JP2020137331A - Power supply system for unmanned flying body, and unmanned power supply vehicle - Google Patents

Power supply system for unmanned flying body, and unmanned power supply vehicle Download PDF

Info

Publication number
JP2020137331A
JP2020137331A JP2019030578A JP2019030578A JP2020137331A JP 2020137331 A JP2020137331 A JP 2020137331A JP 2019030578 A JP2019030578 A JP 2019030578A JP 2019030578 A JP2019030578 A JP 2019030578A JP 2020137331 A JP2020137331 A JP 2020137331A
Authority
JP
Japan
Prior art keywords
vehicle
unmanned
power supply
antenna
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019030578A
Other languages
Japanese (ja)
Other versions
JP6680450B1 (en
Inventor
絢介 甲斐
Kensuke Kai
絢介 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Logisnext Co Ltd
Original Assignee
Mitsubishi Logisnext Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Logisnext Co Ltd filed Critical Mitsubishi Logisnext Co Ltd
Priority to JP2019030578A priority Critical patent/JP6680450B1/en
Application granted granted Critical
Publication of JP6680450B1 publication Critical patent/JP6680450B1/en
Publication of JP2020137331A publication Critical patent/JP2020137331A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Abstract

To provide a power supply system for an unmanned flying body and an unmanned power supply vehicle, which can improve the operation time of the unmanned flying body, with efficient power supply using a microwave.SOLUTION: A power supply system 2 for an unmanned flying body includes: a drone 30 which is an unmanned flying body; and an unmanned power supply vehicle 50 which supplies power to a battery of the drone 30. The unmanned power supply vehicle 50 includes a feed antenna which has directivity and transmits a microwave. The drone 30 includes a power reception antenna which receives a microwave. Each of the unmanned power supply vehicle 50 and the drone 30 includes an antenna direction adjustment device which adjusts a direction of the feed antenna or the power reception antenna. The antenna direction adjustment device adjusts the direction of the feed antenna or the power reception antenna, based on a positional relation between the drone 30 and the unmanned power supply vehicle 50.SELECTED DRAWING: Figure 1

Description

本発明は、無人飛行体に対して給電する無人飛行体用給電システムおよび無人給電車両に関するものである。 The present invention relates to an unmanned aerial vehicle power supply system and an unmanned power supply vehicle that supply power to an unmanned aerial vehicle.

一般的に、フォークリフト等の荷役車両は、所定の荷積場所まで走行する動作、荷積場所で荷物を取る動作、荷物を保持した状態で荷積場所から所定の荷降場所まで走行する動作、および、荷降場所で荷物を置く動作を行う。 In general, a cargo handling vehicle such as a forklift has an operation of traveling to a predetermined loading place, an operation of picking up a load at a predetermined loading place, an operation of traveling from a loading place to a predetermined unloading place while holding a load, And, the operation of placing the luggage at the unloading place is performed.

また、荷役車両の動作を支援するように構成された小型の無人飛行体の研究開発が行われている。荷役車両の動作を支援する無人飛行体として、例えば特許文献1には、荷物を取る動作を支援するための撮像装置を備えたものが記載されている。 In addition, research and development of small unmanned aerial vehicles configured to support the operation of cargo handling vehicles is being carried out. As an unmanned aerial vehicle that supports the operation of a cargo handling vehicle, for example, Patent Document 1 describes one provided with an imaging device for supporting the operation of picking up a load.

特開2017−36102号公報JP-A-2017-36102

ところで、内蔵バッテリの充電容量が少ない無人飛行体は長時間にわたって飛行することができないため、無人飛行体の稼働時間を向上させることを目的として、飛行中の無人飛行体に対して無線(マイクロ波)で給電することが求められている。 By the way, since an unmanned aerial vehicle having a small charge capacity of the built-in battery cannot fly for a long time, radio (microwave) is applied to the unmanned aerial vehicle in flight for the purpose of improving the operating time of the unmanned aerial vehicle. ) Is required to supply power.

しかしながら、マイクロ波により給電を行う場合には、効率良く給電することができないおそれがあった。 However, when power is supplied by microwaves, there is a risk that power cannot be supplied efficiently.

本発明は、上記事情に鑑みてなされたものであって、無人飛行体の稼働時間を向上でき、かつ、効率良く給電できる無人飛行体用給電システムおよび無人給電車両を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power supply system for an unmanned aerial vehicle and an unmanned power supply vehicle capable of improving the operating time of the unmanned aerial vehicle and efficiently supplying power. ..

上記課題を解決するため、請求項1に記載の発明は、荷役または荷役の支援を行う無人飛行体と、前記無人飛行体のバッテリに対して給電を行う無人給電車両とを備え、前記無人給電車両は、指向性を有しておりマイクロ波を送る給電アンテナを備え、前記無人飛行体は、前記マイクロ波を受ける受電アンテナを備え、さらに、前記無人給電車両および前記無人飛行体のうち少なくとも一方は、前記給電アンテナまたは前記受電アンテナの向きを調整するアンテナ方向調整装置を備え、前記アンテナ方向調整装置は、前記無人飛行体と前記無人給電車両との位置関係に基づいて、前記給電アンテナまたは前記受電アンテナの向きを調整することを特徴とする。 In order to solve the above problem, the invention according to claim 1 includes an unmanned vehicle that supports cargo handling or cargo handling, and an unmanned power supply vehicle that supplies power to the battery of the unmanned vehicle, and the unmanned power supply. The vehicle is directional and comprises a feeding antenna that sends microwaves, the unmanned vehicle is equipped with a receiving antenna that receives the microwaves, and at least one of the unmanned feeding vehicle and the unmanned vehicle. Provided an antenna direction adjusting device for adjusting the direction of the feeding antenna or the power receiving antenna, and the antenna direction adjusting device is based on the positional relationship between the unmanned vehicle and the unmanned feeding vehicle. It is characterized by adjusting the direction of the power receiving antenna.

