JP2020139933A - 作業機械 - Google Patents
作業機械 Download PDFInfo
- Publication number
- JP2020139933A JP2020139933A JP2019038047A JP2019038047A JP2020139933A JP 2020139933 A JP2020139933 A JP 2020139933A JP 2019038047 A JP2019038047 A JP 2019038047A JP 2019038047 A JP2019038047 A JP 2019038047A JP 2020139933 A JP2020139933 A JP 2020139933A
- Authority
- JP
- Japan
- Prior art keywords
- work machine
- gnss
- controller
- mask range
- satellites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2004—Control mechanisms, e.g. control levers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/08—Superstructures; Supports for superstructures
- E02F9/0858—Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/205—Remotely operated machines, e.g. unmanned vehicles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
- E02F9/265—Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/28—Satellite selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
- G01S19/54—Determining attitude using carrier phase measurements; using long or short baseline interferometry
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2079—Control of mechanical transmission
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2087—Control of vehicle steering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/04—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Operation Control Of Excavators (AREA)
- Component Parts Of Construction Machinery (AREA)
Abstract
【課題】作業機械の作業中に作業装置や上部旋回体の姿勢が変化しても,GNSS測位の精度低下を抑制できる作業機械を提供すること。【解決手段】2つのGNSSアンテナ31,32で受信された衛星信号に基づいて上部旋回体3の位置と方位角を演算する受信機33と,受信機で演算された上部旋回体の位置及び方位角とに基づいてバケット8の先端位置を演算するコントローラ38とを油圧ショベル1に備える。コントローラは,2つのGNSSアンテナ31,32の設置位置と,フロント作業機5の可動範囲と,上部旋回体の傾斜角度及び方位角とに基づいて,2つのGNSSアンテナ31,32のそれぞれについてフロント作業機が衛星信号の受信の妨げとなり得る範囲をマスク範囲90として設定する。受信機は,マスク範囲に位置する衛星を除いた残りの衛星から送信される衛星信号に基づいて上部旋回体の位置と方位角を演算する。【選択図】 図4
Description
本発明は,油圧ショベル等の作業機械に係り,特に,作業装置に設定されたモニタポイントの3次元空間における絶対位置を衛星の衛星信号を用いて計測する位置計測システムが搭載された作業機械に関する。
近年,建設施工現場において,作業機械に設定した所定の点(モニタポイント)の位置をGNSS(Global Navigation Satellite System)等の3次元位置計測システムを用いて計測し,作業管理を行うことがなされている。モニタポイントの代表例としては,作業機械が備える作業装置に設定した点,例えば油圧ショベルのバケット先端がある。このバケット先端の位置を計測できれば,その計測データを予め設定した地形データや目標形状データと比較することにより施工中の作業進行状況を把握でき,施工中の管理や制御が行える。また,施工終了時までの計測データの履歴から出来形データ(例えば掘削地形データ)を生成することで,施工後も施工管理が行える。
ところで,例えば油圧ショベルにおいては,ブーム,アーム及びバケット等のGNSSアンテナより上方に位置し得る作業装置や周辺の障害物がGNSS衛星から送信される信号(GNSS信号,衛星信号)の障害物となるため,GNSSアンテナは,GNSS信号をマルチパスと呼ばれる回折波や反射波として受信する可能性がある。モニタポイントの測位に回折波や反射波を使用すると,測位結果に誤差を含む可能性が高い。マルチパスの影響を除去する解決手法として,例えば特許文献1の記載のものがある。
特許文献1には,複数の送信機(複数の衛星)から信号を受信する受信装置を具備し,各送信機(複数の衛星)の送信機位置を判定し,その各送信機の位置と,前回判定された位置決め装置の位置と,マルチパス情報とに基づいて,信号の直接受信が可能である送信機(複数の衛星)を計算し,信号の直接受信が不可能である送信機を無視して位置決め装置の現在の位置を判定する位置決め装置が開示されている。
上述した特許文献1記載の技術では,障害物による反射や回折の影響を低減することはできるが,油圧ショベルのように,掘削,旋回,放土等の一連の動作を繰り返す作業機械においては,作業装置や上部旋回体の姿勢の変化に応じて作業機械と周辺の障害物との相対位置が容易に変化し得るため,測位に使用する衛星信号の組合せが絶えず切り替わる可能性がある。GNSSによる測位では,測位に使用する衛星が切り替わると測位誤差が大きくなるという課題がある。
本発明は上記課題を解決するためになされたものであって,その目的は,作業機械の作業中に作業装置や上部旋回体の姿勢が変化しても,GNSS測位の精度低下を抑制できる作業機械を提供することにある。
上記目的を達成するために,本発明は,下部走行体と,前記下部走行体に旋回可能に設けられ,前記下部走行体と共に車体を構成する上部旋回体と,前記上部旋回体に回動可能に設けられた作業装置と,前記車体に設けられた傾斜計測装置と,前記作業装置に設けられた角度計測装置と,衛星の衛星信号に基づいて自身の3次元位置および方向を計算する3次元位置計測装置と,前記傾斜計測装置,前記角度計測装置,および前記3次元位置計測装置からの情報に基づいて,前記車体の3次元位置および姿勢,ならびに前記作業装置の所定位置の3次元位置を計算するコントローラとを備えた作業機械において,前記3次元位置計測装置は,衛星の衛星信号を受信し,衛星信号を受信した衛星のうち,前記3次元位置計測装置の3次元位置および方向の計算に使用する衛星を選択し,選択した衛星の衛星信号に基づいて,前記3次元位置計測装置の3次元位置および方向を計算し,前記作業機械は,前記3次元位置計測装置によって選択されている衛星の組み合わせを記憶するように指示するための記憶指示装置を更に備え,前記コントローラは,前記記憶指示装置を介して指示が入力されたときに,前記3次元位置計測装置によって選択されている衛星の組み合わせを衛星選択情報として記憶し,所定の変更条件が成立したときに,前記衛星選択情報を前記3次元位置計測装置に送信し,前記3次元位置計測装置は,前記コントローラから前記衛星選択情報を受信した場合に,衛星信号を受信した衛星のうち,前記衛星選択情報に含まれる衛星を優先的に選択するものとする。
