JP2020146725A - Control method for wettability of metallic surface - Google Patents

Control method for wettability of metallic surface Download PDF

Info

Publication number
JP2020146725A
JP2020146725A JP2019046432A JP2019046432A JP2020146725A JP 2020146725 A JP2020146725 A JP 2020146725A JP 2019046432 A JP2019046432 A JP 2019046432A JP 2019046432 A JP2019046432 A JP 2019046432A JP 2020146725 A JP2020146725 A JP 2020146725A
Authority
JP
Japan
Prior art keywords
laser
metal
processing
wettability
metal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019046432A
Other languages
Japanese (ja)
Other versions
JP7120576B2 (en
Inventor
山口 昌樹
Masaki Yamaguchi
昌樹 山口
秀寛 島田
Hidehiro Shimada
秀寛 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Ryoden Trading Co Ltd
Original Assignee
Shinshu University NUC
Ryoden Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Ryoden Trading Co Ltd filed Critical Shinshu University NUC
Priority to JP2019046432A priority Critical patent/JP7120576B2/en
Publication of JP2020146725A publication Critical patent/JP2020146725A/en
Application granted granted Critical
Publication of JP7120576B2 publication Critical patent/JP7120576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a control method for wettability of a metallic surface, which enables the wettability of the metallic surface to be water repellency or hydrophilicity, and which facilitates control.SOLUTION: In a step in which surface processing is performed by irradiating a metallic surface with a nanosecond pulsed laser, at least one of the energy, peak power and fluence of one shot is controlled in accordance with the material quality, shape and dimensions of a metal. Thus, ablation processing and thermal processing are simultaneously performed. Consequently, wettability of the metallic surface is controlled by providing a recess 2 in a laser irradiation location and forming a protrusion 3 at the peripheral edge of the recess 2.SELECTED DRAWING: Figure 1

Description

本発明は,ナノ秒パルスレーザーを照射することにより,金属表面の濡れ性を制御する方法に関する。 The present invention relates to a method of controlling the wettability of a metal surface by irradiating a nanosecond pulse laser.

従来,基材表面の撥水性を高めるための手段として,シリコーンやフッ素系化学物質などの撥水剤を含む皮膜を塗布することが行われている。しかし,この方法では,水との接触角を140°以上の撥水表面とすることは困難である。 Conventionally, as a means for increasing the water repellency of the surface of a base material, a film containing a water repellent agent such as silicone or a fluorine-based chemical substance has been applied. However, with this method, it is difficult to make the contact angle with water a water-repellent surface of 140 ° or more.

このため,基材表面に細かい凹凸を形成して,撥水性を良くすることも提案されている。これは,ハスの葉が,表面の凹凸構造によって水をはじくというロータス効果を応用したものである。例えば,特許文献1では,表面に微細な凹凸構造を有するスタンパによって樹脂を成型して樹脂表面に微細凹凸構造を転写し,さらにその表面をフッ素樹脂でコーティングすることにより,超撥水性の表面とすることが記載されている。また,このような微細な凹凸構造を超短パルスレーザーによるアブレーションを用いて形成することも考えられる。 For this reason, it has also been proposed to form fine irregularities on the surface of the base material to improve water repellency. This is an application of the lotus effect, in which the leaves of the lotus repel water due to the uneven structure on the surface. For example, in Patent Document 1, a resin is molded by a stamper having a fine uneven structure on the surface, the fine uneven structure is transferred to the resin surface, and the surface is further coated with a fluororesin to obtain a super-water-repellent surface. It is stated that it should be done. It is also conceivable to form such a fine uneven structure by ablation with an ultrashort pulse laser.

さらには,微細な凹凸構造を,ミクロン領域程度の比較的大きな微細周期構造と,ナノメートル領域程度の小さな微細周期構造とからなる階層状にすると,親水性を著しく向上できる場合があることが知られている。 Furthermore, it is known that the hydrophilicity can be significantly improved by forming the fine uneven structure into a layered structure consisting of a relatively large microperiodic structure in the micron region and a small microperiodic structure in the nanometer region. Has been done.

特開2003−172808号公報Japanese Unexamined Patent Publication No. 2003-172808

しかし,超短パルスレーザー照射によるアブレーションを利用して金属表面に微細な凹凸を形成する場合には,逐一その凹凸形状に合わせてレーザーを制御しなければならず,複雑な制御となるという問題があった。ましてや,微細な凹凸構造に階層性を持たせることは,制御が複雑となりすぎて,実用化が困難となっていた。 However, when forming fine irregularities on the metal surface by using ablation by ultrashort pulse laser irradiation, the laser must be controlled according to the irregular shape one by one, which causes a problem of complicated control. there were. Furthermore, giving a layered structure to a fine concavo-convex structure makes control too complicated and difficult to put into practical use.

本発明は,上記従来の実情に鑑みてなされたものであり,レーザーの照射によって凹部と凸部を同時に,しかも階層性を持たせて形成することにより,金属の表面の濡れ性を容易に制御することができる方法を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and the wettability of the metal surface can be easily controlled by forming the concave portion and the convex portion at the same time and with a hierarchy by irradiation with a laser. Providing a method that can be done is an issue to be solved.

本発明者らは,金属表面にナノ秒パルスレーザーを照射して表面加工を行うことにより,レーザーの照射部にアブレーションに基づく凹部が形成されると同時に,凹部の周縁に熱加工による凸部が形成されるという現象を見出した。この凹凸構造によって金属表面の濡れ性を制御する方法を見出し,本発明を完成するに至った。 By irradiating the metal surface with a nanosecond pulse laser to process the surface, the present inventors form a recess based on ablation in the irradiated portion of the laser, and at the same time, a convex portion due to thermal processing is formed on the periphery of the recess. I found the phenomenon of being formed. We have found a method for controlling the wettability of a metal surface by this uneven structure, and have completed the present invention.

すなわち,本発明の金属表面の濡れ性制御方法では,金属表面にナノ秒パルスレーザーを照射して表面加工を行う工程において,金属の材質や形状や寸法に応じて1ショットのエネルギー,ピークパワー及びフルエンスの少なくとも一つを制御する。そして,この制御によりアブレーション加工と熱加工を同時に行い,レーザー照射箇所に凹部を形成すると同時に該凹部の周縁に凸部を形成させることにより,濡れ性を制御することを特徴とする。 That is, in the method for controlling the wettability of a metal surface of the present invention, in the process of irradiating the metal surface with a nanosecond pulse laser to perform surface processing, the energy, peak power, and peak power of one shot are determined according to the material, shape, and dimensions of the metal. Control at least one of the fluences. The wettability is controlled by simultaneously performing ablation processing and thermal processing by this control to form a concave portion at the laser irradiation site and at the same time forming a convex portion on the peripheral edge of the concave portion.