請求項2に記載の発明は、請求項1に記載の無人飛行体用給電システムにおいて、前記無人給電車両は、前記アンテナ方向調整装置として、前記給電アンテナの向きを調整する給電アンテナ調整装置を備えていることを特徴とする。 The invention according to claim 2 is the power feeding system for an unmanned vehicle according to claim 1, wherein the unmanned feeding vehicle includes a feeding antenna adjusting device for adjusting the direction of the feeding antenna as the antenna direction adjusting device. It is characterized by being.

請求項3に記載の発明は、請求項1または2に記載の無人飛行体用給電システムにおいて、前記無人飛行体は、前記アンテナ方向調整装置として、前記受電アンテナの向きを調整する受電アンテナ調整装置を備えていることを特徴とする。 The invention according to claim 3 is the power feeding system for an unmanned aviation according to claim 1 or 2, wherein the unmanned aviation is a power receiving antenna adjusting device for adjusting the direction of the receiving antenna as the antenna direction adjusting device. It is characterized by having.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の無人飛行体用給電システムにおいて、前記無人給電車両は、前記無人飛行体に追従して移動することを特徴とする。 The invention according to claim 4 is characterized in that, in the power supply system for an unmanned aerial vehicle according to any one of claims 1 to 3, the unmanned power supply vehicle moves following the unmanned aerial vehicle. To do.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の無人飛行体用給電システムにおいて、前記無人給電車両は、荷役を行う荷役車両を兼ねていることを特徴とする。 The invention according to claim 5 is characterized in that, in the power supply system for an unmanned aerial vehicle according to any one of claims 1 to 4, the unmanned power supply vehicle also serves as a cargo handling vehicle that performs cargo handling. ..

また、請求項6に記載の発明は、無人飛行体のバッテリに対して給電を行う無人給電車両であって、指向性を有しておりマイクロ波を送る給電アンテナと、前記無人飛行体と前記無人給電車両との位置関係に基づいて、前記給電アンテナの向きを調整するアンテナ方向調整装置とを備えていることを特徴とする。 The invention according to claim 6 is an unmanned power supply vehicle that supplies power to a battery of an unmanned vehicle, and has a directivity feeding antenna that transmits microwaves, the unmanned vehicle, and the above. It is characterized by including an antenna direction adjusting device that adjusts the direction of the feeding antenna based on the positional relationship with the unmanned feeding vehicle.

請求項7に記載の発明は、請求項6に記載の無人給電車両において、前記無人飛行体に追従して移動することを特徴とする。 The invention according to claim 7 is characterized in that, in the unmanned power supply vehicle according to claim 6, it moves following the unmanned aerial vehicle.

請求項8に記載の発明は、請求項6または7に記載の無人給電車両において、荷役を行う荷役車両を兼ねていることを特徴とする。 The invention according to claim 8 is characterized in that, in the unmanned power supply vehicle according to claim 6 or 7, it also serves as a cargo handling vehicle that performs cargo handling.

本発明によれば、無人飛行体の稼働時間を向上でき、かつ、マイクロ波で効率良く給電できる無人飛行体用給電システムおよび無人給電車両を提供することができる。 According to the present invention, it is possible to provide an unmanned aerial vehicle power supply system and an unmanned power supply vehicle that can improve the operating time of the unmanned aerial vehicle and can efficiently supply power by microwaves.

本発明の一実施形態に係る無人飛行体用給電システムを示す概要図である。It is a schematic diagram which shows the power supply system for an unmanned aerial vehicle which concerns on one Embodiment of this invention. 同実施形態に係る無人飛行体の上方に設けられたマーカーの一例を示す模式図である。It is a schematic diagram which shows an example of the marker provided above the unmanned aerial vehicle which concerns on this embodiment. 同実施形態に係る無人飛行体の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the unmanned aerial vehicle which concerns on the same embodiment. 同実施形態に係る無人給電車両の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the unmanned power supply vehicle which concerns on this embodiment.

図面を参照して、本発明の一実施形態について説明する。図1は、無人搬送システム1および無人飛行体用給電システム2の概略構成を示している。
図1に示すように、無人搬送システム1は、少なくとも1台の無人搬送車両10(以下、「搬送車両10」)と、複数台のドローン30とにより構成されている。また、無人飛行体用給電システム2は、ドローン30と、少なくとも1台の無人給電車両50(以下、「給電車両50」)とにより構成されている。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an automatic guided vehicle system 1 and an unmanned aerial vehicle power supply system 2.
As shown in FIG. 1, the automatic guided vehicle system 1 is composed of at least one automatic guided vehicle 10 (hereinafter, “transport vehicle 10”) and a plurality of drones 30. Further, the power supply system 2 for an unmanned aerial vehicle is composed of a drone 30 and at least one unmanned power supply vehicle 50 (hereinafter, “power supply vehicle 50”).

搬送車両10は、フォークFとレーザースキャナSとを備えたレーザー式無人フォークリフトであって、荷役を行う荷役車両である。レーザースキャナSは、レーザーを水平に360°回転しながら送信し、反射板Rで反射されたレーザーを受信する。搬送車両10は、レーザースキャナSによるレーザーの受信結果に基づいて、レーザーを反射した3つ以上の反射板Rを認識し、レーザースキャナSから反射板Rまでの距離と反射板Rの方角(方位)とを算出する。また、搬送車両10は、ドローン30と無線で通信し、ドローン30の位置情報を受信する。そして、搬送車両10は、反射板Rまでの距離および反射板Rの方角の算出結果と、その反射板Rを備えているドローン30の位置情報とに基づいて、屋内における搬送車両10の位置を推定し、搬送車両10の位置の推定結果(搬送車両10の位置情報)に基づいて、所定の経路に沿って移動する。 The transport vehicle 10 is a laser-type unmanned forklift equipped with a fork F and a laser scanner S, and is a cargo handling vehicle that handles cargo. The laser scanner S transmits the laser while rotating it horizontally 360 °, and receives the laser reflected by the reflector R. The transport vehicle 10 recognizes three or more reflectors R that have reflected the laser based on the result of receiving the laser by the laser scanner S, and the distance from the laser scanner S to the reflector R and the direction (orientation) of the reflector R. ) And is calculated. Further, the transport vehicle 10 wirelessly communicates with the drone 30 and receives the position information of the drone 30. Then, the transport vehicle 10 determines the position of the transport vehicle 10 indoors based on the calculation results of the distance to the reflector R and the direction of the reflector R and the position information of the drone 30 provided with the reflector R. It is estimated and moves along a predetermined route based on the estimation result of the position of the transport vehicle 10 (position information of the transport vehicle 10).

