JP2020134081A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2020134081A
JP2020134081A JP2019031506A JP2019031506A JP2020134081A JP 2020134081 A JP2020134081 A JP 2020134081A JP 2019031506 A JP2019031506 A JP 2019031506A JP 2019031506 A JP2019031506 A JP 2019031506A JP 2020134081 A JP2020134081 A JP 2020134081A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
oil separator
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019031506A
Other languages
Japanese (ja)
Inventor
博俊 竹内
Hirotoshi Takeuchi
博俊 竹内
慎太郎 真田
Shintaro Sanada
慎太郎 真田
佑 廣崎
Yu Hirosaki
佑 廣崎
賢一 ▲高▼野
賢一 ▲高▼野
Kenichi Takano
稔弘 関根
Toshihiro Sekine
稔弘 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019031506A priority Critical patent/JP2020134081A/en
Publication of JP2020134081A publication Critical patent/JP2020134081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

To provide an air conditioning device capable of surely separating a refrigerator oil from a refrigerant by an oil separator regardless of a rotating speed of a compressor.SOLUTION: A cross sectional area of a discharge pipe 40 is determined to be smaller than a cross sectional area of an outflow pipe 41. Concretely, an inner diameter dimension D1 of the discharge pipe 40 is smaller than an inner diameter dimension D2 of the outflow pipe 41. Here, the inner diameter dimension D1 of the discharge pipe 40 may be determined so that a flow rate of a refrigerant including a refrigerator oil flowing in the discharge pipe 40 becomes a prescribed value in driving a compressor 20 at a lowest rotating speed possible in controlling, in the compressor 20 mounted on an air conditioning device 1. The prescribed value of the flow rate may be determined to achieve magnitude of centrifugal force acting on the refrigerant included in the refrigerator oil inside of a sealed container 21 of an oil separator 21, so that an amount of the refrigerator oil separating from the refrigerant by the oil separator 21 and returning to the compressor 20 becomes an amount to secure lubrication of the compressor 20.SELECTED DRAWING: Figure 2

Description

本発明は、圧縮機の冷媒吐出側にオイルセパレータが接続された空気調和装置に関する。 The present invention relates to an air conditioner in which an oil separator is connected to the refrigerant discharge side of a compressor.

圧縮機の冷媒吐出側に、圧縮機から冷媒とともに吐出された冷凍機油を冷媒から分離するオイルセパレータを接続する空気調和装置が存在する。オイルセパレータとしては、円筒形の密閉容器の壁面に接線方向から冷凍機油を含む冷媒を流入させて密閉容器壁面の周方向に流す旋回流を形成し、旋回流によって生じる遠心力で冷媒から冷凍機油を分離する、所謂遠心分離式のオイルセパレータを用いることが一般的である(例えば、特許文献1)。 On the refrigerant discharge side of the compressor, there is an air conditioner that connects an oil separator that separates the refrigerating machine oil discharged from the compressor together with the refrigerant from the refrigerant. The oil separator forms a swirling flow in which a refrigerant containing refrigerating machine oil flows into the wall surface of the cylindrical closed container from the tangential direction and flows in the circumferential direction of the wall surface of the closed container. It is common to use a so-called centrifugal oil separator that separates the oil (for example, Patent Document 1).

特開2002−213843号公報JP-A-2002-213843

外気温度が低くなる冬季では、圧縮機の内部に滞留するガス冷媒が凝縮して液冷媒となり、この液冷媒が圧縮機の底部に滞留する冷凍機油に溶け込む、所謂冷媒の寝込みが発生することがある。このように、冷媒が寝込んでいる状態で暖房運転を開始するために圧縮機が起動されると、密閉容器内部の温度が上昇して冷凍機油中に溶け込んでいる液冷媒が急激に蒸発して冷凍機油が泡立つ所謂オイルフォーミングが生じ、このオイルフォーミングによって冷媒とともに多量の冷凍機油が圧縮機から吐出される。 In winter when the outside air temperature is low, the gas refrigerant that stays inside the compressor condenses into a liquid refrigerant, and this liquid refrigerant dissolves in the refrigerating machine oil that stays at the bottom of the compressor, so-called stagnation of the refrigerant may occur. is there. In this way, when the compressor is started to start the heating operation while the refrigerant is lying down, the temperature inside the closed container rises and the liquid refrigerant dissolved in the refrigerating machine oil evaporates rapidly. So-called oil forming in which the refrigerating machine oil foams occurs, and this oil forming causes a large amount of refrigerating machine oil to be discharged from the compressor together with the refrigerant.

上記のように暖房運転開始時に冷凍機油が圧縮機から大量に吐出されても、オイルセパレータで冷媒から冷凍機油を分離し、分離した冷凍機油を圧縮機に戻すことで圧縮機の潤滑に必要な冷凍機油量を確保できれば、圧縮機が潤滑不良となることを防止できる。一方で、外気温度が非常に低い(例えば、−5℃以下)環境下で暖房運転を開始する場合は、圧縮機の吸入側の冷媒圧力(低圧)が圧縮機に固有に定められる使用可能な圧力範囲の下限値を下回らないようにするために、圧縮機は外気温度が通常の温度の場合と比べて回転数をゆっくりと上昇させる。 Even if a large amount of refrigerating machine oil is discharged from the compressor at the start of heating operation as described above, it is necessary to lubricate the compressor by separating the refrigerating machine oil from the refrigerant with an oil separator and returning the separated refrigerating machine oil to the compressor. If the amount of refrigerating machine oil can be secured, it is possible to prevent the compressor from becoming poorly lubricated. On the other hand, when the heating operation is started in an environment where the outside air temperature is very low (for example, -5 ° C or less), the refrigerant pressure (low pressure) on the suction side of the compressor can be determined uniquely to the compressor. In order not to fall below the lower limit of the pressure range, the compressor slowly increases the rotation speed as compared with the case where the outside air temperature is a normal temperature.

上述した遠心分離式のオイルセパレータは、このオイルセパレータに冷凍機油を含む冷媒が流入する際の流速が速いほど遠心力が強く働くため、冷媒から冷凍機油が分離されやすくなる。しかし、上述したように、外気温度が非常に低い環境下で暖房運転を開始するときは圧縮機の回転数をゆっくりと上昇させるため、圧縮機の起動直後から圧縮機の回転数がある程度高い回転数となるまでの間、オイルセパレータに冷凍機油を含む冷媒が流入する際の流速が遅くなってオイルセパレータで冷媒からオイルが分離されにくくなる。この結果、圧縮機に戻る冷凍機油量が減少して圧縮機の内部に滞留する冷凍機油量が不足し、圧縮機が潤滑不良を起こす恐れがあった。 In the above-mentioned centrifugal oil separator, the faster the flow velocity when the refrigerant containing the refrigerating machine oil flows into the oil separator, the stronger the centrifugal force acts, so that the refrigerating machine oil is easily separated from the refrigerant. However, as described above, when the heating operation is started in an environment where the outside air temperature is very low, the rotation speed of the compressor is slowly increased, so that the rotation speed of the compressor is high to some extent immediately after the start of the compressor. Until the number reaches the number, the flow speed when the refrigerant containing the compressor oil flows into the oil separator becomes slow, and it becomes difficult for the oil separator to separate the oil from the refrigerant. As a result, the amount of refrigerating machine oil returning to the compressor decreases, the amount of refrigerating machine oil staying inside the compressor becomes insufficient, and the compressor may cause poor lubrication.