本明細書において「ナノ秒パルスレーザー」とは,パルス幅が0.1ナノ秒以上1マイクロ秒以下のパルスレーザーのことをいう。本発明者らの試験結果によれば,ナノ秒パルスレーザーを金属表面に照射すると,照射箇所に凹部が形成され,同時に,凹部周縁に凸部が形成される。これは,ナノ秒パルスレーザーによって照射箇所におけるアブレーション加工とその周縁における熱加工が同時に起こった結果であると考えられる。すなわち,ナノ秒パルスレーザーのパルス幅が0.1ナノ秒未満になると,レーザー照射部において金属表面のアブレーションは起こるが,熱はほとんど発生しない。このため,凹部周縁において熱加工による凸部の形成が行われず,凹部と凸部をレーザー照射と同時に形成することができない。一方,ナノ秒パルスレーザーのパルス幅が1マイクロ秒を超えると,レーザー照射部における金属表面のアブレーションが生じないため,金属表面に深い凹部を形成することができなくなるため,やはり,凹部と凸部をレーザー照射と同時に形成することができない。本明細書において「ナノ秒パルスレーザー」とは,パルス幅が0.1ナノ秒以上1マイクロ秒以下のパルスレーザーの範囲では,アブレーション加工と熱加工とが同時に起こるため,凹部と凸部をレーザー照射と同時に形成させることができるのである。こうして形成された凹凸形状が濡れ性に大きく影響する。
さらに好ましいパルス幅の範囲は1ナノ秒以上100ナノ秒以下である。
As used herein, the term "nanosecond pulsed laser" refers to a pulsed laser having a pulse width of 0.1 nanosecond or more and 1 microsecond or less. According to the test results of the present inventors, when the metal surface is irradiated with a nanosecond pulse laser, a concave portion is formed at the irradiated portion, and at the same time, a convex portion is formed at the peripheral edge of the concave portion. It is considered that this is the result of the ablation processing at the irradiation site and the thermal processing at the periphery of the irradiation site occurring at the same time by the nanosecond pulse laser. That is, when the pulse width of the nanosecond pulse laser is less than 0.1 nanosecond, ablation of the metal surface occurs in the laser irradiation portion, but almost no heat is generated. Therefore, the convex portion is not formed by thermal processing on the peripheral edge of the concave portion, and the concave portion and the convex portion cannot be formed at the same time as the laser irradiation. On the other hand, when the pulse width of the nanosecond pulse laser exceeds 1 microsecond, ablation of the metal surface in the laser irradiation portion does not occur, so that a deep recess cannot be formed on the metal surface. Cannot be formed at the same time as laser irradiation. In the present specification, the term "nanosecond pulsed laser" means that ablation processing and thermal processing occur simultaneously in the range of a pulse laser having a pulse width of 0.1 nanosecond or more and 1 microsecond or less. It can be formed at the same time as irradiation. The uneven shape formed in this way greatly affects the wettability.
A more preferable pulse width range is 1 nanosecond or more and 100 nanosecond or less.

濡れ性に大きく影響する凹凸の形状は,ナノ秒パルスレーザーの1ショットのエネルギーやピークパワーやフルエンスによって変化する。このため,1ショットのエネルギー,ピークパワー及びフルエンスの少なくとも一つを制御することにより,アブレーション加工と熱加工を同時に行う。これにより,ナノ秒パルスレーザーの照射箇所に凹部が形成されると同時に,該凹部の周縁に凸部が形成される。さらには,凹凸形状を,比較的大きな微細周期構造と,それよりも小さな微細周期構造とからなる階層状とすることができる。凹凸の形状は金属の材質や形状や寸法によっても変化するため,必要に応じ,金属の材質や形状や寸法も考慮して1ショットのエネルギーやピークパワーやフルエンスを制御する。 The shape of the unevenness, which greatly affects the wettability, changes depending on the energy, peak power, and fluence of one shot of the nanosecond pulse laser. Therefore, by controlling at least one of the energy, peak power, and fluence of one shot, ablation processing and thermal processing are performed at the same time. As a result, a concave portion is formed at the irradiation site of the nanosecond pulse laser, and at the same time, a convex portion is formed on the peripheral edge of the concave portion. Furthermore, the concave-convex shape can be a hierarchical structure consisting of a relatively large fine periodic structure and a smaller fine periodic structure. Since the shape of the unevenness changes depending on the metal material, shape and dimensions, the energy, peak power and fluence of one shot are controlled in consideration of the metal material, shape and dimensions as necessary.

本発明の形態として,レーザー照射を間欠的に行うパーカッション加工法を用い,かつ2次元平面上の照射パターンを変化させることによって所望の3次元形状を得ることにより,金属表面の濡れ性を制御することができる。この方法として,レーザー照射箇所とレーザー照射される金属とを相対移動させつつパーカッション加工を行うことにより,金属表面に周期構造を形成させることができる。さらには,ナノ秒パルスレーザーの照射ピッチをマイクロメートルオーダー(すなわち1マイクロメートル以上100マイクロメートル以下)で制御しながらパーカッション加工法を併用することで,マイクロメートルオーダーよりも周期の短いピッチの,異なる2つの微細周期構造を同時に形成させることができる。
これらの方法により,金属の表面の均質な濡れ性をきめ細かく制御することが可能となる。
As the embodiment of the present invention, the wettability of the metal surface is controlled by using a percussion processing method in which laser irradiation is performed intermittently and obtaining a desired three-dimensional shape by changing the irradiation pattern on a two-dimensional plane. be able to. As this method, a periodic structure can be formed on the metal surface by performing percussion processing while relatively moving the laser-irradiated portion and the laser-irradiated metal. Furthermore, by using the percussion processing method while controlling the irradiation pitch of the nanosecond pulse laser on the order of micrometers (that is, 1 micrometer or more and 100 micrometer or less), the pitch with a shorter period than the micrometer order is different. Two microperiodic structures can be formed at the same time.
These methods make it possible to finely control the uniform wettability of the metal surface.

また,本発明の形態として,レーザー照射前に金属表面を清浄化することにより,レーザー照射後の金属表面を撥水性にすることができる。一方,レーザー照射前の金属表面に対して,薄い酸化被膜が生ずる程度の加熱処理(大気中150〜200℃で1時間程度)(以下「アニーリング」という)をしておけば,レーザー照射後の金属表面を安定的に親水性とすることができる。こうして,本発明によれば,金属表面の撥水性から親水性に至る幅広い制御が可能となる。 Further, as the embodiment of the present invention, the metal surface after the laser irradiation can be made water-repellent by cleaning the metal surface before the laser irradiation. On the other hand, if the metal surface before laser irradiation is heat-treated to the extent that a thin oxide film is formed (about 1 hour at 150 to 200 ° C in the atmosphere) (hereinafter referred to as "annealing"), it is possible to perform after laser irradiation. The metal surface can be made stable and hydrophilic. Thus, according to the present invention, a wide range of control from water repellency to hydrophilicity of the metal surface becomes possible.

