface. C layer (however, 0.01 ≦ α ≦ 0.20 and 0.01 ≦ β ≦ 0.10, where α and β indicate the Si content ratio and the W content ratio according to the atomic ratio, respectively). It is preferably formed (see FIG. 2A).
Further, it is more preferable that a D layer having a composition modulation structure in which the content ratio of the Si component changes along the layer thickness direction is formed at the interface between the B layer and the C layer (FIG. 2B). , See FIG. 5).

前記A層、B層の組成、一層平均層厚、硬質被覆層の合計層厚、また、後述するC層の層厚、組成、B層とC層の界面に形成される組成変調構造のD層におけるSi成分の層厚方向にわたる含有割合変化は、工具基体表面に垂直な硬質被覆層縦断面について、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy:EDS)を用いた断面測定により、測定することができる。 The composition of the A layer and the B layer, the average layer thickness of the layer, the total thickness of the hard coating layer, the layer thickness and composition of the C layer described later, and the D of the composition-modulated structure formed at the interface between the B layer and the C layer. The change in the content ratio of the Si component in the layer in the layer thickness direction is determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) for the longitudinal cross section of the hard coating layer perpendicular to the surface of the tool substrate. , It can be measured by cross-sectional measurement using an energy dispersive X-ray spectrum (EDS).

交互積層構造を構成するA層とB層の岩塩型立方晶構造の結晶粒の格子定数:
本発明では、A層とB層とからなる交互積層構造において、それぞれ層における岩塩型立方晶構造の結晶粒の格子定数を、それぞれaA、aBとした場合、A層およびB層を成膜する際の蒸着条件を制御することによって、A層とB層の格子定数の差(の絶対値)|aA−aB|が0.05(Å)以下となるようにする。
そして、これによって、A層とB層の格子不整合を極小化し、格子不整合による靱性低下を抑制することができる。
本発明では、A層とB層とからなる交互積層を、例えば、図3に示すアークイオンプレーティング装置を用いて成膜するが、A層、B層を成膜するに際して、例えば、ターゲットの組成とバイアス電圧によって岩塩型立方晶構造の結晶粒の格子定数をコントロールすることができる。
そして、A層とB層の岩塩型立方晶構造の結晶粒についてTEMによる電子線回折などを行い、A層における格子定数aA(Å)及びB層における格子定数aB(Å)を算出することができるが、算出された格子定数aA(Å)及びaB(Å)の差の絶対値|aA−aB|が0.05(Å)を超えると、A層とB層の格子不整合が大きくなりすぎて、高負荷切削加工時に硬質被覆層が破壊を起こしやすくなるので、A層とB層の岩塩型立方晶構造の結晶粒の格子定数の差の絶対値は|aA−aB|≦0.05(Å)とする。より好ましくは|aA−aB|<0.03(Å)である。
Lattice constant of crystal grains of rock salt type cubic structure of A layer and B layer constituting the alternating laminated structure:
In the present invention, in the alternating laminated structure consisting of A layer and B layer, when the lattice constants of the crystal grains of the rock salt type cubic structure in each layer are aA and aB, respectively, the A layer and the B layer are formed. By controlling the vapor deposition conditions at the time, the difference (absolute value) | aA-aB | of the lattice constants of the A layer and the B layer is set to 0.05 (Å) or less.
As a result, the lattice mismatch between the A layer and the B layer can be minimized, and the decrease in toughness due to the lattice mismatch can be suppressed.
In the present invention, the alternating lamination consisting of the A layer and the B layer is formed, for example, by using the arc ion plating apparatus shown in FIG. 3, but when the A layer and the B layer are formed, for example, the target The lattice constant of the crystal grains of the rock salt type cubic structure can be controlled by the composition and the bias voltage.
Then, electron beam diffraction by TEM is performed on the crystal grains of the rock salt type cubic structure of the A layer and the B layer, and the lattice constant aA (Å) in the A layer and the lattice constant aB (Å) in the B layer can be calculated. However, if the absolute value | aA-aB | of the difference between the calculated lattice constants aA (Å) and aB (Å) exceeds 0.05 (Å), the lattice mismatch between the A layer and the B layer becomes large. Therefore, the hard coating layer is liable to break during high-load cutting, so the absolute value of the difference in the lattice constants of the crystal grains of the rock salt-type cubic structure of the A layer and the B layer is | aA-aB | ≤0. Let it be 05 (Å). More preferably, | aA-aB | <0.03 (Å).

また、A層とB層の交互積層からなる硬質被覆層全体に対して、各層を構成する岩塩型立方晶構造の結晶粒についてX線回折を行い、総括した(200)面からのX線回折ピーク強度をI(200)、また、総括した(111)面からのX線回折ピーク強度をI(111)として求めた場合、X線回折ピーク強度I(200)の半値全幅が0.3(度)未満であると、結晶粒が粗粒化するため、クラックが粒界を通って伝播しやすくなり耐チッピング性が低下する。
一方、I(200)の半値全幅が1.0(度)を超えると結晶粒が非晶質化し、十分な結晶性を維持できなくなるため、耐摩耗性が低下する。
したがって、I(200)の半値全幅は0.3〜1.0(度)とする。
そして、A層とB層を成膜するアークイオンプレーティング条件のうちの、アーク電流、バイアス電圧、反応ガス圧と成膜温度をコントロールすることによって、I(200)の半値全幅を0.3〜1.0(度)の範囲に維持することができる。
Further, X-ray diffraction was performed on the entire hard coating layer composed of alternating layers of A layer and B layer for the crystal grains of the rock salt type cubic structure constituting each layer, and the X-ray diffraction from the summarized (200) plane was performed. When the peak intensity is determined as I (200) and the X-ray diffraction peak intensity from the summarized (111) plane is determined as I (111), the half-value total width of the X-ray diffraction peak intensity I (200) is 0.3 ( If it is less than the degree), the crystal grains are coarse-grained, so that cracks are easily propagated through the grain boundaries and the chipping resistance is lowered.
On the other hand, when the full width at half maximum of I (200) exceeds 1.0 (degrees), the crystal grains are amorphized and sufficient crystallinity cannot be maintained, so that the wear resistance is lowered.
Therefore, the full width at half maximum of I (200) is set to 0.3 to 1.0 (degrees).
Then, among the arc ion plating conditions for forming the A layer and the B layer, the full width at half maximum of I (200) is set to 0.3 by controlling the arc current, the bias voltage, the reaction gas pressure and the film forming temperature. It can be maintained in the range of ~ 1.0 (degrees).

また、A層とB層の交互積層からなる硬質被覆層全体に対して、各層を構成する岩塩型立方晶構造の結晶粒についてX線回折を行って求めた前記I(200)、I(111)は、これらの比の値I(200)/I(111)が1以下であると、最密面である(111)面配向が強いことから耐チッピング性が低下し、一方、I(200)/I(111)の値が10以上であると、(200)配向が極端に強くなるため耐摩耗性が低下する。
したがって、すぐれた耐チッピング性と耐摩耗性を兼備するためには、I(200)/I(111)の値は、1<I(200)/I(111)<10とすることが必要である。
そして、A層とB層を成膜するアークイオンプレーティング条件のうちの、例えば、アーク電流、バイアス電圧、反応ガス圧、成膜温度をコントロールすることによって、I(200)/I(111)の値を上記範囲に維持することができる。
Further, the I (200) and I (111) obtained by performing X-ray diffraction on the crystal grains of the rock salt type cubic structure constituting each layer with respect to the entire hard coating layer composed of alternating layers of A layer and B layer. ), When the value I (200) / I (111) of these ratios is 1 or less, the chipping resistance is lowered because the (111) plane orientation, which is the closest surface, is strong, while I (200). ) / I (111) is 10 or more, the orientation of (200) becomes extremely strong, and the wear resistance is lowered.
Therefore, in order to have both excellent chipping resistance and abrasion resistance, the value of I (200) / I (111) needs to be 1 <I (200) / I (111) <10. is there.
Then, among the arc ion plating conditions for forming the A layer and the B layer, for example, by controlling the arc current, the bias voltage, the reaction gas pressure, and the film forming temperature, I (200) / I (111) The value of can be maintained in the above range.