ドローン30は、搬送車両10による荷役の支援を行う無人飛行体であり、内部電源としてのバッテリ31(図3参照)を備えている。ドローン30は、レーザーを反射する反射板Rを備えており、反射板Rが所定の高さに配置されるように、所定の高さを維持しながら飛行する。また、ドローン30は、天井Cに設けられたマーカーM(図2参照)を撮影するカメラ(図示略)を備えており、マーカーMの認識結果に基づいて、ドローン30の位置を推定し、ドローン30の位置の推定結果(ドローン30の位置情報)を送信する。ドローン30の詳しい構成は、図3を参照して説明する。 The drone 30 is an unmanned aerial vehicle that supports cargo handling by the transport vehicle 10, and includes a battery 31 (see FIG. 3) as an internal power source. The drone 30 includes a reflector R that reflects a laser, and flies while maintaining a predetermined height so that the reflector R is arranged at a predetermined height. Further, the drone 30 is provided with a camera (not shown) for photographing the marker M (see FIG. 2) provided on the ceiling C, estimates the position of the drone 30 based on the recognition result of the marker M, and drones. The estimation result of the position of 30 (position information of the drone 30) is transmitted. The detailed configuration of the drone 30 will be described with reference to FIG.

給電車両50は、ドローン30のバッテリ31に対して給電を行う移動体である。給電車両50は、天井Cに設けられたマーカーM(図2参照)を撮影するカメラ(図示略)を備えており、マーカーMの認識結果に基づいて、給電車両50の位置を推定し、給電車両50の位置の推定結果(給電車両50の位置情報)を送信する。給電車両50の詳しい構成は、図4を参照して説明する。 The power feeding vehicle 50 is a moving body that supplies power to the battery 31 of the drone 30. The power feeding vehicle 50 is provided with a camera (not shown) for photographing the marker M (see FIG. 2) provided on the ceiling C, estimates the position of the power feeding vehicle 50 based on the recognition result of the marker M, and supplies power. The estimation result of the position of the vehicle 50 (position information of the power feeding vehicle 50) is transmitted. The detailed configuration of the power feeding vehicle 50 will be described with reference to FIG.

図2は、天井Cに設けられたマーカーMの一例を示している。
図2に示すように、複数のマーカーMは、直交するX方向およびY方向において、互いに間隔をあけて設けられており、異なる形状(外形)および模様を有している。すなわち、屋内における位置に応じてマーカーMの各々は特徴を有しており、各マーカーMは、屋内における位置情報を示している。
FIG. 2 shows an example of the marker M provided on the ceiling C.
As shown in FIG. 2, the plurality of markers M are provided at intervals in the X and Y directions that are orthogonal to each other, and have different shapes (outer shapes) and patterns. That is, each of the markers M has a feature according to the position in the room, and each marker M indicates the position information in the room.

図3は、ドローン30の概略構成を示すブロック図である。
図3に示すように、ドローン30は、バッテリ31と、受電アンテナ32と、飛行体位置推定部33と、無線通信部34と、飛行制御部35と、飛行体姿勢推定部36と、アンテナ方向調整装置37とを備えている。
FIG. 3 is a block diagram showing a schematic configuration of the drone 30.
As shown in FIG. 3, the drone 30 includes a battery 31, a power receiving antenna 32, an air vehicle position estimation unit 33, a wireless communication unit 34, a flight control unit 35, an air vehicle attitude estimation unit 36, and an antenna direction. It is provided with an adjusting device 37.

バッテリ31は、充電可能な二次電池により構成されており、ドローン30の各部に電力を供給する。バッテリ31の蓄電量は、ドローン30の各部へ電力を供給することによって減り、給電車両50から供給された電力を蓄えることによって増える。 The battery 31 is composed of a rechargeable secondary battery and supplies electric power to each part of the drone 30. The amount of electricity stored in the battery 31 is reduced by supplying electric power to each part of the drone 30, and is increased by storing the electric power supplied from the power supply vehicle 50.

受電アンテナ32は、指向性を有しており、給電車両50から送られたマイクロ波を受けるレクテナ(図示略)により構成されている。受電アンテナ32は、マイクロ波を直流電流に変換し、その電流をバッテリ31に送る。受電アンテナ32の向きは調整可能に構成されており、受電アンテナ32の向きが変化することによってマイクロ波の受電効率が変化する。 The power receiving antenna 32 has directivity and is composed of a rectenna (not shown) that receives microwaves sent from the power feeding vehicle 50. The power receiving antenna 32 converts microwaves into direct current and sends the current to the battery 31. The orientation of the power receiving antenna 32 is adjustable, and the microwave power receiving efficiency changes as the orientation of the power receiving antenna 32 changes.

飛行体位置推定部33は、ドローン30の上方の撮影結果に基づいて、ドローン30の上方に位置するマーカーMを認識し、そのマーカーMの特徴的情報(例えば形状、模様、周囲の他のマーカーMまでの距離等)に基づいて、屋内におけるドローン30の位置を推定する。 The flying object position estimation unit 33 recognizes the marker M located above the drone 30 based on the shooting result above the drone 30, and the characteristic information (for example, shape, pattern, and other markers around the marker M) of the marker M is recognized. The position of the drone 30 indoors is estimated based on the distance to M, etc.).

