JP2008248270A - Laser beam impact hardening treatment method and laser beam impact hardening treatment apparatus - Google Patents

Laser beam impact hardening treatment method and laser beam impact hardening treatment apparatus Download PDF

Info

Publication number
JP2008248270A
JP2008248270A JP2007087616A JP2007087616A JP2008248270A JP 2008248270 A JP2008248270 A JP 2008248270A JP 2007087616 A JP2007087616 A JP 2007087616A JP 2007087616 A JP2007087616 A JP 2007087616A JP 2008248270 A JP2008248270 A JP 2008248270A
Authority
JP
Japan
Prior art keywords
laser beam
laser
processed
shock hardening
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007087616A
Other languages
Japanese (ja)
Other versions
JP5172191B2 (en
Inventor
Yuji Sano
雄二 佐野
Shigehiko Mukai
成彦 向井
Masaki Yoda
正樹 依田
Takuya Uehara
拓也 上原
Riyouichi Saeki
綾一 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007087616A priority Critical patent/JP5172191B2/en
Publication of JP2008248270A publication Critical patent/JP2008248270A/en
Application granted granted Critical
Publication of JP5172191B2 publication Critical patent/JP5172191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable treating of a laser beam peening at high velocity to a large area with which in a laser beam impact treatment method, the coating on the surface is unnecessary and the raising of hardness and the improving effect of residual stress of a member to be treated, are extended to the deep range. <P>SOLUTION: In this laser beam impact hardening treatment method, the pulse-state laser beam 51 is applied on the surface of the member 41 to be treated, contacted with liquid 22 through the liquid 22 to perform the surface treatment of the member 41 to be treated. The emitting spot of the laser beam formed with one pulse on the surface of the member 41 to be treated, are constituted with a plurality of small ranges having the same shape and arranged in the same intervals, The shape of respective small range can be obtained to a slender long-state, round-state or square-state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属やセラミックスなどの固体材料の表面に液体を介してパルス状のレーザビームを照射することにより、材料表面および内部の組織、硬さ、残留応力などの特性を調整するレーザ衝撃硬化処理方法およびそのための処理装置に関する。   The present invention is a laser shock hardening that adjusts the characteristics of the material surface and internal structure, hardness, residual stress, etc. by irradiating the surface of a solid material such as metal or ceramics with a pulsed laser beam via a liquid. The present invention relates to a processing method and a processing apparatus therefor.

腐食や亀裂の発生など、構造物の損傷は表面を起点とする場合がほとんどであり、構造物の寿命は表面の特性に左右される。このため、各種の表面処理技術を適用して材料表面の機械的あるいは化学的な性質を改善し、疲労強度、耐腐食性、耐摩耗性などを向上させることにより、構造物の寿命延長を図る試みが行なわれている。   In most cases, damage to structures such as corrosion and cracks originates from the surface, and the life of the structure depends on the characteristics of the surface. For this reason, various surface treatment techniques are applied to improve the mechanical or chemical properties of the material surface, thereby improving the fatigue strength, corrosion resistance, wear resistance, etc., thereby extending the life of the structure. An attempt is being made.

ショットピーニングは代表的な表面処理技術であり、部材表面層の硬さの上昇と、表面層への圧縮残留応力の導入が可能である。このため、自動車、航空機などの産業分野で多く利用されている。   Shot peening is a typical surface treatment technique, and can increase the hardness of the member surface layer and introduce compressive residual stress into the surface layer. For this reason, it is widely used in industrial fields such as automobiles and aircraft.

一方、レーザはエネルギー密度や照射位置の精密かつ高速な制御が容易であり、他の方法では困難な高速処理、超急熱急冷処理などを行なうことができるため、種々の技術が開発され、材料の加工処理への応用が拡大している。   Lasers, on the other hand, are capable of precise and high-speed control of energy density and irradiation position, and can perform high-speed processing and super rapid thermal quenching that are difficult with other methods. The application to processing is expanding.

その一つとして、液体を介して材料の表面にパルス状のレーザビームを照射するレーザ衝撃硬化処理があり、ショットピーニングと同様に部材表面層の硬さの上昇と、表面層への圧縮残留応力の導入を行なうことが可能である。   As one of them, there is a laser shock hardening treatment that irradiates the surface of the material with a pulsed laser beam via a liquid. Like shot peening, the hardness of the member surface layer is increased and the compressive residual stress on the surface layer is increased. Can be introduced.

レーザ衝撃硬化処理は、ショットピーニングと比較して効果が高く、非接触作業が可能、反力がない、レーザ照射の条件や部位を精密に制御できる等、ショットピーニングでは実現できない優れた利点があり、開発および実用化が進められている(特許文献1ないし特許文献5参照)。   Laser shock hardening is more effective than shot peening, has non-contact work, has no reaction force, and has excellent advantages that cannot be realized by shot peening, such as precise control of laser irradiation conditions and parts. Development and practical use are underway (see Patent Documents 1 to 5).

特許文献5には、金属やセラミックスなどの固体材料の表面に、液体を介してパルス状のレーザビームを照射することにより、材料表面および内部の組織、硬さ、残留応力などの材料特性を調整するレーザ衝撃硬化処理について開示されている。   In Patent Document 5, the surface of a solid material such as metal or ceramics is irradiated with a pulsed laser beam through a liquid, thereby adjusting the material characteristics such as the material surface and the internal structure, hardness, and residual stress. A laser shock hardening process is disclosed.

特許文献5によれば、レーザビームのピーク出力密度が被処理部材のプラズマ発生閾値(金属の場合概ね0.1〜10TW/m)を超えると、被処理部材のごく表層(1μm以下)が瞬時に蒸発し、プラズマが発生する。液体中では慣性が瞬間的に強く働くため、プラズマはほとんど膨張することができず、狭い領域にレーザビームのエネルギーが集中する。このため、プラズマの圧力は大気中や真空中と比較して十〜百倍にも達する。 According to Patent Document 5, when the peak output density of the laser beam exceeds the plasma generation threshold of the member to be processed (approximately 0.1 to 10 TW / m 2 in the case of metal), the very surface layer (1 μm or less) of the member to be processed It instantly evaporates and plasma is generated. Inertia momentarily works strongly in the liquid, so that the plasma can hardly expand and the energy of the laser beam is concentrated in a narrow area. For this reason, the pressure of the plasma reaches 10 to 100 times that in the atmosphere or vacuum.