図4に、本発明被覆工具について測定したX線回折チャートの一例を示すが、該チャートから、交互積層構造を構成するA層とB層の岩塩型立方晶構造の結晶粒全体から求めたI(200)/I(111)の値は1を超え10未満であり、また、I(200)の半値全幅は0.3〜1.0(度)の範囲内であることがわかる。 FIG. 4 shows an example of an X-ray diffraction chart measured for the coating tool of the present invention. From the chart, I obtained from the entire crystal grains of the rock salt type cubic structure of the A layer and the B layer constituting the alternating laminated structure. It can be seen that the value of (200) / I (111) is more than 1 and less than 10, and the full width at half maximum of I (200) is in the range of 0.3 to 1.0 (degrees).

C層:
本発明の被覆工具は、硬質被覆層を前記A層とB層の交互積層として構成することにより、すぐれた耐チッピング性と耐摩耗性が発揮されるが、図2(a)、(b)に示すように、前記交互積層を構成するA層とB層の最表面であって、かつ、B層の直上に、TiとSiとWの複合窒化物からなるC層を0.1〜4.0μmの層厚で形成することによって、特に高速切削における耐摩耗性をより向上させることができる。
前記C層は、
組成式:(Ti1−α−βSiαβ)N
で表した場合、0.01≦α≦0.20、0.01≦β≦0.10(但し、αは原子比によるSiの含有割合、βは原子比によるWの含有割合を示す)を満足する平均組成を有する(Ti,Si,W)N層である。
Tiを主成分とする前記C層において、Si成分を含有することによって、耐酸化性、耐熱塑性変形性が向上することに加え、W成分を含有することによって、さらに高温強度が向上し、耐摩耗性が向上する。
ただ、Siの含有割合αが0.01未満では、耐酸化性、耐熱塑性変形性の向上効果は少なく、一方、αが0.20を超えると格子歪が増大し、高負荷切削条件で自壊しやすくなる。
また、Wの含有割合βが0.01未満では、高温での強度向上の効果が小さく、一方、βが0.10を超えると格子歪みが増大し、高負荷切削における耐チッピング性が低下する。
したがって、α、βは、それぞれ、0.01≦α≦0.20、0.01≦β≦0.10(但し、α、βは原子比)の範囲とする。
なお、前記C層の層厚は、過大な層内歪みによる剥離等の異常損傷を防止しつつ硬質被覆層全体としての耐チッピング性、耐摩耗性を発揮させるという観点から0.1〜4.0μmとすることが好ましい。
Layer C:
The coating tool of the present invention exhibits excellent chipping resistance and abrasion resistance by forming the hard coating layer as an alternating stack of the A layer and the B layer, but FIGS. 2 (a) and 2 (b) show. As shown in the above, a C layer made of a composite nitride of Ti, Si, and W is 0.1 to 4 on the outermost surfaces of the A layer and the B layer constituting the alternating lamination and directly above the B layer. By forming the layer with a layer thickness of 0.0 μm, wear resistance can be further improved especially in high-speed cutting.
The C layer is
Composition formula: (Ti 1-α-β Si α W β ) N
When represented by, 0.01 ≤ α ≤ 0.20 and 0.01 ≤ β ≤ 0.10. (However, α indicates the Si content ratio according to the atomic ratio, and β indicates the W content ratio according to the atomic ratio). It is an N layer having a satisfactory average composition (Ti, Si, W).
In the C layer containing Ti as a main component, the inclusion of the Si component improves the oxidation resistance and heat-resistant plastic deformation, and the inclusion of the W component further improves the high-temperature strength and resistance. Abrasion is improved.
However, when the Si content ratio α is less than 0.01, the effect of improving the oxidation resistance and the heat-resistant plastic deformation is small, while when α exceeds 0.20, the lattice strain increases, and it is self-contained under high load cutting conditions. It becomes easy to break.
Further, when the W content ratio β is less than 0.01, the effect of improving the strength at high temperature is small, while when β exceeds 0.10, the lattice strain increases and the chipping resistance in high load cutting decreases. ..
Therefore, α and β are in the range of 0.01 ≦ α ≦ 0.20 and 0.01 ≦ β ≦ 0.10 (where α and β are atomic ratios), respectively.
The layer thickness of the C layer is 0.1 to 4 from the viewpoint of exhibiting chipping resistance and abrasion resistance of the hard coating layer as a whole while preventing abnormal damage such as peeling due to excessive intra-layer strain. It is preferably 0 μm.

また、C層からなる硬質被覆層の岩塩型立方晶構造の結晶粒に対してX線回折を行って求めたIc(200)、Ic(111)について、これらの比の値Ic(200)/Ic(111)は1を超え50未満であることが好ましい。
これは、Ic(200)/Ic(111)の値が1以下であると、最密面である(111)面配向が強く耐チッピング性が低下し、一方、Ic(200)/Ic(111)の値が50以上であると、(200)配向が極端に強くなり耐摩耗性が低下するという理由による。また、より好ましい範囲は1を超え30未満である。
Further, for Ic (200) and Ic (111) obtained by X-ray diffraction on the crystal grains of the rock salt type cubic structure of the hard coating layer composed of the C layer, the values of these ratios Ic (200) / Ic (111) is preferably more than 1 and less than 50.
This is because when the value of Ic (200) / Ic (111) is 1 or less, the (111) plane orientation, which is the densest surface, is strong and the chipping resistance is lowered, while Ic (200) / Ic (111). ) Is 50 or more, the reason is that (200) orientation becomes extremely strong and wear resistance is lowered. Further, a more preferable range is more than 1 and less than 30.