無線通信部34は、搬送車両10および給電車両50と無線で通信し、各種の情報を送受信する。具体的には、例えば、無線通信部34は、ドローン30の位置の推定結果をドローン30の位置情報として搬送車両10および給電車両50に送信し、バッテリ31の蓄電量の情報を給電車両50に送信し、給電車両50の位置情報を受信する。また、ドローン30が備える無線通信部34は、他のドローン30と無線で通信し、ドローン30の位置の推定結果をドローン30の位置情報として他のドローン30に送信し、他のドローン30の位置情報を受信する。 The wireless communication unit 34 wirelessly communicates with the transport vehicle 10 and the power supply vehicle 50, and transmits and receives various information. Specifically, for example, the wireless communication unit 34 transmits the estimation result of the position of the drone 30 to the transport vehicle 10 and the power supply vehicle 50 as the position information of the drone 30, and transmits the information on the amount of electricity stored in the battery 31 to the power supply vehicle 50. It transmits and receives the position information of the power feeding vehicle 50. Further, the wireless communication unit 34 included in the drone 30 wirelessly communicates with the other drone 30, transmits the estimation result of the position of the drone 30 to the other drone 30 as the position information of the drone 30, and the position of the other drone 30. Receive information.

飛行制御部35は、ドローン30の位置の推定結果と、他のドローン30の位置情報とに基づいて、ドローン30の飛行を制御する。具体的には、飛行制御部35は、ドローン30同士が衝突しないようにドローン30を制御する。 The flight control unit 35 controls the flight of the drone 30 based on the estimation result of the position of the drone 30 and the position information of the other drone 30. Specifically, the flight control unit 35 controls the drones 30 so that the drones 30 do not collide with each other.

飛行体姿勢推定部36は、飛行制御部35によるドローン30の飛行制御に基づいて、ドローン30の姿勢(向き)を推定する。 The aircraft attitude estimation unit 36 estimates the attitude (orientation) of the drone 30 based on the flight control of the drone 30 by the flight control unit 35.

アンテナ方向調整装置37は、ドローン30の位置の推定結果と、ドローン30の姿勢の推定結果と、給電車両50の位置情報とに基づいて、受電アンテナ32の向きを調整する受電アンテナ調整装置である。アンテナ方向調整装置37は、給電アンテナ51からのマイクロ波を送るように、すなわち給電アンテナ51の給電方向を受電アンテナ32に向けるように、受電アンテナ32の向きを調整する。 The antenna direction adjusting device 37 is a power receiving antenna adjusting device that adjusts the direction of the power receiving antenna 32 based on the estimation result of the position of the drone 30, the estimation result of the posture of the drone 30, and the position information of the power feeding vehicle 50. .. The antenna direction adjusting device 37 adjusts the direction of the power receiving antenna 32 so as to send microwaves from the feeding antenna 51, that is, to direct the feeding direction of the feeding antenna 51 toward the power receiving antenna 32.

図4は、給電車両50の概略構成を示すブロック図である。
図4に示すように、給電車両50は、給電アンテナ51と、車両位置推定部52と、無線通信部53と、走行制御部54と、車両姿勢推定部55と、アンテナ方向調整装置56とを備えている。
FIG. 4 is a block diagram showing a schematic configuration of the power feeding vehicle 50.
As shown in FIG. 4, the power feeding vehicle 50 includes a power feeding antenna 51, a vehicle position estimation unit 52, a wireless communication unit 53, a travel control unit 54, a vehicle attitude estimation unit 55, and an antenna direction adjusting device 56. I have.

給電アンテナ51は、指向性を有しており、特定の送電方向にマイクロ波を送る送電アンテナにより構成されている。給電アンテナ51は、バッテリ31の蓄電量が所定量(例えば最大蓄電量の20%)未満になったときにマイクロ波による送電を開始し、バッテリ31の蓄電量が所定量(例えば最大蓄電量の90%)以上になったときに送電を停止する。給電アンテナ51の向きは調整可能に構成されており、給電アンテナ51の向きが変化することによって、マイクロ波の送電方向が変化する。 The power feeding antenna 51 has directivity and is composed of a power transmission antenna that sends microwaves in a specific power transmission direction. The power feeding antenna 51 starts power transmission by microwave when the stored amount of the battery 31 becomes less than a predetermined amount (for example, 20% of the maximum stored amount), and the stored amount of the battery 31 is a predetermined amount (for example, the maximum stored amount). When it exceeds 90%), power transmission is stopped. The orientation of the feeding antenna 51 is adjustable, and the direction of microwave transmission changes as the orientation of the feeding antenna 51 changes.

車両位置推定部52は、給電車両50の上方の撮影結果に基づいて、給電車両50の上方に位置するマーカーMを認識し、そのマーカーMの特徴的情報(例えば形状、模様、周囲の他のマーカーMまでの距離等)に基づいて、屋内における給電車両50の位置を推定する。 The vehicle position estimation unit 52 recognizes the marker M located above the power feeding vehicle 50 based on the result of photographing above the power feeding vehicle 50, and the characteristic information (for example, shape, pattern, and other surroundings) of the marker M is recognized. The position of the power feeding vehicle 50 indoors is estimated based on the distance to the marker M, etc.).

無線通信部53は、ドローン30と無線で通信し、各種の情報を送受信する。具体的には、例えば、無線通信部53は、給電車両50の位置の推定結果を給電車両50の位置情報としてドローン30に送信し、ドローン30の位置情報およびバッテリ31の蓄電量の情報を受信する。 The wireless communication unit 53 wirelessly communicates with the drone 30 and transmits / receives various information. Specifically, for example, the wireless communication unit 53 transmits the estimation result of the position of the power feeding vehicle 50 to the drone 30 as the position information of the power feeding vehicle 50, and receives the position information of the drone 30 and the storage amount information of the battery 31. To do.

走行制御部54は、給電車両50の位置の推定結果とドローン30の位置情報とに基づいて、給電車両50の走行を制御する。具体的には、走行制御部54は、給電対象のバッテリ31を備えたドローン30に追従して移動するように給電車両50を制御する。 The travel control unit 54 controls the travel of the power supply vehicle 50 based on the estimation result of the position of the power supply vehicle 50 and the position information of the drone 30. Specifically, the travel control unit 54 controls the power supply vehicle 50 so as to move following the drone 30 provided with the battery 31 to be fed.