本発明は以上述べた問題点を解決するものであって、オイルセパレータで確実に冷媒から冷凍機油を分離できる空気調和装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide an air conditioner capable of reliably separating refrigerating machine oil from a refrigerant with an oil separator.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と、オイルセパレータと、流路切換弁と、吐出管と、流出管と、吸入管と、油戻し管を室外機に有する。圧縮機の冷媒吐出側とオイルセパレータとが吐出管で接続され、オイルセパレータと流路切換弁とが流出管で接続され、圧縮機と流路切換弁とが吸入管で接続され、オイルセパレータと吸入管とが油戻し管で接続される。オイルセパレータは、このオイルセパレータに流入する冷凍機油を含む冷媒を旋回流として遠心力により冷媒と冷凍機油とを分離する遠心分離式のオイルセパレータであり、吐出管の流路断面積は、流出管の流路断面積より小さくされる。 In order to solve the above problems, the air conditioner of the present invention uses a compressor, an oil separator, a flow path switching valve, a discharge pipe, an outflow pipe, a suction pipe, and an oil return pipe as an outdoor unit. Have. The refrigerant discharge side of the compressor and the oil separator are connected by a discharge pipe, the oil separator and the flow path switching valve are connected by an outflow pipe, the compressor and the flow path switching valve are connected by a suction pipe, and the oil separator and The suction pipe is connected to the oil return pipe. The oil separator is a centrifugal oil separator that separates the refrigerant and the refrigerating machine oil by centrifugal force using the refrigerant containing the refrigerating machine oil flowing into the oil separator as a swirling flow, and the flow path cross section of the discharge pipe is the outflow pipe. It is made smaller than the flow path cross section of.

上記のような本発明の空気調和装置では、圧縮機とオイルセパレータとを接続する吐出管の流路断面積を、オイルセパレータと室外熱交換器とを接続する流出管の流路断面積より小さくする。これにより、オイルセパレータに流入する冷凍機油を含む冷媒の流速が速くなって、オイルセパレータで冷凍機油が冷媒から分離されやすくなるため、圧縮機の潤滑に十分な量の冷凍機油をオイルセパレータから圧縮機に戻すことができる。 In the air conditioner of the present invention as described above, the flow path cross-sectional area of the discharge pipe connecting the compressor and the oil separator is smaller than the flow path cross-sectional area of the outflow pipe connecting the oil separator and the outdoor heat exchanger. To do. As a result, the flow velocity of the refrigerant containing the refrigerating machine oil flowing into the oil separator becomes faster, and the refrigerating machine oil is easily separated from the refrigerant by the oil separator, so that a sufficient amount of refrigerating machine oil is compressed from the oil separator to lubricate the compressor. It can be returned to the machine.

本発明の実施形態における空気調和装置の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner according to the embodiment of this invention. 本発明の実施形態における、圧縮機とオイルセパレータの接続状態を表す図面である。It is a drawing which shows the connection state of a compressor and an oil separator in embodiment of this invention.

以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。実施形態としては、10台の室内機が室外機に並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which 10 indoor units are connected in parallel to the outdoor unit and all the indoor units can be simultaneously cooled or heated will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に液管8およびガス管9で並列に接続された10台の室内機5−1〜5−10(図1では、これらのうちの2台の室内機5−1と5−10のみを描画している)とを備えている。より詳細には、室外機2の閉鎖弁25と各室内機5の液管接続部53とが液管8で接続されている。また、室外機2の閉鎖弁26と各室内機5のガス管接続部54とがガス管9で接続されている。このように、室外機2と10台の室内機5とが液管8およびガス管9で接続されて、空気調和装置1の冷媒回路10が形成されている。 As shown in FIG. 1, the air conditioner 1 in the present embodiment includes one outdoor unit 2 and 10 indoor units 5-1 connected in parallel to the outdoor unit 2 by a liquid pipe 8 and a gas pipe 9. ~ 5-10 (in FIG. 1, only two indoor units 5-1 and 5-10 are drawn). More specifically, the closing valve 25 of the outdoor unit 2 and the liquid pipe connecting portion 53 of each indoor unit 5 are connected by a liquid pipe 8. Further, the closing valve 26 of the outdoor unit 2 and the gas pipe connecting portion 54 of each indoor unit 5 are connected by a gas pipe 9. In this way, the outdoor unit 2 and the 10 indoor units 5 are connected by the liquid pipe 8 and the gas pipe 9, and the refrigerant circuit 10 of the air conditioner 1 is formed.

<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機20と、オイルセパレータ21と、流路切換弁である四方弁22と、室外熱交換器23と、室外機膨張弁24と、液管8が接続された閉鎖弁25と、ガス管9が接続された閉鎖弁26と、アキュムレータ27と、室外機ファン28とを備えている。そして、室外機ファン28を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて冷媒回路10の一部をなす室外機冷媒回路20を形成している。
<Outdoor unit configuration>
First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 20, an oil separator 21, a four-way valve 22 which is a flow path switching valve, an outdoor heat exchanger 23, an outdoor unit expansion valve 24, and a closing valve 25 to which a liquid pipe 8 is connected. A closing valve 26 to which the gas pipe 9 is connected, an accumulator 27, and an outdoor unit fan 28 are provided. Then, each of these devices except the outdoor unit fan 28 is connected to each other by each refrigerant pipe described in detail below to form an outdoor unit refrigerant circuit 20 forming a part of the refrigerant circuit 10.

圧縮機20は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機20の冷媒吐出側は、後述するオイルセパレータ21と吐出管40で接続されている。また、圧縮機20の冷媒吸入側は、アキュムレータ27の冷媒流出側と吸入管42で接続されている。 The compressor 20 is a variable capacity compressor whose operating capacity can be changed by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 20 is connected to the oil separator 21 described later by a discharge pipe 40. Further, the refrigerant suction side of the compressor 20 is connected to the refrigerant outflow side of the accumulator 27 by a suction pipe 42.

オイルセパレータ21は、円筒形状の密閉容器21aを有する遠心分離式のオイルセパレータである。図2に示すように、オイルセパレータ21の密閉容器21aの上面部21aaと後述する四方弁22のポートaとが、流出管41で接続されている。具体的には、流出管41の一部が密閉容器21aの上面部21aaを貫通して密閉容器21aの内部に配置され、流出管41の開口端は密閉容器21aの高さ方向の中央部より下方に配置される。また、オイルセパレータ21の密閉容器21aの下面部21abには、後述する油戻し管47の一端が接続されている。具体的には、油戻し管47の一部が密閉容器21aの下面部21abを貫通して密閉容器21aの内部に配置され、油戻し管47の開口端は、上述した流出管41の開口端より下方で、かつ、流出管41の開口端に対向するように配置される。なお、油戻し管47の他端は吸入管42に接続されており、油戻し管47にはキャピラリーチューブ29が設けられている。 The oil separator 21 is a centrifugal oil separator having a cylindrical closed container 21a. As shown in FIG. 2, the upper surface portion 21aa of the closed container 21a of the oil separator 21 and the port a of the four-way valve 22 described later are connected by an outflow pipe 41. Specifically, a part of the outflow pipe 41 penetrates the upper surface portion 21aa of the closed container 21a and is arranged inside the closed container 21a, and the open end of the outflow pipe 41 is from the central portion in the height direction of the closed container 21a. Placed below. Further, one end of an oil return pipe 47, which will be described later, is connected to the lower surface portion 21ab of the closed container 21a of the oil separator 21. Specifically, a part of the oil return pipe 47 penetrates the lower surface portion 21ab of the closed container 21a and is arranged inside the closed container 21a, and the open end of the oil return pipe 47 is the open end of the outflow pipe 41 described above. It is arranged lower and facing the open end of the outflow pipe 41. The other end of the oil return pipe 47 is connected to the suction pipe 42, and the oil return pipe 47 is provided with a capillary tube 29.