さらに、図2(b)に示すように、例えば、交互積層のB層のSi含有割合の値bとC層のSi含有割合の値αが同等の値ではなく、B層とC層間ではSiの含有割合にギャップがあるような場合には、B層とC層との密着性を高めるために、B層とC層との界面に組成変調構造を有するD層を0.1〜2.0μmの層厚で形成することが好ましい。
前記D層は、
組成式:(Al1−k−l-m-nTiCrSi)N
で表した際、0.20≦k≦0.65、0.10≦l≦0.35、0<m≦0.15、0<n≦0.05(ただし、k,l,m,nは原子比で、0<(1−k−l−m−n))の平均組成を有し、かつSi成分の含有割合が層厚方向に沿って変化する組成変調構造を有する層である。
なお、組成変調構造とは、B層とC層の界面において、B層からC層に向かって、あるいは、C層からB層に向かって、Si含有割合が、層厚方向に沿って連続的に変化する層構造をいう。
B層とC層との界面に組成変調構造が形成されていることによって、B層とC層間の急激なSi含有量変化が抑制され、その結果、B層とC層との密着性が高まり、剥離等の発生が防止され耐チッピング性が向上する。
前記組成変調構造は、例えば、図3(a)に示されるように、B層を形成するためのAl−Cr−Si合金ターゲットとC層を形成するためのTi−Si−W合金ターゲットを、アークイオンプレーティング装置に対向配置し、アークイオンプレーティング装置内を回転する回転テーブル上に自転可能に装着された工具基体に対して、B層とC層の同時蒸着を行うことによって形成することができる。なお、前記組成式を満たしていれば、D層はB層を形成するためのAl−Cr−Si合金ターゲットに代えて、A層を形成するためのAl−Cr合金ターゲットとC層を形成するためのTi−Si−W合金ターゲットを用いた同時蒸着を行うことで形成しても同様の効果を発現できる。
上記の手法で形成したD層の組成変調構造におけるSi含有割合は、図5に示されるように、D層内の層厚方向に沿ってC層とB層またはA層のSi成分の含有割合の間を連続的に変化する。
また、組成変調構造の存在の確認は、B層およびC層の工具基体表面に垂直な縦断面について、工具基体表面に垂直方向(層厚方向)にSiの含有割合を測定し、B層においてSiの平均組成bから外れたB層の位置と、C層においてSiの平均組成αから外れたC層の位置を特定し、この両位置の間を、組成変調構造が形成されている領域であるとして識別することができる。
Further, as shown in FIG. 2B, for example, the value b of the Si content ratio of the alternately laminated B layer and the value α of the Si content ratio of the C layer are not equivalent values, and Si between the B layer and the C layer. When there is a gap in the content ratio of, in order to improve the adhesion between the B layer and the C layer, a D layer having a composition-modulating structure at the interface between the B layer and the C layer is added to 0.1 to 2. It is preferably formed with a layer thickness of 0 μm.
The D layer is
Composition formula: (Al 1-k-lmn Ti k Cr l Si m W n) N
When represented by, 0.20 ≦ k ≦ 0.65, 0.10 ≦ l ≦ 0.35, 0 <m ≦ 0.15, 0 <n ≦ 0.05 (where k, l, m, n) Is a layer having an average composition of 0 <(1-kl-mn)) in terms of atomic ratio and having a composition-modulating structure in which the content ratio of the Si component changes along the layer thickness direction.
In the composition modulation structure, at the interface between the B layer and the C layer, the Si content ratio is continuous from the B layer to the C layer or from the C layer to the B layer along the layer thickness direction. A layered structure that changes to.
By forming the composition modulation structure at the interface between the B layer and the C layer, a sudden change in the Si content between the B layer and the C layer is suppressed, and as a result, the adhesion between the B layer and the C layer is enhanced. , Peeling is prevented and chipping resistance is improved.
In the composition modulation structure, for example, as shown in FIG. 3A, an Al—Cr—Si alloy target for forming the B layer and a Ti—Si—W alloy target for forming the C layer are used. It is formed by simultaneously vapor-depositing layers B and C on a tool substrate that is placed facing the arc ion plating device and mounted on a rotary table that rotates in the arc ion plating device so as to rotate. Can be done. If the above composition formula is satisfied, the D layer forms an Al—Cr alloy target for forming the A layer and a C layer instead of the Al—Cr—Si alloy target for forming the B layer. The same effect can be exhibited even if it is formed by simultaneous vapor deposition using a Ti—Si—W alloy target for the purpose.
As shown in FIG. 5, the Si content ratio in the composition modulation structure of the D layer formed by the above method is the content ratio of the Si component of the C layer and the B layer or the A layer along the layer thickness direction in the D layer. It changes continuously between.
Further, to confirm the existence of the composition modulation structure, the Si content ratio is measured in the vertical direction (layer thickness direction) to the tool substrate surface in the vertical cross section perpendicular to the tool substrate surface of the B layer and the C layer, and the Si content ratio is measured in the B layer. The position of the B layer deviating from the average composition b of Si and the position of the C layer deviating from the average composition α of Si in the C layer are specified, and the position between these two positions is the region where the composition modulation structure is formed. Can be identified as being.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、炭化タングステン(WC)基超硬合金を工具(ドリル)基体とする表面被覆ドリルについて説明するが、炭窒化チタン基サーメットあるいは立方晶窒化硼素(cBN)焼結体を工具基体とする被覆工具(インサート、エンドミル等)についても同様である。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
As a specific description, a surface-coated drill using a tungsten carbide (WC) -based cemented carbide as a tool (drill) base will be described, but a titanium carbonitride-based cermet or a cubic boron nitride (cBN) sintered body will be described. The same applies to a covering tool (insert, end mill, etc.) using the above as a tool base.

[実施例1]
≪A層とB層の交互積層からなる硬質被覆層を備えた被覆工具≫
ドリル基体の作製::
原料粉末として、いずれも0.5〜5μmの平均粒径を有する、Co粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結した後、直径が3mmの工具基体形成用丸棒焼結体を形成し、さらに研削加工にて、溝形成部の直径×長さがそれぞれ2mm×45mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製のドリル基体1〜3を製造した。
[Example 1]
<< Coating tool with a hard coating layer consisting of alternating layers A and B >>
Preparation of drill substrate ::
As raw material powders, Co powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and WC powder having an average particle size of 0.5 to 5 μm are prepared, and these raw material powders are shown in Table 1. It was blended to the blending composition shown, further waxed, wet-mixed in a ball mill for 72 hours, dried under reduced pressure, press-molded at a pressure of 100 MPa, and these powder compacts were sintered and then having a diameter of 3 mm. A WC group that forms a round bar sintered body for forming a tool substrate, and is further ground by grinding to have dimensions of 2 mm x 45 mm for each of the diameter and length of the groove forming portion, and a two-flute shape with a twist angle of 30 degrees. Drill substrates 1 to 3 made of super hard alloy were manufactured.