車両姿勢推定部55は、走行制御部54による給電車両50の走行制御に基づいて、給電車両50の姿勢(向き)を推定する。 The vehicle posture estimation unit 55 estimates the posture (direction) of the power supply vehicle 50 based on the travel control of the power supply vehicle 50 by the travel control unit 54.

アンテナ方向調整装置56は、給電車両50の位置の推定結果と、給電車両50の姿勢の推定結果と、ドローン30の位置情報とに基づいて、給電アンテナ51の向きを調整する給電アンテナ調整装置である。アンテナ方向調整装置56は、給電アンテナ51から飛行中のドローン30に向けて強いマイクロ波を送るように、すなわち給電アンテナ51の給電方向を受電アンテナ32に向けるように、給電アンテナ51の向きを調整する。 The antenna direction adjusting device 56 is a feeding antenna adjusting device that adjusts the direction of the feeding antenna 51 based on the estimation result of the position of the feeding vehicle 50, the estimation result of the posture of the feeding vehicle 50, and the position information of the drone 30. is there. The antenna direction adjusting device 56 adjusts the direction of the feeding antenna 51 so as to send strong microwaves from the feeding antenna 51 toward the drone 30 in flight, that is, to direct the feeding direction of the feeding antenna 51 toward the receiving antenna 32. To do.

本実施形態においては以下の効果が得られる。
(1)給電車両50が備えるアンテナ方向調整装置56は、給電車両50とドローン30の位置関係に基づいて、給電アンテナ51の向きを調整する。すなわち、アンテナ方向調整装置56は、給電車両50に対するドローン30の相対的な位置に応じて、給電アンテナ51の向きを調整する。このため、ドローン30の相対的な位置に関係なく給電アンテナ51の向きが固定された構成に比べて、給電アンテナ51から飛行中のドローン30に向けて強いマイクロ波を送ることができる。したがって、ドローン30の稼働時間を向上でき、かつ、マイクロ波で効率良く給電できる。
In this embodiment, the following effects can be obtained.
(1) The antenna direction adjusting device 56 included in the feeding vehicle 50 adjusts the direction of the feeding antenna 51 based on the positional relationship between the feeding vehicle 50 and the drone 30. That is, the antenna direction adjusting device 56 adjusts the direction of the feeding antenna 51 according to the relative position of the drone 30 with respect to the feeding vehicle 50. Therefore, as compared with the configuration in which the direction of the feeding antenna 51 is fixed regardless of the relative position of the drone 30, strong microwaves can be sent from the feeding antenna 51 toward the drone 30 in flight. Therefore, the operating time of the drone 30 can be improved, and power can be efficiently supplied by microwaves.

(2)ドローン30が備えるアンテナ方向調整装置37は、給電車両50とドローン30の位置関係に基づいて、受電アンテナ32の向きを調整する。すなわち、アンテナ方向調整装置37は、ドローン30に対する給電車両50の相対的な位置に応じて、受電アンテナ32の向きを調整する。このため、給電車両50の相対的な位置に関係なく受電アンテナ32の向きが固定された構成に比べて、給電アンテナ51から送られたマイクロ波の受電効率を高めることができる。したがって、ドローン30の稼働時間を向上でき、かつ、マイクロ波で効率良く給電できる。 (2) The antenna direction adjusting device 37 included in the drone 30 adjusts the direction of the power receiving antenna 32 based on the positional relationship between the power feeding vehicle 50 and the drone 30. That is, the antenna direction adjusting device 37 adjusts the direction of the power receiving antenna 32 according to the relative position of the power feeding vehicle 50 with respect to the drone 30. Therefore, the power receiving efficiency of the microwave transmitted from the feeding antenna 51 can be improved as compared with the configuration in which the orientation of the power receiving antenna 32 is fixed regardless of the relative position of the feeding vehicle 50. Therefore, the operating time of the drone 30 can be improved, and the power can be efficiently supplied by microwaves.

(3)給電車両50は、ドローン30に追従して移動するため、移動中のドローン30の近傍からマイクロ波を送ることができ、より効率良く給電できる。 (3) Since the power feeding vehicle 50 moves following the drone 30, microwaves can be sent from the vicinity of the moving drone 30, and power can be supplied more efficiently.

本発明は、上記実施形態に限定されるものではなく、上記構成を適宜変更することもできる。例えば、上記実施形態を、以下のように変更して実施してもよく、以下の変更を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment, and the above configuration can be changed as appropriate. For example, the above embodiment may be modified as follows, or the following modifications may be combined as appropriate.

・マーカーMを天井C以外の場所に設けてもよい。また、飛行体位置推定部33がGPSを用いてドローン30の位置を推定するように構成してもよい。同様に、車両位置推定部52がGPSを用いて給電車両50の位置を推定するように構成してもよい。 -The marker M may be provided at a place other than the ceiling C. Further, the flight body position estimation unit 33 may be configured to estimate the position of the drone 30 using GPS. Similarly, the vehicle position estimation unit 52 may be configured to estimate the position of the power feeding vehicle 50 using GPS.

・搬送車両10に代えて、レーザー誘導式無人フォークリフト以外の荷役車両を採用してもよい。すなわち、荷役車両は、例えば、フォークF以外の移載装置を備えた無人搬送車両や、移載装置を備えていない無人搬送車両であってもよく、磁気誘導式または画像認識方式の無人搬送車両であってもよい。 -Instead of the transport vehicle 10, a cargo handling vehicle other than the laser-guided unmanned forklift may be adopted. That is, the cargo handling vehicle may be, for example, an automatic guided vehicle equipped with a transfer device other than the fork F, or an automatic guided vehicle without a transfer device, and is an automatic guided vehicle or an image recognition type automatic guided vehicle. It may be.