オイルセパレータ21の密閉容器21aの側面部21acの上部には、吐出管40が接続されている。具体的には、吐出管40の一部が密閉容器21aの側面部21acの上部を貫通して密閉容器21aの内部に配置され、吐出管40の開口端が密閉容器21aの内壁面に向けて配置されている。このように、オイルセパレータ21の密閉容器21aに吐出管40、流出管41、および、油戻し管47がそれぞれ接続されることで、圧縮機20から吐出され吐出管40を介して密閉容器21aの内部に流入した冷凍機油を含む冷媒は、密閉容器21aの内部で冷媒と冷凍機油とに分離され、分離された冷凍機油は油戻し管47を介して圧縮機20に戻り、分離された冷媒は流出管41へと流出する。なお、油戻し管47へは、冷凍機油とともに冷媒も流入するが、油戻し管47に設けられたキャピラリーチューブ29により圧縮機20に流れる冷媒量が規制される。 A discharge pipe 40 is connected to the upper portion of the side surface portion 21ac of the closed container 21a of the oil separator 21. Specifically, a part of the discharge pipe 40 penetrates the upper part of the side surface portion 21ac of the closed container 21a and is arranged inside the closed container 21a, and the open end of the discharge pipe 40 faces the inner wall surface of the closed container 21a. Have been placed. By connecting the discharge pipe 40, the outflow pipe 41, and the oil return pipe 47 to the closed container 21a of the oil separator 21 in this way, the discharge pipe 20 is discharged from the compressor 20 and the closed container 21a is discharged via the discharge pipe 40. The refrigerant containing the refrigerating machine oil that has flowed into the inside is separated into the refrigerant and the refrigerating machine oil inside the closed container 21a, the separated refrigerating machine oil returns to the compressor 20 via the oil return pipe 47, and the separated refrigerant is returned to the compressor 20. It flows out to the outflow pipe 41. Although the refrigerant flows into the oil return pipe 47 together with the refrigerating machine oil, the amount of the refrigerant flowing into the compressor 20 is regulated by the capillary tube 29 provided in the oil return pipe 47.

なお、オイルセパレータ21における冷媒と冷凍機油の分離については、後に詳細に説明する。 The separation of the refrigerant and the refrigerating machine oil in the oil separator 21 will be described in detail later.

四方弁22は、冷媒回路10における冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したようにオイルセパレータ21の密閉容器21aと吐出管40で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、アキュムレータ27の冷媒流入側と冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。 The four-way valve 22 is a valve for switching the flow direction of the refrigerant in the refrigerant circuit 10, and includes four ports a, b, c, and d. As described above, the port a is connected to the closed container 21a of the oil separator 21 by the discharge pipe 40. The port b is connected to one of the refrigerant inlets and outlets of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 27 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by the outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外機ファン28の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。上述したように、室外熱交換器23の一方の冷媒出入口と四方弁22のポートbが冷媒配管43で接続されている。また、室外熱交換器23の他方の冷媒出入口と閉鎖弁25が室外機液管44で接続されている。室外熱交換器23は、空気調和装置1が冷房運転を行う場合は凝縮器として機能し、空気調和装置1が暖房運転を行う場合は蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor unit fan 28 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 and the port b of the four-way valve 22 are connected by a refrigerant pipe 43. Further, the other refrigerant inlet / outlet of the outdoor heat exchanger 23 and the closing valve 25 are connected by an outdoor unit liquid pipe 44. The outdoor heat exchanger 23 functions as a condenser when the air conditioner 1 performs a cooling operation, and functions as an evaporator when the air conditioner 1 performs a heating operation.

室外機膨張弁24は、室外機液管44に設けられている。室外機膨張弁24は、図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに与えられるパルス数によって開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量が調整される。室外機膨張弁24の開度は、空気調和装置1が暖房運転を行っている場合は、圧縮機21から吐出される冷媒の温度である吐出温度が、室内機5−1〜5−1の各々で要求される暖房能力に基づいて決定される目標温度となるように、その開度が調整される。また、室外機膨張弁24の開度は、冷房運転を行っている場合は全開とされる。 The outdoor unit expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor unit expansion valve 24 is an electronic expansion valve driven by a pulse motor (not shown), and the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing into the outdoor heat exchanger 23 by adjusting the opening degree according to the number of pulses given to the pulse motor, or , The amount of refrigerant flowing out from the outdoor heat exchanger 23 is adjusted. The opening degree of the outdoor unit expansion valve 24 is the temperature of the refrigerant discharged from the compressor 21 when the air conditioner 1 is performing the heating operation, and the discharge temperature is the temperature of the indoor units 5-1 to 5-1. The opening degree is adjusted so that the target temperature is determined based on the heating capacity required for each. Further, the opening degree of the outdoor unit expansion valve 24 is fully opened when the cooling operation is performed.

アキュムレータ27は、前述したように、冷媒流入側が四方弁22のポートcと冷媒配管46で接続されるとともに、冷媒流出側が圧縮機20の冷媒吸入側と吸入管42で接続されている。アキュムレータ27は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機20に吸入させる。 As described above, in the accumulator 27, the refrigerant inflow side is connected to the port c of the four-way valve 22 by the refrigerant pipe 46, and the refrigerant outflow side is connected to the refrigerant suction side of the compressor 20 by the suction pipe 42. The accumulator 27 separates the refrigerant flowing into the accumulator 28 from the refrigerant pipe 46 into a gas refrigerant and a liquid refrigerant, and causes the compressor 20 to suck only the gas refrigerant.

室外機ファン28は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外機ファン28は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。 The outdoor unit fan 28 is made of a resin material and is arranged in the vicinity of the outdoor heat exchanger 23. The outdoor unit fan 28 is rotated by a fan motor (not shown) to take in outside air from a suction port (not shown) into the outdoor unit 2 and exchange heat with the refrigerant in the outdoor heat exchanger 23 from an outlet (not shown) to the outside. It is released to the outside of the machine 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1に示すように、吐出管40には、圧縮機20から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサ31と、圧縮機20から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機20に吸入される冷媒の圧力である吸入圧力を検出する吸入圧力センサ32と、圧縮機20に吸入される冷媒の温度を検出する吸込温度センサ34とが設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1, the discharge pipe 40 has a discharge pressure sensor 31 that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor 20, and a discharge that detects the temperature of the refrigerant discharged from the compressor 20. A temperature sensor 33 is provided. In the vicinity of the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects the suction pressure, which is the pressure of the refrigerant sucked into the compressor 20, and the temperature of the refrigerant sucked into the compressor 20 are detected. A suction temperature sensor 34 is provided.