本発明では,金属表面にナノ秒パルスレーザーを照射することにより,レーザー照射箇所において凹部が形成されるとともに,レーザー照射箇所の周縁では熱加工によって凸部が形成される。このため,金属表面に細かい凹凸が形成され,これにより金属表面の濡れ性を制御することができる。さらには凹凸形状を比較的大きな微細周期構造と,それよりも小さな微細周期構造とからなる階層状とすることができる。このため,金属表面を親水性にすることが可能となる。 In the present invention, by irradiating the metal surface with a nanosecond pulse laser, a concave portion is formed at the laser irradiation portion, and a convex portion is formed at the peripheral edge of the laser irradiation portion by thermal processing. Therefore, fine irregularities are formed on the metal surface, which makes it possible to control the wettability of the metal surface. Furthermore, the uneven shape can be made into a hierarchical structure consisting of a relatively large fine periodic structure and a smaller fine periodic structure. Therefore, it is possible to make the metal surface hydrophilic.

金属の表面にナノ秒パルスレーザーを照射して表面加工を行う場合の模式断面図である。It is a schematic cross-sectional view in the case of irradiating a metal surface with a nanosecond pulse laser to perform surface processing. 凹凸が形成された金属の表面に水滴を載せた場合の模式断面図である。It is a schematic cross-sectional view when a water drop is placed on the surface of the metal which formed the unevenness. 金型鋼及び転写された工程紙の断面を示す模式図である。It is a schematic diagram which shows the cross section of the mold steel and the transferred process paper. 測定結果から作成した条件1〜4で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 1 to 4 prepared from the measurement result. 測定結果から作成した条件5〜8で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 5 to 8 prepared from the measurement result. 測定結果から作成した条件9〜12で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 9 to 12 prepared from the measurement result. 測定結果から作成した条件13〜16で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 13 to 16 prepared from the measurement result. ナノ秒パルスレーザーのピークパワーと接触角との関係を示すグラフである。It is a graph which shows the relationship between the peak power of a nanosecond pulse laser and the contact angle. 測定結果から作成した条件4で作製した試料の3Dマッピング画像(斜視図)である。It is a 3D mapping image (perspective view) of the sample prepared under the condition 4 prepared from the measurement result. 測定結果から作成した条件1〜5で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 1 to 5 prepared from the measurement result. 測定結果から作成した条件6〜8で作製した試料の断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 6 to 8 prepared from the measurement result. 測定結果から作成した条件9〜12で作製した試料及びレーザー加工をしていないブランクの断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image of a sample prepared under the conditions 9 to 12 prepared from the measurement results and a blank not subjected to laser processing. 実施例3におけるパーカッション加工による微細周期構造のレイアウトを示す図である。It is a figure which shows the layout of the fine periodic structure by the percussion processing in Example 3. FIG. 実施例4における微細周期構造のレイアウトを示す図である。It is a figure which shows the layout of the fine periodic structure in Example 4. FIG. 実施例4におけるサンプル1〜6の測定結果から作成した断面形状及び3Dマッピング画像である。It is a cross-sectional shape and a 3D mapping image created from the measurement results of Samples 1 to 6 in Example 4.

以下,本発明を具体化した実施例について説明する。ただし,本発明はこの実施例に限定されるものではない。特許請求の範囲を逸脱せず,当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 Hereinafter, examples embodying the present invention will be described. However, the present invention is not limited to this embodiment. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of claims.

(本発明において濡れ性が制御可能となるメカニズム)
超短パルスレーザーによる金属表面の加工においては,単位面積あたりのエネルギー量(すなわちフルエンス)が極めて大きいため,図1(a)(b)に示すように,レーザー照射箇所において瞬時に金属1が昇華し,その部分のみに凹部2が形成されるが,熱は発生しないために熱加工はおこなわれず,凹部2の周縁において変化はない。
これに対して,ナノ秒パルスレーザーを金属表面に照射した場合は,フルエンスが超短パルスレーザーほどは大きくないため,アブレーション加工と熱加工とが同時に起こる。このため,図1(c)(d)に示すように,ナノ秒パルスレーザーが照射された箇所でアブレーション加工が起こり,凹部2が形成されるとともに,凹部2の周縁では熱加工が起こり凸部3が形成される。凹部2の深さや凸部3の高さはナノ秒パルスレーザーの1ショットのエネルギーやピークパワーやフルエンスによって適宜に制御することが可能である。
また,パーカッション加工法によりレーザー照射を同じ箇所で間欠的に何度も行うことによっても凹部2をより深くすることもできる。
(Mechanism in which wettability can be controlled in the present invention)
When processing a metal surface with an ultrashort pulse laser, the amount of energy per unit area (that is, fluence) is extremely large, so as shown in FIGS. 1 (a) and 1 (b), the metal 1 is instantly sublimated at the laser irradiation site. However, although the recess 2 is formed only in that portion, heat processing is not performed because heat is not generated, and there is no change in the peripheral edge of the recess 2.
On the other hand, when a nanosecond pulsed laser is irradiated on a metal surface, the fluence is not as large as that of an ultrashort pulsed laser, so ablation processing and thermal processing occur at the same time. Therefore, as shown in FIGS. 1 (c) and 1 (d), ablation processing occurs at the portion irradiated with the nanosecond pulse laser to form the concave portion 2, and thermal processing occurs at the peripheral edge of the concave portion 2 to cause the convex portion. 3 is formed. The depth of the concave portion 2 and the height of the convex portion 3 can be appropriately controlled by the energy, peak power, and fluence of one shot of the nanosecond pulse laser.
Further, the recess 2 can be made deeper by intermittently irradiating the laser at the same place many times by the percussion processing method.

こうして,ナノ秒パルスレーザーを照射することによって凹凸が形成された金属の表面に,図2に示すように,水滴4を載せた場合,水滴4は凸部3と接触し,その他の部分は凹部2に存在する空気と接触することとなり,いわゆるロータス効果によって撥水性を示すことが予測される。事実,金属表面を硫酸−過酸化水素水の混合溶液などで清浄化してからナノ秒パルスレーザーを照射すれば,撥水性の表面となる。
しかしながら,金属表面をアニーリングしてからナノ秒パルスレーザーを照射した場合には,金属表面は逆に親水性を示す結果となる。この原因は次のように推測される。すなわち,金属表面をアニーリングしてからナノ秒パルスレーザーを照射した場合,金属表面に微細な凹凸が形成される。このため,ナノ秒パルスレーザーの照射による孔の形成という比較的大きな構造との間で階層的な構造が形成され,微細な凹凸構造による毛細管現象によって金属表面に載せられた水滴が吸引されて,親水性を示すようになると考えられる。
As shown in FIG. 2, when the water droplet 4 is placed on the surface of the metal whose unevenness is formed by irradiating the nanosecond pulse laser in this way, the water droplet 4 comes into contact with the convex portion 3 and the other portion is concave. It comes into contact with the air existing in No. 2, and it is predicted that it will exhibit water repellency due to the so-called Lotus effect. In fact, if the metal surface is cleaned with a mixed solution of sulfuric acid and hydrogen peroxide solution and then irradiated with a nanosecond pulse laser, the surface becomes water repellent.
However, when the metal surface is annealed and then irradiated with a nanosecond pulse laser, the metal surface becomes hydrophilic on the contrary. The cause of this is presumed as follows. That is, when the metal surface is annealed and then irradiated with a nanosecond pulse laser, fine irregularities are formed on the metal surface. For this reason, a hierarchical structure is formed with the relatively large structure of pore formation by irradiation with a nanosecond pulse laser, and water droplets placed on the metal surface are attracted by the capillary phenomenon due to the fine uneven structure. It is thought that it will become hydrophilic.