・給電車両50が、搬送車両10の機能を備えるように構成してもよい。すなわち、給電車両50が、荷役を行う荷役車両を兼ねていてもよい。この構成によれば、給電車両50は、この給電車両50による荷役の支援を行うドローン30に対して給電を行うことができる。 The power feeding vehicle 50 may be configured to have the function of the transport vehicle 10. That is, the power feeding vehicle 50 may also serve as a cargo handling vehicle that performs cargo handling. According to this configuration, the power feeding vehicle 50 can supply power to the drone 30 that supports cargo handling by the power feeding vehicle 50.

・ドローン30に代えて、荷役を行う無人飛行体を採用してもよい。すなわち、無人飛行体が荷役車両による荷役の支援を行わず、無人飛行体自身が荷役を行うように構成してもよい。 -Instead of the drone 30, an unmanned aerial vehicle that handles cargo may be adopted. That is, the unmanned aerial vehicle may be configured so that the unmanned aerial vehicle itself does not support the cargo handling by the cargo handling vehicle.

1 無人搬送システム
2 無人飛行体用給電システム
10 無人搬送車両
30 ドローン(無人飛行体)
31 バッテリ
32 受電アンテナ
37 アンテナ方向調整装置(受電アンテナ調整装置)
50 無人給電車両
51 給電アンテナ
56 アンテナ方向調整装置(給電アンテナ調整装置)
1 Automatic guided vehicle 2 Power supply system for unmanned aerial vehicle 10 Automatic guided vehicle 30 Drone (unmanned aerial vehicle)
31 Battery 32 Power receiving antenna 37 Antenna direction adjustment device (power receiving antenna adjustment device)
50 Unmanned power supply vehicle 51 Power supply antenna 56 Antenna direction adjustment device (power supply antenna adjustment device)

上記課題を解決するため、請求項1に記載の発明は、荷役または荷役の支援を行う無人飛行体と、前記無人飛行体のバッテリに対して給電を行う無人給電車両とを備え、前記無人給電車両は、指向性を有しておりマイクロ波を送る給電アンテナと、当該無人給電車両の位置を推定する車両位置推定部と、当該無人給電車両の姿勢を推定する車両姿勢推定部と、当該無人給電車両の位置情報を送信するとともに前記無人飛行体の位置情報を受信する車両側無線通信部と、前記給電アンテナの向きを調整するアンテナ方向調整装置としての給電アンテナ調整装置とを備え、前記無人飛行体は、前記マイクロ波を受ける受電アンテナと、当該無人飛行体の位置を推定する飛行体位置推定部と、当該無人飛行体の姿勢を推定する飛行体姿勢推定部と、当該無人飛行体の位置情報を送信するとともに前記無人給電車両の位置情報を受信する飛行体側無線通信部と、前記受電アンテナの向きを調整するアンテナ方向調整装置としての受電アンテナ調整装置とを備え、前記給電アンテナ調整装置は、前記無人飛行体と前記無人給電車両との位置関係を示す前記無人給電車両の位置の推定結果および受信した前記無人飛行体の位置情報と、前記無人給電車両の姿勢の推定結果とに基づいて、前記給電アンテナの向きを調整し、前記受電アンテナ調整装置は、前記無人飛行体と前記無人給電車両との位置関係を示す前記無人飛行体の位置の推定結果および受信した前記無人給電車両の位置情報と、前記無人飛行体の姿勢の推定結果とに基づいて、前記受電アンテナの向きを調整することを特徴とする。 In order to solve the above problem, the invention according to claim 1 includes an unmanned air vehicle that supports cargo handling or cargo handling, and an unmanned power supply vehicle that supplies power to the battery of the unmanned air vehicle. The vehicle has a directional power feeding antenna that sends microwaves, a vehicle position estimation unit that estimates the position of the unmanned power supply vehicle, a vehicle attitude estimation unit that estimates the attitude of the unmanned power supply vehicle, and the unmanned vehicle. It is provided with a vehicle-side wireless communication unit that transmits position information of the power feeding vehicle and receives position information of the unmanned vehicle, and a power feeding antenna adjusting device as an antenna direction adjusting device that adjusts the direction of the feeding antenna. The air vehicle includes a power receiving antenna that receives the microwave, an air vehicle position estimation unit that estimates the position of the unmanned air vehicle, an air vehicle attitude estimation unit that estimates the attitude of the unmanned air vehicle, and an unmanned air vehicle. The power feeding antenna adjusting device includes a vehicle-side wireless communication unit that transmits position information and receives the position information of the unmanned power feeding vehicle, and a power receiving antenna adjusting device as an antenna direction adjusting device that adjusts the direction of the power receiving antenna. Is based on the estimation result of the position of the unmanned power supply vehicle indicating the positional relationship between the unmanned vehicle and the unmanned power supply vehicle, the received position information of the unmanned air vehicle, and the estimation result of the attitude of the unmanned power supply vehicle. The direction of the power feeding antenna is adjusted, and the power receiving antenna adjusting device determines the position estimation result of the unmanned vehicle indicating the positional relationship between the unmanned vehicle and the unmanned power supply vehicle, and the received unmanned power supply vehicle. It is characterized in that the direction of the power receiving antenna is adjusted based on the position information and the estimation result of the posture of the unmanned flying object .

請求項2に記載の発明は、請求項1に記載の無人飛行体用給電システムにおいて、前記無人給電車両は、前記無人飛行体に追従して移動することを特徴とする。 The invention according to claim 2 is characterized in that, in the power supply system for an unmanned aerial vehicle according to claim 1 , the unmanned power supply vehicle moves following the unmanned aerial vehicle.

請求項3に記載の発明は、請求項1または2に記載の無人飛行体用給電システムにおいて、前記無人給電車両は、荷役を行う荷役車両を兼ねていることを特徴とする。 The invention according to claim 3 is characterized in that, in the power supply system for an unmanned aerial vehicle according to claim 1 or 2 , the unmanned power supply vehicle also serves as a cargo handling vehicle that performs cargo handling.