成膜工程:
前記ドリル基体1〜3に対して、図3に示したアークイオンプレーティング装置を用いて、
(a)ドリル基体1〜3を、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着する。
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、0.5〜2.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に−200〜−1000Vの直流バイアス電圧を印加し、もってドリル基体表面をアルゴンイオンによって5〜30分間ボンバード処理する。
(c)次いで、A層とB層の交互積層構造からなる硬質被覆層を次のようにして形成した。
まず、装置内に反応ガスとして窒素ガスを導入して表2に示す2〜10Paの範囲内の所定の反応雰囲気とすると共に、同じく表2に示す装置内温度に維持し、また、同じく表2に示す回転テーブルの回転数に制御し、回転テーブル上で自転しながら回転するドリル基体に表2に示す−25〜−75Vの範囲内の所定の直流バイアス電圧を印加し、かつ、A層形成用カソード電極(蒸発源)とアノード電極との間に表2に示す90〜180Aの範囲内の所定の電流を流してアーク放電を発生させ、所定の層厚のA層を形成する。
その後、B層形成用カソード電極(蒸発源)とアノード電極との間に同じく表2に示す90〜180Aの範囲内の所定の電流を流してアーク放電を発生させ、前記で成膜したA層の表面に、所定の層厚のB層を形成する。
前記A層の形成とB層の形成を交互に繰り返し行い、表4に示される平均組成、一層平均層厚、合計層厚のA層とB層の交互積層構造からなる硬質被覆層を蒸着形成することによって、表4に示す本発明被覆工具(「本発明工具」という)1〜6を作製した。
上記(a)〜(c)の蒸着成膜工程において、特にA層とB層の蒸着条件のうち、バイアス電圧を調整することによってA層とB層の岩塩型立方晶構造の結晶粒の格子定数aA、aBを制御し、また、アーク電流値、反応ガスとしての窒素ガス分圧、バイアス電圧および成膜温度等を調整することによって、A層とB層からなる硬質被覆層全体の岩塩型立方晶構造の結晶粒のI(200)の半値全幅、I(200)/I(111)の値を制御した。
なお、実施例1の前記(a)〜(c)の工程では、図3中に示されるC層形成用Ti−Si−W合金ターゲットについては、使用しない。
Film formation process:
Using the arc ion plating apparatus shown in FIG. 3, the drill bases 1 to 3 were used.
(A) The drill bases 1 to 3 are ultrasonically cleaned in acetone, dried, and then gently placed on the outer peripheral portion at a position radially separated from the central axis on the rotary table in the arc ion plating apparatus by a predetermined distance. And attach it.
(B) First, while holding by evacuating the system to 10 -2 Pa or less of vacuum, after heating the inside of the apparatus to 500 ° C. by the heater, set to Ar gas atmosphere 0.5~2.0Pa, A DC bias voltage of −200 to −1000 V is applied to the tool substrate that rotates while rotating on the rotary table, and the surface of the drill substrate is bombarded with argon ions for 5 to 30 minutes.
(C) Next, a hard coating layer having an alternating laminated structure of A layer and B layer was formed as follows.
First, nitrogen gas is introduced into the apparatus as a reaction gas to create a predetermined reaction atmosphere within the range of 2 to 10 Pa shown in Table 2, and the temperature inside the apparatus also shown in Table 2 is maintained. A predetermined DC bias voltage within the range of 25 to -75 V shown in Table 2 is applied to the drill substrate that rotates while rotating on the rotary table under the control of the rotation speed of the rotary table shown in Table 2, and the A layer is formed. A predetermined current in the range of 90 to 180A shown in Table 2 is passed between the cathode electrode (evaporation source) and the anode electrode to generate an arc discharge, and an A layer having a predetermined layer thickness is formed.
After that, a predetermined current in the range of 90 to 180A also shown in Table 2 is passed between the cathode electrode (evaporation source) for forming the B layer and the anode electrode to generate an arc discharge, and the A layer formed above is formed. A layer B having a predetermined layer thickness is formed on the surface of the above.
The formation of the A layer and the B layer are alternately repeated to form a hard coating layer having an alternating laminated structure of A layer and B layer having the average composition, the average layer thickness, and the total layer thickness shown in Table 4. By doing so, the coated tools of the present invention (referred to as “tools of the present invention”) 1 to 6 shown in Table 4 were produced.
In the vapor deposition deposition steps of (a) to (c) above, among the vapor deposition conditions of the A layer and the B layer, the lattice of crystal grains having a rock salt type cubic structure of the A layer and the B layer by adjusting the bias voltage. By controlling the constants aA and aB and adjusting the arc current value, the partial pressure of nitrogen gas as the reaction gas, the bias voltage, the film formation temperature, etc., the rock salt type of the entire hard coating layer composed of the A layer and the B layer. The half-value full width of I (200) and the value of I (200) / I (111) of the crystal grains having a cubic structure were controlled.
In the steps (a) to (c) of Example 1, the Ti—Si—W alloy target for forming the C layer shown in FIG. 3 is not used.

比較のため、ドリル基体1〜3に対して、実施例1と同様に、表3に示す条件で、A層とB層からなる交互積層構造の硬質被覆層を蒸着することにより、表5に示す比較例被覆工具(「比較例工具」という)1〜6を作製した。 For comparison, Table 5 shows that the drill substrates 1 to 3 were deposited with a hard coating layer having an alternating laminated structure consisting of layers A and B under the conditions shown in Table 3 in the same manner as in Example 1. The shown comparative example covering tools (referred to as "comparative example tools") 1 to 6 were produced.

上記で作製した本発明工具1〜6および比較例工具1〜6について、硬質被覆層の工具基体表面に垂直な縦断面を、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、エネルギー分散型X線分光法(EDS)を用い、A層、B層の組成、一層層厚を複数箇所で測定し、これを平均することにより、平均組成、一層平均層厚を算出した。
また、工具基体表面に垂直な方向からの薄膜X線回折、あるいは、工具基体表面と平行な方向から、工具基体表面に垂直なA層とB層の縦断面についてTEMによる電子線回折を行い、各層の岩塩型立方晶構造の結晶粒の格子定数aA、aBを求めるとともに、|aA−aB|の値を算出した。
さらに、工具基体表面に垂直な方向からA層とB層からなる硬質被覆層全体についてX線回折を行い、(200)面からの総括したX線回折ピーク(A層とB層の重なったX線回折ピーク)の半値全幅を測定し、また、総括したX線回折ピーク(A層とB層の重なったX線回折ピーク)強度I(200)、I(111)の値からI(200)/I(111)の値を算出した(図4参照)。
なお、X線回折には、Cu管球を用いたX線回折装置を用いた。
For the tools 1 to 6 of the present invention and the tools 1 to 6 of the comparative examples produced above, the vertical cross section perpendicular to the surface of the tool substrate of the hard coating layer is obtained by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy. Using dispersed X-ray spectroscopy (EDS), the composition of the A layer and the B layer and the layer thickness were measured at a plurality of points, and the average composition and the average layer thickness were calculated by averaging them.
In addition, thin film X-ray diffraction from a direction perpendicular to the surface of the tool substrate, or electron diffraction by TEM is performed on the vertical cross sections of the A layer and the B layer perpendicular to the surface of the tool substrate from a direction parallel to the surface of the tool substrate. The lattice constants aA and aB of the crystal grains of the rock salt type cubic structure of each layer were obtained, and the values of | aA-aB | were calculated.
Further, X-ray diffraction is performed on the entire hard coating layer composed of the A layer and the B layer from the direction perpendicular to the surface of the tool substrate, and the X-ray diffraction peak (X in which the A layer and the B layer overlap) is summarized from the (200) plane. The half-value full width of the line diffraction peak) was measured, and the X-ray diffraction peaks (X-ray diffraction peaks in which the A layer and the B layer overlapped) intensities I (200) and I (111) were evaluated as I (200). The value of / I (111) was calculated (see FIG. 4).
An X-ray diffractometer using a Cu tube was used for X-ray diffraction.

表4、表5に、本発明工具1〜6、比較例工具1〜6の格子定数の差の絶対値|aA―aB|、I(200)の半値全幅、I(200)/I(111)の値を示す。 Tables 4 and 5 show the absolute values of the differences in the lattice constants of the tools 1 to 6 of the present invention and the tools 1 to 6 of the comparative examples | aA-aB |, the full width at half maximum of I (200), and I (200) / I (111). ) Indicates the value.