以上のように,本発明では,金属表面の前処理を適宜選択したり,金属の材質や形状や寸法に応じてナノ秒パルスレーザーの1ショットのエネルギーやピークパワーやフルエンスを調節することにより,金属表面の濡れ性を制御することができる。 As described above, in the present invention, the pretreatment of the metal surface is appropriately selected, and the energy, peak power, and fluence of one shot of the nanosecond pulse laser are adjusted according to the material, shape, and dimensions of the metal. The wettability of the metal surface can be controlled.

(ナノ秒パルスレーザーについて)
本発明において用いられるナノ秒パルスレーザーは,パルス幅が0.1ナノ秒以上1マイクロ秒以下のパルスレーザーである。パルス幅が0.1ナノ秒未満の場合,レーザー照射箇所における金属のアブレーションによって凹部が形成されるが,熱の発生が少なくなり,熱加工による凹部周縁での凸部の形成がされ難くなる。一方,パルス幅が1マイクロ秒を超えると,レーザー照射箇所における金属のアブレーションによる凹部の形成がされ難くなる。パルス幅のさらに好ましい範囲は,1ナノ秒以上100ナノ秒以下であ。
(About nanosecond pulsed laser)
The nanosecond pulse laser used in the present invention is a pulse laser having a pulse width of 0.1 nanosecond or more and 1 microsecond or less. When the pulse width is less than 0.1 nanosecond, the concave portion is formed by the ablation of the metal at the laser irradiation site, but the generation of heat is reduced and it becomes difficult to form the convex portion on the peripheral edge of the concave portion by thermal processing. On the other hand, when the pulse width exceeds 1 microsecond, it becomes difficult to form a recess due to metal ablation at the laser irradiation site. A more preferable range of the pulse width is 1 nanosecond or more and 100 nanosecond or less.

(パーカッション加工法について)
本発明の形態として,レーザー照射において間欠的にレーザー照射を行うパーカッション加工法を用いることができる。パーカッション加工法を採用することにより,金属表面により深い凹部を形成することができる。
(About percussion processing method)
As a form of the present invention, a percussion processing method in which laser irradiation is intermittently performed in laser irradiation can be used. By adopting the percussion processing method, deeper recesses can be formed on the metal surface.

また,レーザー照射を間欠的に行うパーカッション加工法を用い,かつ2次元平面上の照射パターンを変化させることによって所望の3次元形状を得ることもできる。2次元平面上の照射パターンを変化させるためには,ナノ秒パルスレーザーを照射箇所と照射される金属とを相対移動させることが必要となる。このための方法としては,照射される金属を移動させたり,ナノ秒パルスレーザーの照射位置を鏡によって移動させたりする方法や,金属及び超ナノ秒パルスレーザーの照射位置の双方を移動させたりする方法を採用することができる。
ナノ秒パルスレーザーの照射ピッチをマイクロメートルオーダーで制御しながらパーカッション加工法を併用することで,マイクロメートルピッチとナノメートルピッチの異なる周期の微細周期構造を同時に形成させることが可能となり,これにより,均質で,きめの細かい濡れ性の制御を行うことができる。
It is also possible to obtain a desired three-dimensional shape by using a percussion processing method in which laser irradiation is performed intermittently and by changing the irradiation pattern on a two-dimensional plane. In order to change the irradiation pattern on the two-dimensional plane, it is necessary to move the irradiation location and the metal to be irradiated with the nanosecond pulse laser relative to each other. As a method for this, the metal to be irradiated is moved, the irradiation position of the nanosecond pulse laser is moved by a mirror, or both the metal and the irradiation position of the ultra-nanosecond pulse laser are moved. The method can be adopted.
By using the percussion processing method while controlling the irradiation pitch of the nanosecond pulse laser on the order of micrometers, it is possible to simultaneously form microperiodic structures with different periods of micrometer pitch and nanometer pitch. Homogeneous and fine-grained wettability control can be performed.

(金属の種類について)
本発明の金属表面の濡れ性制御方法で適用可能な金属としては,特に限定はされないが,鉄,アルミニウム,アルミニウム合金,銅,銅合金,ステンレス等の金属全般の濡れ性を制御することができる。また,本明細書において金属とはシリコンなどの半導体も含む概念であり,これらの表面の濡れ性を制御することも可能である。
(About the type of metal)
The metal applicable to the metal surface wettability control method of the present invention is not particularly limited, but can control the wettability of all metals such as iron, aluminum, aluminum alloys, copper, copper alloys, and stainless steel. .. Further, in the present specification, metal is a concept including semiconductors such as silicon, and it is also possible to control the wettability of these surfaces.

<実施例>
(実施例1)
実施例1では,金型鋼の表面に,ナノ秒パルスレーザーによるパーカッション加工を行うことにより,微細周期構造を形成し,表面の濡れ性を制御した。以下にその詳細を示す。
<Example>
(Example 1)
In Example 1, the surface of the structural steel was percussed with a nanosecond pulse laser to form a fine periodic structure and the wettability of the surface was controlled. The details are shown below.

1)被加工金属
表面処理の対象となった金属は炭素鋼(表面粗さRa = 0.3 μm,日立金属株式会社製)であり,これを20mm×20mmの大きさに切り出した。そして,表面粗さRa=0.3,0.1,0.05及び0.05ミガキの4種類の研磨片を用意した。
1) Metal to be processed The metal to be surface-treated was carbon steel (surface roughness Ra = 0.3 μm, manufactured by Hitachi Metals, Ltd.), which was cut into a size of 20 mm × 20 mm. Then, four types of polished pieces having a surface roughness Ra = 0.3, 0.1, 0.05 and 0.05 shavings were prepared.

2)前処理
上記の金属試料片を濃硫酸3に対し30%過酸化水素水1の容量比で混合したピラニア溶液に浸漬した後,引上げ,イオン交換水で洗浄し,乾燥させた。
2) Pretreatment After immersing the above metal sample piece in a piranha solution in which the volume ratio of 30% hydrogen peroxide solution 1 was mixed with 3 concentrated sulfuric acid, it was pulled up, washed with ion-exchanged water, and dried.