液体として水を使用した場合、被処理部材に照射されるレーザビームのピーク出力密度をI(TW/m)とすると、発生するプラズマの圧力P(GPa)は概ね、P=(0.2×I)0.5となる。被処理部材の設置雰囲気が油、アルコール、アンモニア水、ホウ酸水など、水以外の液体の場合には、次の係数kを使用してP=(0.2×I×k)0.5により、プラズマの圧力を求めることができる。 When water is used as the liquid, if the peak output density of the laser beam applied to the member to be processed is I (TW / m 2 ), the pressure P (GPa) of the generated plasma is approximately P = (0.2 XI) 0.5 . When the installation atmosphere of the member to be treated is a liquid other than water, such as oil, alcohol, ammonia water, boric acid water, etc., P = (0.2 × I × k) 0.5 using the following coefficient k. Thus, the pressure of the plasma can be obtained.

k=(液体の音響インピーダンス)/(水の音響インピーダンス)
ここで、液体の音響インピーダンスは、(液体の密度)×(液体中の音速)であるため、前記した液体であれば、プラズマの圧力は水の場合と大きくは変わらない。したがって、被処理部材の表面でレーザビームのピーク出力密度が1〜100TW/mとなるようにレーザビームの大きさおよびパルスエネルギーを制御すれば、プラズマの圧力は概ね450MPa〜45GPaとなる。
k = (acoustic impedance of liquid) / (acoustic impedance of water)
Here, since the acoustic impedance of the liquid is (the density of the liquid) × (the speed of sound in the liquid), in the case of the above-described liquid, the plasma pressure is not significantly different from that in the case of water. Therefore, if the laser beam size and pulse energy are controlled so that the peak output density of the laser beam is 1 to 100 TW / m 2 on the surface of the member to be processed, the plasma pressure is approximately 450 MPa to 45 GPa.

このようにして発生した高圧のプラズマは、被処理部材の表面を瞬間的に圧縮し、圧縮による表面の変位は衝撃波となって部材の深さ方向に伝播する。このとき、衝撃波の圧力が部材の降伏応力を上回ると、局所的な塑性変形が生じるため、組織、硬さ、残留応力などの材料特性を調整することができる。   The high-pressure plasma generated in this way instantaneously compresses the surface of the member to be processed, and the displacement of the surface due to the compression becomes a shock wave and propagates in the depth direction of the member. At this time, if the pressure of the shock wave exceeds the yield stress of the member, local plastic deformation occurs, so that material characteristics such as the structure, hardness, and residual stress can be adjusted.

レーザ衝撃硬化処理により材料表面の硬さが上昇し、圧縮の残留応力が形成されると、疲労強度の向上や応力腐食割れの予防に効果がある。そのため、航空機産業、自動車産業、原子力産業などでレーザ衝撃硬化処理の適用が進められている。   When the hardness of the material surface is increased by the laser shock hardening process and a compressive residual stress is formed, it is effective in improving fatigue strength and preventing stress corrosion cracking. Therefore, application of laser shock hardening is being promoted in the aircraft industry, the automobile industry, the nuclear power industry, and the like.

レーザ衝撃硬化処理は、パルス状のレーザビームを被処理部材の表面に直接照射するため、プラズマによって分解された液体の構成元素が被処理部材の表面と反応する場合がある。   In the laser shock hardening process, since the pulsed laser beam is directly irradiated on the surface of the member to be processed, the constituent elements of the liquid decomposed by the plasma may react with the surface of the member to be processed.

たとえば、水雰囲気でステンレス鋼をレーザ衝撃硬化処理する場合、水の分解によって水素と酸素が発生し、酸素がステンレス鋼の表面と反応するため、レーザ衝撃硬化処理後の表面にはFeを主成分とする厚さ約1μmの強固な黒色の酸化被膜が形成される。 For example, when laser shock hardening treatment is performed on stainless steel in a water atmosphere, hydrogen and oxygen are generated by the decomposition of water, and oxygen reacts with the surface of the stainless steel. Therefore, the surface after the laser shock hardening treatment is Fe 3 O 4. As a result, a strong black oxide film having a thickness of about 1 μm is formed.

黒色の被膜が外観上好ましくない場合には、塗料や金属テープなどにより被処理部材の表面にあらかじめ厚さ数十μm程度の被膜を形成した後レーザ衝撃硬化処理を施せば、被膜除去後の被処理部材の表面は処理前とほとんど同一の表面性状を示す。
特開平07−246483号公報 特開平08−112681号公報 特開平08−326502号公報 特開2003−504212号公報 特開2006−137998号公報 P. Peyre et al., Journal of Materials Science, 33 (1998) 1421.
If the black coating is not preferred in appearance, a coating with a thickness of about several tens of μm is formed on the surface of the member to be processed with paint or metal tape, and then laser shock hardening is performed. The surface of the treatment member exhibits almost the same surface properties as before treatment.
Japanese Patent Application Laid-Open No. 07-246483 JP 08-111261 A Japanese Patent Laid-Open No. 08-326502 JP 2003-504212 A JP 2006-137998 A P. Peyre et al., Journal of Materials Science, 33 (1998) 1421.

前記した例は、国内で実施された実験の結果であるが、欧米ではレーザのパルスエネルギーをさらに高め、100J程度で実験を行なっている。その結果、圧縮残留応力の深さは表面から数mmにも及び、さらに高い効果が期待されている。しかしながら、高いパルスエネルギーでレーザピーニングを行なった場合、材料の表面が溶融するため、表面から数十μmの領域が逆に引張の応力状態となってしまうことが知られている(非特許文献1)。   The example described above is the result of an experiment conducted in Japan. In Europe and the United States, the laser pulse energy is further increased, and the experiment is performed at about 100 J. As a result, the depth of the compressive residual stress reaches several mm from the surface, and a higher effect is expected. However, when laser peening is performed with high pulse energy, the surface of the material melts, and it is known that a region of several tens of μm from the surface becomes a tensile stress state (Non-Patent Document 1). ).

このため、高エネルギーでレーザピーニングを行なう場合には、遮熱のためのコーティングを材料の表面にあらかじめ施し、その後レーザピーニング処理を行なっているが、工程が複雑となり、コストの増大とスループットの低下を招いている。   For this reason, when laser peening is performed with high energy, a coating for heat insulation is applied to the surface of the material in advance, and then laser peening is performed, but the process becomes complicated, increasing costs and reducing throughput. Has been invited.