つぎに、本発明工具1〜6および比較例工具1〜6について、
被削材−平面寸法:合金鋼SCM440の板材、
切削速度: 80 m/min.、
送り: 0.08 mm/rev、
穴深さ: 40 mm、
の条件でのSCM440の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.および0.06mm/rev)、を行い(水溶性切削油使用)、先端切れ刃面の逃げ面摩耗幅が0.3mmに至るもしくは刃先のチッピング発生を原因として寿命に至るまでの穴あけ加工数を測定するとともに、刃先の損耗状態を観察した。加工は穴あけ加工数1000穴まで行い、寿命に至らなかったものは1000穴加工時の逃げ面摩耗幅を測定した。
表6に、測定結果を示す。
Next, regarding the tools 1 to 6 of the present invention and the tools 1 to 6 of the comparative example,
Work Material-Plane Dimensions: Plate Material of Alloy Steel SCM440,
Cutting speed: 80 m / min. ,
Feed: 0.08 mm / rev,
Hole depth: 40 mm,
SCM440 wet high-speed high-feed drilling cutting test (normal cutting speed and feed are 50 m / min. And 0.06 mm / rev, respectively) under the conditions of (using water-soluble cutting oil), tip cutting edge The number of drilling operations until the flank wear width of the surface reached 0.3 mm or the life was reached due to the occurrence of chipping of the cutting edge was measured, and the worn state of the cutting edge was observed. The machining was performed up to 1000 holes, and the flank wear width at the time of 1000 holes was measured for those that did not reach the end of their life.
Table 6 shows the measurement results.

表6の結果によれば、本発明工具1〜6では、逃げ面摩耗幅の平均は約0.16mmであり、チッピングの発生は認められないのに対して、比較例工具1〜6は逃げ面摩耗が進行し、また、短時間でチッピング発生により寿命となるものもあった。 According to the results in Table 6, in the tools 1 to 6 of the present invention, the average flank wear width is about 0.16 mm, and no chipping is observed, whereas the tools 1 to 6 in Comparative Example have flakes. Surface wear progressed, and in some cases, chipping occurred in a short time and the life was reached.

[実施例2]
≪A層とB層の交互積層及びC層からなる硬質被覆層を備えた被覆工具≫
実施例1で作製したWC基超硬合金製のドリル基体1〜3を、図3に示したアークイオンプレーティング装置に装入し、実施例1の場合と同様にして、表2に示す条件でA層とB層の交互積層を形成した。ただし、交互積層の最表面はB層とした。
ついで、表7に示す条件で、B層の表面に所定の平均組成、所定の層厚の(Ti,Si,W)N層からなるC層を成膜し、A層とB層の交互積層及びC層からなる硬質被覆層を蒸着形成した表8に示す本発明工具11〜16を作製した(図2(a)参照)。
[Example 2]
<< Coating tool with alternating lamination of A layer and B layer and hard coating layer consisting of C layer >>
The WC-based cemented carbide drill bases 1 to 3 produced in Example 1 were charged into the arc ion plating apparatus shown in FIG. 3, and the conditions shown in Table 2 were the same as in the case of Example 1. A layer and a B layer were alternately laminated. However, the outermost surface of the alternating lamination was the B layer.
Then, under the conditions shown in Table 7, a C layer composed of (Ti, Si, W) N layers having a predetermined average composition and a predetermined layer thickness is formed on the surface of the B layer, and the A layer and the B layer are alternately laminated. The tools 11 to 16 of the present invention shown in Table 8 in which a hard coating layer composed of the C layer and the C layer were vapor-deposited were produced (see FIG. 2A).

上記で作製した本発明工具11〜16について、実施例1と同様にして、各層の平均組成、一層平均層厚を算出した。
また、工具基体表面に垂直な方向からの薄膜X線回折、あるいは、工具基体表面に平行な方向から、工具基体表面に垂直なA層とB層の縦断面のそれぞれについてTEMによる電子線回折を行い、各層の岩塩型立方晶構造の結晶粒の格子定数aA、aBを求めるとともに、|aA−aB|の値を算出した。
また、工具基体表面に垂直な方向から、A層およびB層の(200)面からの総括したX線回折ピーク(A層とB層の重なったX線回折ピーク)を測定し、その半値全幅を算出した。
また、工具基体表面に垂直な方向から、A層およびB層の(200)面からの総括したX線回折ピーク(A層およびB層の重なったX線回折ピーク)とC層の(200)面からのX線回折ピークをIc(200)として測定し、A層およびB層の(111)面からの総括したX線回折ピーク(A層およびB層の重なったX線回折ピーク)とC層(111)面からのX線回折ピークをIc(111)として測定し、A層とB層の重なったX線回折ピークとC層のX線回折ピークそれぞれに対してI(200)/I(111)、Ic(200)/Ic(111)の値を算出した。
表8に、上記で求めた各種の値を示す。
図4には、本発明工具について測定したX線回折結果の一例を示すが、A層とB層からなる硬質被覆層全体の総括したI(200)の半値全幅が0.5(度)であり、I(200)とI(111)との比の値I(200)/I(111)が3.0であることが分かる。また、C層からなる硬質被覆層のIc(200)/Ic(111)が2.0であることが分かる。
For the tools 11 to 16 of the present invention produced above, the average composition of each layer and the average layer thickness of each layer were calculated in the same manner as in Example 1.
In addition, thin film X-ray diffraction from a direction perpendicular to the surface of the tool substrate, or electron diffraction by TEM for each of the vertical cross sections of the A layer and the B layer perpendicular to the surface of the tool substrate from a direction parallel to the surface of the tool substrate. The lattice constants aA and aB of the crystal grains having the rock salt type cubic structure of each layer were obtained, and the values of | aA-aB | were calculated.
In addition, the overall X-ray diffraction peak (X-ray diffraction peak where the A layer and the B layer overlap) from the (200) plane of the A layer and the B layer is measured from the direction perpendicular to the surface of the tool substrate, and the full width at half maximum thereof. Was calculated.
Further, from the direction perpendicular to the surface of the tool substrate, the X-ray diffraction peaks (X-ray diffraction peaks in which the A layer and the B layer overlap) and the (200) of the C layer are summarized from the (200) plane of the A layer and the B layer. The X-ray diffraction peak from the plane is measured as Ic (200), and the summarized X-ray diffraction peak from the (111) plane of the A layer and the B layer (the overlapping X-ray diffraction peak of the A layer and the B layer) and C The X-ray diffraction peak from the layer (111) plane is measured as Ic (111), and I (200) / I for each of the X-ray diffraction peak in which the A layer and the B layer overlap and the X-ray diffraction peak in the C layer. The values of (111) and Ic (200) / Ic (111) were calculated.
Table 8 shows various values obtained above.
FIG. 4 shows an example of the X-ray diffraction results measured for the tool of the present invention. The full width at half maximum of I (200), which is the sum of the entire hard coating layer composed of the A layer and the B layer, is 0.5 (degrees). It can be seen that the value I (200) / I (111) of the ratio of I (200) to I (111) is 3.0. Further, it can be seen that the Ic (200) / Ic (111) of the hard coating layer composed of the C layer is 2.0.