3)ナノ秒パルスレーザー照射
上記の前処理を行った金属試料片について,同じ大きさの正方形となるように4分割した箇所を,表1に示す照射条件でパーカッション加工を行った。レーザー加工はナノ秒レーザー加工装置 (発振波長 532 nm,最大出力 10 W) を使用した(以下,他の実施例でも同様)。レーザー加工の光学系としては,ガルバノスキャナーとエキスパンダーとf-θレンズを組み合わせた走査型光学系を採用した。また,レーザー出力を制御するために減衰板を2個使用した。掃引方法としてはガルバノミラーを用いた。レーザースポット径はエキスパンダー8倍,レンズは焦点距離100mmのf-θレンズを用い,直径16μmとした。
照射条件の詳細を表1に示す。ここで,パルス周波数とはパルスの繰返し周波数のことをいい,パルス幅とはパルスの時間幅のことをいう。また,ピークパワーとは(1shotのエネルギー)/(パルス幅)の値をいい,フルエンスとは,単位面積あたりのエネルギー量をいう。また,被測定対象物表面におけるレーザーの径は16μmとし(以下,他の実施例においても同様である。),レーザー光の掃引スピードを変化させることでピッチを40μmとなるように制御した。また,パーカッション加工は1箇所当たりのレーザー照射のshot回数が80回となるように行った。
3) Nanosecond pulsed laser irradiation The metal sample pieces that had undergone the above pretreatment were percussed under the irradiation conditions shown in Table 1 by dividing the metal sample pieces into four parts so that they would be squares of the same size. Laser processing used a nanosecond laser processing device (oscillation wavelength 532 nm, maximum output 10 W) (hereinafter, the same applies to other examples). As the laser processing optical system, we adopted a scanning optical system that combines a galvano scanner, expander, and f-θ lens. In addition, two attenuation plates were used to control the laser output. A galvano mirror was used as the sweeping method. The laser spot diameter was 8 times the expander, and the lens used was an f-θ lens with a focal length of 100 mm, and the diameter was 16 μm.
The details of the irradiation conditions are shown in Table 1. Here, the pulse frequency means the repetition frequency of the pulse, and the pulse width means the time width of the pulse. The peak power means the value of (energy of 1 shot) / (pulse width), and the fluence means the amount of energy per unit area. The diameter of the laser on the surface of the object to be measured was 16 μm (hereinafter, the same applies to other examples), and the pitch was controlled to be 40 μm by changing the sweep speed of the laser beam. In addition, the percussion processing was performed so that the number of shots of laser irradiation per location was 80 times.

−表面形状の測定−
ナノ秒パルスレーザー照射を行った各金属試料片について,形状測定及びうねり分析を行った。測定は3Dレーザー顕微鏡OLS4100(オリンパス株式会社製)を用い(以下,他の実施例でも同様),拡大倍率1080倍で測定した。ただし,ナノ秒パルスレーザーが照射された箇所は金属のアブレーションによって深い孔となっているため,測定のためのレーザー光が反射できないため乱反射等によってノイズが発生し,測定することができなかった。
-Measurement of surface shape-
Shape measurement and swell analysis were performed on each metal sample piece subjected to nanosecond pulse laser irradiation. The measurement was performed using a 3D laser microscope OLS4100 (manufactured by Olympus Corporation) (hereinafter, the same applies to other examples) at a magnification of 1080 times. However, since the part irradiated with the nanosecond pulse laser has a deep hole due to metal ablation, the laser beam for measurement cannot be reflected, and noise is generated due to diffuse reflection, etc., and measurement cannot be performed.

このため,小型プレス機 H300-15 (アズワン株式会社製) を用いて転写法によって表面形状を測定した。すなわち,レーザー加工を行った金型鋼を2枚の工程紙(リンテックEV130TPG 40mm×40 mm)で下面がレーザー加工面となるように挟み,さらにこれを2枚の加熱した鋼板の間に挟み,温度150℃,圧力20MPaで90秒間プレスした。その後,工程紙が重ねられた金属試料片を取り出し,冷蔵庫で5分間冷却してから工程紙をゆっくりと剥がした。こうして金型の表面形状が転写された工程紙についての表面形状を3Dレーザー顕微鏡OLS4100(オリンパス株式会社製)を用い(以下,他の実施例でも同様),拡大倍率1080倍で測定した。 Therefore, the surface shape was measured by the transfer method using a small press H300-15 (manufactured by AS ONE Corporation). That is, the laser-processed structural steel is sandwiched between two sheets of process paper (Lintec EV130TPG 40 mm x 40 mm) so that the lower surface is the laser-processed surface, and this is further sandwiched between the two heated steel plates to obtain the temperature. It was pressed at 150 ° C. and a pressure of 20 MPa for 90 seconds. After that, the metal sample piece on which the process paper was stacked was taken out, cooled in a refrigerator for 5 minutes, and then the process paper was slowly peeled off. The surface shape of the process paper to which the surface shape of the mold was transferred was measured using a 3D laser microscope OLS4100 (manufactured by Olympus Corporation) (hereinafter, the same applies to other examples) at a magnification of 1080 times.

図3に金型鋼及び転写された工程紙の断面モデルを示す。図3において,h1=加工により形成された孔の深さ,h2=孔の周縁に形成された凸部の高さ,f1=凸部の直径,f2=レーザー照射されていない箇所の長さを示す。測定結果を表1に示す。また,測定結果から作成した断面形状及び3Dマッピング画像を図4〜図7に示す。これらの図から,図3に示した転写された工程紙の断面モデルの形状は,測定結果から得られた工程紙の断面及び3Dマッピング画像をよく表わしている。また,レーザー照射によって開けられた孔は縦横に整列しておりピッチはおよそ40μmであった。 FIG. 3 shows a cross-sectional model of the shaped steel and the transferred process paper. In FIG. 3, h 1 = the depth of the hole formed by processing, h 2 = the height of the convex portion formed on the periphery of the hole, f 1 = the diameter of the convex portion, f 2 = the portion not irradiated with the laser. Indicates the length of. The measurement results are shown in Table 1. Further, the cross-sectional shape and the 3D mapping image created from the measurement results are shown in FIGS. 4 to 7. From these figures, the shape of the cross-section model of the transferred process paper shown in FIG. 3 well represents the cross-section of the process paper and the 3D mapping image obtained from the measurement results. The holes formed by laser irradiation were aligned vertically and horizontally, and the pitch was about 40 μm.

表1,表2及び図4〜図7から,フルエンスを高くするとh1(=加工により形成された孔の深さ)が深くなり,h2(=孔の周縁に形成された凸部の高さ)は高くなることが分かった。 From Tables 1 and 2 and FIGS. 4 to 7, when the fluence is increased, h 1 (= the depth of the hole formed by processing) becomes deeper and h 2 (= the height of the convex portion formed on the periphery of the hole) becomes deeper. It turns out that it will be higher.