本発明は、従来技術に伴うこれらの課題を解決することを目的としてなされたものであり、表面のコーティングが不要で、被処理部材の硬さの上昇および残留応力の改善効果が深い領域まで及び、大面積を高速でレーザピーニング処理することが可能なレーザ衝撃硬化処理方法およびそのための処理装置を提供するものである。   The present invention has been made for the purpose of solving these problems associated with the prior art, does not require surface coating, extends to a region where the hardness of the processed member is increased and the effect of improving residual stress is deep. The present invention provides a laser shock hardening method and a processing apparatus therefor capable of performing a laser peening process on a large area at high speed.

また、本発明の目的は、駆動装置に過剰な負荷をかけず十分高速な処理ができるようにしたレーザ衝撃硬化処理方法およびそのための処理装置を提供することにある。   Another object of the present invention is to provide a laser shock hardening processing method and a processing apparatus therefor that can perform sufficiently high-speed processing without applying an excessive load to the driving device.

上記の目的を達成するために、本発明に係るレーザ衝撃硬化処理方法は、液体に接した被処理部材の表面に液体を通してパルス状のレーザビームを照射し、被処理部材の表面処理を行なうレーザ衝撃硬化処理方法において、前記被処理部材の表面に1パルスで形成されるレーザビームの照射スポットが、複数の小領域で構成されていることを特徴とする。   In order to achieve the above object, a laser shock hardening method according to the present invention is a laser that performs surface treatment of a member to be treated by irradiating the surface of the member to be treated with the pulsed laser beam through the liquid. In the impact hardening method, the laser beam irradiation spot formed in one pulse on the surface of the member to be processed is composed of a plurality of small regions.

また、本発明に係るレーザ衝撃硬化処理装置は、レーザビームを出射するレーザ発振器と、被処理部材の表面におけるレーザビームの照射スポットが複数の小領域で構成されるように前記レーザ発振器から出射されたレーザビームの照射スポット形状を整形する光学装置と、被処理部材の表面に沿ってレーザビームを相対的に移動させ被処理部材の所望の部位にレーザビームを位置決めするための駆動装置と、被処理部材の少なくともレーザビームによって照射される表面に液体を供給するための液体供給手段と、を有すること、を特徴とする。   Further, the laser shock hardening processing apparatus according to the present invention emits a laser beam from the laser oscillator so that the laser beam irradiation spot on the surface of the member to be processed is composed of a plurality of small regions. An optical device for shaping the irradiated spot shape of the laser beam, a drive device for relatively moving the laser beam along the surface of the member to be processed and positioning the laser beam at a desired part of the member to be processed; And a liquid supply means for supplying a liquid to at least the surface irradiated with the laser beam of the processing member.

本発明によれば、レーザビームの照射スポットを複数の小領域で構成することにより、各小領域で微小なプラズマが形成されるため、従来技術に比較して液体との接触面積が増大する。その結果、プラズマの冷却が促進され、被処理部材表面に対するプラズマからの入熱量が減り、高いエネルギーのレーザパルスを使用した場合においても表面を溶融させることなくレーザピーニングすることが可能となる。   According to the present invention, by forming a laser beam irradiation spot in a plurality of small regions, a minute plasma is formed in each small region, so that the contact area with the liquid is increased as compared with the prior art. As a result, cooling of the plasma is promoted, the amount of heat input from the plasma to the surface of the member to be processed is reduced, and laser peening can be performed without melting the surface even when a high energy laser pulse is used.

また、本発明によれば、レーザビームの照射スポットを複数の小領域に分割するため、従来技術に比較して1パルスで処理できる面積が増加し、より高速に処理を行なうことが可能となる。   Further, according to the present invention, since the laser beam irradiation spot is divided into a plurality of small regions, the area that can be processed with one pulse is increased as compared with the prior art, and processing can be performed at higher speed. .

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態によるレーザ衝撃硬化処理方法を示す説明図である。
[First Embodiment]
FIG. 1 is an explanatory view showing a laser shock hardening method according to the first embodiment of the present invention.

被処理部材41は保持台42に設置され、被処理部材41および保持台42は容器21内に置かれ、容器21内には液体22が満たされている。保持台42は、被処理部材41を固定し、高さおよび角度調整などを行なうための位置調整機能を備えている。   The member to be processed 41 is installed on the holding table 42, and the member to be processed 41 and the holding table 42 are placed in the container 21, and the container 21 is filled with the liquid 22. The holding table 42 has a position adjusting function for fixing the member 41 to be processed and adjusting height and angle.

レーザ発振器11から出射したパルス状レーザビーム51は、出力調整装置12、シャッター13、ビーム拡大器91、固定ミラー92および移動ミラー94を介して照射ヘッド17に入射する。照射ヘッド17から出射したレーザビーム51は、液体22中の被処理部材41に向けて照射される。また、駆動装置30により、照射ヘッド17および移動ミラー94を被処理部材41の表面に倣って移動させながらレーザビーム51を照射することにより、被処理部材41の表面の所定の処理領域を衝撃硬化処理する。   The pulsed laser beam 51 emitted from the laser oscillator 11 is incident on the irradiation head 17 via the output adjustment device 12, the shutter 13, the beam expander 91, the fixed mirror 92, and the moving mirror 94. The laser beam 51 emitted from the irradiation head 17 is irradiated toward the member to be processed 41 in the liquid 22. In addition, the drive device 30 irradiates the laser beam 51 while moving the irradiation head 17 and the moving mirror 94 along the surface of the member to be processed 41, thereby impact-curing a predetermined processing region on the surface of the member to be processed 41. To process.

ここで、レーザ発振器11としては、たとえば、波長約1mmの近赤外で発振するガラスレーザやNd:YAGレーザが使用される。液体22として水を使用する場合、近赤外の光は水に吸収されやすいため、水深は数mm以下とする必要があるが、被処理部材41が複雑な形状のときには、水深を数mmに制御することは難しい。このため、水にほとんど吸収されず、水深の制限がないNd:YAGレーザの第2高調波(波長0.53mm)をレーザ発振器11として使用することが好ましい。   Here, as the laser oscillator 11, for example, a glass laser or an Nd: YAG laser that oscillates in the near infrared with a wavelength of about 1 mm is used. When water is used as the liquid 22, near-infrared light is easily absorbed by water, so the water depth needs to be several mm or less. However, when the member to be treated 41 has a complicated shape, the water depth is several mm. It is difficult to control. For this reason, it is preferable to use as the laser oscillator 11 the second harmonic (wavelength 0.53 mm) of an Nd: YAG laser that is hardly absorbed by water and has no limitation on water depth.