つぎに、本発明工具11〜16について、
被削材−平面寸法:合金鋼SCM440の板材、
切削速度: 100 m/min.、
送り: 0.08 mm/rev、
穴深さ: 40 mm、
の条件でのSCM440の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.および0.06mm/rev)、
を行い(水溶性切削油使用)、先端切れ刃面の逃げ面摩耗幅が0.3mmに至るもしくは刃先のチッピング発生により寿命に至るまでの穴あけ加工数を測定するとともに、刃先の損耗状態を観察した。加工は穴あけ加工数1000穴まで行い、寿命に至らなかったものは1000穴加工時の逃げ面摩耗幅を測定した。
表9に、試験結果を示す。
Next, regarding the tools 11 to 16 of the present invention,
Work Material-Plane Dimensions: Plate Material of Alloy Steel SCM440,
Cutting speed: 100 m / min. ,
Feed: 0.08 mm / rev,
Hole depth: 40 mm,
Wet high-speed high-feed drilling cutting test of SCM440 under the conditions of (normal cutting speed and feed are 50 m / min. And 0.06 mm / rev, respectively),
(Using water-soluble cutting oil), measure the number of drilling operations until the flank wear width of the cutting edge surface reaches 0.3 mm or the life of the cutting edge due to chipping of the cutting edge, and observe the worn state of the cutting edge. did. The machining was performed up to 1000 holes, and the flank wear width at the time of 1000 holes was measured for those that did not reach the end of their life.
Table 9 shows the test results.

[実施例3]
≪A層とB層の交互積層及びC層を備え、B層−C層の界面に組成変調構造のD層を有する硬質被覆層を備えた被覆工具≫
実施例1で作製したWC基超硬合金製のドリル基体1〜3を、図3に示したアークイオンプレーティング装置に装入し、実施例1、2の場合と同様にして、表2に示す条件でA層とB層を交互に形成した。
ただし、交互積層の最表面のB層を成膜している途中の時点から、表7に示す条件で、C層の同時蒸着を開始し、B層とC層の同時蒸着をしばらく継続した後、B層の蒸着を停止し、C層のみの蒸着を継続した。
所定の層厚に達した時点でC層の蒸着も停止した。
前記の工程により、A層とB層の交互積層及びC層からなり、かつ、B層−C層の界面にはSi成分の組成変調構造を有するD層が形成された硬質被覆層を有する表10に示す本発明工具21〜26を作製した(図2(b)、図5参照)。
なお、前記組成変調構造のD層におけるSiの含有割合は、B層あるいはC層のSi最大含有割合と、B層あるいはC層のSi最小含有割合の範囲内で連続的な変化をすることとなる。
[Example 3]
<< A coating tool provided with alternating layers A and B and a C layer, and a hard coating layer having a D layer with a composition modulation structure at the interface between the B layer and the C layer >>
The WC-based cemented carbide drill bases 1 to 3 produced in Example 1 were charged into the arc ion plating apparatus shown in FIG. 3, and are shown in Table 2 in the same manner as in Examples 1 and 2. Layers A and B were alternately formed under the conditions shown.
However, after the simultaneous vapor deposition of the C layer is started under the conditions shown in Table 7 from the middle of forming the B layer on the outermost surface of the alternating lamination, and the simultaneous vapor deposition of the B layer and the C layer is continued for a while. , The vapor deposition of the B layer was stopped, and the vapor deposition of only the C layer was continued.
When the predetermined layer thickness was reached, the vapor deposition of the C layer was also stopped.
A table having a hard coating layer composed of alternating layers A and B and a C layer by the above steps, and a D layer having a composition-modulating structure of Si component formed at the interface between the B layer and the C layer. The tools 21 to 26 of the present invention shown in FIG. 10 were produced (see FIGS. 2 (b) and 5).
The content ratio of Si in the D layer of the composition modulation structure is continuously changed within the range of the maximum Si content ratio of the B layer or the C layer and the minimum Si content ratio of the B layer or the C layer. Become.

上記で作製した本発明工具21〜26について、実施例2と同様にして、各層の平均組成、一層平均層厚を算出した。
また、A層およびB層の(200)面からの総括したX線回折ピーク(A層とB層の重なったX線回折ピーク)の半値全幅を測定した。
A層およびB層の(200)面からの総括したX線回折ピーク(A層およびB層の重なったX線回折ピーク)とC層の(200)面からのX線回折ピークをIc(200)として求め、A層およびB層の(111)面からの総括したX線回折ピーク(A層およびB層の重なったX線回折ピーク)とC層(111)面からのX線回折ピークをIc(111)として求め、A層とB層の重なったX線回折ピークとC層のX線回折ピークそれぞれに対してI(200)/I(111)、Ic(200)/Ic(111)の値を算出した。
さらに、組成変調構造が形成されているD層の層厚を次の方法で測定した。
交互積層の最表面のB層およびC層について、工具基体表面に垂直な縦断面について、工具基体表面に垂直方向(層厚方向)にSiの含有割合を測定し、B層においてSiの組成が平均組成bから外れたB層における位置と、C層においてSiの組成が平均組成αから外れたC層における位置を特定した。
複数個所でこのような測定を行い、これら両位置間の間隔を測定し、測定値の平均値を、組成変調構造が形成されているD層の層厚であるとして求めた。
表10に、各種の値を示す。
For the tools 21 to 26 of the present invention produced above, the average composition of each layer and the average layer thickness of each layer were calculated in the same manner as in Example 2.
In addition, the full width at half maximum of the summarized X-ray diffraction peaks (X-ray diffraction peaks in which the A layer and the B layer overlap) from the (200) plane of the A layer and the B layer was measured.
The summarized X-ray diffraction peaks from the (200) planes of the A and B layers (X-ray diffraction peaks in which the A and B layers overlap) and the X-ray diffraction peaks from the (200) plane of the C layer are Ic (200). ), And the summarized X-ray diffraction peaks from the (111) planes of the A and B layers (X-ray diffraction peaks in which the A and B layers overlap) and the X-ray diffraction peaks from the C layer (111) plane are obtained. Obtained as Ic (111), I (200) / I (111), Ic (200) / Ic (111) for the X-ray diffraction peak where the A layer and the B layer overlap and the X-ray diffraction peak of the C layer, respectively. The value of was calculated.
Further, the layer thickness of the D layer on which the composition modulation structure was formed was measured by the following method.
For the B and C layers on the outermost surface of the alternating lamination, the Si content ratio was measured in the vertical direction (layer thickness direction) to the tool substrate surface in the vertical cross section perpendicular to the tool substrate surface, and the composition of Si in the B layer was determined. The position in the B layer deviating from the average composition b and the position in the C layer in which the composition of Si deviated from the average composition α in the C layer were specified.
Such measurements were performed at a plurality of locations, the distance between these two positions was measured, and the average value of the measured values was determined as the layer thickness of the D layer on which the composition modulation structure was formed.
Table 10 shows various values.

つぎに、本発明工具21〜26について、実施例2と同一の切削条件で湿式高速高送り穴あけ切削加工試験を行い、先端切れ刃面の逃げ面摩耗幅が0.3mmに至るもしくは刃先のチッピング発生により寿命に至るまでの穴あけ加工数を測定するとともに、刃先の損耗状態を観察した。加工は穴あけ加工数1000穴まで行い、寿命に至らなかったものは1000穴加工時の逃げ面摩耗幅を測定した。
表11に、試験結果を示す。
Next, the tools 21 to 26 of the present invention are subjected to a wet high-speed high-feed hole drilling cutting test under the same cutting conditions as in Example 2, and the flank wear width of the tip cutting edge surface reaches 0.3 mm or chipping of the cutting edge. The number of drilling processes from the occurrence to the end of the life was measured, and the state of wear of the cutting edge was observed. The machining was performed up to 1000 holes, and the flank wear width at the time of 1000 holes was measured for those that did not reach the end of their life.
Table 11 shows the test results.