室外機液管44における室外熱交換器23と室外機膨張弁24との間には、室外熱交換器23に流入する冷媒の温度、あるいは、室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。 The temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected between the outdoor heat exchanger 23 and the outdoor unit expansion valve 24 in the outdoor unit liquid pipe 44. A heat exchange temperature sensor 35 is provided for this purpose. An outside air temperature sensor 36 for detecting the temperature of the outside air flowing into the inside of the outdoor unit 2, that is, the outside air temperature is provided in the vicinity of the suction port (not shown) of the outdoor unit 2.

<各室内機の構成>
次に、10台の室内機5−1〜5−10について説明する。10台の室内機5−1〜5−10は全て同じ構成を有しており、室内熱交換器51と、室内機膨張弁52と、液管接続部53と、ガス管接続部54と、室内機ファン55とを備えている。そして、室内機ファン55を除くこれら各構成装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50を構成している。
<Configuration of each indoor unit>
Next, 10 indoor units 5-1 to 5-10 will be described. The 10 indoor units 5-1 to 5-10 all have the same configuration, and include an indoor heat exchanger 51, an indoor unit expansion valve 52, a liquid pipe connecting portion 53, a gas pipe connecting portion 54, and the like. It is equipped with an indoor unit fan 55. Each of these components except the indoor unit fan 55 is connected to each other by the refrigerant pipes described in detail below to form an indoor unit refrigerant circuit 50 that forms a part of the refrigerant circuit 10.

室内熱交換器51は、冷媒と、後述する室内機ファン55の回転により図示しない吸込口から室内機5の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器51の一方の冷媒出入口と液管接続部53とが室内機液管71で接続され、他方の冷媒出入口とガス管接続部54aとが室内機ガス管72で接続されている。室内熱交換器51は、空気調和装置1が冷房運転を行う場合は蒸発器として機能し、空気調和装置1が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部53やガス管接続部54は、各冷媒配管が溶接やフレアナット等により接続されている。 The indoor heat exchanger 51 exchanges heat between the refrigerant and the indoor air taken into the interior of the indoor unit 5 from a suction port (not shown) by the rotation of the indoor unit fan 55 described later. One refrigerant inlet / outlet of the indoor heat exchanger 51 and the liquid pipe connecting portion 53 are connected by the indoor unit liquid pipe 71, and the other refrigerant inlet / outlet and the gas pipe connecting portion 54a are connected by the indoor unit gas pipe 72. The indoor heat exchanger 51 functions as an evaporator when the air conditioner 1 performs a cooling operation, and functions as a condenser when the air conditioner 1 performs a heating operation. The liquid pipe connecting portion 53 and the gas pipe connecting portion 54 are connected to each refrigerant pipe by welding, flare nuts, or the like.

室内機膨張弁52は、室内機液管71に設けられている。室内機膨張弁52は電子膨張弁であり、室内熱交換器51が蒸発器として機能する場合すなわち室内機5が冷房運転を行う場合は、その開度は、室内熱交換器51の冷媒出口(ガス管接続部54側)での冷媒過熱度が目標冷媒過熱度となるように調整される。また、室内機膨張弁52は、室内熱交換器51が凝縮器として機能する場合すなわち室内機5が暖房運転を行う場合は、その開度は、室内熱交換器51の冷媒出口(液管接続部53側)での冷媒過冷却度が目標冷媒過冷却度となるように調整される。ここで、目標冷媒過熱度や目標冷媒過冷却度とは、室内機5−1〜5−10の各々で十分な冷房能力あるいは暖房能力を発揮するのに必要な冷媒過熱度および冷媒過冷却度である。 The indoor unit expansion valve 52 is provided in the indoor unit liquid pipe 71. The indoor unit expansion valve 52 is an electronic expansion valve, and when the indoor heat exchanger 51 functions as an evaporator, that is, when the indoor unit 5 performs a cooling operation, the opening degree thereof is the refrigerant outlet of the indoor heat exchanger 51 ( The degree of refrigerant superheat at the gas pipe connection portion 54 side) is adjusted to be the target degree of refrigerant superheat. Further, when the indoor unit expansion valve 52 functions as a condenser, that is, when the indoor unit 5 performs a heating operation, the opening degree of the indoor unit expansion valve 52 is the refrigerant outlet (liquid pipe connection) of the indoor heat exchanger 51. The degree of refrigerant supercooling on the unit 53 side) is adjusted to be the target degree of refrigerant supercooling. Here, the target refrigerant superheat degree and the target refrigerant supercooling degree are the refrigerant superheat degree and the refrigerant supercooling degree necessary for each of the indoor units 5-1 to 5-10 to exhibit sufficient cooling capacity or heating capacity. Is.

室内機ファン55は樹脂材で形成されており、室内熱交換器51の近傍に配置されている。室内機ファン55は、図示しないファンモータによって回転することで、図示しない吸込口から室内機5の内部に室内空気を取り込み、室内熱交換器51において冷媒と熱交換した室内空気を図示しない吹出口から室内へ放出する。 The indoor unit fan 55 is made of a resin material and is arranged in the vicinity of the indoor heat exchanger 51. The indoor unit fan 55 is rotated by a fan motor (not shown) to take indoor air into the indoor unit 5 from a suction port (not shown), and an outlet (not shown) that exchanges heat with the refrigerant in the indoor heat exchanger 51. Is released into the room.

以上説明した構成の他に、室内機5には各種のセンサが設けられている。室内機液管71における室内熱交換器51と室内機膨張弁52との間には、室内熱交換器51に流入あるいは室内熱交換器51から流出する冷媒の温度を検出する液側温度センサ61が設けられている。室内機ガス管72には、室内熱交換器51から流出あるいは室内熱交換器51に流入する冷媒の温度を検出するガス側温度センサ62が設けられている。室内機5の図示しない吸込口付近には、室内機5の内部に流入する室内空気の温度を検出する室内温度センサ63が備えられている。 In addition to the configuration described above, the indoor unit 5 is provided with various sensors. A liquid side temperature sensor 61 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51 between the indoor heat exchanger 51 and the indoor unit expansion valve 52 in the indoor unit liquid pipe 71. Is provided. The indoor unit gas pipe 72 is provided with a gas side temperature sensor 62 that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51 or flowing into the indoor heat exchanger 51. An indoor temperature sensor 63 that detects the temperature of the indoor air flowing into the interior of the indoor unit 5 is provided in the vicinity of the suction port (not shown) of the indoor unit 5.

<冷媒回路の動作>
次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1を用いて説明する。尚、以下の説明ではまず、空気調和装置1が暖房運転を行う場合について説明し、次に、空気調和装置1が冷房運転を行う場合について説明する。尚、図1における実線矢印は、暖房運転時の冷媒の流れを示している。また、図1における破線矢印は、冷房運転時の冷媒の流れを示している。
<Operation of refrigerant circuit>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioning device 1 in the present embodiment will be described with reference to FIG. In the following description, first, a case where the air conditioner 1 performs a heating operation will be described, and then a case where the air conditioner 1 performs a cooling operation will be described. The solid arrow in FIG. 1 indicates the flow of the refrigerant during the heating operation. Further, the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation.