出力調整装置12は、偏光板とビーム分岐器の組合せなどによって構成され、レーザビーム51のエネルギーを調整する光学装置である。シャッター13は、高速動作ミラーなどで構成され、駆動装置30と同期して開閉制御することにより、被処理部材41の表面の必要な部分にのみレーザビーム51を照射することができるようになっている。また、ビーム拡大器91はレーザビーム51の大きさを拡大または縮小し、照射ヘッド17に入射するレーザビーム51の大きさを調整する機能を有している。   The output adjustment device 12 is an optical device that is configured by a combination of a polarizing plate and a beam splitter and adjusts the energy of the laser beam 51. The shutter 13 is composed of a high-speed operation mirror or the like, and can be irradiated with the laser beam 51 only on a necessary portion of the surface of the processing target member 41 by performing opening / closing control in synchronization with the driving device 30. Yes. The beam expander 91 has a function of expanding or reducing the size of the laser beam 51 and adjusting the size of the laser beam 51 incident on the irradiation head 17.

照射ヘッド17は、レーザビーム51の方向に垂直な方向の軸を有する複数の円柱状凸レンズ93を備え、図2に示すように、レーザビーム51を複数に分割するとともに、その各々をライン状に絞り込みながら被処理部材41の表面に照射する機能を有する。したがって、照射ヘッド17と被処理部材41の距離を変化させることにより、被処理部材41の表面に照射されるレーザビーム51の面積が変化し、被処理部材41の表面に照射されるレーザビーム51のピーク出力密度(I(TW/m))も変化する。 The irradiation head 17 includes a plurality of cylindrical convex lenses 93 having axes in a direction perpendicular to the direction of the laser beam 51, and divides the laser beam 51 into a plurality of pieces as shown in FIG. It has the function of irradiating the surface of the member 41 to be processed while narrowing down. Therefore, by changing the distance between the irradiation head 17 and the member to be processed 41, the area of the laser beam 51 irradiated on the surface of the member to be processed 41 changes, and the laser beam 51 irradiated on the surface of the member to be processed 41. The peak power density (I (TW / m 2 )) also changes.

レーザ衝撃硬化処理の効果はプラズマ52の圧力(P=(0.2×I)0.5)によって決まるため、その効果を保証するためには、該ピーク出力密度を所定の範囲に保つ必要がある。このため、被処理部材41を保持する保持台42は位置調整機能を有し、被処理部材41の位置調整により概略の調整を行なうとともに、駆動装置30により照射ヘッド17の高さを制御することにより、照射ヘッド17と被処理部材41の距離を所定の範囲に保っている。 Since the effect of the laser shock hardening process is determined by the pressure of the plasma 52 (P = (0.2 × I) 0.5 ), it is necessary to keep the peak power density within a predetermined range in order to guarantee the effect. is there. For this reason, the holding table 42 that holds the member to be processed 41 has a position adjustment function, and performs rough adjustment by adjusting the position of the member to be processed 41, and controls the height of the irradiation head 17 by the driving device 30. Thus, the distance between the irradiation head 17 and the member to be processed 41 is kept within a predetermined range.

ここで、超音波距離計またはレーザ距離計などの距離計測装置(図示せず)を使用して照射ヘッド17と被処理部材41の距離を測定し、照射ヘッド17の高さを制御することが行なわれる。また、レーザビーム51の照射によるプラズマ52の発生音の到達時間により照射ヘッド17の高さを制御することも可能である。さらに、処理部材41の表面で反射されたレーザビーム51の反射強度を測定することにより、照射ヘッド17の高さを制御することも可能である。   Here, it is possible to control the height of the irradiation head 17 by measuring the distance between the irradiation head 17 and the member to be processed 41 using a distance measuring device (not shown) such as an ultrasonic distance meter or a laser distance meter. Done. It is also possible to control the height of the irradiation head 17 by the arrival time of the generated sound of the plasma 52 by the irradiation of the laser beam 51. Further, the height of the irradiation head 17 can be controlled by measuring the reflection intensity of the laser beam 51 reflected from the surface of the processing member 41.

レーザビーム51の照射によって発生したプラズマ52は、短時間(10−7秒程度)でエネルギーを失って冷却され、微粒子となって液体中に浮遊する。この状態で、次のレーザビームを照射すると、微粒子がレーザのエネルギーを吸収したり散乱したりするため、効率の良いレーザ衝撃硬化処理ができない。 The plasma 52 generated by the irradiation of the laser beam 51 loses energy in a short time (about 10 −7 seconds), is cooled, becomes fine particles, and floats in the liquid. When the next laser beam is irradiated in this state, the fine particles absorb or scatter the energy of the laser, so that an efficient laser shock hardening process cannot be performed.

本実施形態では、微粒子の浮遊を防止するため、液体供給装置20を容器21に接続し、常に清浄な液体22を供給することが行なわれる。ここで、液体供給装置20は、ポンプ、フィルター、流量計(図示せず)などで構成される。   In the present embodiment, in order to prevent fine particles from floating, the liquid supply device 20 is connected to the container 21 to always supply a clean liquid 22. Here, the liquid supply apparatus 20 includes a pump, a filter, a flow meter (not shown), and the like.

なお、本実施形態では、照射ヘッド17を移動させることにより、被処理部材41の表面の所定の範囲をレーザ衝撃硬化処理する場合について説明したが、照射ヘッド17を固定して被処理部材41を移動させる場合、照射ヘッド17と被処理部材41を同時に移動させる場合にも全く同じ効果があることは言うまでもない。   In the present embodiment, the case where the predetermined range of the surface of the member to be processed 41 is subjected to the laser shock hardening process by moving the irradiation head 17 is described, but the irradiation head 17 is fixed and the member to be processed 41 is fixed. Needless to say, the same effect can be obtained when the irradiation head 17 and the member to be processed 41 are moved simultaneously.