本発明によれば,作業中に作業装置や上部旋回体の姿勢が変化しても,GNSS測位の演算に使用する衛星信号の切替わりを抑制できるので,GNSSによる測位精度の低下を抑制でき,ひいては作業精度を向上できる。
以下,本発明の実施の形態について図面を用いて説明する。本実施の形態は,建設機械としてクローラ式の油圧ショベルに本発明を適用し,油圧ショベルのバケット先端にモニタポイント(制御点)を設定した場合のものである。なお,各図中,同等の部材には同一の符号を付し,重複した説明は適宜省略する。
図1は,本実施の形態に係る油圧ショベルの外観を示す図である。
図1において,油圧ショベル1は,走行油圧モータ(図示せず)によって駆動されるクローラで走行する下部走行体2と,下部走行体2の上に旋回可能に取り付けられ,下部走行体2と共に車体を構成する上部旋回体3と,上部旋回体3に設けられたキャブ4と,上部旋回体3に取り付けられたフロント作業機(作業装置)5とを備えている。上部旋回体3は旋回油圧モータ(図示せず)によって左右に旋回駆動される。フロント作業機5は,上部旋回体3に上下方向に回転可能に設けられたブーム6と,ブーム6の先端に上下方向に回転可能に設けられたアーム7と,アーム7の先端に上下方向に回転可能に設けられたバケット(アタッチメント)8とを有する多関節型の作業装置である。ブーム6,アーム7,バケット8は,それぞれ,ブームシリンダ9,アームシリンダ10,バケットシリンダ11を伸縮することにより駆動される。ブーム6,アーム7及びバケット8をそれぞれフロント部材と称することがある。
また,上部旋回体3には所定の平面(例えば水平面)に対する上部旋回体3の傾斜角(ピッチ角度)を検出する車体IMU21が取り付けられており,ブーム6には所定の平面(例えば水平面)に対するブーム6の角度(ブーム角度)を検出するブームIMU22が,アーム7には所定の平面(例えば水平面)に対するアーム7の角度(アーム角度)を検出するアームIMU23が,バケット8には所定の平面(例えば水平面)に対するバケット8の角度(バケット角度)を検出するバケットIMU24が取り付けられている。なお,本稿ではブームIMU22,アームIMU23及びバケットIMU24をフロントIMU(図2参照)と総称することがある。
さらに,上部旋回体3には,複数のGNSS衛星から送信される衛星信号(航法信号)を受信するための2個のGNSSアンテナ31,32と,基準局からのRTK補正データ(後述)を受信するためのRTK補正データ受信アンテナ34が設置されている。2個のGNSSアンテナ31,32は上部旋回体3の旋回中心から外れた旋回体後部の左右に設置されている。
図2は,油圧ショベル1に搭載された位置計測システムの構成図である。この図に示す位置計測システム200は,無線機35と,GNSS受信機33と,コントローラ38と,表示装置39と,設定用スイッチ40とを備えている。
無線機35は,基準局からのRTK補正データ(後述)をRTK補正データ受信アンテナ34を介して受信し,RTK補正データをGNSS受信機33に出力する。
GNSS受信機33は,無線機35から入力したRTK補正データと,GNSSアンテナ31,32により受信されるGNSS衛星からの信号とに基づいて,2個のGNSSアンテナ31,32のうち一方のGNSSアンテナ31の位置と,2個のGNSSアンテナ31,32のうち一方のGNSSアンテナ31から他方のGNSSアンテナ32へのベクトルとをリアルタイムに演算しており,これにより地理座標系(グローバル座標系)における上部旋回体3の位置と方位角が演算できる。
コントローラ38は,GNSS受信機33で演算された位置及びベクトルデータとIMU21〜24からの角度データを入力して,上部旋回体3の位置と方位角や,バケット8の先端(モニタポイント)の位置を演算する。コントローラ38は,ハードウェアとして,演算処理装置(例えばCPU),記憶装置(例えば,ROM,RAM等の半導体メモリ),インタフェース(入出力装置)を備えており,記憶装置内に予め保存されているプログラム(ソフトウェア)を演算処理装置で実行し,プログラム内で規定されているデータとインタフェースから入力されたデータに基づいて演算処理装置が演算処理を行い,インタフェースから外部に信号(演算結果)を出力する。なお,図示はしないが,GNSS受信機33もコントローラ38と同種のハードウェアを備えることができる。
表示装置(モニタ)39は,コントローラ38の演算結果及びそれを利用して取得される各種データを表示する。
コントローラ38には,設定用スイッチ(マスク範囲リセットスイッチ)40が接続されている。設定用スイッチ40は,その時に設定されている全てのマスク範囲(後述)を解除(消去)するためのスイッチであり,オペレータが希望するタイミングで押下され,それによりコントローラ38は全てのマスク範囲を削除する。マスク範囲の設定の詳細や設定用スイッチ40が利用される場面については後述する。
また,コントローラ38には,半導体メモリ等の外部記録媒体(外部記憶装置)42を接続することができる。外部記録媒体42には,現況地形データや目標地形データ(設計データとも称する)を含む地形データが記憶されており,オペレータはシステム起動時等の所定のタイミングで外部記録媒体42をコントローラ38に接続して,必要な場合にはコントローラ38内の記憶装置にデータをダウンロードする。そして,作業終了時などには,例えばシステム起動中におけるバケット先端位置の軌跡データから生成される作業後の現況地形データが外部記録媒体42に記録され施工管理に使用される。
図3は,GNSS基準局としての役割を持つ事務所側計測システム(基準局システム)50の構成図である。
図3において,事務所側計測システム50は,GNSSアンテナ52と,GNSS受信機51と,無線機53と,無線アンテナ54を備えている。
GNSSアンテナ52は,複数のGNSS衛星から送信される衛星信号(航法信号)を受信するためのアンテナである。
GNSS受信機51は,GNSS基準局として機能し(以下では,GNSS受信機51をGNSS基準局51と表記することがある),予め計測された3次元位置(例えばGNSSアンテナ52の位置)のデータと,GNSSアンテナ52により受信される衛星信号とに基づいて,油圧ショベル1のGNSS受信機33でRTK(リアルタイムキネマティック)計測を行うための補正データを生成し,無線機53に出力する。
無線機53は,GNSS受信機51から入力された補正データを無線アンテナ54を介して油圧ショベル1の無線機35に対して送信する。
次に,本実施の形態に係わる位置計測システム200の動作の概要を説明する。
本実施の形態では高精度での位置計測を行うため,図2に示したGNSS受信機33でRTK計測を行う。このためには先ず,図3に示した補正データを生成するGNSS基準局51が必要となる。GNSS基準局51は,上記のように予め3次元計測されたGNSSアンテナ52の位置データと,GNSSアンテナ52により受信される複数のGNSS衛星からの衛星信号とに基づいて,RTK計測のための補正データを生成し,生成した補正データを無線機53によりアンテナ54を介して一定周期で送信する。