表9、表11の結果によれば、本発明工具11〜16、21〜26では、逃げ面摩耗幅の平均はそれぞれ約0.13mm、約0.11mmと小さく耐摩耗性にすぐれ、しかも、チッピングの発生が抑えられている。
特に、本発明工具21〜26は、本発明工具11〜16に比して、耐摩耗性が一段とすぐれていることが分かる。
これらの結果から、本発明工具は、炭素鋼、合金鋼、ステンレス鋼等の被削材の高負荷切削加工において、すぐれた耐チッピング性、耐摩耗性を発揮することが分かる。
According to the results of Tables 9 and 11, in the tools 11 to 16 and 21 to 26 of the present invention, the average flank wear width is as small as about 0.13 mm and about 0.11 mm, respectively, and has excellent wear resistance. The occurrence of chipping is suppressed.
In particular, it can be seen that the tools 21 to 26 of the present invention are further excellent in wear resistance as compared with the tools 11 to 16 of the present invention.
From these results, it can be seen that the tool of the present invention exhibits excellent chipping resistance and wear resistance in high-load cutting of work materials such as carbon steel, alloy steel, and stainless steel.

本発明の表面被覆切削工具は、炭素鋼、合金鋼、ステンレス鋼等の被削材の高負荷切削加工は勿論のこと、各種被削材の切削加工においても、すぐれた耐チッピング性および耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The surface-coated cutting tool of the present invention has excellent chipping resistance and abrasion resistance not only in high-load cutting of work materials such as carbon steel, alloy steel, and stainless steel, but also in cutting of various work materials. Since it exhibits excellent cutting performance over a long period of time, it can fully respond to high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction. is there.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体の何れかからなる工具基体の表面に、0.5〜8.0μmの合計層厚の硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、0.005〜4.0μmの1層平均層厚のA層と0.005〜4.0μmの1層平均層厚のB層が、それぞれ少なくとも1層以上交互に積層された交互積層構造を含み、
(b)前記A層は、
組成式:(Al1−xCr)N
で表した場合に、0.20≦x≦0.60(但し、xは原子比によるCrの含有割合を示す)を満足する平均組成を有するAlとCrの複合窒化物層、
(c)前記B層は、
組成式:(Al1−a−bCrSi)N
で表した場合に、0.20≦a≦0.60、0.01≦b≦0.20(但し、aは原子比によるCrの含有割合、bは原子比によるSiの含有割合を示す)を満足する平均組成を有するAlとCrとSiの複合窒化物層であり、
(d)前記交互積層構造を構成するA層及びB層は、岩塩型立方晶構造の結晶粒を含んでおり、
(e)前記A層の岩塩型立方晶構造の結晶粒及び前記B層の岩塩型立方晶構造の結晶粒について、結晶粒の格子定数を、それぞれaA(Å)、aB(Å)としたとき、aA(Å)とaB(Å)の差の絶対値|aA−aB|は、|aA−aB|≦0.05(Å)を満足し、
(f)前記A層とB層からなる交互積層構造全体についてのX線回折によって得られる総括した(200)面からのX線回折ピーク強度をI(200)、また、総括した(111)面からのX線回折ピーク強度をI(111)とした場合、I(200)の半値全幅は0.3〜1.0(度)であり、前記I(200)とI(111)の比の値は、1<I(200)/I(111)<10を満足することを特徴とする表面被覆切削工具。
A hard coating layer having a total layer thickness of 0.5 to 8.0 μm was provided on the surface of a tool substrate made of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride sintered body. In surface coating cutting tools
(A) In the hard coating layer, at least one layer A having an average layer thickness of 0.005 to 4.0 μm and a layer B having an average layer thickness of 0.005 to 4.0 μm are alternately arranged. Including alternating laminated structure laminated in
(B) The A layer is
Composition formula: (Al 1-x Cr x ) N
A composite nitride layer of Al and Cr having an average composition satisfying 0.20 ≦ x ≦ 0.60 (where x indicates the content ratio of Cr according to the atomic ratio) when represented by.
(C) The B layer is
Composition formula: (Al 1-ab Cr a Si b ) N
When represented by, 0.20 ≦ a ≦ 0.60, 0.01 ≦ b ≦ 0.20 (where a indicates the Cr content ratio according to the atomic ratio, and b indicates the Si content ratio according to the atomic ratio). It is a composite nitride layer of Al, Cr and Si having an average composition satisfying the above.
(D) The layers A and B constituting the alternating laminated structure contain crystal grains having a rock salt-type cubic structure.
(E) When the lattice constants of the crystal grains of the rock salt type cubic structure of the A layer and the crystal grains of the rock salt type cubic structure of the B layer are aA (Å) and aB (Å), respectively. , The absolute value of the difference between aA (Å) and aB (Å) | aA-aB | satisfies | aA-aB | ≤0.05 (Å).
(F) The X-ray diffraction peak intensity from the summarized (200) plane obtained by X-ray diffraction for the entire alternating laminated structure composed of the A layer and the B layer is the summarized (200) plane and the summarized (111) plane. When the X-ray diffraction peak intensity from I (111) is I (111), the half-value total width of I (200) is 0.3 to 1.0 (degrees), and the ratio of the ratio of I (200) to I (111). A surface coating cutting tool characterized in that the value satisfies 1 <I (200) / I (111) <10.
前記交互積層構造を構成するA層とB層の最表面であって、かつ、B層の直上に、0.1〜4.0μmの層厚のC層が設けられ、前記C層は、
組成式:(Ti1−α−βSiαβ)N
で表した場合に、0.01≦α≦0.20、0.01≦β≦0.10(但し、αは原子比によるSiの含有割合、βは原子比によるWの含有割合を示す)を満足する平均組成を有するTiとSiとWの複合窒化物層であることを特徴とする請求項1に記載の表面被覆切削工具。
A C layer having a layer thickness of 0.1 to 4.0 μm is provided on the outermost surfaces of the A layer and the B layer constituting the alternating laminated structure and directly above the B layer, and the C layer is
Composition formula: (Ti 1-α-β Si α W β ) N
When represented by, 0.01 ≤ α ≤ 0.20, 0.01 ≤ β ≤ 0.10. (However, α indicates the Si content ratio according to the atomic ratio, and β indicates the W content ratio according to the atomic ratio). The surface coating cutting tool according to claim 1, wherein the composite nitride layer of Ti, Si and W has an average composition satisfying the above.
前記C層からなる硬質被覆層全体について、X線回折によって得られる(200)面からのX線回折ピーク強度をIc(200)、また、(111)面からのX線回折ピーク強度をIc(111)とした場合、前記Ic(200)とIc(111)の比の値は、1<Ic(200)/Ic(111)<50を満足することを特徴とする請求項2に記載の表面被覆切削工具。 For the entire hard coating layer composed of the C layer, the X-ray diffraction peak intensity from the (200) plane obtained by X-ray diffraction is Ic (200), and the X-ray diffraction peak intensity from the (111) plane is Ic ( 111) The surface according to claim 2, wherein the value of the ratio of Ic (200) to Ic (111) satisfies 1 <Ic (200) / Ic (111) <50. Cover cutting tool. 前記A層とB層からなる交互積層の最表面であるB層と、このB層の直上に設けられた前記C層との界面には0.1〜2.0μmの層厚のD層が設けられ、D層は
組成式:(Al1−k−l-m-nTiCrSi)N
で表した際、0.20≦k≦0.65、0.10≦l≦0.35、0<m≦0.15、0<n≦0.05(ただし、k,l,m,nは原子比で、0<(1−k−l−m−n))の平均組成を満足し、かつSi成分の含有割合が層厚方向に沿って変化する組成変調構造が形成されていることを特徴とする請求項2または3に記載の表面被覆切削工具。


At the interface between the B layer, which is the outermost surface of the alternating stack consisting of the A layer and the B layer, and the C layer provided directly above the B layer, a D layer having a layer thickness of 0.1 to 2.0 μm is formed. provided, D layer composition formula: (Al 1-k-lmn Ti k Cr l Si m W n) n
When represented by, 0.20 ≦ k ≦ 0.65, 0.10 ≦ l ≦ 0.35, 0 <m ≦ 0.15, 0 <n ≦ 0.05 (where k, l, m, n) A composition-modulated structure is formed in which the average composition of 0 <(1-k-l-mn)) is satisfied in terms of atomic ratio, and the content ratio of the Si component changes along the layer thickness direction. The surface coating cutting tool according to claim 2 or 3.