図3は、本実施形態により、被処理部材41上に照射されるレーザビーム51の形状を模式的に表した図である。通常、レーザ発振器11から出射されたレーザビーム51の形状は円形であることが多い。その場合、複数の円柱状凸レンズ93によって、照射スポット45は複数の小領域46に分割される。ただし、この実施形態では、各小領域46は、たとえば等間隔の互いに平行な直線状である。したがって、プラズマ52は各小領域(ライン)46状に発生し、ライン間の液体により容易に冷却される。その結果、被処理部材41の表面への入熱量が激減し、表面の溶融を避けることができ、被処理部材41の表面に遮熱コーティングを施すことなく表面に圧縮の残留応力を形成することができる。また、ライン間の面積も、1パルスで処理できる面積に含まれるため、より高速な処理が可能となる。   FIG. 3 is a diagram schematically showing the shape of the laser beam 51 irradiated on the member 41 to be processed according to this embodiment. Usually, the shape of the laser beam 51 emitted from the laser oscillator 11 is often circular. In that case, the irradiation spot 45 is divided into a plurality of small regions 46 by a plurality of cylindrical convex lenses 93. However, in this embodiment, each small region 46 is, for example, a straight line parallel to each other at equal intervals. Therefore, the plasma 52 is generated in the shape of each small region (line) 46 and is easily cooled by the liquid between the lines. As a result, the amount of heat input to the surface of the member to be processed 41 is drastically reduced, the surface can be prevented from melting, and a compressive residual stress is formed on the surface of the member to be processed 41 without applying a thermal barrier coating. Can do. In addition, since the area between the lines is included in the area that can be processed with one pulse, higher-speed processing is possible.

図4は、1パルスで処理する面積(照射スポット45の面積であって、図3の破線の円の面積)に対する小領域46の面積(各ラインの面積の合計)の割合と、残留応力改善効果の関係を示す図である。この割合が概ね30%〜70%の範囲で有効なことがわかる。   FIG. 4 shows the ratio of the area of the small region 46 (the total area of each line) to the area processed by one pulse (the area of the irradiation spot 45 and the area of the broken-line circle in FIG. 3), and the improvement of residual stress. It is a figure which shows the relationship of an effect. It can be seen that this ratio is effective in the range of approximately 30% to 70%.

本実施形態によれば、レーザビームの照射スポットを複数の小領域で構成することにより、各小領域で微小なプラズマが形成されるため、従来技術に比較して液体との接触面積が増大する。その結果、プラズマの冷却が促進され、被処理部材表面に対するプラズマからの入熱量が激減し、高いエネルギーのレーザパルスを使用した場合においても表面を溶融させることなくレーザピーニングすることが可能となる。   According to the present embodiment, by forming the laser beam irradiation spot in a plurality of small regions, a minute plasma is formed in each small region, so that the contact area with the liquid is increased as compared with the prior art. . As a result, the cooling of the plasma is promoted, the amount of heat input from the plasma to the surface of the member to be processed is drastically reduced, and laser peening can be performed without melting the surface even when a high energy laser pulse is used.

また、本実施形態によれば、レーザビームの照射スポットを複数の小領域46に分割するため、従来技術に比較して1パルスで処理できる面積が増加し、より高速に処理を行なうことが可能となる。   In addition, according to the present embodiment, the laser beam irradiation spot is divided into a plurality of small regions 46, so that the area that can be processed with one pulse is increased as compared with the prior art, and processing can be performed at higher speed. It becomes.

たとえば、溶接線に沿った帯状の領域を処理する場合、通常は10mm幅程度の処理が必要となり、2次元的な駆動が必要であったが、本発明によれば1パルスで広い領域を処理することが可能となるため、1方向のみの動作で処理を完了させることができる。   For example, when processing a band-shaped region along a weld line, processing of about 10 mm width is usually required, and two-dimensional driving is required. However, according to the present invention, a wide region is processed with one pulse. Therefore, the process can be completed with an operation in only one direction.

また、微小なプラズマから発生した衝撃波は被処理部材の内部を伝播するに従って周囲の衝撃波と合体し、より広い面積の衝撃波が形成される。その結果、波面の広がりによる衝撃波の減衰が抑制されるため、従来技術に比較して被処理部材内部のより深い領域まで効果を及ぼすことが可能となる。   Further, the shock wave generated from the minute plasma is combined with the surrounding shock wave as it propagates inside the member to be processed, and a shock wave having a wider area is formed. As a result, shock wave attenuation due to the spread of the wavefront is suppressed, and it is possible to exert an effect up to a deeper region inside the member to be processed as compared with the prior art.

このように、本実施形態によれば、被処理部材の表面にコーティングを施さずに高いエネルギーのレーザパルスを使用しても、表面を溶融させることなくレーザピーニングすることが可能であり、その効果は従来技術に比較してより大きく、より高速な処理を行なうことができる。また、駆動装置に対する負荷が軽減されるため、駆動装置をより小型でシンプルなものにすることができる。   Thus, according to the present embodiment, even if a high energy laser pulse is used without coating the surface of the member to be processed, laser peening can be performed without melting the surface, and the effect Is larger than the prior art and can perform faster processing. Further, since the load on the drive device is reduced, the drive device can be made smaller and simpler.

さらにこの実施形態の変形例として、図2に点線で示すホモジナイザ97を用いれば、照射スポット45の各ラインの出力密度をほぼ一定に制御することが可能であり、より高品質の処理を行なうことができる。   Further, as a modification of this embodiment, if a homogenizer 97 shown by a dotted line in FIG. 2 is used, the output density of each line of the irradiation spot 45 can be controlled to be substantially constant, and higher quality processing is performed. Can do.

[第2の実施形態]
次に、図5を参照して、本発明の第2の実施形態によるレーザ衝撃硬化処理方法を説明する。ここで、第1の実施形態と共通する部分の重複説明は省略する。この実施形態では、図1に示す第1の実施形態における円柱状凸レンズ93の組を2組直列に並べて用いる。2組の円柱状凸レンズ93は、円柱軸が互いに直交する配置とする。
[Second Embodiment]
Next, a laser shock hardening method according to the second embodiment of the present invention will be described with reference to FIG. Here, the overlapping description of the parts common to the first embodiment is omitted. In this embodiment, two sets of cylindrical convex lenses 93 in the first embodiment shown in FIG. 1 are used in series. The two sets of cylindrical convex lenses 93 are arranged so that the cylinder axes are orthogonal to each other.