また、請求項4に記載の発明は、無人飛行体のバッテリに対して給電を行う無人給電車両であって、指向性を有しておりマイクロ波を送る給電アンテナと、前記無人給電車両の位置を推定する車両位置推定部と、前記無人給電車両の姿勢を推定する車両姿勢推定部と、前記無人飛行体の位置情報を受信する無線通信部と、前記無人飛行体と前記無人給電車両との位置関係を示す前記無人給電車両の位置の推定結果および受信した前記無人飛行体の位置情報と、前記無人給電車両の姿勢の推定結果とに基づいて、前記給電アンテナの向きを調整するアンテナ方向調整装置としての給電アンテナ調整装置とを備えていることを特徴とする。 The invention according to claim 4 is an unmanned power supply vehicle that supplies power to a battery of an unmanned vehicle, has a directional power feeding antenna that transmits microwaves, and a position of the unmanned power supply vehicle. The vehicle position estimation unit that estimates the vehicle position, the vehicle attitude estimation unit that estimates the attitude of the unmanned power supply vehicle, the wireless communication unit that receives the position information of the unmanned vehicle, and the unmanned vehicle and the unmanned power supply vehicle. Antenna direction adjustment that adjusts the direction of the feeding antenna based on the estimation result of the position of the unmanned feeding vehicle showing the positional relationship , the received position information of the unmanned vehicle, and the estimation result of the posture of the unmanned feeding vehicle. It is characterized by having a feeding antenna adjusting device as a device.

請求項5に記載の発明は、請求項4に記載の無人給電車両において、前記無人飛行体に追従して移動することを特徴とする。 The invention according to claim 5 is characterized in that, in the unmanned power supply vehicle according to claim 4 , it moves following the unmanned aerial vehicle.

請求項6に記載の発明は、請求項4または5に記載の無人給電車両において、荷役を行う荷役車両を兼ねていることを特徴とする。 The invention according to claim 6 is characterized in that, in the unmanned power supply vehicle according to claim 4 or 5 , it also serves as a cargo handling vehicle that performs cargo handling.

Claims (8)

荷役または荷役の支援を行う無人飛行体と、
前記無人飛行体のバッテリに対して給電を行う無人給電車両とを備え、
前記無人給電車両は、指向性を有しておりマイクロ波を送る給電アンテナを備え、
前記無人飛行体は、前記マイクロ波を受ける受電アンテナを備え、
さらに、前記無人給電車両および前記無人飛行体のうち少なくとも一方は、前記給電アンテナまたは前記受電アンテナの向きを調整するアンテナ方向調整装置を備え、
前記アンテナ方向調整装置は、前記無人飛行体と前記無人給電車両との位置関係に基づいて、前記給電アンテナまたは前記受電アンテナの向きを調整する
ことを特徴とする無人飛行体用給電システム。
Unmanned aerial vehicles that support cargo handling or cargo handling,
It is equipped with an unmanned power supply vehicle that supplies power to the battery of the unmanned aerial vehicle.
The unmanned power supply vehicle has a directivity and is equipped with a power supply antenna that sends microwaves.
The unmanned aerial vehicle includes a power receiving antenna that receives the microwave.
Further, at least one of the unmanned power supply vehicle and the unmanned aerial vehicle is provided with an antenna direction adjusting device for adjusting the direction of the power feeding antenna or the power receiving antenna.
The antenna direction adjusting device is a power feeding system for an unmanned aerial vehicle, which adjusts the direction of the feeding antenna or the power receiving antenna based on the positional relationship between the unmanned aerial vehicle and the unmanned power feeding vehicle.
前記無人給電車両は、前記アンテナ方向調整装置として、前記給電アンテナの向きを調整する給電アンテナ調整装置を備えている
ことを特徴とする請求項1に記載の無人飛行体用給電システム。
The power supply system for an unmanned vehicle according to claim 1, wherein the unmanned power supply vehicle includes a power supply antenna adjusting device for adjusting the direction of the power supply antenna as the antenna direction adjusting device.
前記無人飛行体は、前記アンテナ方向調整装置として、前記受電アンテナの向きを調整する受電アンテナ調整装置を備えている
ことを特徴とする請求項1または2に記載の無人飛行体用給電システム。
The power supply system for an unmanned vehicle according to claim 1 or 2, wherein the unmanned vehicle includes a power receiving antenna adjusting device for adjusting the direction of the power receiving antenna as the antenna direction adjusting device.
前記無人給電車両は、前記無人飛行体に追従して移動する
ことを特徴とする請求項1〜3のいずれか一項に記載の無人飛行体用給電システム。
The power supply system for an unmanned aerial vehicle according to any one of claims 1 to 3, wherein the unmanned power supply vehicle follows the unmanned aerial vehicle and moves.
前記無人給電車両は、荷役を行う荷役車両を兼ねている
ことを特徴とする請求項1〜4のいずれか一項に記載の無人飛行体用給電システム。
The power supply system for an unmanned aerial vehicle according to any one of claims 1 to 4, wherein the unmanned power supply vehicle also serves as a cargo handling vehicle for cargo handling.
無人飛行体のバッテリに対して給電を行う無人給電車両であって、
指向性を有しておりマイクロ波を送る給電アンテナと、
前記無人飛行体と前記無人給電車両との位置関係に基づいて、前記給電アンテナの向きを調整するアンテナ方向調整装置とを備えている
ことを特徴とする無人給電車両。
An unmanned power supply vehicle that supplies power to the battery of an unmanned aerial vehicle.
A feeding antenna that has directivity and sends microwaves,
An unmanned power supply vehicle, characterized in that it includes an antenna direction adjusting device that adjusts the direction of the power supply antenna based on the positional relationship between the unmanned aerial vehicle and the unmanned power supply vehicle.
前記無人飛行体に追従して移動する
ことを特徴とする請求項6に記載の無人給電車両。
The unmanned power supply vehicle according to claim 6, wherein the vehicle moves following the unmanned aerial vehicle.
荷役を行う荷役車両を兼ねている
ことを特徴とする請求項6または7に記載の無人給電車両。
The unmanned power supply vehicle according to claim 6 or 7, wherein the cargo handling vehicle also serves as a cargo handling vehicle.
JP2019030578A 2019-02-22 2019-02-22 Unmanned aerial vehicle power supply system and unmanned power supply vehicle Active JP6680450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030578A JP6680450B1 (en) 2019-02-22 2019-02-22 Unmanned aerial vehicle power supply system and unmanned power supply vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030578A JP6680450B1 (en) 2019-02-22 2019-02-22 Unmanned aerial vehicle power supply system and unmanned power supply vehicle