<暖房運転>
図1に示すように、空気調和装置1が暖房運転を行う場合は、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するように、また、ポートbとポートcとが連通するように切り換えられる。これにより、冷媒回路10は、各室内熱交換器51が凝縮器として機能するとともに、室外熱交換器23が蒸発器として機能する暖房サイクルとなる。
<Heating operation>
As shown in FIG. 1, when the air conditioner 1 performs the heating operation, the four-way valve 22 is in a state shown by a solid line, that is, so that the port a and the port d of the four-way valve 22 communicate with each other and the port b. And port c are switched so as to communicate with each other. As a result, the refrigerant circuit 10 becomes a heating cycle in which each indoor heat exchanger 51 functions as a condenser and the outdoor heat exchanger 23 functions as an evaporator.

冷媒回路10が暖房サイクルとして機能する状態で圧縮機20が駆動すると、圧縮機20から吐出された冷媒は、吐出管40を流れてオイルセパレータ21へと流入し、オイルセパレータ21から流出管41へと流れて四方弁22に流入する。そして、四方弁22から流出した冷媒は、室外機ガス管45を流れて、閉鎖弁26を介してガス管9へと流入する。なお、オイルセパレータ21では、冷媒とともに圧縮機20から吐出された冷凍機油が冷媒から分離され、分離された冷凍機油は、図1に一点鎖線矢印で示すようにオイルセパレータ21から流出して油戻し管47を流れ、吸入管42を介して圧縮機20へと戻される。 When the compressor 20 is driven while the refrigerant circuit 10 functions as a heating cycle, the refrigerant discharged from the compressor 20 flows through the discharge pipe 40 and flows into the oil separator 21 and flows from the oil separator 21 to the outflow pipe 41. And flow into the four-way valve 22. Then, the refrigerant flowing out from the four-way valve 22 flows through the outdoor unit gas pipe 45 and flows into the gas pipe 9 through the closing valve 26. In the oil separator 21, the refrigerating machine oil discharged from the compressor 20 together with the refrigerant is separated from the refrigerant, and the separated refrigerating machine oil flows out from the oil separator 21 and is returned to the oil as shown by the alternate long and short dash line arrow in FIG. It flows through the pipe 47 and is returned to the compressor 20 via the suction pipe 42.

ガス管9を流れる冷媒は、各ガス管接続部54を介して室内機5−1〜5−10に分流する。室内機5−1〜5−10に流入した冷媒は、各室内機ガス管72を流れて各室内熱交換器51に流入する。各室内熱交換器51に流入した冷媒は、各室内機ファン55の回転により各室内機5の内部に取り込まれた室内空気と熱交換を行って凝縮する。 The refrigerant flowing through the gas pipe 9 is distributed to the indoor units 5-1 to 5-10 via each gas pipe connecting portion 54. The refrigerant that has flowed into the indoor units 5-1 to 5-10 flows through each indoor unit gas pipe 72 and flows into each indoor heat exchanger 51. The refrigerant flowing into each indoor heat exchanger 51 exchanges heat with the indoor air taken into each indoor unit 5 by the rotation of each indoor unit fan 55 and condenses.

このように、各室内熱交換器51が凝縮器として機能し、各室内熱交換器51で冷媒と熱交換を行って加熱された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5−1〜5−10が設置された室内の暖房が行われる。 In this way, each indoor heat exchanger 51 functions as a condenser, and each indoor heat exchanger 51 exchanges heat with the refrigerant, and the heated indoor air is blown into the room from an outlet (not shown). The room in which the indoor units 5-1 to 5-10 are installed is heated.

各室内熱交換器51から各室内機液管71に流入した冷媒は、各室内熱交換器51の冷媒出口側での冷媒過冷却度が目標冷媒過冷却度となるように開度が調整された各室内機膨張弁52を通過する際に減圧される。ここで、目標冷媒過冷却度は、室内機5−1〜5−10の各々で要求される暖房能力に基づいて定められるものである。また、暖房能力は、各室内機5−1〜5−10において、設定された設定温度と検出した室内温度との温度差に基づいて決定されるものである。 The opening degree of the refrigerant flowing from each indoor heat exchanger 51 into each indoor unit liquid pipe 71 is adjusted so that the degree of refrigerant supercooling on the refrigerant outlet side of each indoor heat exchanger 51 becomes the target degree of refrigerant supercooling. The pressure is reduced when passing through each indoor unit expansion valve 52. Here, the target refrigerant supercooling degree is determined based on the heating capacity required for each of the indoor units 5-1 to 5-10. Further, the heating capacity is determined in each indoor unit 5-1 to 5-10 based on the temperature difference between the set temperature and the detected indoor temperature.

各室内機膨張弁52で減圧された冷媒は、各室内機液管71から各液管接続部53を介して液管8に流出する。液管8で合流し閉鎖弁25を介して室外機2に流入した冷媒は室外機液管44を流れ、圧縮機20の吐出温度が目標温度となるように開度が調整された室外機膨張弁24を通過する際にさらに減圧される。 The refrigerant decompressed by each indoor unit expansion valve 52 flows out from each indoor unit liquid pipe 71 to the liquid pipe 8 via each liquid pipe connection portion 53. The refrigerant that merges in the liquid pipe 8 and flows into the outdoor unit 2 through the closing valve 25 flows through the outdoor unit liquid pipe 44, and the opening degree is adjusted so that the discharge temperature of the compressor 20 becomes the target temperature. The pressure is further reduced as it passes through the valve 24.

室外機膨張弁24で減圧された冷媒は、室外機液管44を流れて室外熱交換器23に流入し、最大回転数とされている室外機ファン28の回転によって室外機5の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管43へと流入した冷媒は、四方弁22、冷媒配管46、アキュムレータ27、吸入管42の順に流れ、圧縮機20に吸入されて再び圧縮される。 The refrigerant decompressed by the outdoor unit expansion valve 24 flows through the outdoor unit liquid pipe 44, flows into the outdoor heat exchanger 23, and is taken into the outdoor unit 5 by the rotation of the outdoor unit fan 28, which is the maximum rotation speed. It evaporates by exchanging heat with the outside air. The refrigerant flowing from the outdoor heat exchanger 23 into the refrigerant pipe 43 flows in the order of the four-way valve 22, the refrigerant pipe 46, the accumulator 27, and the suction pipe 42, is sucked into the compressor 20, and is compressed again.

<冷房運転>
空気調和装置1が冷房運転を行う場合は、図1に示すように、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するように、また、ポートcとポートdとが連通するように切り換えられる。これにより、冷媒回路10は、各室内熱交換器51が蒸発器として機能するとともに、室外熱交換器23が凝縮器として機能する暖房サイクルとなる。
<Cooling operation>
When the air conditioner 1 performs the cooling operation, as shown in FIG. 1, the four-way valve 22 is in a state shown by a broken line, that is, so that the port a and the port b of the four-way valve 22 communicate with each other and the port c. And port d are switched so as to communicate with each other. As a result, the refrigerant circuit 10 becomes a heating cycle in which each indoor heat exchanger 51 functions as an evaporator and the outdoor heat exchanger 23 functions as a condenser.