一方,図2に示した油圧ショベル1側のGNSS受信機33は,アンテナ34を介して無線機35により受信される補正データと,GNSSアンテナ31,32により受信される複数のGNSS衛星からの衛星信号に基づき,GNSSアンテナ31の3次元位置と,GNSSアンテナ31からGNSSアンテナ32へのベクトルとをRTK計測する。このRTK計測によって,地理座標系におけるGNSSアンテナ31の3次元位置及びGNSSアンテナ31からGNSSアンテナ32へのベクトルが高精度で計測される。そして,計測された3次元位置データ及びベクトルデータはコントローラ38に入力される。
また,IMU21〜24によって油圧ショベル1(上部旋回体3)の傾斜角度(すなわち,ピッチ角度及びロール角度)とブーム6,アーム7及びバケット8の各角度が計測され,同様にコントローラ38に入力される。
コントローラ38は入力された各種データに基づき,一般的なベクトル演算と座標変換を行って,所定の座標系(例えば,作業現場の地面に設定された現場座標系)における上部旋回体3の位置及び姿勢(方位角を含む)と,バケット8の先端(モニタポイント)の位置とを演算する。また,コントローラ38は,演算した上部旋回体3の位置及び姿勢とバケット先端の位置と,外部記録媒体41から入力した目標地形データとに基づいて,表示装置39の画面上にバケットの画像と目標地形を表示してオペレータに作業状況を知らせることもできる。
次に,本発明が課題とする,GNSS受信機33による位置計測の再現性の悪化について,図4〜9を用いて説明する。
図4は,油圧ショベル1の掘削動作時の姿勢を模式的に示したものである。図4において,油圧ショベル1はいわゆる法面切り上げ作業を行っている。図4に示すイメージは,表示装置39に表示される情報に概略等しく,オペレータはこの情報に基づいて,現地形61が目標地形62に近づくように,油圧ショベル1の掘削操作を行う。
図5は,油圧ショベル1の旋回動作時の姿勢を模式的に示したものである。図5に示すように,通常,旋回動作は,掘削動作の終了後にブーム6を上げ,アーム7及びバケット8を巻き込み,バケット8と地面とのクリアランスを確保した状態で行う。そして,放土位置にてアーム7及びバケット8をダンプさせて,掘削土を所定位置に落とす。その後,掘削位置へ戻るための旋回動作を行い,掘削動作を繰り返す。
図6は,油圧ショベル1の掘削位置および放土位置,ならびにその時のGNSSアンテナ31,32の上空視界内にあるGNSS衛星81〜87の配置を模式的に示したものである。図6において,フロント作業機5が上側に向いた状態を掘削位置71,フロント作業機5が左側に向いた状態を放土位置72とし,掘削位置71から放土位置72への移動は左旋回で行い,放土位置72から掘削位置71への移動は右旋回で行うものとする。
GNSSによる位置計測において,GNSS受信機33は,GNSSアンテナ31,32で受信されるGNSS衛星からの衛星信号の品質や,衛星信号を受信しているGNSS衛星の配置等,種々の条件判定を行って位置計算に使用するGNSS衛星(衛星信号)を選択している。
ここで,GNSS衛星の配置はDOP(Dilution of Precision)という数値で評価されており,例えばGNSS衛星が上空視界の一方向に偏って分布している場合などはDOPが悪く(数値が大きい),結果として計算される位置精度が悪化する。これに対して,GNSS衛星が上空視界に偏りなく分布している場合はDOPが良く(数値が小さい),計算される位置精度が向上する。これは,GNSSによる位置計測が,三角測量を応用した計測システムであることに起因する。
このため,捕捉可能なGNSS衛星81〜87が図6に示すような配置にある場合,掘削位置71では位置計算に使用するGNSS衛星として,例えば図7に塗りつぶしで示す衛星81,83,84,86が選択される。
しかし,油圧ショベル1の掘削動作が終了し,図5に示すような旋回姿勢を取って掘削位置71から放土位置72へと左旋回すると,GNSSアンテナ31,32とGNSS衛星81,86,87との間をフロント作業機5が通過することにより,GNSS衛星81,86,87の衛星信号が遮られることになる。
この結果,放土位置72の位置計算時には,例えば図8に塗りつぶしで示すGNSS衛星82〜85が選択されることになり,図7の掘削位置71で選択された組み合わせから変化する場合がある。
さらに,油圧ショベル1は右旋回で掘削位置71へ戻り,掘削動作を繰り返すことになるが,放土位置72から掘削位置71へ右旋回する間はGNSS衛星82〜85の衛星信号はフロント作業機5によって遮られないため,掘削位置71においても位置計算に使用するGNSS衛星の組み合わせが図9に示すようにGNSS衛星82〜85に保持され,前回の掘削動作時に選択されていたGNSS衛星81,83,84,86の組み合わせから変化したままになってしまう場合がある。
GNSSによる位置計測では,DOP以外にもGNSS衛星の時計誤差や軌道情報の誤差等,各GNSS衛星で微妙に異なる誤差要因があり,油圧ショベル1が同じ位置にあっても,位置計算に使用するGNSS衛星の組み合わせが異なると,位置計算結果にズレが生じ,位置計算の再現性が悪化するおそれがある。
このように,GNSS受信機33による位置計算の再現性が悪化すると,表示装置39に表示されるバケット8と目標地形62との位置関係が掘削動作の前後で異なる可能性があり,ひいては出来形が不連続になってしまうといった問題が生じ得る。
この問題を解決するための方法について,コントローラ38で実行される使用衛星の選択ロジックについて,図10のフローチャートを用いて説明する。図10はコントローラ38が実行する衛星選択ロジックの一例を示すフローチャートである。なお図10のフローチャートは,一定周期(例えば100ms)で繰返し演算される。
ステップS10では,コントローラ38は,GNSS受信機33からの情報が,RTKでFix解が得られているかを判断する。この状態か否かは,GNSS受信機33からの例えばNMEAメッセージのGGAセンテンスを参照すれば判断できる。
ステップS10で,Fix解が得られていないと判断された場合は,正しい位置測位ができていないと判断し,ステップS20に進み,コントローラ38は,表示装置39に正しい計測ができていない旨を表示し,初期状態に戻る(次に制御周期まで待機する)。一方,ステップS10でFix解が得られていると判断された場合は,ステップS30に進む。
ステップS30では,コントローラ38は,GNSS受信機33から入力されるGNSSアンテナ31の3次元位置と,GNSSアンテナ31からGNSSアンテナ32へのベクトル情報と,IMU21〜24から入力される角度情報とに基づき,一般的なベクトル演算と座標変換を行って,現場座標系における上部旋回体3の位置及び姿勢とバケット8先端の位置を演算し,バケット8の姿勢情報や,外部記録媒体42から取得した地形データに基づいて生成した現況地形や目標形状の情報を表示装置39に表示する。
次にステップS40に進み,コントローラ38は,図11に示す判断方法で,油圧ショベル1が精度を要求する作業中か否かを判断する。ここで図11を用いて,コントローラ38がステップS40で油圧ショベル1が精度を要求する掘削作業をしているか否かを判定するロジック(判定ロジック)について説明する。図11はステップS40で行われる処理の具体例の1つを示すフローチャートである。