Publications (2)

Publication Number Publication Date
JP6680450B1 JP6680450B1 (en) 2020-04-15
JP2020137331A true JP2020137331A (en) 2020-08-31

Family

ID=70166485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030578A Active JP6680450B1 (en) 2019-02-22 2019-02-22 Unmanned aerial vehicle power supply system and unmanned power supply vehicle

Country Status (1)

Country Link
JP (1) JP6680450B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024143481A1 (en) * 2022-12-27 2024-07-04 Scivax株式会社 Three-dimensional imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533051B (en) * 2020-05-08 2021-12-17 三一机器人科技有限公司 Tray pose detection method and device, forklift and freight system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022382A (en) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp Feeding system to flying object, power transmission device to flying object used therefor, and flying object
JP2008283804A (en) * 2007-05-11 2008-11-20 Kansai Electric Power Co Inc:The Wireless power supply system
US20110266995A1 (en) * 2010-04-28 2011-11-03 Lockheed Martin Corporation Radio frequency power transmission system
JP2014500827A (en) * 2010-12-09 2014-01-16 ザ・ボーイング・カンパニー Unmanned vehicle and system
JP2016197943A (en) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 Wireless power supply method
JP2017088358A (en) * 2015-11-13 2017-05-25 ニチユ三菱フォークリフト株式会社 Electric power supply system and electric power supply method
JP2017093216A (en) * 2015-11-13 2017-05-25 ニチユ三菱フォークリフト株式会社 Electric power supply system and electric power supply method
JP2017517466A (en) * 2014-04-11 2017-06-29 ドイチェ ポスト エージー Method for delivering cargo by unmanned transport equipment
US20170269613A1 (en) * 2016-03-18 2017-09-21 Balyo Inspection system and method for performing inspections in a storage facility
JP2017207815A (en) * 2016-05-16 2017-11-24 井関農機株式会社 Control system of work vehicle
US20180141453A1 (en) * 2016-11-22 2018-05-24 Wal-Mart Stores, Inc. System and method for autonomous battery replacement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022382A (en) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp Feeding system to flying object, power transmission device to flying object used therefor, and flying object
JP2008283804A (en) * 2007-05-11 2008-11-20 Kansai Electric Power Co Inc:The Wireless power supply system
US20110266995A1 (en) * 2010-04-28 2011-11-03 Lockheed Martin Corporation Radio frequency power transmission system
JP2014500827A (en) * 2010-12-09 2014-01-16 ザ・ボーイング・カンパニー Unmanned vehicle and system
JP2017517466A (en) * 2014-04-11 2017-06-29 ドイチェ ポスト エージー Method for delivering cargo by unmanned transport equipment
JP2016197943A (en) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 Wireless power supply method
JP2017088358A (en) * 2015-11-13 2017-05-25 ニチユ三菱フォークリフト株式会社 Electric power supply system and electric power supply method
JP2017093216A (en) * 2015-11-13 2017-05-25 ニチユ三菱フォークリフト株式会社 Electric power supply system and electric power supply method
US20170269613A1 (en) * 2016-03-18 2017-09-21 Balyo Inspection system and method for performing inspections in a storage facility
JP2017207815A (en) * 2016-05-16 2017-11-24 井関農機株式会社 Control system of work vehicle
US20180141453A1 (en) * 2016-11-22 2018-05-24 Wal-Mart Stores, Inc. System and method for autonomous battery replacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024143481A1 (en) * 2022-12-27 2024-07-04 Scivax株式会社 Three-dimensional imaging device

Also Published As

Publication number Publication date
JP6680450B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US20200039373A1 (en) Systems and methods for charging an unmanned aerial vehicle with a host vehicle
JP6680450B1 (en) Unmanned aerial vehicle power supply system and unmanned power supply vehicle
JP6760704B2 (en) Power supply system for unmanned aerial vehicles
JP6692566B1 (en) Power supply system and controller for unmanned air vehicles
JP6692567B1 (en) Power supply system and controller for unmanned air vehicles
JP6725195B1 (en) Power supply system for unmanned air vehicles
JP6680451B1 (en) Unmanned aerial vehicle power supply system and unmanned power supply vehicle
JP6713716B1 (en) Unmanned power supply vehicle and power supply system
JP6717554B1 (en) Power supply system for unmanned air vehicles
CN117755557A (en) Handling system of unmanned aerial vehicle
KR20210153388A (en) Transportation system using unmanned aerial vehicles
JP6717557B1 (en) Power supply system for unmanned air vehicles
JP6650059B1 (en) Power supply system for unmanned aerial vehicles
JP6663054B1 (en) Power supply system and vehicle for unmanned aerial vehicles
JP6650060B1 (en) Power supply system for unmanned aerial vehicles
JP6674570B1 (en) Power supply system for unmanned aerial vehicles
JP2020162391A5 (en)
JP6711553B2 (en) Unmanned transport system
JP6653031B1 (en) Power supply system for unmanned aerial vehicles
JP6725197B1 (en) Power supply system for unmanned air vehicles
JP6738917B1 (en) Power supply system for unmanned air vehicles
JP6721281B1 (en) Power supply system for unmanned air vehicles
JP6711554B2 (en) Unmanned transport system
JP2020138658A (en) Power supply system for unmanned flight body
JP2021020529A (en) Drone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R150 Certificate of patent or registration of utility model

Ref document number: 6680450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150