冷媒回路10が冷房サイクルとして機能する状態で圧縮機20が駆動すると、圧縮機20から吐出された冷媒は、吐出管40を流れてオイルセパレータ21へと流入し、オイルセパレータ21から流出管41へと流れて四方弁22に流入する。そして、四方弁22から流出した冷媒は、冷媒配管43を流れて室外熱交換器23へと流入する。室外熱交換器23へと流入した冷媒は、室外機ファン28の回転によって室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から室外機液管44へと流出した冷媒は、開度が全開とされている室外機膨張弁24を通過し、閉鎖弁25を介して液管8に流出する。なお、オイルセパレータ21では、冷媒とともに圧縮機20から吐出された冷凍機油が冷媒から分離され、分離された冷凍機油は、図1に一点鎖線矢印で示すようにオイルセパレータ21から流出して油戻し管47を流れ、吸入管42を介して圧縮機20へと戻される。 When the compressor 20 is driven in a state where the refrigerant circuit 10 functions as a cooling cycle, the refrigerant discharged from the compressor 20 flows through the discharge pipe 40 and flows into the oil separator 21 and flows from the oil separator 21 to the outflow pipe 41. And flow into the four-way valve 22. Then, the refrigerant flowing out of the four-way valve 22 flows through the refrigerant pipe 43 and flows into the outdoor heat exchanger 23. The refrigerant that has flowed into the outdoor heat exchanger 23 exchanges heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor unit fan 28 and condenses. The refrigerant flowing out from the outdoor heat exchanger 23 to the outdoor unit liquid pipe 44 passes through the outdoor unit expansion valve 24 having a fully opened opening, and flows out to the liquid pipe 8 through the closing valve 25. In the oil separator 21, the refrigerating machine oil discharged from the compressor 20 together with the refrigerant is separated from the refrigerant, and the separated refrigerating machine oil flows out from the oil separator 21 and is returned to the oil as shown by the alternate long and short dash line arrow in FIG. It flows through the pipe 47 and is returned to the compressor 20 via the suction pipe 42.

液管8を流れる冷媒は、各液管接続部53を介して室内機5−1〜5−10に流入する。室内機5−1〜5−10に流入した冷媒は各室内機液管71を流れ、各室内熱交換器51の各々の冷媒出口での冷媒過熱度が目標冷媒過熱度となるように開度が調整された各室内機膨張弁52を通過する際に減圧される。ここで、目標冷媒過熱度は、室内機5−1〜5−10の各々で要求される冷房能力に基づいて定められるものである。また、冷房能力は、各室内機5−1〜5−10において、設定された設定温度と検出した室内温度との温度差に基づいて決定されるものである。 The refrigerant flowing through the liquid pipe 8 flows into the indoor units 5-1 to 5-10 via each liquid pipe connecting portion 53. The refrigerant flowing into the indoor units 5-1 to 5-10 flows through each indoor unit liquid pipe 71, and the opening degree is such that the refrigerant superheat degree at each refrigerant outlet of each indoor heat exchanger 51 becomes the target refrigerant superheat degree. Is depressurized as it passes through each of the adjusted indoor unit expansion valves 52. Here, the target refrigerant superheat degree is determined based on the cooling capacity required for each of the indoor units 5-1 to 5-10. Further, the cooling capacity is determined in each indoor unit 5-1 to 5-10 based on the temperature difference between the set temperature and the detected indoor temperature.

各室内機液管71から各室内熱交換器51に流入した冷媒は、各室内機ファン55の回転により室内機5−1〜5−10の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、各室内熱交換器51が蒸発器として機能し、各室内熱交換器51で冷媒と熱交換を行って冷却された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5−1〜5−10が設置された室内の冷房が行われる。 The refrigerant flowing from each indoor unit liquid pipe 71 into each indoor heat exchanger 51 exchanges heat with the indoor air taken into the indoor units 5-1 to 5-10 by the rotation of each indoor unit fan 55. Evaporate. In this way, each indoor heat exchanger 51 functions as an evaporator, and the indoor heat exchanger 51 exchanges heat with the refrigerant to blow out the cooled indoor air from an outlet (not shown) into the room. The room in which the indoor units 5-1 to 5-10 are installed is cooled.

各室内熱交換器51から各室内機ガス管72に流出した冷媒は、各ガス管接続部54を介してガス管9に流出する。ガス管9で合流し閉鎖弁26を介して室外機2に流入した冷媒は、室外機ガス管45、四方弁22、冷媒配管46、アキュムレータ27、吸入管42の順に流れ、圧縮機20に吸入されて再び圧縮される。 The refrigerant flowing out from each indoor heat exchanger 51 to each indoor unit gas pipe 72 flows out to the gas pipe 9 via each gas pipe connecting portion 54. The refrigerant that merges at the gas pipe 9 and flows into the outdoor unit 2 via the closing valve 26 flows in the order of the outdoor unit gas pipe 45, the four-way valve 22, the refrigerant pipe 46, the accumulator 27, and the suction pipe 42, and is sucked into the compressor 20. And compressed again.

<吐出管と流入管の内径寸法の違いが、オイルセパレータでの冷凍機油の分離に及ぼす作用>
次に、主に図2を用いて、本実施形態におけるオイルセパレータ21での冷媒と冷凍機油の分離について詳細に説明する。
<Effect of the difference in inner diameter between the discharge pipe and the inflow pipe on the separation of refrigerating machine oil by the oil separator>
Next, the separation of the refrigerant and the refrigerating machine oil in the oil separator 21 in the present embodiment will be described in detail mainly with reference to FIG.

前述したように、吐出管40は、その一部がオイルセパレータ21の密閉容器21aの側面部21acの上部を貫通して密閉容器21aの内部に配置され、吐出管40の開口端が密閉容器21aの内壁面に向けて配置されている。これにより、圧縮機20から吐出され、吐出管40を流れてオイルセパレータ21の密閉容器21aに流入する冷凍機油を含む冷媒は、オイルセパレータ21の密閉容器21aの内壁面の接線方向に流入して密閉容器21aの内壁面の周方向に旋回流が形成するように流れ、この旋回流によって生じる遠心力で冷媒から冷凍機油が分離される。 As described above, a part of the discharge pipe 40 is arranged inside the closed container 21a through the upper part of the side surface portion 21ac of the closed container 21a of the oil separator 21, and the open end of the discharge pipe 40 is the closed container 21a. It is arranged toward the inner wall surface of. As a result, the refrigerant containing the refrigerating machine oil discharged from the compressor 20, flowing through the discharge pipe 40 and flowing into the closed container 21a of the oil separator 21 flows in the tangential direction of the inner wall surface of the closed container 21a of the oil separator 21. A swirling flow is formed in the circumferential direction of the inner wall surface of the closed container 21a, and the centrifugal force generated by the swirling flow separates the refrigerating machine oil from the refrigerant.

上記のように吐出管40からオイルセパレータ21の密閉容器21aへ冷凍機油を含む冷媒が流入するとき、その流速が速いほど冷凍機油を含む冷媒に遠心力が強く働くため、冷媒から冷凍機油が分離されやすくなる。この、密閉容器21aへ流入する冷凍機油を含む冷媒の流速は、圧縮機20の回転数によって変化し、圧縮機20の回転数が高いほど流速は速くなる。 When the refrigerant containing the refrigerating machine oil flows from the discharge pipe 40 into the closed container 21a of the oil separator 21 as described above, the faster the flow velocity, the stronger the centrifugal force acts on the refrigerant containing the refrigerating machine oil, so that the refrigerating machine oil is separated from the refrigerant. It becomes easy to be done. The flow velocity of the refrigerant containing the refrigerating machine oil flowing into the closed container 21a changes depending on the rotation speed of the compressor 20, and the higher the rotation speed of the compressor 20, the faster the flow velocity.