図5は、本発明の第2の実施形態に係る、被処理部材41上に照射されるレーザビーム51の形状を模式的に表した図である。この場合、複数の円柱状凸レンズ93を2組用い、その2組がほぼ直交する配置することにより、この照射形状を得ることができる。照射スポット45の各小領域46は、この場合2次元的に等間隔に配列されたドットマトリックス状の形態を示す。したがって、プラズマ52は各ドット上に発生し、ドット間の液体により容易に冷却される。その結果、被処理部材41の表面への入熱量が激減し、表面の溶融を避けることができ、被処理部材41の表面に遮熱コーティングを施すことなく表面に圧縮の残留応力を形成することができる。また、ドット間の面積も、1パルスで処理できる面積に含まれるため、より高速な処理が可能となる。   FIG. 5 is a diagram schematically showing the shape of the laser beam 51 irradiated on the member 41 to be processed according to the second embodiment of the present invention. In this case, this irradiation shape can be obtained by using two sets of the plurality of cylindrical convex lenses 93 and arranging the two sets substantially orthogonal to each other. In this case, each small region 46 of the irradiation spot 45 has a dot matrix shape arranged two-dimensionally at equal intervals. Therefore, plasma 52 is generated on each dot and is easily cooled by the liquid between the dots. As a result, the amount of heat input to the surface of the member to be processed 41 is drastically reduced, the surface can be prevented from melting, and a compressive residual stress is formed on the surface of the member to be processed 41 without applying a thermal barrier coating. Can do. In addition, since the area between dots is included in the area that can be processed with one pulse, higher speed processing is possible.

第1の実施形態と同様に、1パルスで処理する面積(照射スポット45の面積であって、図5の破線の円の面積)に対する小領域46の面積(各小正方形の面積の合計)の割合と、残留応力改善効果の関係を求めたところ、この割合が、図4と同様に概ね30%〜70%の範囲で有効なことがわかった。   Similarly to the first embodiment, the area of the small region 46 (the total area of each small square) with respect to the area processed with one pulse (the area of the irradiation spot 45 and the area of the broken-line circle in FIG. 5) When the relationship between the ratio and the residual stress improvement effect was obtained, it was found that this ratio was effective in the range of approximately 30% to 70% as in FIG.

さらに、図2に点線で示すホモジナイザ97を用いれば、照射スポット45の各小領域(ドット)46の出力密度をほぼ一定に制御することが可能であり、より高品質の処理を行なうことができることは、第1の実施形態と同様である。   Furthermore, if the homogenizer 97 shown by the dotted line in FIG. 2 is used, the output density of each small region (dot) 46 of the irradiation spot 45 can be controlled to be substantially constant, and higher quality processing can be performed. Is the same as in the first embodiment.

[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらの実施形態の具体的構成に限定されるものではない。
[Other Embodiments]
The embodiments described above are merely examples, and the present invention is not limited to the specific configurations of these embodiments.

たとえば、図2の円柱状凸レンズ93の代わりに、図6に示すように、六角形状のマイクロレンズの2次元アレイ99を用いれば、第2の実施形態における図5の照射スポット45の各小領域46は六角形になる。また、平板ガラス上に小型の円形凸レンズを2次元的に並べたレンズアレイを用いれば、図5の照射スポット45の各小領域46は円形になる。   For example, if a two-dimensional array 99 of hexagonal microlenses is used instead of the cylindrical convex lens 93 of FIG. 2, each small region of the irradiation spot 45 of FIG. 5 in the second embodiment is used. 46 becomes a hexagon. Further, if a lens array in which small circular convex lenses are two-dimensionally arranged on a flat glass is used, each small region 46 of the irradiation spot 45 in FIG. 5 becomes circular.

また、図1に示す例では、被処理部材41が液体22内に浸漬されている。このように被処理部材41を液体22内に浸漬する代わりに、被処理部材41にレーザビーム51が照射される部分に向けて液体を噴射させて被処理部材41に沿った液膜を形成させてもよい。   In the example shown in FIG. 1, the member to be processed 41 is immersed in the liquid 22. In this way, instead of immersing the member to be processed 41 in the liquid 22, the liquid is ejected toward the portion to be irradiated with the laser beam 51 to form a liquid film along the member to be processed 41. May be.

また、図1に示す例では、円柱状凸レンズを用いてレーザビームの照射スポット形状を整形するものとしたが、円柱状凸レンズの代わりに円柱状凹面鏡を用いることもできる。   In the example shown in FIG. 1, the shape of the laser beam irradiation spot is shaped using a cylindrical convex lens, but a cylindrical concave mirror can be used instead of the cylindrical convex lens.

本発明に係るレーザ衝撃硬化処理装置の第1の実施の形態を示す模式的立断面図である。1 is a schematic vertical sectional view showing a first embodiment of a laser shock hardening processing apparatus according to the present invention. 本発明に係るレーザ衝撃硬化処理装置の第1の実施の形態の照射ヘッド付近を示す模式的部分拡大立面図である。It is a typical partial enlarged elevation view which shows the irradiation head vicinity of 1st Embodiment of the laser shock hardening processing apparatus which concerns on this invention. 本発明に係るレーザ衝撃硬化処理装置の第1の実施の形態におけるレーザビームの照射スポットをレーザビームの軸方向から見た図である。It is the figure which looked at the irradiation spot of the laser beam in 1st Embodiment of the laser shock hardening processing apparatus which concerns on this invention from the axial direction of the laser beam. 本発明に係るレーザ衝撃硬化処理方法において、1パルスで処理する複数の小領域の合計面積に対する照射スポットの面積の割合と、残留応力改善効果の関係を示すグラフである。In the laser shock hardening processing method concerning this invention, it is a graph which shows the relationship of the ratio of the area of the irradiation spot with respect to the total area of the some small area | region processed with 1 pulse, and a residual stress improvement effect. 本発明に係るレーザ衝撃硬化処理装置の第2の実施の形態におけるレーザビームの照射スポットをレーザビームの軸方向から見た図である。It is the figure which looked at the irradiation spot of the laser beam in 2nd Embodiment of the laser shock hardening processing apparatus which concerns on this invention from the axial direction of the laser beam. 本発明に係るレーザ衝撃硬化処理装置の他の実施の形態の照射ヘッド付近を示す模式的部分拡大立面図である。It is a typical partial enlarged elevation view which shows the irradiation head vicinity of other embodiment of the laser shock hardening processing apparatus which concerns on this invention.