(濡れ性の評価)
濡れ性の評価として,全自動接触角計DM-701(協和界面科学株式会社製)を用いて,平行接触角及び滑落角を測定した(以下,他の実施例でも同様)。測定条件については表3に示す。なお,測定に際しては,直前にピラニア溶液に浸漬した後,蒸留水で洗浄し,窒素ガスを吹き付けて乾燥させてから測定を行った。静的接触角は5回の測定の平均値を採用した。結果を表4及び図8に示す。
(Evaluation of wettability)
As an evaluation of wettability, the parallel contact angle and the sliding angle were measured using a fully automatic contact angle meter DM-701 (manufactured by Kyowa Interface Science Co., Ltd.) (hereinafter, the same applies to other examples). The measurement conditions are shown in Table 3. The measurement was carried out after immersing in a piranha solution immediately before, washing with distilled water, and blowing nitrogen gas to dry. For the static contact angle, the average value of 5 measurements was adopted. The results are shown in Table 4 and FIG.

表4及び図8から,レーザー照射前においては小さかった静的接触角がレーザー照射後において大きくなることが分かった。また,レーザー照射のパルスエネルギーが大きいほど静的接触角が大きくなり,撥水性が増すことが分かった。以上の結果から,パルスエネルギーを制御することにより,金属表面の濡れ性を制御できることが分かった。パルスエネルギーはピークパワーと比例するため,ピークパワーを制御することにより,金属表面の濡れ性を制御することができる。図8の結果においても,ピークパワーが大きくなると静的接触角が大きくなり,撥水性が増す結果となっている。一方,表面粗さは静的接触角にそれほど影響しないことが分かる。 From Table 4 and FIG. 8, it was found that the static contact angle, which was small before the laser irradiation, became large after the laser irradiation. It was also found that the larger the pulse energy of laser irradiation, the larger the static contact angle and the higher the water repellency. From the above results, it was found that the wettability of the metal surface can be controlled by controlling the pulse energy. Since the pulse energy is proportional to the peak power, the wettability of the metal surface can be controlled by controlling the peak power. Also in the result of FIG. 8, as the peak power increases, the static contact angle increases and the water repellency increases. On the other hand, it can be seen that the surface roughness does not affect the static contact angle so much.

(実施例2)
実施例2では,金属試料片をナノ秒パルスレーザーによるパーカッション加工をピッチを替えて行うことにより,様々なピッチを有する微細周期構造を形成し,表面の濡れ性を制御した。以下にその詳細を示す。
(Example 2)
In Example 2, percussion processing of a metal sample piece with a nanosecond pulse laser was performed at different pitches to form a fine periodic structure having various pitches, and the wettability of the surface was controlled. The details are shown below.

1)被加工金属
表面処理の対象となった金属は,アニーリングしてから20mm×20mmの大きさに切り出した炭素鋼であり,表面粗さRa = 0.3のものを3枚用意した。
1) Metal to be processed The metal to be surface-treated is carbon steel cut out to a size of 20 mm × 20 mm after annealing, and three pieces with a surface roughness Ra = 0.3 were prepared.

2)ナノ秒パルスレーザー照射
上記の金型鋼の金属試料片について,同じ大きさの正方形となるように4分割した箇所を,ナノ秒パルスレーザーによってパーカッション加工を行った。また,レーザー光の掃引スピードを変化させることでピッチを30〜80μmとなるように様々に制御した。パーカッション加工は1箇所当たりのレーザー照射のshot回数が80回となるように行った。照射条件の詳細を表5に示す。
2) Nanosecond pulsed laser irradiation The metal sample piece of the above mold steel was percussed by a nanosecond pulsed laser at a portion divided into four so as to form a square of the same size. In addition, the pitch was variously controlled to be 30 to 80 μm by changing the sweep speed of the laser beam. The percussion process was performed so that the number of shots of laser irradiation per location was 80. The details of the irradiation conditions are shown in Table 5.

−表面形状の測定−
ナノ秒パルスレーザー照射を行った各金属試料片について,形状測定及びうねり分析を行った。測定は3Dレーザー顕微鏡を用い,拡大倍率1080倍で測定した。形状測定は5箇所の平均値を採用した。結果を表6に示す。表6におけるピッチτ,凸の幅f1,凹の幅f2及び突起高さhの意味については,図3において示した通りである。こうして得られた測定値から求められた断面形状及び3Dマッピング画像を図10〜12に示す。レーザーによって開けられた孔が整列して並んでいるのが分かる。ただし,孔部分はレーザー光の乱反射等によるノイズのために正確な形状は表現されていない。
-Measurement of surface shape-
Shape measurement and swell analysis were performed on each metal sample piece subjected to nanosecond pulse laser irradiation. The measurement was performed using a 3D laser microscope at a magnification of 1080 times. For shape measurement, the average value of 5 points was adopted. The results are shown in Table 6. The meanings of the pitch τ, the convex width f 1 , the concave width f 2, and the protrusion height h in Table 6 are as shown in FIG. The cross-sectional shape and the 3D mapping image obtained from the measured values thus obtained are shown in FIGS. 10 to 12. You can see that the holes made by the laser are lined up. However, the exact shape of the hole is not expressed due to noise caused by diffused reflection of laser light.

表5,表6及び図9〜図12から,ピークパワーを高くするとh(=孔の周縁に形成された凸部の高さ)が高くなることが分かった。 From Tables 5 and 6 and FIGS. 9 to 12, it was found that h (= height of the convex portion formed on the peripheral edge of the hole) increases as the peak power increases.

−濡れ性の評価試験− -Wetability evaluation test-

(濡れ性の評価)
濡れ性の評価として,実施例1の場合と同様にして,平行接触角及び滑落角を測定した。測定は5回の測定の平均値を採用した。測定条件を表7に示す。また,結果を表8に示す。
(Evaluation of wettability)
As an evaluation of wettability, the parallel contact angle and the sliding angle were measured in the same manner as in Example 1. For the measurement, the average value of 5 measurements was adopted. The measurement conditions are shown in Table 7. The results are shown in Table 8.

表8から,ナノ秒パルスレーザー照射前においては静的接触角が96.4°であったのが,ナノ秒パルスレーザー照射後においては28.4〜43.6°となり,親水性が大幅に増すことが分かった。このことからも,ナノ秒パルスレーザー照射により親水性が増すことが分かった。 From Table 8, it was found that the static contact angle was 96.4 ° before the nanosecond pulse laser irradiation, but became 28.4 to 43.6 ° after the nanosecond pulse laser irradiation, and the hydrophilicity was significantly increased. From this, it was found that the hydrophilicity was increased by the nanosecond pulse laser irradiation.