まずステップS401で,コントローラ38は,フロント作業機5と目標面の距離(目標面距離)が所定値d1以下であるか否かを判定する。目標面距離としては,例えば,バケット先端(爪先)位置と目標面の距離を利用できる。この場合,ステップS30で演算されたバケット先端(モニタポイント)の位置から垂線を下ろし,その垂線が目標地形データで規定される目標地形表面と交差する点を演算し,その点とバケット先端までの距離を目標面距離とすることができる。目標面距離が所定値d1より大きい場合は,コントローラ38は,バケット先端が目標面から離れた位置にあるため,精度を要求する掘削作業をしていないと判断する。一方,目標面距離が所定値d1以下であると判定された場合は,ステップS402に進む。
ステップS402では,コントローラ38は,キャブ4内に設置されたフロント作業機5(ブーム6,アーム7,バケット8)を操作する操作装置(図示せず)に対して掘削操作が入力されているか否かを判定する。掘削操作が入力されているか否かは,ここではアーム7(アームシリンダ10)が駆動しているかどうかで判断する。アーム7(アームシリンダ10)が駆動しているか否かは,例えば,操作装置から出力されるアーム7の操作パイロット圧を圧力センサで検出し,その検出圧力が所定値を超えるか否かを確認することで判断できる。
このようにして,ステップS401とステップS402がともに肯定されると,コントローラ38は油圧ショベル1が精度を求める掘削作業中であるとみなす。このようにすることで,ステップS401でバケット先端と目標面が所定値d1以下であっても,ステップS402で掘削操作がされていないと判断された場合,例えば目標面通りに掘削された地形にバケット8の先端を接触させてアーム7を停止している状態などでは,掘削作業中ではないと判断されるので,後述するマスク範囲を必要以上に広げることを防止できる。また,ステップS401で目標面距離が所定値d1を超えていると判断された場合,例えば粗仕上げ作業を行っている場合等も,後述するマスク範囲を必要以上に広げることを防止できる。なお,掘削操作の判定をアームの操作パイロット圧でのみ判定することとしたが,ブーム6やバケット8の操作パイロット圧を含めて掘削操作を判定してもよい。また,瞬間的な値でなく,過去の操作パイロット圧の連続性など(すなわち,検出された操作パイロット圧の時系列)を考慮して判断してもよい。また,操作パイロット圧ではなく,例えばアームシリンダ10に加わる掘削反力等をアームシリンダ10内に設置された圧力センサで検出して掘削操作を判断してもよい。また,ここでは,目標面距離の大小(ステップS401)と掘削操作の有無(ステップS402)の双方に基づいて油圧ショベル1が精度を要求する作業中か否かを判定したが,これら2つの処理(ステップS401,S402)のいずれかに基づいて判定を行っても良い。すなわち,これら2つの処理の少なくとも一方に基づいて判定しても良い。
図7に戻り,ステップS40で油圧ショベル1が精度を要求する作業中でないと判断された場合は,ステップS45に進む。ステップS45では,コントローラ38は,精度を要求する作業中でないと判定された状態が継続している時間(継続時間)Tの計測を開始し,ステップS70に進む。なお,ステップS45に到達した際に既に当該時間Tの計測が開始されている場合には,その計測を継続するものとする。
一方,ステップS40で精度を要求する作業中であると判断された場合は,ステップS50に進む。
ステップS50では,コントローラ38は,2個のGNSSアンテナ31,32のそれぞれが複数のGNSS衛星から衛星信号を受信する際にフロント作業機5が衛星信号の障害物となり得る範囲を地面に設定された座標系(例えば現場座標系)上にマスク範囲として設定する。後述のように,このマスク範囲に位置するGNSS衛星からの衛星信号はGNSS受信機33で測位に利用される衛星信号から除外され得る。すなわちステップS50では測位に使用しない方がよい衛星配置の範囲を演算する。
本実施形態のコントローラ38は,ステップS50において,予めコントローラ38の記憶装置内に記憶されている上部旋回体3(油圧ショベル1)における2個のGNSSアンテナ31,32の設置位置(例えば上部旋回体3に設定された車体座標系における座標位置)と,フロント作業機5(ブーム6,アーム7,バケット8)の可動範囲と,車体IMU21で検出される上部旋回体3の傾斜角度と,GNSSアンテナ31からGNSSアンテナ32へのベクトル情報から演算される上部旋回体3の方位角とに基づいて,マスク範囲を設定する。マスク範囲は,2個のGNSSアンテナ31,32のそれぞれについて設定される。マスク範囲は,各GNSSアンテナ31,32を基準にした方位角範囲(左右方向における角度範囲)と仰角範囲(上下方向における角度範囲)の組合せで定義できる。
また,ステップS50において,油圧ショベル1の周囲に存在して衛星信号の障害物となり得る障害物(例えば,現況地形,建物,構造物)の形状データ(形状データには位置も含まれる)が取得可能な場合には,コントローラ38は,上記のフロント作業機5に起因するマスク範囲の設定に加えて,その障害物によって衛星信号が遮蔽され得る範囲もマスク範囲として設定することができる。例えば,コントローラ38内の記憶装置に障害物の形状データとして外部記録媒体42からの現況地形データを予め記憶しておき,ステップS50で,コントローラ38が,地理座標系(グローバル座標系)における上部旋回体3の位置及び方位角及び傾斜角と,上部旋回体3(油圧ショベル1)における2個のGNSSアンテナ31,32の設置位置と,現況地形データとに基づいて,上部旋回体3の方位角を基準とした所定の方位角方向における現況地形の断面形状を演算し,2つのGNSSアンテナ31,32のそれぞれが複数のGNSS衛星から衛星信号を受信する際にその断面形状を有する現況地形が衛星信号の障害物となり得る範囲をさらに考慮してマスク範囲を設定しても良い。
ここで,ステップS50のマスク範囲の演算プロセスの一例について図12−15を用いて説明する。ここでは,説明の便宜上,GNSSアンテナ31のマスク範囲の演算について記載するが,GNSSアンテナ32のマスク範囲についても同様の方法で演算できる。
マスク範囲の仰角範囲を規定する仰角マスク角は,水平面から上空方向をプラス方向とし,天頂方向が仰角90度と定義する。このため,仰角マスク角は,下端が0度で,上端が最大で90度となる。また,マスク範囲の方位角範囲を規定する方位角マスク角については,北方向を0度として,時計回りに正の方向として,0度から360度までの範囲と定義する。
コントローラ38内の記憶装置には,GNSSアンテナ31から見たフロント作業機5の遮蔽部分が,車体基準の方位角(車体基準方位角)ごとにフロント遮蔽仰角αftとして記憶されている。図12は車体基準方位角とフロント遮蔽仰角αftの関係の一例を示す図であり,車体基準方位角ごとにフロント遮蔽仰角αftが規定されている。各車体基準方位角においてフロント遮蔽仰角αft以下となる範囲が衛星信号の遮蔽される範囲(マスク範囲)となる。ここでの車体基準方位角とフロント遮蔽仰角αftは,上部旋回体3に設定された車体座標系で規定されている。図13に示すようにGNSSアンテナ31を基準として油圧ショベル1の前方方向を車体基準方位角0度とし,時計回りを正の方向とすると,車体基準方位角が0度から360度に達するまでの間に,5度間隔でフロント遮蔽仰角αftが規定されている。図12の例では,車体基準方位角が10度から25度までの範囲以外は,フロント作業機5が衛星信号の障害物にならないため,フロント遮蔽仰角は0度となっている。図13に車体基準方位角が10度から25度までの範囲をマスク範囲(方位角範囲)90として図示している。なお,フロント遮蔽仰角αftは,各フロント部材6,7,8の最大可動範囲から規定しても良いし,作業中に利用すると予測される予測可動範囲で規定してもよい。