符号の説明Explanation of symbols

10・・・レーザ照射装置
11・・・レーザ発振器
12・・・出力調整装置
13・・・シャッター
17・・・照射ヘッド
20・・・液体供給装置
21・・・容器
22・・・液体
30・・・駆動装置
41・・・被処理部材
42・・・保持台
45・・・照射スポット
46・・・小領域
51・・・レーザビーム
52・・・プラズマ
91・・・ビーム拡大器
92・・・固定ミラー
93・・・円柱状凸レンズ
94・・・移動ミラー
97・・・ホモジナイザ
99・・・マイクロレンズアレイ
DESCRIPTION OF SYMBOLS 10 ... Laser irradiation apparatus 11 ... Laser oscillator 12 ... Output adjustment apparatus 13 ... Shutter 17 ... Irradiation head 20 ... Liquid supply apparatus 21 ... Container 22 ... Liquid 30 ..Drive device 41... Processing target 42... Holding base 45... Irradiation spot 46. Small area 51... Laser beam 52.・ Fixed mirror 93 ... cylindrical convex lens 94 ... moving mirror 97 ... homogenizer 99 ... micro lens array

Claims (12)

液体に接した被処理部材の表面に液体を通してパルス状のレーザビームを照射し、被処理部材の表面処理を行なうレーザ衝撃硬化処理方法において、
前記被処理部材の表面に1パルスで形成されるレーザビームの照射スポットが、複数の小領域で構成されていることを特徴とするレーザ衝撃硬化処理方法。
In a laser shock hardening method for performing surface treatment of a member to be treated by irradiating a surface of the member to be treated with a pulsed laser beam through the liquid,
A laser shock hardening method, wherein an irradiation spot of a laser beam formed by one pulse on the surface of the member to be processed is composed of a plurality of small regions.
前記複数の小領域がほぼ同一形状であってほぼ等間隔で配列されて前記照射スポットが構成されることを特徴とする請求項1に記載のレーザ衝撃硬化処理方法。   2. The laser shock hardening method according to claim 1, wherein the plurality of small regions have substantially the same shape and are arranged at substantially equal intervals to form the irradiation spot. 前記複数の小領域それぞれが細長い形状を持ち、これらの小領域がその長手方向に垂直な方向に配列されて前記照射スポットが構成されることを特徴とする請求項1または請求項2に記載のレーザ衝撃硬化処理方法。   3. The irradiation spot is configured according to claim 1, wherein each of the plurality of small areas has an elongated shape, and the small areas are arranged in a direction perpendicular to a longitudinal direction thereof. Laser shock hardening method. ほぼ同一形状の小領域を2次元的に配置することによって前記照射スポットが構成されることを特徴とする請求項1または請求項2に記載のレーザ衝撃硬化処理方法。   3. The laser shock hardening method according to claim 1, wherein the irradiation spot is configured by two-dimensionally arranging small regions having substantially the same shape. 前記小領域の形状が円形状、正方形状、六角形状、楕円状または長方形状の何れかであることを特徴とする請求項4に記載のレーザ衝撃硬化処理方法。   The laser shock hardening method according to claim 4, wherein the shape of the small region is any one of a circular shape, a square shape, a hexagonal shape, an elliptical shape, and a rectangular shape. 前記照射スポットに占める前記小領域の合計面積の割合が概ね30%ないし70%であることを特徴とする請求項1ないし請求項5のいずれか一項に記載のレーザ衝撃硬化処理方法。   The laser shock hardening method according to any one of claims 1 to 5, wherein a ratio of a total area of the small regions to the irradiation spot is approximately 30% to 70%. レーザビームを出射するレーザ発振器と、
被処理部材の表面におけるレーザビームの照射スポットが複数の小領域で構成されるように前記レーザ発振器から出射されたレーザビームの照射スポット形状を整形する光学装置と、
被処理部材の表面に沿ってレーザビームを相対的に移動させ被処理部材の所望の部位にレーザビームを位置決めするための駆動装置と、
被処理部材の少なくともレーザビームによって照射される表面に液体を供給するための液体供給手段と、
を有すること、を特徴とするレーザ衝撃硬化処理装置。
A laser oscillator for emitting a laser beam;
An optical device for shaping the irradiation spot shape of the laser beam emitted from the laser oscillator so that the irradiation spot of the laser beam on the surface of the member to be processed is composed of a plurality of small regions;
A driving device for relatively moving the laser beam along the surface of the member to be processed and positioning the laser beam at a desired portion of the member to be processed;
A liquid supply means for supplying a liquid to at least a surface irradiated with a laser beam of a member to be processed;
A laser shock hardening apparatus characterized by comprising:
前記液体供給手段は、被処理部材の少なくともレーザビームが照射される表面が液体に浸漬されるように液体を保持する容器を含むこと、を特徴とする請求項7に記載のレーザ衝撃硬化処理装置。   8. The laser shock hardening processing apparatus according to claim 7, wherein the liquid supply means includes a container for holding the liquid so that at least a surface of the processing target member irradiated with the laser beam is immersed in the liquid. . 前記光学装置は、レーザビームを横切る所定の方向に軸を配置して、レーザビームを横切って配列された複数の円柱状凸レンズまたは円柱状凹面鏡を備え、該円柱状凸レンズまたは円柱状凹面鏡それぞれから出射されるレーザビームが互いにほぼ平行な複数の細長い形状に整形されて被処理部材の表面に照射されるものであること、を特徴とする請求項7または請求項8に記載のレーザ衝撃硬化処理装置。   The optical device includes a plurality of cylindrical convex lenses or cylindrical concave mirrors arranged in a predetermined direction across the laser beam and arranged across the laser beam, and is emitted from the cylindrical convex lens or the cylindrical concave mirror, respectively. 9. The laser shock hardening apparatus according to claim 7, wherein the laser beam to be processed is shaped into a plurality of elongated shapes substantially parallel to each other and irradiated onto the surface of the member to be processed. . 前記光学装置は、レーザビーム内の強度分布を均一化するためのホモジナイザをさらに有することを特徴とする請求項9に記載のレーザ衝撃硬化処理装置。   The laser impact hardening processing apparatus according to claim 9, wherein the optical apparatus further includes a homogenizer for making the intensity distribution in the laser beam uniform. 前記光学装置は、
レーザビームを横切る第1の方向に軸を配置して、レーザビームを横切って配列された複数の第1の円柱状凸レンズまたは円柱状凹面鏡と、
レーザビームを横切り前記第1の方向にほぼ垂直な第2の方向に軸を配置して、レーザビームを横切って配列された複数の第2の円柱状凸レンズまたは円柱状凹面鏡と、
を備え、
前記第1および第2の円柱状凸レンズまたは円柱状凹面鏡それぞれから出射されるレーザビームが、2次元的に配列された複数の小領域に分割されるように整形されて被処理部材の表面に照射されるように構成されていること、を特徴とする請求項7または請求項8に記載のレーザ衝撃硬化処理装置。
The optical device comprises:
A plurality of first cylindrical convex lenses or cylindrical concave mirrors arranged in a first direction across the laser beam and arranged across the laser beam;
A plurality of second cylindrical convex lenses or cylindrical concave mirrors arranged across the laser beam and arranged in a second direction across the laser beam and substantially perpendicular to the first direction;
With
The laser beam emitted from each of the first and second cylindrical convex lenses or the cylindrical concave mirror is shaped so as to be divided into a plurality of two-dimensionally arranged small regions and irradiated onto the surface of the member to be processed. The laser shock hardening processing apparatus according to claim 7 or 8, wherein the apparatus is configured to be configured as described above.
前記光学装置は、レーザビームを横切るほぼ同一の平面内に配置されたマイクロレンズアレイを備え、該マイクロレンズアレイから出射されるレーザビームが2次元的に配列された複数の小領域に分割されるように整形されて被処理部材の表面に照射されるように構成されていること、を特徴とする請求項7または請求項8に記載のレーザ衝撃硬化処理装置。   The optical device includes a microlens array disposed in substantially the same plane that crosses the laser beam, and the laser beam emitted from the microlens array is divided into a plurality of small regions arranged two-dimensionally. The laser shock hardening processing apparatus according to claim 7, wherein the laser shock hardening processing apparatus is configured to be shaped so as to be irradiated on a surface of a member to be processed.
JP2007087616A 2007-03-29 2007-03-29 Laser shock hardening processing method and laser shock hardening processing apparatus Active JP5172191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087616A JP5172191B2 (en) 2007-03-29 2007-03-29 Laser shock hardening processing method and laser shock hardening processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087616A JP5172191B2 (en) 2007-03-29 2007-03-29 Laser shock hardening processing method and laser shock hardening processing apparatus