JP2019044680A 2019-03-12 2019-03-12 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting. Active JP7216914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044680A JP7216914B2 (en) 2019-03-12 2019-03-12 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044680A JP7216914B2 (en) 2019-03-12 2019-03-12 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.

Publications (2)

Publication Number Publication Date
JP2020146777A true JP2020146777A (en) 2020-09-17
JP7216914B2 JP7216914B2 (en) 2023-02-02

Family

ID=72431232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044680A Active JP7216914B2 (en) 2019-03-12 2019-03-12 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.

Country Status (1)

Country Link
JP (1) JP7216914B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404478A (en) * 2020-11-05 2021-02-26 南京航浦机械科技有限公司 Self-adaptive drilling device and method for composite material/metal material laminated structure
WO2021200042A1 (en) * 2020-03-30 2021-10-07 三菱マテリアル株式会社 Surface-coated cutting tool
WO2022138375A1 (en) * 2020-12-22 2022-06-30 三菱マテリアル株式会社 Surface-coated cutting tool
WO2023053340A1 (en) * 2021-09-30 2023-04-06 オーエスジー株式会社 Hard coating, hard coating coated tool, and production method for hard coating
DE112022003762T5 (en) 2021-07-30 2024-05-29 Kyocera Corporation COATED TOOLS AND CUTTING TOOLS

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224191A (en) * 2005-02-15 2006-08-31 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide with hard coating layer displaying excellent abrasion resistance in high speed cutting work of high hardness steel
JP2006320974A (en) * 2005-05-17 2006-11-30 Mitsubishi Materials Corp Surface coated high speed tool steel gear cutting tool exhibiting excellent chipping resistance of hard coating layer in high-speed gear cutting of alloy-steel
JP2007002332A (en) * 2005-05-26 2007-01-11 Hitachi Tool Engineering Ltd Coated member with hard film
JP2008018509A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed continuously cutting hard material hard to cut
JP2014140928A (en) * 2013-01-24 2014-08-07 Mitsubishi Materials Corp Surface-coated cutting tool which exerts excellent wear resistance in high-speed continuous cutting
JP2017042906A (en) * 2015-08-29 2017-03-02 三菱マテリアル株式会社 Surface coating cutting tool demonstrating excellent chipping resistance, abrasion resistance in strong intermittent cutting work
JP2018094669A (en) * 2016-12-13 2018-06-21 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered tool which satisfies both abrasion resistance and defect resistance
JP2018164974A (en) * 2017-03-28 2018-10-25 株式会社タンガロイ Coated cutting tool
JP2018202533A (en) * 2017-06-01 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool
JP2019025591A (en) * 2017-07-28 2019-02-21 株式会社タンガロイ Coated cutting tool

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224191A (en) * 2005-02-15 2006-08-31 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide with hard coating layer displaying excellent abrasion resistance in high speed cutting work of high hardness steel
JP2006320974A (en) * 2005-05-17 2006-11-30 Mitsubishi Materials Corp Surface coated high speed tool steel gear cutting tool exhibiting excellent chipping resistance of hard coating layer in high-speed gear cutting of alloy-steel
JP2007002332A (en) * 2005-05-26 2007-01-11 Hitachi Tool Engineering Ltd Coated member with hard film
JP2008018509A (en) * 2006-07-14 2008-01-31 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed continuously cutting hard material hard to cut
JP2014140928A (en) * 2013-01-24 2014-08-07 Mitsubishi Materials Corp Surface-coated cutting tool which exerts excellent wear resistance in high-speed continuous cutting
JP2017042906A (en) * 2015-08-29 2017-03-02 三菱マテリアル株式会社 Surface coating cutting tool demonstrating excellent chipping resistance, abrasion resistance in strong intermittent cutting work
JP2018094669A (en) * 2016-12-13 2018-06-21 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered tool which satisfies both abrasion resistance and defect resistance
JP2018164974A (en) * 2017-03-28 2018-10-25 株式会社タンガロイ Coated cutting tool
JP2018202533A (en) * 2017-06-01 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool
JP2019025591A (en) * 2017-07-28 2019-02-21 株式会社タンガロイ Coated cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200042A1 (en) * 2020-03-30 2021-10-07 三菱マテリアル株式会社 Surface-coated cutting tool
CN112404478A (en) * 2020-11-05 2021-02-26 南京航浦机械科技有限公司 Self-adaptive drilling device and method for composite material/metal material laminated structure
CN112404478B (en) * 2020-11-05 2021-10-01 南京航浦机械科技有限公司 Self-adaptive drilling device and method for composite material/metal material laminated structure
WO2022138375A1 (en) * 2020-12-22 2022-06-30 三菱マテリアル株式会社 Surface-coated cutting tool
EP4269005A4 (en) * 2020-12-22 2024-04-17 Mitsubishi Materials Corp Surface-coated cutting tool
DE112022003762T5 (en) 2021-07-30 2024-05-29 Kyocera Corporation COATED TOOLS AND CUTTING TOOLS
WO2023053340A1 (en) * 2021-09-30 2023-04-06 オーエスジー株式会社 Hard coating, hard coating coated tool, and production method for hard coating

Also Published As

Publication number Publication date
JP7216914B2 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
JP6384341B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
JP7216914B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.
WO2010150335A1 (en) Tool having coated cubic boron nitride sintered body
JP2015160259A (en) Surface-coated cutting tool excellent in abrasion resistance
KR102523236B1 (en) surface coating cutting tools
JP7061603B2 (en) Multi-layer hard film coating cutting tool
JP6519795B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance
WO2017073653A1 (en) Surface coated cutting tool
EP3219420B1 (en) Surface-coated cutting tool
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
WO2021200042A1 (en) Surface-coated cutting tool
JP2020142312A (en) Surface-coated cutting tool
JP6503818B2 (en) Surface coated cutting tool
JP2015066644A (en) Surface-coated cutting tool with hard coating layer showing excellent wear resistance and chipping resistance in high-speed cutting work
JP6198002B2 (en) A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
CN103372764A (en) Surface-coated cutting tool with flaking-poof hard coating layer
JP5459618B2 (en) Surface coated cutting tool
JP5454787B2 (en) Surface coated cutting tool
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP6471546B2 (en) Surface coated cutting tool
WO2022138375A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7216914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150