ここでは説明のために,車体基準方位角が15度の場合における車体による影響の仰角マスク角の演算について図14を用いて説明する。
図14は,車体基準方位角が15度の場合における現況地形断面を横から見た図である。この図に示すように,現場座標系における車体(フロント作業機5)による仰角マスク角αsは,車体座標系におけるフロント遮蔽仰角αftと,車体IMU21より求まる車体の傾斜角αbdとによって,下記式(1)によって求まる。
αs=αft − αbd …式(1)
次に,現場座標系での現況地形による仰角マスク角度αgを演算する。図14に示す現況地形は,車体基準方位角15度方向の現況地形の断面を示している。GNSS受信機33によって計測されるGNSSアンテナ31の位置から現況地形の断面に接する直線を全て引き,その全ての直線がそれぞれ水平面と成す角度のうちの最大値を現況地形による仰角マスク角αgとする。
次に,現場座標系での現況地形による仰角マスク角度αgを演算する。図14に示す現況地形は,車体基準方位角15度方向の現況地形の断面を示している。GNSS受信機33によって計測されるGNSSアンテナ31の位置から現況地形の断面に接する直線を全て引き,その全ての直線がそれぞれ水平面と成す角度のうちの最大値を現況地形による仰角マスク角αgとする。
なお,図15に示すように,現況地形データは北方位を0度(基準)とした現場座標系で表されるので,GNSS受信機33で演算される上部旋回体3の方位角αtに車体基準方位角αbを加えた角度方向(すなわち,αt+αb)で現況地形データの断面をとることで図14に示した現況地形の断面を取得できる。
以上で求めた,車体による仰角マスク角αsと現況地形による仰角マスク角αgのうち大きい方が,その方位角の仰角マスク角となる。図14の例では,αs>αgなので,車体による仰角マスク角αsが仰角マスク角となり,車体基準方位角が15度の場合の仰角範囲におけるマスク範囲90は図示の通りとなる。全ての方位において同様の演算をすることにより,全ての方位における仰角マスク角が演算される。そして,その結果に基づいて現場座標系にマスク範囲が設定される。なお,マスク範囲は,地面に設定された座標系に設定すれば良く,例えば地理座標系に設定しても良い。
図10に戻り,ステップS60で,コントローラ38は,現在の演算周期より前に設定されたマスク範囲(過去に設定されたマスク範囲(ただし,後述のステップS90,110でリセットされたマスク範囲は除く))にステップS50で演算されたマスク範囲(新たに設定されたマスク範囲)を加える(加算する)。このステップS60により,例えば1周期前の処理から上部旋回体3の傾斜角が変化したり,上部旋回体3の旋回動作により方位角が変化したりした場合には,それらの変化に応じて新たなマスク範囲が設定される。そして,その新たなマスク範囲が過去のマスク範囲に加えられることで,上部旋回体3の傾斜角及び方位角の変化に応じてマスク範囲が拡がることになる。
ステップS70で,コントローラ38は,記憶装置に記憶されているマスク範囲をGNSS受信機33に送信する。ステップS60を経由してステップS70に到達した場合には,ステップS60のマスク範囲がGNSS受信機33に送信され,ステップS45を経由してステップS70に到達した場合には,最後にステップS60で設定されたマスク範囲(ただし,ステップS90,S110でマスク範囲がリセットされた後にステップ60を一度も経由していない場合にはマスク範囲は送信されない)が送信される。
ステップS80では,コントローラ38は,GNSS受信機33からマスク範囲を設定した状態では測位ができないという情報を受信しているか否かを判断する。この判断に際しては以下に説明する処理がGNSS受信機33で行われる。すなわち,GNSS受信機33は,ステップS70でコントローラ38から送信されたマスク範囲を受信し,衛星信号を受信可能な複数のGNSS衛星からマスク範囲に位置する衛星を除き,その残りの衛星から送信される衛星信号に基づいて測位演算ができるかを判断する。ここで測位演算できると判断した場合には,GNSS受信機33は,コントローラ38に対してマスク範囲を設定した状態で測位が可能であることを示す情報を送信するとともに,GNSSアンテナ31の位置と,GNSSアンテナ31からGNSSアンテナ32へのベクトルとを演算し,その演算結果をコントローラ38に出力する。一方,マスク範囲を設定することにより,使用する衛星数が不十分(例えば5つ未満)で測位演算ができなかったり,使用する衛星配置に偏りがあるため(例えばDOPが所定値以上のとき)精度低下の可能性があったりする場合には,後述するステップS90でマスク範囲を解除した状態で測位演算するために,コントローラ38に対してマスク範囲を設定した状態では測位ができないということを示す情報を送信する。
なお,ここでは,コントローラ38でマスクする方位角範囲と仰角範囲を演算し,GNSS受信機33にその範囲(マスク範囲)を送信する場合について説明したが,コントローラ38で,GNSS受信機33から,衛星信号を受信可能な衛星番号とその衛星がある方位角と仰角の情報を取得し,コントローラ38で演算されたマスク範囲内にある衛星番号を演算し,測位演算に使用しない衛星番号をGNSS受信機33に送信して上記の判断を実施してもよい。
ステップS80で,GNSS受信機33からマスク範囲を設定した状態では測位ができないという情報を受信した場合には,コントローラ38は,ステップS90に進み,表示装置39の画面上に測位精度が低下している可能性があることを表示するとともに,コントローラ38に記憶されているマスク範囲の情報をリセットする。これにより全てのマスク範囲が消去される。なお,マスク範囲のリセットと同時に,ステップS45で計測された継続時間Tもリセットするものとする。一方,ステップS80で,GNSS受信機33からマスク範囲を設定した状態でも測位が可能であるという情報を受信した場合(すなわち,マスク範囲を設定した状態では測位不可能であるという情報を受信していない場合)には,ステップS100に進む。
ステップS100では,コントローラ38は,マスク範囲をリセット(消去)する必要があるか否かを判断する。この判断では,ステップS45で計測された時間Tが所定時間t1以上(例えば10分以上)継続した場合と,キャブ4内の操作装置による下部走行体2に対する走行操作により油圧ショベル1が所定距離以上(例えば3m以上)移動した場合と,マスク範囲をリセットする旨のオペレータの要求が設定用スイッチ(マスク範囲リセットスイッチ)40を介して入力された場合と,システム起動直後の最初の演算周期の場合とのいずれかの場合に,マスク範囲をリセットする必要があるとコントローラ38は判断する。走行操作による油圧ショベル1の移動に関しては,例えば,走行用のパイロット圧検出と,GNSS受信機33の測位演算を基に行われるショベル1の位置移動から検出することができる。
ステップS100でマスク範囲のリセットが必要と判断された場合は,コントローラ38は,ステップS110に進み,マスク範囲のリセットを行い,同時に,ステップS45で計測された時間Tもゼロにリセットする。
以上のようにすることで,油圧ショベル1により精度を要求する作業が行われている場合には,フロント作業機5を含む障害物の影響を受ける可能性がある衛星信号を測位演算に使用しなくなるため,測位演算に使用する衛星の組合せが掘削途中で切り替わって測位演算の精度が低下することや,電波の回折の影響を受けた衛星信号を使って測位演算の精度が低下することを防止できる。
−効果−