Publications (2)

Publication Number Publication Date
JP2008248270A true JP2008248270A (en) 2008-10-16
JP5172191B2 JP5172191B2 (en) 2013-03-27

Family

ID=39973571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087616A Active JP5172191B2 (en) 2007-03-29 2007-03-29 Laser shock hardening processing method and laser shock hardening processing apparatus

Country Status (1)

Country Link
JP (1) JP5172191B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007774A1 (en) * 2009-07-14 2011-01-20 富士重工業株式会社 Rotary tool for friction stir welding
CN113122702A (en) * 2021-03-25 2021-07-16 山东大学 Double-physical-effect pulse laser impact method based on physical properties of variable liquid restraint layer
CN113832336A (en) * 2021-10-22 2021-12-24 北京理工大学 Residual stress reduction method for barrel type component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898313B (en) * 2014-04-10 2016-01-13 西安航空动力股份有限公司 A kind of laser shock peening method of turbine disc mortise structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179882A (en) * 1986-02-05 1987-08-07 Aisan Ind Co Ltd Heating method by laser beam
JPH03188212A (en) * 1989-12-15 1991-08-16 Nippon Steel Corp Laser beam heat treatment method
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JP2003344802A (en) * 2002-05-23 2003-12-03 Toshiba Corp Laser light irradiating device
JP2005272989A (en) * 2004-03-26 2005-10-06 Toshiba Corp Pulse laser surface treatment method
JP2006137998A (en) * 2004-11-12 2006-06-01 Toshiba Corp Laser-impact hardening treatment method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179882A (en) * 1986-02-05 1987-08-07 Aisan Ind Co Ltd Heating method by laser beam
JPH03188212A (en) * 1989-12-15 1991-08-16 Nippon Steel Corp Laser beam heat treatment method
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JP2003344802A (en) * 2002-05-23 2003-12-03 Toshiba Corp Laser light irradiating device
JP2005272989A (en) * 2004-03-26 2005-10-06 Toshiba Corp Pulse laser surface treatment method
JP2006137998A (en) * 2004-11-12 2006-06-01 Toshiba Corp Laser-impact hardening treatment method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007774A1 (en) * 2009-07-14 2011-01-20 富士重工業株式会社 Rotary tool for friction stir welding
JP2011020125A (en) * 2009-07-14 2011-02-03 Fuji Heavy Ind Ltd Rotary tool for friction stir welding
CN102470480A (en) * 2009-07-14 2012-05-23 富士重工业株式会社 Rotary tool for friction stir welding
CN113122702A (en) * 2021-03-25 2021-07-16 山东大学 Double-physical-effect pulse laser impact method based on physical properties of variable liquid restraint layer
CN113832336A (en) * 2021-10-22 2021-12-24 北京理工大学 Residual stress reduction method for barrel type component

Also Published As

Publication number Publication date
JP5172191B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US20210053160A1 (en) Method and System for Ultrafast Laser-based Material Removal, Figuring and Polishing
CN108235694B (en) Method and device for blackening surface laser light, in which the laser light has a specific power density and/or a specific pulse duration
Orazi et al. Ultrafast laser manufacturing: from physics to industrial applications
US8872058B2 (en) Laser shock hardening apparatus
JP6239461B2 (en) Method and apparatus for non-ablation photoacoustic compression processing of transparent materials using filamentation by bursts of ultrafast laser pulses
KR100650118B1 (en) Contour Forming Of Metals By Laser Peening
Zhang et al. Progress in applications of shockwave induced by short pulsed laser on surface processing
JP4977234B2 (en) Laser shock hardening method and apparatus
JP4690895B2 (en) Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method
US20150246415A1 (en) Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses
Shen et al. An experimental investigation of underwater pulsed laser forming
Mak et al. Liquid-immersion laser micromachining of GaN grown on sapphire
JP5172191B2 (en) Laser shock hardening processing method and laser shock hardening processing apparatus
JP2008178888A (en) Laser peening method of metallic object
CN112658446A (en) Laser-induced plasma micro-machining device and method
JP2007301566A (en) Method of laser peening treatment
JP4868729B2 (en) Laser shock hardening method and apparatus
KR20120108752A (en) Laser processing method for formation of microspike
Zahrani et al. Ablation characteristics of picosecond laser single point drilling of Si3N4 under dry and water medium
JP4658832B2 (en) Laser peening treatment method of metal object and metal object
KR102504654B1 (en) Magnesium material treatment method and magnesium material treatment device
CA2857840C (en) Method and apparatus for non-ablative, photoaccoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
JP2023153467A (en) Surface modification method and modification member
Sagisaka et al. Micro parts processing using laser cutting and ultra-short-pulse laser peen forming
Shin et al. Glass scribing by a UV picosecond laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R151 Written notification of patent or utility model registration

Ref document number: 5172191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3