従って、圧縮機20が高い回転数で駆動しているときは、オイルセパレータ21で冷媒から冷凍機油が分離されやすくなることによって、オイルセパレータ21から油戻し管47を介して圧縮機20に多量の冷凍機油が戻されるので、圧縮機20で冷凍機油が不足して圧縮機20が潤滑不良を起こすことはない。 Therefore, when the compressor 20 is driven at a high rotation speed, the refrigerating machine oil is easily separated from the refrigerant by the oil separator 21, so that a large amount of the oil separator 21 is sent to the compressor 20 via the oil return pipe 47. Since the refrigerating machine oil is returned, the compressor 20 does not run out of refrigerating machine oil and the compressor 20 does not cause poor lubrication.

しかし、空気調和装置1が空調運転を行っているときは、常に圧縮機20が高い回転数で運転しているとは限らない。例えば、外気温度が非常に低い(例えば、−5℃以下)環境下で空気調和装置1が暖房運転を開始する場合は、圧縮機20の吸入側の冷媒圧力(低圧)が圧縮機20に固有に定められる使用可能な圧力範囲の下限値を下回らないようにするために、圧縮機20は外気温度が通常の温度の場合と比べて回転数をゆっくりと上昇させる。 However, when the air conditioner 1 is operating in air conditioning, the compressor 20 is not always operating at a high rotation speed. For example, when the air conditioner 1 starts the heating operation in an environment where the outside air temperature is very low (for example, −5 ° C. or lower), the refrigerant pressure (low pressure) on the suction side of the compressor 20 is unique to the compressor 20. In order not to fall below the lower limit of the usable pressure range defined in the above, the compressor 20 slowly raises the rotation speed as compared with the case where the outside air temperature is a normal temperature.

このように、圧縮機20の回転数をゆっくりと上昇させる場合は、圧縮機20の起動直後から圧縮機20の回転数がある程度高い回転数となるまでの間、オイルセパレータ21に冷凍機油を含む冷媒が流入する際の流速が遅くなってオイルセパレータ21で冷媒からオイルが分離されにくくなる。この結果、オイルセパレータ21から圧縮機20に戻る冷凍機油量が不足して、圧縮機20が潤滑不良を起こす恐れがある。 In this way, when the rotation speed of the compressor 20 is slowly increased, the oil separator 21 contains the refrigerating machine oil from immediately after the start of the compressor 20 until the rotation speed of the compressor 20 reaches a certain high rotation speed. The flow speed when the refrigerant flows in becomes slow, and it becomes difficult for the oil separator 21 to separate the oil from the refrigerant. As a result, the amount of refrigerating machine oil returning from the oil separator 21 to the compressor 20 is insufficient, and the compressor 20 may cause poor lubrication.

特に、冬季の外気温度が低い環境下で圧縮機20の内部で冷媒の寝込みが発生しており、暖房運転開始時に冷媒とともに多量の冷凍機油が吐出される場合に、オイルセパレータ21で冷凍機油が分離されにくいことに起因する潤滑不良が起こりやすい。また、本実施形態の空気調和装置1のように、1台の室外機2に多数の室内機5が接続されるものでは、排除容積が大きい圧縮機20が室外機2に搭載され、このような排除容積が大きい圧縮機20には多量の冷凍機油が封入されているため、オイルセパレータ21で冷凍機油が分離されにくいことに起因して圧縮機20の内部に滞留する冷凍機油量が減少して潤滑不良が起こりやすい。 In particular, when the refrigerant has fallen inside the compressor 20 in an environment where the outside air temperature is low in winter and a large amount of refrigerating machine oil is discharged together with the refrigerant at the start of the heating operation, the refrigerating machine oil is discharged by the oil separator 21. Poor lubrication due to difficulty in separation is likely to occur. Further, in a device such as the air conditioner 1 of the present embodiment in which a large number of indoor units 5 are connected to one outdoor unit 2, a compressor 20 having a large exclusion volume is mounted on the outdoor unit 2, as described above. Since a large amount of refrigerating machine oil is sealed in the compressor 20 having a large exclusion volume, the amount of refrigerating machine oil staying inside the compressor 20 is reduced due to the difficulty in separating the refrigerating machine oil by the oil separator 21. Therefore, poor lubrication is likely to occur.

そこで、本実施形態の空気調和装置1では、図2に示すように、吐出管40の内部、すなわち、吐出管40における冷凍機油を含む冷媒が流れる流路の断面積(以降、流路断面積と記載する)を、流出管41の流路断面積より小さくする。具体的には、吐出管40の内径寸法D1を流出管41の内径寸法D2より小さくする。なお、吐出管40と流出管41の管壁の厚さ寸法が同じである場合は、吐出管40の外径寸法を流出管41の外径寸法より小さくしてもよい。例えば、吐出管40の外径寸法を10mm、流出管41の外径寸法を13mmとすればよい。 Therefore, in the air conditioner 1 of the present embodiment, as shown in FIG. 2, the cross section of the inside of the discharge pipe 40, that is, the flow path through which the refrigerant containing the refrigerating machine oil flows in the discharge pipe 40 (hereinafter, the cross section of the flow path). Is smaller than the flow path cross section of the outflow pipe 41. Specifically, the inner diameter dimension D1 of the discharge pipe 40 is made smaller than the inner diameter dimension D2 of the outflow pipe 41. When the thickness dimension of the pipe wall of the discharge pipe 40 and the outflow pipe 41 is the same, the outer diameter dimension of the discharge pipe 40 may be smaller than the outer diameter dimension of the outflow pipe 41. For example, the outer diameter of the discharge pipe 40 may be 10 mm, and the outer diameter of the outflow pipe 41 may be 13 mm.

一般的な空気調和装置では、圧縮機20の冷媒吐出側にオイルセパレータ21を設ける場合、吐出管40と流出管41は、同じ流路断面積の配管を使用する。これに対し、本実施形態の空気調和装置1では、吐出管40の流路断面積を流出管41の流路断面積より小さくしている。これにより、吐出管40と流出管41を同じ流路断面積の配管とする場合と比べて、吐出管40を流れる際の冷凍機油を含む冷媒の流速が速くなるので、オイルセパレータ21の密閉容器21の内部で冷凍機油を含む冷媒に働く遠心力が大きくなって、冷媒から冷凍機油が分離されやすくなる。 In a general air conditioner, when the oil separator 21 is provided on the refrigerant discharge side of the compressor 20, the discharge pipe 40 and the outflow pipe 41 use pipes having the same flow path cross section. On the other hand, in the air conditioner 1 of the present embodiment, the flow path cross section of the discharge pipe 40 is made smaller than the flow path cross section of the outflow pipe 41. As a result, the flow velocity of the refrigerant containing the refrigerating machine oil when flowing through the discharge pipe 40 becomes faster than in the case where the discharge pipe 40 and the outflow pipe 41 have the same flow path cross-sectional area, so that the closed container of the oil separator 21 The centrifugal force acting on the refrigerant containing the refrigerating machine oil inside the 21 becomes large, and the refrigerating machine oil is easily separated from the refrigerant.