以上のように構成された油圧ショベル1では,作業中の上部旋回体1の方位角と傾斜角に応じたマスク範囲が現場座標系に設定され,そのマスク範囲に位置するGNSS衛星の衛星信号を利用することなくGNSS受信機33で測位演算が行われることになる。これにより,フロント作業機5の動作(主にブーム上げ動作)に伴う衛星の切り替わりや衛星信号の回折によりGNSSの測位精度が作業中に低下することが防止される。その結果,モニタポイントの位置演算結果が変動することが防止されるので,油圧ショベル1の制御精度を向上できる。
特に,上記の油圧ショベル1では,精度を要求する作業が行われている間にマスク範囲を設定する仕様となっており,精度を要求しない作業が所定時間t1以上継続している状態やマスク範囲の設定により測位精度が低下してしまう状態等ではマスク範囲の設定は解除される。すなわち,精度が必要な場面だけでマスク範囲を設定して測位精度を確保する一方で,精度が不要な場面や精度が出ない場面では精度よりも測位の即時性を優先することで,場面に即した測位を行うことができるように構成されている。
以上のように構成された油圧ショベル1では,作業中の上部旋回体1の方位角と傾斜角に応じたマスク範囲が現場座標系に設定され,そのマスク範囲に位置するGNSS衛星の衛星信号を利用することなくGNSS受信機33で測位演算が行われることになる。これにより,フロント作業機5の動作(主にブーム上げ動作)に伴う衛星の切り替わりや衛星信号の回折によりGNSSの測位精度が作業中に低下することが防止される。その結果,モニタポイントの位置演算結果が変動することが防止されるので,油圧ショベル1の制御精度を向上できる。
特に,上記の油圧ショベル1では,精度を要求する作業が行われている間にマスク範囲を設定する仕様となっており,精度を要求しない作業が所定時間t1以上継続している状態やマスク範囲の設定により測位精度が低下してしまう状態等ではマスク範囲の設定は解除される。すなわち,精度が必要な場面だけでマスク範囲を設定して測位精度を確保する一方で,精度が不要な場面や精度が出ない場面では精度よりも測位の即時性を優先することで,場面に即した測位を行うことができるように構成されている。
また,上記の油圧ショベル1では,上部旋回体3の方位角や傾斜角が変わった場合には,それに応じて新たにマスク範囲が設定されるとともに,その新たなマスク範囲が過去に設定されたマスク範囲に加えられてマスク範囲が拡大する。すなわち,例えば,上部旋回体3が掘削位置から放土位置まで旋回した場合には,その旋回中の上部旋回体3の方位角の変化に応じてマスク範囲が設定され,過去のマスク範囲に合算される。これにより,掘削位置と放土位置で異なる衛星が選択されることが回避できるので,衛星の切り替わりにより測位精度が低下することを防止できる。
また,障害物の形状データをコントローラ38に予め記憶しておけば,フロント作業機5だけでなく当該障害物(例えば現況地形)が測位に与える影響も考慮してマスク範囲を設定でき,それにより当該障害物によって遮蔽される衛星の信号を利用することなく測位演算できるので,測位精度をさらに向上できる。
以上,本発明の実施の形態について詳述したが,本発明は,上記した実施の形態に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施の形態は,本発明を分かり易く説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。
例えば,上記の図10のフローチャートでは精度を要求する作業が行われているか否かでマスク範囲の設定の有無を切り替えたが,全ての場合にマスク範囲を設定しても良い。
また,上記のコントローラ(制御装置)38に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記のコントローラ38に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
また,上記の各実施の形態の説明では,制御線や情報線は,当該実施の形態の説明に必要であると解されるものを示したが,必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
1…油圧ショベル(作業機械),2…下部走行体,3…上部旋回体,4…キャブ,5…フロント作業機(作業装置),6…ブーム,7…アーム,8…バケット,9…ブームシリンダ,10…アームシリンダ,11…バケットシリンダ,21…車体IMU,22…ブームIMU,23…アームIMU,24…バケットIMU,31,32…GNSSアンテナ,33…GNSS受信機,34…RTK補正データ受信アンテナ,39…表示装置,40…設定用スイッチ(マスク範囲リセットスイッチ),42…外部記録媒体,50…事務所側計測システム,51…GNSS基準局(GNSS受信機),52…GNSS基準局アンテナ,53…無線機,54…RTK補正データ送信アンテナ,61…現地形,62…目標地形,71…掘削位置,72…放土位置,81〜87…GNSS衛星,200…位置計測システム
Claims (6)
- 走行体と,前記走行体の上に旋回可能に取り付けられた上部旋回体と,前記上部旋回体に取り付けられた作業装置と,前記上部旋回体に設置された2つのGNSSアンテナと,複数の衛星から送信され前記2つのGNSSアンテナで受信された衛星信号に基づいて前記上部旋回体の位置と方位角を演算する受信機と,前記受信機で演算された前記上部旋回体の位置及び方位角とに基づいてモニタポイントの位置を演算するコントローラとを備えた作業機械において,
前記コントローラは,前記作業機械における前記2つのGNSSアンテナの設置位置と,前記作業装置の可動範囲と,前記上部旋回体の傾斜角度と,前記上部旋回体の方位角とに基づいて,前記2つのGNSSアンテナのそれぞれが前記複数の衛星から衛星信号を受信する際に前記作業装置が衛星信号の障害物となり得る範囲を地面に設定された座標系上にマスク範囲として設定し,
前記受信機は,前記複数の衛星から前記コントローラで設定された前記マスク範囲に位置する衛星を除いた残りの衛星から送信される衛星信号に基づいて前記上部旋回体の位置と方位角を演算することを特徴とする作業機械。 - 請求項1の作業機械において,
前記コントローラは,前記作業機械が精度を要求する作業中か否かを判定し,前記作業機械が精度を要求する作業中であると判定したとき前記マスク範囲を設定することを特徴とする作業機械。 - 請求項2の作業機械において,
前記コントローラは,前記作業機械が精度を要求する作業中でないと判定された状態が所定時間以上継続したとき,前記作業機械が所定距離以上移動したとき,前記残りの衛星から送信された衛星信号では前記上部旋回体の位置を演算できないとき,のいずれかに該当する場合,前記マスク範囲の設定を解除することを特徴とする作業機械。 - 請求項1の作業機械において,
前記コントローラは,前記作業装置と目標面の距離と,前記作業装置を操作する操作装置への入力操作との少なくとも一方に基づいて前記作業機械が精度を要求する作業中か否かを判定し,前記作業機械が精度を要求する作業中であると判定したとき前記マスク範囲を設定することを特徴とする作業機械。 - 請求項1の作業機械において,
前記コントローラは,前記上部旋回体の傾斜角及び方位角の変化に応じて前記マスク範囲を新たに設定し,その新たな前記マスク範囲を過去に設定した前記マスク範囲に加えることを特徴とする作業機械。 - 請求項1の作業機械において,
前記コントローラは,
前記作業機械の周囲の障害物の形状データが記憶された記憶装置を備え,