(実施例3)
1)被加工金属
表面処理の対象となった金属は20mm×20mmの大きさに切り出した炭素鋼であり,表面粗さRa = 0.285のものである。この金属試料片に対してアニーリングしてから,ナノ秒パルスレーザーによるパーカッション加工を様々なピッチで行うことにより様々な微細周期構造を形成し,表面の濡れ性を制御した。以下にその詳細を示す。
(Example 3)
1) Metal to be processed The metal to be surface-treated is carbon steel cut into a size of 20 mm x 20 mm and has a surface roughness Ra = 0.285. After annealing this metal sample piece, percussion processing with a nanosecond pulse laser was performed at various pitches to form various fine periodic structures and control the wettability of the surface. The details are shown below.

レーザー加工では10 mm角の範囲について微細周期構造の加工を行った。パーカッション加工による微細周期構造のレイアウト(レーザーのスポットが4列×4行の場合)を図13に示す。また,表9にレーザー加工の条件を示す。 In laser processing, a fine periodic structure was processed in the area of 10 mm square. FIG. 13 shows a layout of a fine periodic structure by percussion processing (when the laser spot is 4 columns × 4 rows). Table 9 shows the conditions for laser processing.

−表面形状の測定−
ナノ秒パルスレーザー照射を行った各金属試料片の形状測定及びうねり分析を3Dレーザー顕微鏡を用い,拡大倍率432倍で測定した。その結果、パーカッション加工による、規則正しい微細周期構造のレイアウトが形成されていることが分かった(表10参照)。
-Measurement of surface shape-
The shape measurement and swell analysis of each metal sample piece subjected to nanosecond pulse laser irradiation were measured using a 3D laser microscope at a magnification of 432 times. As a result, it was found that a layout with a regular fine periodic structure was formed by percussion processing (see Table 10).

(濡れ性の評価)
濡れ性の評価として,実施例3と同様にして静的接触角を測定した。測定条件を表11に示す。
(Evaluation of wettability)
As an evaluation of wettability, the static contact angle was measured in the same manner as in Example 3. The measurement conditions are shown in Table 11.

その結果,全てのサンプルにおいて加工前の静的接触角が98.5°であったのに対して,レーザー加工後には0°となり,超親水性の表面になることが分かった。 As a result, it was found that the static contact angle before processing was 98.5 ° in all samples, but it became 0 ° after laser processing, resulting in a super-hydrophilic surface.

(実施例4)
1)被加工金属
表面処理の対象となった金属は20mm×20mmの大きさに切り出した炭素鋼であり,表面粗さRa = 0.302のものである。この金属試料片に対してアニーリングをしてから,後述するナノ秒パルスレーザーによるハッチング処理を行った。その後,ハッチング処理を行った周縁にパーカッション加工を様々なピッチで行うことにより,様々な微細周期構造を形成し,表面の濡れ性を制御した。以下にその詳細を示す。
(Example 4)
1) Metal to be processed The metal to be surface-treated is carbon steel cut into a size of 20 mm × 20 mm and has a surface roughness Ra = 0.302. This metal sample piece was annealed and then hatched with a nanosecond pulsed laser, which will be described later. After that, by performing percussion processing on the hatched peripheral edge at various pitches, various fine periodic structures were formed and the wettability of the surface was controlled. The details are shown below.

上記の金型鋼の金属試料片の表面に,ナノ秒パルスレーザーによるパーカッション加工を5mm四方の正方形に行った。表12にレーザー加工の条件を示す。レーザー加工のレイアウトは,図14に示す網目で示した四角の領域にハッチング加工(すなわち,特にピッチを決めずに間欠的なパーカッション加工を行いながら連続的にレーザーをスキャンする加工)を行った後,その上から表12に示す様々なピッチでパーカッション加工を施した。 The surface of the metal sample piece of the above-mentioned mold steel was percussed by a nanosecond pulse laser into a 5 mm square. Table 12 shows the conditions for laser processing. The layout of laser processing is performed after hatching (that is, processing of continuously scanning the laser while performing intermittent percussion processing without determining the pitch) in the square area shown by the mesh shown in FIG. From above, percussion processing was performed at various pitches shown in Table 12.

−表面形状の測定−
ナノ秒パルスレーザー照射を行った各金属試料片の形状測定を、3Dレーザー顕微鏡を用い,拡大倍率432倍で測定した。結果を表13に示す。また,こうして得られた測定値から求められた断面形状及び3Dマッピング画像を図15に示す。図15からパーカッション加工による規則正しい微細周期構造のレイアウトが観察された。ただし,図15における凹部については,レーザー光の乱反射等によるノイズのために正確な形状は表現されていない。
-Measurement of surface shape-
The shape of each metal sample piece subjected to nanosecond pulse laser irradiation was measured using a 3D laser microscope at a magnification of 432 times. The results are shown in Table 13. Further, FIG. 15 shows a cross-sectional shape and a 3D mapping image obtained from the measured values thus obtained. From FIG. 15, a layout of a regular fine periodic structure by percussion processing was observed. However, the exact shape of the recess in FIG. 15 is not expressed due to noise caused by diffused reflection of laser light and the like.

(濡れ性の評価)
実施例4の各金属試料片の濡れ性の評価として,実施例3と同様にして静的接触角を測定した。測定条件を表14に示す。
(Evaluation of wettability)
As an evaluation of the wettability of each metal sample piece of Example 4, the static contact angle was measured in the same manner as in Example 3. The measurement conditions are shown in Table 14.

その結果,全てのサンプルにおいて加工前の静的接触角が96.7°であったのに対して,レーザー加工後には0°となり,超親水性となること分かった。

As a result, it was found that the static contact angle before processing was 96.7 ° in all the samples, but it became 0 ° after laser processing, and it became superhydrophilic.

Claims (5)

金属表面にナノ秒パルスレーザーを照射して表面加工を行う工程において,金属の材質や形状や寸法に応じて1ショットのエネルギー,ピークパワー及びフルエンスの少なくとも一つを制御することによりアブレーション加工と熱加工を同時に行い,レーザー照射箇所に凹部を形成すると同時に該凹部の周縁に凸部を形成させることを特徴とする金属表面の濡れ性制御方法。 In the process of irradiating a metal surface with a nanosecond pulse laser to perform surface processing, ablation processing and heat are performed by controlling at least one of the energy, peak power, and fluence of one shot according to the material, shape, and dimensions of the metal. A method for controlling wettability of a metal surface, which comprises performing processing at the same time to form a concave portion at a laser irradiation site and at the same time forming a convex portion on the peripheral edge of the concave portion. 前記ナノ秒パルスレーザーのパルス幅は,1ナノ秒以上100ナノ秒以下であることを特徴とする請求項1に記載の金属表面の濡れ性制御方法。 The method for controlling wettability of a metal surface according to claim 1, wherein the pulse width of the nanosecond pulse laser is 1 nanosecond or more and 100 nanoseconds or less. 前記レーザー照射を間欠的に行うパーカッション加工法を用い,かつ2次元平面上の照射パターンを変化させることによって所望の3次元形状を得ることを特徴とする請求項1又は2に記載の金属表面の濡れ性制御方法。 The metal surface according to claim 1 or 2, wherein a desired three-dimensional shape is obtained by using the percussion processing method in which the laser irradiation is intermittently performed and by changing the irradiation pattern on a two-dimensional plane. Wetness control method. レーザー照射箇所とレーザー照射される金属とを相対移動させつつパーカッション加工を行い,金属表面に周期構造を形成させることを特徴とする請求項1乃至3のいずれか1項に記載の金属表面の濡れ性制御方法。 The wettling of the metal surface according to any one of claims 1 to 3, wherein the percussion processing is performed while the laser-irradiated portion and the laser-irradiated metal are relatively moved to form a periodic structure on the metal surface. Gender control method. 前記ナノ秒パルスレーザーの照射ピッチをマイクロメートルオーダーで制御しながらパーカッション加工法を併用することで,マイクロメートルオーダーのピッチと,マイクロメートルオーダーのピッチよりも周期の短いピッチの,異なる2つの周期の微細周期構造を同時に形成させることを特徴とする請求項3又は4に記載の金属表面の濡れ性制御方法。