なお、吐出管40の内径寸法D1は、空気調和装置1に搭載される圧縮機20において、圧縮機20が制御上取りうる最低回転数で駆動した際に、吐出管40を流れる冷凍機油を含む冷媒の流速が所定の値となるように決定すればよい。そして、流速の所定値は、オイルセパレータ21で冷媒から分離されて圧縮機20に戻る冷凍機油の量が、常に圧縮機20の潤滑が確保できる量となるように、オイルセパレータ21の密閉容器21の内部で冷凍機油を含む冷媒に働く遠心力の大きさとなるように決定すればよい。 The inner diameter dimension D1 of the discharge pipe 40 includes the refrigerating machine oil that flows through the discharge pipe 40 when the compressor 20 mounted on the air conditioner 1 is driven at the lowest rotation speed that can be controlled by the compressor 20. It may be determined so that the flow velocity of the refrigerant becomes a predetermined value. The predetermined value of the flow velocity is the closed container 21 of the oil separator 21 so that the amount of refrigerating machine oil separated from the refrigerant by the oil separator 21 and returned to the compressor 20 is an amount that can always secure the lubrication of the compressor 20. It suffices to determine the magnitude of the centrifugal force acting on the refrigerant containing the refrigerating machine oil inside.

以上説明したように、本実施形態の空気調和装置1では、オイルセパレータ21の密閉容器21aに接続される吐出管40と流出管41において、吐出管40の流路断面積を流出管41の流路断面積より小さくする。これにより、吐出管40を、冷凍機油を含む冷媒が流れる際の流速が速くなり、遠心分離式のオイルセパレータ21に流入した冷凍機油を含む冷媒が受ける遠心力が大きくなるので、オイルセパレータ21で冷媒から冷凍機油が分離しやすくなる。従って、圧縮機20が低い回転数で駆動していても、十分な量の冷凍機油をオイルセパレータ21から圧縮機20に戻すことができるので、圧縮機20が潤滑不良となることを防止できる。 As described above, in the air conditioner 1 of the present embodiment, in the discharge pipe 40 and the outflow pipe 41 connected to the closed container 21a of the oil separator 21, the flow path cross section of the discharge pipe 40 is changed to the flow of the outflow pipe 41. Make it smaller than the road cross section. As a result, the flow velocity when the refrigerant containing the refrigerating machine oil flows through the discharge pipe 40 becomes faster, and the centrifugal force received by the refrigerant containing the refrigerating machine oil flowing into the centrifugal oil separator 21 increases. Refrigerant oil can be easily separated from the refrigerant. Therefore, even if the compressor 20 is driven at a low rotation speed, a sufficient amount of refrigerating machine oil can be returned from the oil separator 21 to the compressor 20, so that the compressor 20 can be prevented from being poorly lubricated.

1 空気調和装置
2 室外機
5−1〜5−10 室内機
20 圧縮機
21 オイルセパレータ
21a 密閉容器
40 吐出管
41 流出管
47 油戻し管
D1 吐出管の内径寸法
D2 流出管の内径寸法
1 Air conditioner 2 Outdoor unit 5-1 to 5-10 Indoor unit 20 Compressor 21 Oil separator 21a Sealed container 40 Discharge pipe 41 Outflow pipe 47 Oil return pipe D1 Inner diameter dimension of discharge pipe D2 Inner diameter dimension of outflow pipe

Claims (2)

圧縮機と、オイルセパレータと、流路切換弁と、吐出管と、流出管と、吸入管と、油戻し管を室外機に有し、
前記圧縮機の冷媒吐出側と前記オイルセパレータとが前記吐出管で接続され、
前記オイルセパレータと前記流路切換弁とが前記流出管で接続され、
前記圧縮機と前記流路切換弁とが前記吸入管で接続され、
前記オイルセパレータと前記吸入管とが前記油戻し管で接続され、
前記オイルセパレータは、同オイルセパレータに流入する冷凍機油を含む冷媒を旋回流として遠心力により冷媒と冷凍機油とを分離する遠心分離式のオイルセパレータであり、
前記吐出管の流路断面積は、前記流出管の流路断面積より小さくされる、
ことを特徴とする空気調和装置。
The outdoor unit has a compressor, an oil separator, a flow path switching valve, a discharge pipe, an outflow pipe, a suction pipe, and an oil return pipe.
The refrigerant discharge side of the compressor and the oil separator are connected by the discharge pipe.
The oil separator and the flow path switching valve are connected by the outflow pipe.
The compressor and the flow path switching valve are connected by the suction pipe.
The oil separator and the suction pipe are connected by the oil return pipe, and the oil separator is connected to the suction pipe.
The oil separator is a centrifugal oil separator that separates the refrigerant and the refrigerating machine oil by centrifugal force using the refrigerant containing the refrigerating machine oil flowing into the oil separator as a swirling flow.
The flow path cross section of the discharge pipe is made smaller than the flow path cross section of the outflow pipe.
An air conditioner characterized by that.
前記吐出管の流路断面積は、前記圧縮機が制御上取りうる最低回転数で駆動した際に、前記吐出管を流れる冷凍機油を含む冷媒の流速が所定の値となるように定められる、
ことを特徴とする請求項1に記載の空気調和装置。
The flow path cross section of the discharge pipe is determined so that the flow velocity of the refrigerant containing the refrigerating machine oil flowing through the discharge pipe becomes a predetermined value when the compressor is driven at the minimum rotation speed that can be controlled.
The air conditioner according to claim 1.
JP2019031506A 2019-02-25 2019-02-25 Air conditioning device Pending JP2020134081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031506A JP2020134081A (en) 2019-02-25 2019-02-25 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031506A JP2020134081A (en) 2019-02-25 2019-02-25 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2020134081A true JP2020134081A (en) 2020-08-31

Family

ID=72263183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031506A Pending JP2020134081A (en) 2019-02-25 2019-02-25 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2020134081A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213843A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Oil separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
JP2017020768A (en) * 2015-07-14 2017-01-26 東芝キヤリア株式会社 Centrifugal separation-type oil separator and refrigeration cycle device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213843A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Oil separator
JP2004169983A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Centrifugal oil separator and its manufacturing method, and refrigerant device
JP2017020768A (en) * 2015-07-14 2017-01-26 東芝キヤリア株式会社 Centrifugal separation-type oil separator and refrigeration cycle device using the same

Similar Documents

Publication Publication Date Title
US10443910B2 (en) Air conditioning apparatus
JP2013257121A (en) Refrigerating device
EP3054237A1 (en) Air conditioner
JP2017180882A (en) Air conditioning device
WO2020241622A1 (en) Refrigeration device
JP2015145742A (en) Refrigeration device
KR20140048620A (en) Turbo chiller
JP7067318B2 (en) Air conditioner
JP2020134081A (en) Air conditioning device
JP7447761B2 (en) air conditioner
JP2017142017A (en) Air conditioner
JP2002243301A (en) Heat exchanging unit and air conditioner
JP7275754B2 (en) air conditioner
JP7224533B2 (en) Outdoor unit and refrigeration cycle device provided with the same
JP6380515B2 (en) Gas-liquid separator and air conditioner equipped with the same
JP2019100592A (en) Air conditioner
JP2021162174A (en) Air conditioner
WO2020065712A1 (en) Refrigeration cycle device
JP2017142016A (en) Air conditioner
JP7268773B2 (en) air conditioner
JP5999163B2 (en) Air conditioner
JP7439591B2 (en) air conditioner
KR102536383B1 (en) Device including a refrigerant cycle
WO2024029028A1 (en) Oil separator and refrigeration cycle device
JP7447625B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718