前記上部旋回体の位置及び方位角と前記障害物の形状データに基づいて,前記上部旋回体の方位角を基準とした所定の方位角方向で前記障害物を切断したときの断面形状を演算し,前記2つのGNSSアンテナのそれぞれが前記複数の衛星から衛星信号を受信する際に前記断面形状を有する障害物が与える影響をさらに考慮して前記マスク範囲を設定することを特徴とする作業機械。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019038047A JP6961636B2 (ja) | 2019-03-01 | 2019-03-01 | 作業機械 |
EP20766596.9A EP3933122B1 (en) | 2019-03-01 | 2020-02-04 | Working machine |
US17/274,448 US12000114B2 (en) | 2019-03-01 | 2020-02-04 | Work machine |
KR1020217005192A KR102500969B1 (ko) | 2019-03-01 | 2020-02-04 | 작업 기계 |
CN202080004684.6A CN112639225B (zh) | 2019-03-01 | 2020-02-04 | 作业机械 |
PCT/JP2020/004152 WO2020179320A1 (ja) | 2019-03-01 | 2020-02-04 | 作業機械 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019038047A JP6961636B2 (ja) | 2019-03-01 | 2019-03-01 | 作業機械 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020139933A true JP2020139933A (ja) | 2020-09-03 |
JP6961636B2 JP6961636B2 (ja) | 2021-11-05 |
Family
ID=72280228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019038047A Active JP6961636B2 (ja) | 2019-03-01 | 2019-03-01 | 作業機械 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12000114B2 (ja) |
EP (1) | EP3933122B1 (ja) |
JP (1) | JP6961636B2 (ja) |
KR (1) | KR102500969B1 (ja) |
CN (1) | CN112639225B (ja) |
WO (1) | WO2020179320A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021148467A (ja) * | 2020-03-16 | 2021-09-27 | 日立建機株式会社 | 作業機械 |
JPWO2021220420A1 (ja) * | 2020-04-28 | 2021-11-04 | ||
JP7039746B1 (ja) | 2021-03-30 | 2022-03-22 | 日立建機株式会社 | 作業機械 |
WO2023282204A1 (ja) * | 2021-07-08 | 2023-01-12 | 株式会社小松製作所 | 作業機械の制御システム、作業機械、及び作業機械の制御方法 |
WO2024202371A1 (ja) * | 2023-03-31 | 2024-10-03 | 日立建機株式会社 | 建設機械および遠隔操作システム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7088691B2 (ja) * | 2018-02-28 | 2022-06-21 | 株式会社小松製作所 | 積込機械の制御装置、制御方法および遠隔操作システム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0462490A (ja) * | 1990-06-29 | 1992-02-27 | Nippondenso Co Ltd | 車両用gps受信装置 |
JPH07325141A (ja) * | 1994-04-29 | 1995-12-12 | Robert Bosch Gmbh | 航行衛星信号の選択方法及び受信装置 |
JP2003004838A (ja) * | 2001-06-27 | 2003-01-08 | Nec Eng Ltd | Gps受信機 |
US20100283674A1 (en) * | 2009-05-05 | 2010-11-11 | Kirk Geoffrey R | Tilt compensation for gnss antenna |
JP2016079677A (ja) * | 2014-10-16 | 2016-05-16 | 日立建機株式会社 | 領域制限掘削制御装置及び建設機械 |
US20160258759A1 (en) * | 2015-03-04 | 2016-09-08 | Agco Corporation | Path planning based on obstruction mapping |
JP2016188792A (ja) * | 2015-03-30 | 2016-11-04 | 独立行政法人交通安全環境研究所 | 位置測定方法及び位置測定システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4011316A1 (de) * | 1990-04-07 | 1991-10-17 | Rheinische Braunkohlenw Ag | Verfahren zur bestimmung der geodaetischen standortes von teilen eines ortsbeweglichen grossgeraetes |
JP3816806B2 (ja) * | 2002-01-21 | 2006-08-30 | 株式会社トプコン | 建設機械制御システム |
ATE411532T1 (de) * | 2005-12-29 | 2008-10-15 | Alcatel Lucent | Verfahren zur optimierung der verarbeitungen von lokalisierungsdaten bei vorliegen mehrerer satellitenpositionskonstellationen |
WO2009017393A1 (en) | 2007-07-31 | 2009-02-05 | Tele Atlas B.V. | Method and device for determining a position |
JP5059953B2 (ja) * | 2011-02-22 | 2012-10-31 | 株式会社小松製作所 | 油圧ショベルの作業可能範囲表示装置とその制御方法 |
CN103454650B (zh) * | 2013-08-20 | 2015-06-24 | 北京航空航天大学 | 一种视觉辅助卫星完好性监测方法 |
JP5823046B1 (ja) * | 2014-05-14 | 2015-11-25 | 株式会社小松製作所 | 油圧ショベルの較正システム及び較正方法 |
EP3059611A1 (en) * | 2015-02-12 | 2016-08-24 | Agco Corporation | Gnss-based obstruction mapping |
US10145088B2 (en) * | 2015-05-29 | 2018-12-04 | Komatsu Ltd. | Control system of work machine and work machine |