By using the percussion processing method while controlling the irradiation pitch of the nanosecond pulse laser on the order of micrometers, two different cycles, a pitch on the order of micrometers and a pitch shorter than the pitch on the order of micrometers, can be used. The method for controlling wettability of a metal surface according to claim 3 or 4, wherein a fine periodic structure is formed at the same time.

JP2019046432A 2019-03-13 2019-03-13 Method for controlling wettability of metal surface Active JP7120576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046432A JP7120576B2 (en) 2019-03-13 2019-03-13 Method for controlling wettability of metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046432A JP7120576B2 (en) 2019-03-13 2019-03-13 Method for controlling wettability of metal surface

Publications (2)

Publication Number Publication Date
JP2020146725A true JP2020146725A (en) 2020-09-17
JP7120576B2 JP7120576B2 (en) 2022-08-17

Family

ID=72431141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046432A Active JP7120576B2 (en) 2019-03-13 2019-03-13 Method for controlling wettability of metal surface

Country Status (1)

Country Link
JP (1) JP7120576B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113146049A (en) * 2021-04-19 2021-07-23 江苏大学 Laser processing device and method for realizing super-hydrophobic metal micro-part
CN114012271A (en) * 2021-10-08 2022-02-08 深圳泰德激光技术股份有限公司 Preparation method of metal super-hydrophobic surface and laser processing equipment
CN114105677A (en) * 2021-12-28 2022-03-01 中国科学院长春光学精密机械与物理研究所 Method for realizing lasting super-hydrophilicity of sapphire surface
CN114619148A (en) * 2022-03-01 2022-06-14 南京理工大学 Method for changing surface wettability of invar alloy through femtosecond laser
CN117265528A (en) * 2023-09-28 2023-12-22 广州番禺职业技术学院 Wear-resistant super-wetting surface and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132701A (en) * 1986-11-25 1988-06-04 Kawasaki Steel Corp Steel sheet for painting and its production
JP2006167781A (en) * 2004-12-17 2006-06-29 Nippon Steel Corp Temper rolling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132701A (en) * 1986-11-25 1988-06-04 Kawasaki Steel Corp Steel sheet for painting and its production
JP2006167781A (en) * 2004-12-17 2006-06-29 Nippon Steel Corp Temper rolling method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113146049A (en) * 2021-04-19 2021-07-23 江苏大学 Laser processing device and method for realizing super-hydrophobic metal micro-part
CN113146049B (en) * 2021-04-19 2022-08-23 江苏大学 Laser processing device and method for realizing super-hydrophobic metal micro-part
CN114012271A (en) * 2021-10-08 2022-02-08 深圳泰德激光技术股份有限公司 Preparation method of metal super-hydrophobic surface and laser processing equipment
CN114105677A (en) * 2021-12-28 2022-03-01 中国科学院长春光学精密机械与物理研究所 Method for realizing lasting super-hydrophilicity of sapphire surface
CN114105677B (en) * 2021-12-28 2022-12-06 中国科学院长春光学精密机械与物理研究所 Method for realizing lasting super-hydrophilicity of sapphire surface
CN114619148A (en) * 2022-03-01 2022-06-14 南京理工大学 Method for changing surface wettability of invar alloy through femtosecond laser
CN117265528A (en) * 2023-09-28 2023-12-22 广州番禺职业技术学院 Wear-resistant super-wetting surface and preparation method thereof
CN117265528B (en) * 2023-09-28 2024-04-30 广州番禺职业技术学院 Wear-resistant super-wetting surface and preparation method thereof

Also Published As

Publication number Publication date
JP7120576B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP7120576B2 (en) Method for controlling wettability of metal surface
Raciukaitis et al. Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?
CN104646833B (en) A kind of laser preparation method on metallic substrates gradient wetting surface
CN106392332B (en) A kind of laser-graining method for improving medical implant surfaces cell adhesion
Zhang et al. Laser surface texturing of stainless steel− effect of pulse duration on texture's morphology and frictional response
Bharatish et al. Influence of femtosecond laser parameters and environment on surface texture characteristics of metals and non-metals–state of the art
Li et al. Experimental investigation and mathematical modeling of laser marking two-dimensional barcodes on surfaces of aluminum alloy
Behera et al. Experimental investigation of underwater laser beam micromachining (UW-LBμM) on 304 stainless steel
Dileep et al. Ultrafast laser-induced periodic structuring of titanium alloy (Ti-6Al-4V)
JPWO2006027850A1 (en) Method for improving adhesion of thin film
Liu et al. Feasibility investigation of direct laser cutting process of metal foam with high pore density
CN111468831A (en) Self-cleaning metal surface, preparation method thereof and processing device
Neuenschwander et al. Influence of particle shielding and heat accumulation effects onto the removal rate for laser micromachining with ultra-short pulses at high repetition rates
KR101335688B1 (en) Laser processing method for formation of microspike
Martínez-Calderon et al. Femtosecond laser manufacturing of highly hydrophobic hierarchical structures fabricated by combining surface microstructures and LIPSS
JP6722617B2 (en) Metal surface roughening method
JP5814988B2 (en) Method for surface modification of casting mold
CN116174893A (en) Method for improving superhydrophobicity of nickel-titanium alloy by laser composite processing
Martendal et al. Wettability modification of laser textured copper surfaces applied to phase change heat transfer
JP2019155457A (en) Manufacturing method of water-repellent article and laser processing apparatus
Choi et al. Femtosecond laser-induced line structuring on mold stainless steel STAVAX with various scanning speeds and two polarization configurations
Zimmer et al. Using IR laser radiation for backside etching of fused silica
JP2008248270A (en) Laser beam impact hardening treatment method and laser beam impact hardening treatment apparatus
Demirci et al. Nanosecond laser ablation of Si (111) under an aqueous medium
Häfner et al. Microstructuring Tools for Sheet Bulk Metal Forming-A Designated Application for Picosecond Laser.

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210721

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R150 Certificate of patent or registration of utility model

Ref document number: 7120576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350