DE102015016045B8 (de) * | 2015-12-11 | 2017-09-14 | Audi Ag | Satellitengestützte Ermittlung eines Kraftfahrzeugs in einem überdachten Bereich |
-
2019
- 2019-03-01 JP JP2019038047A patent/JP6961636B2/ja active Active
-
2020
- 2020-02-04 US US17/274,448 patent/US12000114B2/en active Active
- 2020-02-04 WO PCT/JP2020/004152 patent/WO2020179320A1/ja active Application Filing
- 2020-02-04 CN CN202080004684.6A patent/CN112639225B/zh active Active
- 2020-02-04 EP EP20766596.9A patent/EP3933122B1/en active Active
- 2020-02-04 KR KR1020217005192A patent/KR102500969B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0462490A (ja) * | 1990-06-29 | 1992-02-27 | Nippondenso Co Ltd | 車両用gps受信装置 |
JPH07325141A (ja) * | 1994-04-29 | 1995-12-12 | Robert Bosch Gmbh | 航行衛星信号の選択方法及び受信装置 |
JP2003004838A (ja) * | 2001-06-27 | 2003-01-08 | Nec Eng Ltd | Gps受信機 |
US20100283674A1 (en) * | 2009-05-05 | 2010-11-11 | Kirk Geoffrey R | Tilt compensation for gnss antenna |
JP2016079677A (ja) * | 2014-10-16 | 2016-05-16 | 日立建機株式会社 | 領域制限掘削制御装置及び建設機械 |
US20160258759A1 (en) * | 2015-03-04 | 2016-09-08 | Agco Corporation | Path planning based on obstruction mapping |
JP2016188792A (ja) * | 2015-03-30 | 2016-11-04 | 独立行政法人交通安全環境研究所 | 位置測定方法及び位置測定システム |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021148467A (ja) * | 2020-03-16 | 2021-09-27 | 日立建機株式会社 | 作業機械 |
JP7419119B2 (ja) | 2020-03-16 | 2024-01-22 | 日立建機株式会社 | 作業機械 |
JPWO2021220420A1 (ja) * | 2020-04-28 | 2021-11-04 | ||
JP7392839B2 (ja) | 2020-04-28 | 2023-12-06 | 日本電信電話株式会社 | 計測装置、計測方法、及びプログラム |
JP7039746B1 (ja) | 2021-03-30 | 2022-03-22 | 日立建機株式会社 | 作業機械 |
WO2022209303A1 (ja) * | 2021-03-30 | 2022-10-06 | 日立建機株式会社 | 作業機械 |
JP2022155192A (ja) * | 2021-03-30 | 2022-10-13 | 日立建機株式会社 | 作業機械 |
WO2023282204A1 (ja) * | 2021-07-08 | 2023-01-12 | 株式会社小松製作所 | 作業機械の制御システム、作業機械、及び作業機械の制御方法 |
WO2024202371A1 (ja) * | 2023-03-31 | 2024-10-03 | 日立建機株式会社 | 建設機械および遠隔操作システム |
Also Published As
Publication number | Publication date |
---|---|
US12000114B2 (en) | 2024-06-04 |
JP6961636B2 (ja) | 2021-11-05 |
WO2020179320A1 (ja) | 2020-09-10 |
CN112639225B (zh) | 2022-09-13 |
KR20210034065A (ko) | 2021-03-29 |
CN112639225A (zh) | 2021-04-09 |
EP3933122A4 (en) | 2022-12-07 |
KR102500969B1 (ko) | 2023-02-17 |
EP3933122A1 (en) | 2022-01-05 |
US20220025615A1 (en) | 2022-01-27 |
EP3933122B1 (en) | 2024-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6961636B2 (ja) | 作業機械 | |
JP7245119B2 (ja) | 建設機械 | |
JP7085071B2 (ja) | 作業機械 | |
US20080097693A1 (en) | Gimbaled satellite positioning system antenna | |
WO2020196674A1 (ja) | 作業機械 | |
JP7007313B2 (ja) | 作業機械 | |
JP3987777B2 (ja) | 建設機械の掘削作業教示装置 | |
JP2002310652A (ja) | 走行式建設機械の位置計測システム | |
JP6910995B2 (ja) | 作業機械 | |
CN116057417B (zh) | 作业机械 | |
WO2021256353A1 (ja) | 建設機械 | |
JP2006214236A (ja) | 建設機械の計測表示機構 | |
JP4202209B2 (ja) | 作業機械の位置計測表示システム | |
US20230144985A1 (en) | Positioning system for work machine, work machine, and positioning method for work machine | |
EP4299840A1 (en) | Swiveling work machine and method for detecting orientation of swiveling work machine | |
JP2024041326A (ja) | 作業機械における車体座標系を設定するためのシステムおよび方法 | |
KR20230171035A (ko) | 작업 기계의 제어 시스템, 작업 기계, 및 작업 기계의 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6961636 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |