WO2020065712A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020065712A1
WO2020065712A1 PCT/JP2018/035376 JP2018035376W WO2020065712A1 WO 2020065712 A1 WO2020065712 A1 WO 2020065712A1 JP 2018035376 W JP2018035376 W JP 2018035376W WO 2020065712 A1 WO2020065712 A1 WO 2020065712A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant
circuit
expansion valve
refrigeration cycle
Prior art date
Application number
PCT/JP2018/035376
Other languages
French (fr)
Japanese (ja)
Inventor
尚希 今任
賢 三浦
啓 伊内
裕文 山内
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201880097837.9A priority Critical patent/CN112771319A/en
Priority to EP18935610.8A priority patent/EP3859230A4/en
Priority to JP2020547626A priority patent/JP7054419B2/en
Priority to PCT/JP2018/035376 priority patent/WO2020065712A1/en
Publication of WO2020065712A1 publication Critical patent/WO2020065712A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • FIGS. 4 and 5 are cross-sectional views showing another example of the branch portion of the refrigeration cycle device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view passing through the center of the upstream pipe 51 of the branch 33 and orthogonal to the centers of the main circuit branch 52 and the bypass circuit branch 53.
  • FIG. 5 is a cross-sectional view passing through the centers of the main circuit branch pipe section 52 and the bypass circuit branch pipe section 53.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Provided is a refrigeration cycle device in which a supercooling circuit can exhibit sufficient performance using a simple configuration. A refrigeration cycle device 1 is provided with a refrigerant pipe 8 which connects a compressor 2, an outdoor heat exchanger 3, a supercooling circuit 5, an indoor expansion valve 6, and an indoor heat exchanger 7 and through which a refrigerant is caused to flow. The refrigerant pipe 8 has: a main circuit pipe 31 for circulating the refrigerant through the compressor 2, the outdoor heat exchanger 3, the supercooling circuit 5, the indoor expansion valve 6, and the indoor heat exchanger 7; a bypass circuit pipe 32 branching between the ends of the main circuit pipe 31, which connects the supercooling circuit 5 and the indoor expansion valve 6, and diverting the refrigerant to the compressor 2; and a branch section 33 between the main circuit pipe 31 and the bypass circuit pipe 32. The branch section 33 has an upstream pipe section 51, a main circuit branch pipe section 52 which branches upward from the upstream pipe section 51 and extends toward the indoor expansion valve 6, and a bypass circuit branch pipe section 53 which branches downward from the upstream pipe section 51 and extends toward the supercooling circuit 5.

Description

冷凍サイクル装置Refrigeration cycle device
 本発明に係る実施形態は、冷凍サイクル装置に関する。 The embodiment according to the present invention relates to a refrigeration cycle device.
 過冷却回路と、過冷却回路の上流側に設けられる気液分離器と、を備える冷凍サイクル装置が知られている。 冷凍 A refrigeration cycle device including a subcooling circuit and a gas-liquid separator provided upstream of the subcooling circuit is known.
 従来の冷凍サイクル装置は、気液分離器で気液二層状態の冷媒をガス冷媒と液冷媒とに分離し、分離した液冷媒のみを過冷却回路に流入させ、分離したガス冷媒を圧縮機へ迂回させる。 In a conventional refrigeration cycle apparatus, a gas-liquid separator separates a refrigerant in a gas-liquid two-layer state into a gas refrigerant and a liquid refrigerant, flows only the separated liquid refrigerant into a supercooling circuit, and compresses the separated gas refrigerant into a compressor. Detour to
特開2005-233551号公報JP 2005-233551 A
 従来の冷凍サイクル装置は、気液分離器、および分離したガス冷媒を圧縮機へ迂回させる配管を要する。これら気液分離器およびバイパス管は、冷凍サイクル装置のコストアップや、配管系統の複雑化を招く。 The conventional refrigeration cycle device requires a gas-liquid separator and a pipe for bypassing the separated gas refrigerant to the compressor. These gas-liquid separators and bypass pipes increase the cost of the refrigeration cycle device and complicate the piping system.
 そこで、本発明は、容易な構成で過冷却回路の性能を十分に発揮可能な冷凍サイクル装置を提案する。 Therefore, the present invention proposes a refrigeration cycle apparatus that can easily exhibit the performance of a subcooling circuit with a simple configuration.
 前記の課題を解決するため本発明の実施形態に係る冷凍サイクル装置は、圧縮機と、凝縮器と、室内膨張弁と、前記凝縮器と前記室内膨張弁との間に配置される過冷却回路と、蒸発器と、前記圧縮機、前記凝縮器、前記過冷却回路、前記室内膨張弁、および前記蒸発器を接続して冷媒を流通させる冷媒管と、を備え、前記冷媒管は、前記圧縮機、前記凝縮器、前記過冷却回路、前記室内膨張弁、および前記蒸発器に前記冷媒を循環させる主回路管と、前記過冷却回路と前記室内膨張弁とを繋ぐ前記主回路管の途中から分岐して前記圧縮機へ前記冷媒を迂回させるバイパス回路管と、前記主回路管と前記バイパス回路管との分岐部と、を有し、前記分岐部は、上流管部と、前記上流管部から上方へ向かって分岐して前記室内膨張弁へ向かう主回路分岐管部と、前記上流管部から下方へ向かって分岐して前記過冷却回路へ向かうバイパス回路分岐管部と、を有している。 In order to solve the above-mentioned problem, a refrigeration cycle apparatus according to an embodiment of the present invention includes a compressor, a condenser, an indoor expansion valve, and a supercooling circuit disposed between the condenser and the indoor expansion valve. An evaporator, and a refrigerant pipe that connects the compressor, the condenser, the subcooling circuit, the indoor expansion valve, and the evaporator to allow a refrigerant to flow, and the refrigerant pipe includes the compression pipe. Machine, the condenser, the subcooling circuit, the indoor expansion valve, and a main circuit pipe for circulating the refrigerant to the evaporator, and from the middle of the main circuit pipe connecting the subcooling circuit and the indoor expansion valve. A bypass circuit pipe that branches to bypass the refrigerant to the compressor; and a branch section between the main circuit pipe and the bypass circuit pipe. The branch section includes an upstream pipe section and the upstream pipe section. From the main branch toward the indoor expansion valve A road branch pipe portion, and a, a bypass circuit branch pipe portion toward the subcooling circuit branches downward from the upstream tube portion.
 本発明の実施形態に係る冷凍サイクル装置の前記主回路分岐管部と前記バイパス回路分岐管部とは、ひと続きの直管であり、前記上流管部は、前記直管に突き立てられていることが好ましい。 The main circuit branch pipe part and the bypass circuit branch pipe part of the refrigeration cycle device according to the embodiment of the present invention are a continuous straight pipe, and the upstream pipe part is protruded from the straight pipe. Is preferred.
 本発明の実施形態に係る冷凍サイクル装置の前記直管の流路断面積は、前記上流管部の流路断面積の2倍以上あることが好ましい。 の It is preferable that the cross-sectional area of the straight pipe in the refrigeration cycle device according to the embodiment of the present invention be twice or more the cross-sectional area of the flow path of the upstream pipe portion.
 本発明の実施形態に係る冷凍サイクル装置の前記上流管部は、実質的に水平方向へ延び、前記主回路分岐管部および前記バイパス回路分岐管部は実質的に鉛直方向へ延びていることが好ましい。 The upstream pipe portion of the refrigeration cycle apparatus according to the embodiment of the present invention may extend substantially horizontally, and the main circuit branch tube portion and the bypass circuit branch tube portion may extend substantially vertically. preferable.
 本発明の実施形態に係る冷凍サイクル装置の前記上流管部の中心線の延長線は、前記主回路分岐管部の中心線および前記バイパス回路分岐管部の中心線に交差しないことが好ましい。 延長 It is preferable that an extension of the center line of the upstream pipe portion of the refrigeration cycle device according to the embodiment of the present invention does not cross the center line of the main circuit branch pipe portion and the center line of the bypass circuit branch pipe portion.
本発明の実施形態に係る冷凍サイクル装置の模式図。FIG. 1 is a schematic diagram of a refrigeration cycle device according to an embodiment of the present invention. 本発明の実施形態に係る冷凍サイクル装置の過冷却回路の模式図。FIG. 2 is a schematic diagram of a subcooling circuit of the refrigeration cycle device according to the embodiment of the present invention. 本発明の実施形態に係る冷凍サイクル装置の過冷却回路の熱交換量と比較例の過冷却回路の熱交換量とを比べた図。The figure which compared the heat exchange amount of the supercooling circuit of the refrigeration cycle apparatus which concerns on embodiment of this invention, and the heat exchange amount of the supercooling circuit of a comparative example. 本発明の実施形態に係る冷凍サイクル装置の分岐部の他の例を示す断面図。Sectional drawing which shows the other example of the branch part of the refrigeration cycle apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る冷凍サイクル装置の分岐部の他の例を示す断面図。Sectional drawing which shows the other example of the branch part of the refrigeration cycle apparatus which concerns on embodiment of this invention.
 本発明に係る冷凍サイクル装置の実施形態について、図1から図5を参照して説明する。なお、複数の図面中、同一または相当する構成には同一の符号が付されている。 An embodiment of a refrigeration cycle apparatus according to the present invention will be described with reference to FIGS. In the drawings, the same or corresponding components have the same reference characters allotted.
 図1は、本発明の実施形態に係る冷凍サイクル装置の模式図である。 FIG. 1 is a schematic diagram of a refrigeration cycle device according to an embodiment of the present invention.
 図1に示すように、本実施形態に係る冷凍サイクル装置1は、例えば空気調和機である。冷凍サイクル装置1は、圧縮機2と、室外熱交換器3と、室外膨張弁9と、過冷却回路5と、室内膨張弁6と、室内熱交換器7と、圧縮機2、室外熱交換器3、過冷却回路5、室内膨張弁6、および室内熱交換器7を接続して冷媒を流通させる冷媒管8と、を備えている。 As shown in FIG. 1, the refrigeration cycle apparatus 1 according to the present embodiment is, for example, an air conditioner. The refrigeration cycle apparatus 1 includes a compressor 2, an outdoor heat exchanger 3, an outdoor expansion valve 9, a supercooling circuit 5, an indoor expansion valve 6, an indoor heat exchanger 7, a compressor 2, and an outdoor heat exchanger. And a refrigerant pipe 8 for connecting the heat exchanger 3, the subcooling circuit 5, the indoor expansion valve 6, and the indoor heat exchanger 7 to flow the refrigerant.
 また、冷凍サイクル装置1は、圧縮機2から吐出される冷媒を室外熱交換器3および室内熱交換器7のいずれか一方へ送り、室外熱交換器3および室内熱交換器7のいずれか他方を通過した冷媒を再び圧縮機2に吸い込ませる四方弁11と、四方弁11と圧縮機2との間の冷媒管8に設けられるアキュムレータ12と、を備えている。 Further, the refrigeration cycle apparatus 1 sends the refrigerant discharged from the compressor 2 to one of the outdoor heat exchanger 3 and the indoor heat exchanger 7, and sends the refrigerant to the other of the outdoor heat exchanger 3 and the indoor heat exchanger 7. The compressor has a four-way valve 11 for sucking the refrigerant having passed through the compressor again into the compressor 2, and an accumulator 12 provided in the refrigerant pipe 8 between the four-way valve 11 and the compressor 2.
 さらに、冷凍サイクル装置1は、家屋やビル等の建物の外側に設置される室外ユニット15と、建物の内側に設置される室内ユニット16と、を備えている。本実施形態に係る冷凍サイクル装置1は、例えば1つの室外ユニット15と、室外ユニット15に並列に接続される複数の室内ユニット16と、を備えている。 The refrigeration cycle apparatus 1 further includes an outdoor unit 15 installed outside a building such as a house or a building, and an indoor unit 16 installed inside the building. The refrigeration cycle apparatus 1 according to the present embodiment includes, for example, one outdoor unit 15 and a plurality of indoor units 16 connected in parallel to the outdoor unit 15.
 室外ユニット15には、圧縮機2、室外熱交換器3、室外膨張弁9、過冷却回路5、四方弁11、およびアキュムレータ12が収容されている。室外ユニット15は、室外ユニット15の外側から空気を吸い込み、室外熱交換器3との間で熱交換した空気を室外ユニット15の外側へ吹き出させる室外送風機21が設けられている。室外送風機21は、室外熱交換器3に対向するプロペラファン22と、プロペラファン22を回転駆動させる電動機23と、を備えている。 外 The outdoor unit 15 contains the compressor 2, the outdoor heat exchanger 3, the outdoor expansion valve 9, the supercooling circuit 5, the four-way valve 11, and the accumulator 12. The outdoor unit 15 is provided with an outdoor blower 21 that sucks air from outside the outdoor unit 15 and blows out the air that has exchanged heat with the outdoor heat exchanger 3 to the outside of the outdoor unit 15. The outdoor blower 21 includes a propeller fan 22 facing the outdoor heat exchanger 3 and an electric motor 23 for driving the propeller fan 22 to rotate.
 室内ユニット16には、室内膨張弁6、および室内熱交換器7が収容されている。室内ユニット16は、室内ユニット16の外側から空気を吸い込み、室内熱交換器7との間で熱交換した空気を室内ユニット16の外側へ吹き出させる室内送風機25が設けられている。室内送風機25は、室内熱交換器7に対向するプロペラファン26と、プロペラファン26を回転駆動させる電動機27と、を備えている。 The indoor unit 16 houses the indoor expansion valve 6 and the indoor heat exchanger 7. The indoor unit 16 is provided with an indoor blower 25 that sucks air from outside the indoor unit 16 and blows out the air that has exchanged heat with the indoor heat exchanger 7 to the outside of the indoor unit 16. The indoor blower 25 includes a propeller fan 26 facing the indoor heat exchanger 7 and an electric motor 27 for driving the propeller fan 26 to rotate.
 室外熱交換器3および室内熱交換器7は、例えばフィンアンドチューブ型である。 外 The outdoor heat exchanger 3 and the indoor heat exchanger 7 are, for example, of a fin and tube type.
 室外熱交換器3は、冷凍サイクル装置1を冷房運転する場合には、凝縮器として機能し、冷凍サイクル装置1を暖房運転する場合には、蒸発器として機能する。 外 The outdoor heat exchanger 3 functions as a condenser when the refrigeration cycle apparatus 1 performs a cooling operation, and functions as an evaporator when the refrigeration cycle apparatus 1 performs a heating operation.
 室内熱交換器7は、冷凍サイクル装置1を冷房運転する場合には、蒸発器として機能し、冷凍サイクル装置1を暖房運転する場合には、凝縮器として機能する。 The indoor heat exchanger 7 functions as an evaporator when the refrigeration cycle apparatus 1 performs the cooling operation, and functions as a condenser when the refrigeration cycle apparatus 1 performs the heating operation.
 圧縮機2は、冷媒を圧縮し、昇圧して吐出する。圧縮機2は、例えば公知のインバータ制御によって運転周波数を変更可能なものであっても良いし、運転周波数を変更できないものであっても良い。 The compressor 2 compresses the refrigerant, raises the pressure, and discharges the refrigerant. The compressor 2 may be one that can change the operating frequency by, for example, known inverter control, or one that cannot change the operating frequency.
 室内膨張弁6および室外膨張弁9は、例えばPMV(Pulse Motor Valve)である。室内膨張弁6および室外膨張弁9は、弁開度を調節できる。室内膨張弁6は、主に冷房運転時に膨張弁として機能し、主に暖房運転時に室内熱交換器7の過冷却度の調整弁として機能する。一方、室外膨張弁9は、主に暖房運転時に膨張弁として機能し、主に冷房運転時に室外熱交換器3の過冷却度の調整弁として機能する。図示は省略するが、室内膨張弁6および室外膨張弁9は、例えば、貫通孔を有する弁本体と、貫通孔に対して進退可能なニードルと、ニードルを進退させる動力源と、を備えている。貫通孔をニードルで塞いだ場合に、室内膨張弁6および室外膨張弁9は、冷凍サイクル装置1の冷媒の流通を止める(遮断する)。このとき、室内膨張弁6および室外膨張弁9は閉じた状態であり、室内膨張弁6および室外膨張弁9の開度は最も小さい。ニードルが貫通孔から最も離れた場合に、冷凍サイクル装置1の冷媒の流通量は、最大化する。このとき、室内膨張弁6および室外膨張弁9の開度は最も大きい。 The indoor expansion valve 6 and the outdoor expansion valve 9 are, for example, PMV (Pulse Motor Valve). The indoor expansion valve 6 and the outdoor expansion valve 9 can adjust the valve opening. The indoor expansion valve 6 mainly functions as an expansion valve during the cooling operation, and mainly functions as a regulating valve for the degree of supercooling of the indoor heat exchanger 7 during the heating operation. On the other hand, the outdoor expansion valve 9 mainly functions as an expansion valve during the heating operation, and mainly functions as a regulating valve for the degree of supercooling of the outdoor heat exchanger 3 during the cooling operation. Although not shown, the indoor expansion valve 6 and the outdoor expansion valve 9 include, for example, a valve main body having a through hole, a needle that can advance and retreat with respect to the through hole, and a power source that advances and retreats the needle. . When the through hole is closed by the needle, the indoor expansion valve 6 and the outdoor expansion valve 9 stop (block) the circulation of the refrigerant in the refrigeration cycle apparatus 1. At this time, the indoor expansion valve 6 and the outdoor expansion valve 9 are in a closed state, and the opening degrees of the indoor expansion valve 6 and the outdoor expansion valve 9 are the smallest. When the needle is farthest from the through hole, the flow rate of the refrigerant in the refrigeration cycle apparatus 1 is maximized. At this time, the opening degrees of the indoor expansion valve 6 and the outdoor expansion valve 9 are the largest.
 動力源は、例えば、ステッピングモーターである。ステッピングモーターに入力されるパルス数が0パルスのとき、室内膨張弁6および室外膨張弁9は閉じる。ステッピングモーターに入力されるパルス数が最大パルスのとき、室内膨張弁6および室外膨張弁9は最大開度に達する。最大パルス数は、例えば数百パルスであり、例えば500パルスである。 The power source is, for example, a stepping motor. When the number of pulses input to the stepping motor is 0, the indoor expansion valve 6 and the outdoor expansion valve 9 are closed. When the number of pulses input to the stepping motor is the maximum pulse, the indoor expansion valve 6 and the outdoor expansion valve 9 reach the maximum opening. The maximum pulse number is, for example, several hundred pulses, for example, 500 pulses.
 冷媒管8は、圧縮機2、アキュムレータ12、四方弁11、室外熱交換器3、室外膨張弁9、過冷却回路5、室内膨張弁6、および室内熱交換器7を接続している。冷媒管8は、圧縮機2、アキュムレータ12、四方弁11、室外熱交換器3、室外膨張弁9、過冷却回路5、室内膨張弁6、および室内熱交換器7に冷媒を循環させる主回路管31と、過冷却回路5と室内膨張弁6とを繋ぐ主回路管31の途中から分岐して圧縮機2へ冷媒を迂回させるバイパス回路管32と、主回路管31からバイパス回路管32を分岐させる分岐部33と、を備えている。 (4) The refrigerant pipe 8 connects the compressor 2, the accumulator 12, the four-way valve 11, the outdoor heat exchanger 3, the outdoor expansion valve 9, the supercooling circuit 5, the indoor expansion valve 6, and the indoor heat exchanger 7. The refrigerant pipe 8 is a main circuit that circulates refrigerant through the compressor 2, the accumulator 12, the four-way valve 11, the outdoor heat exchanger 3, the outdoor expansion valve 9, the supercooling circuit 5, the indoor expansion valve 6, and the indoor heat exchanger 7. A pipe 31, a bypass circuit pipe 32 branching from the middle of the main circuit pipe 31 connecting the subcooling circuit 5 and the indoor expansion valve 6 and bypassing the refrigerant to the compressor 2, and a bypass circuit pipe 32 from the main circuit pipe 31. And a branching section 33 for branching.
 主回路管31は、圧縮機2の吐出側と四方弁11とを繋ぐ第一主冷媒管31aと、圧縮機2の吸込側と四方弁11とを繋ぐ第二主冷媒管31bと、四方弁11と室外熱交換器3とを繋ぐ第三主冷媒管31cと、室外熱交換器3と室内熱交換器7とを繋ぐ第四主冷媒管31dと、室内熱交換器7と四方弁11とを繋ぐ第五主冷媒管31eと、を含んでいる。 The main circuit pipe 31 includes a first main refrigerant pipe 31a connecting the discharge side of the compressor 2 and the four-way valve 11, a second main refrigerant pipe 31b connecting the suction side of the compressor 2 and the four-way valve 11, and a four-way valve. A third main refrigerant pipe 31c connecting the heat exchanger 11 to the outdoor heat exchanger 3, a fourth main refrigerant pipe 31d connecting the outdoor heat exchanger 3 and the indoor heat exchanger 7, an indoor heat exchanger 7 and the four-way valve 11, And a fifth main refrigerant pipe 31e.
 第四主冷媒管31dは、室外ユニット15の第一配管接続部31fと室内ユニット16の第二配管接続部31gとを経て室外熱交換器3と室内熱交換器7とを繋いでいる。 (4) The fourth main refrigerant pipe 31d connects the outdoor heat exchanger 3 and the indoor heat exchanger 7 via the first pipe connection part 31f of the outdoor unit 15 and the second pipe connection part 31g of the indoor unit 16.
 第五主冷媒管31eは、室内ユニット16の第三配管接続部31hと室外ユニット15の第四配管接続部31iとを経て室内熱交換器7と四方弁11とを繋いでいる。 The fifth main refrigerant pipe 31e connects the indoor heat exchanger 7 and the four-way valve 11 via the third pipe connection 31h of the indoor unit 16 and the fourth pipe connection 31i of the outdoor unit 15.
 分岐部33は、室外熱交換器3と室外ユニット15の第一配管接続部31fとを繋ぐ第四主冷媒管31dの途中に配置されている。 The branch portion 33 is disposed in the middle of the fourth main refrigerant pipe 31d that connects the outdoor heat exchanger 3 and the first pipe connection portion 31f of the outdoor unit 15.
 アキュムレータ12は、第二主冷媒管31bの途中に設けられている。 The accumulator 12 is provided in the middle of the second main refrigerant pipe 31b.
 室外膨張弁9、過冷却回路5および室内膨張弁6は、第四主冷媒管31dの途中に設けられている。過冷却回路5は、室内膨張弁6よりも室外熱交換器3に近い。室外膨張弁9は、過冷却回路5よりも室外熱交換器3に近い。室内膨張弁6は、過冷却回路5よりも室内熱交換器7に近い。換言すると、室外膨張弁9は、室外熱交換器3と過冷却回路5との間に配置されている。過冷却回路5は、室外熱交換器3と室内膨張弁6との間に配置されている。過冷却回路5は、室外膨張弁9と室内膨張弁6との間に配置されている。また、室外膨張弁9は、室外熱交換器3と室外ユニット15の第一配管接続部31fとを繋ぐ第四主冷媒管31dの途中に配置されている。過冷却回路5は、室外熱交換器3と室外ユニット15の第一配管接続部31fとを繋ぐ第四主冷媒管31dの途中に配置されている。室内膨張弁6は、室内ユニット16の第二配管接続部31gと室内熱交換器7とを繋ぐ第四主冷媒管31dの途中に配置されている。 The outdoor expansion valve 9, the supercooling circuit 5, and the indoor expansion valve 6 are provided in the middle of the fourth main refrigerant pipe 31d. The subcooling circuit 5 is closer to the outdoor heat exchanger 3 than the indoor expansion valve 6. The outdoor expansion valve 9 is closer to the outdoor heat exchanger 3 than the subcooling circuit 5. The indoor expansion valve 6 is closer to the indoor heat exchanger 7 than the subcooling circuit 5. In other words, the outdoor expansion valve 9 is disposed between the outdoor heat exchanger 3 and the supercooling circuit 5. The supercooling circuit 5 is arranged between the outdoor heat exchanger 3 and the indoor expansion valve 6. The supercooling circuit 5 is arranged between the outdoor expansion valve 9 and the indoor expansion valve 6. Further, the outdoor expansion valve 9 is arranged in the middle of the fourth main refrigerant pipe 31d connecting the outdoor heat exchanger 3 and the first pipe connection part 31f of the outdoor unit 15. The supercooling circuit 5 is arranged in the middle of the fourth main refrigerant pipe 31d connecting the outdoor heat exchanger 3 and the first pipe connection part 31f of the outdoor unit 15. The indoor expansion valve 6 is arranged in the middle of the fourth main refrigerant pipe 31d connecting the second pipe connection part 31g of the indoor unit 16 and the indoor heat exchanger 7.
 四方弁11は、冷媒管8における冷媒の流れの向きを切り替える。冷凍サイクル装置1を冷房運転(図1中、実線で示す冷媒の流れ)して建物内の室温を下降させる場合、四方弁11は、第一主冷媒管31aから第三主冷媒管31cへ冷媒を流通させ、かつ第五主冷媒管31eから第二主冷媒管31bへ冷媒を流通させる。冷凍サイクル装置1を暖房運転(図1中、破線で示す冷媒の流れ)して建物内の室温を上昇させる場合、四方弁11は、第一主冷媒管31aから第五主冷媒管31eへ冷媒を流通させ、かつ第三主冷媒管31cから第二主冷媒管31bへ冷媒を流通させる。 The four-way valve 11 switches the direction of the flow of the refrigerant in the refrigerant pipe 8. When the refrigeration cycle apparatus 1 is cooled (the flow of the refrigerant indicated by the solid line in FIG. 1) to lower the room temperature in the building, the four-way valve 11 transfers the refrigerant from the first main refrigerant pipe 31a to the third main refrigerant pipe 31c. And the refrigerant is circulated from the fifth main refrigerant pipe 31e to the second main refrigerant pipe 31b. When the refrigeration cycle apparatus 1 performs a heating operation (flow of a refrigerant indicated by a broken line in FIG. 1) to increase the room temperature in the building, the four-way valve 11 transmits the refrigerant from the first main refrigerant pipe 31a to the fifth main refrigerant pipe 31e. And the refrigerant is circulated from the third main refrigerant pipe 31c to the second main refrigerant pipe 31b.
 図2は、本発明の実施形態に係る冷凍サイクル装置の過冷却回路の模式図である。 FIG. 2 is a schematic diagram of a subcooling circuit of the refrigeration cycle device according to the embodiment of the present invention.
 図1および図2に示すように、本実施形態に係る冷凍サイクル装置1の過冷却回路5は、バイパス回路管32と、過冷却用膨張弁41と、過冷却熱交換器42と、を備えている。 As shown in FIGS. 1 and 2, the subcooling circuit 5 of the refrigeration cycle device 1 according to the present embodiment includes a bypass circuit tube 32, a subcooling expansion valve 41, and a subcooling heat exchanger 42. ing.
 バイパス回路管32は、冷房運転時に室外熱交換器3から室内熱交換器7へ向かう主回路管31の冷媒を分岐させて、室内膨張弁6および室内熱交換器7を介さずに、アキュムレータ12へ迂回させる。バイパス回路管32は、分岐部33、つまり室外熱交換器3と室外ユニット15の第一配管接続部31fとを繋ぐ第四主冷媒管31dの途中から分岐している。バイパス回路管32は、アキュムレータ12と四方弁11とを繋ぐ第二主冷媒管31bの途中で主回路管31の第二主冷媒管31bに合流している。 The bypass circuit pipe 32 branches the refrigerant in the main circuit pipe 31 from the outdoor heat exchanger 3 toward the indoor heat exchanger 7 during the cooling operation, and bypasses the accumulator 12 without passing through the indoor expansion valve 6 and the indoor heat exchanger 7. Detour to The bypass circuit pipe 32 branches from a branch part 33, that is, a part of the fourth main refrigerant pipe 31 d that connects the outdoor heat exchanger 3 and the first pipe connection part 31 f of the outdoor unit 15. The bypass circuit pipe 32 joins the second main refrigerant pipe 31 b of the main circuit pipe 31 in the middle of the second main refrigerant pipe 31 b connecting the accumulator 12 and the four-way valve 11.
 過冷却用膨張弁41は、分岐部33からバイパス回路管32に流れ込んだ冷媒を減圧する。 The supercooling expansion valve 41 reduces the pressure of the refrigerant flowing from the branch portion 33 into the bypass circuit tube 32.
 過冷却熱交換器42は、過冷却用膨張弁41で減圧された冷媒と主回路管31(詳細には第四主冷媒管31dにおける分岐部33よりも上流部分)を流れる冷媒との間で熱交換を行い、主回路管31を流れる冷媒を過冷却する。 The subcooling heat exchanger 42 is provided between the refrigerant decompressed by the subcooling expansion valve 41 and the refrigerant flowing through the main circuit pipe 31 (specifically, the upstream part of the branch 33 in the fourth main refrigerant pipe 31d). Heat exchange is performed to supercool the refrigerant flowing through the main circuit tube 31.
 バイパス回路管32は、分岐部33と過冷却用膨張弁41とを繋ぐ第一迂回冷媒管32aと、過冷却用膨張弁41と過冷却熱交換器42とを繋ぐ第二迂回冷媒管32bと、過冷却熱交換器42と主回路管31の第二主冷媒管31bとを繋ぐ第三迂回冷媒管32cと、を含んでいる。 The bypass circuit pipe 32 includes a first bypass refrigerant pipe 32a connecting the branch portion 33 and the subcooling expansion valve 41, a second bypass refrigerant pipe 32b connecting the subcooling expansion valve 41 and the subcooling heat exchanger 42, and And a third bypass refrigerant pipe 32c connecting the subcooling heat exchanger 42 and the second main refrigerant pipe 31b of the main circuit pipe 31.
 また、冷凍サイクル装置1は、四方弁11に信号線(図示省略)を介して電気的に接続される制御部45を備えている。制御部45は、運転周波数を変更可能な圧縮機2に接続されていても良い。 The refrigeration cycle apparatus 1 further includes a control unit 45 that is electrically connected to the four-way valve 11 via a signal line (not shown). The control unit 45 may be connected to the compressor 2 whose operating frequency can be changed.
 制御部45は、中央演算処理装置(図示省略)と、中央演算処理装置が実行する各種演算プログラム、パラメータなどを記憶する記憶装置(図示省略)と、を備えている。制御部45は、各種制御プログラムを補助記憶装置から主記憶装置へ読み込み、主記憶装置に読み込まれた各種制御プログラムを中央演算処理装置で実行する。 The control unit 45 includes a central processing unit (not shown) and a storage device (not shown) for storing various operation programs executed by the central processing unit, parameters, and the like. The control unit 45 reads various control programs from the auxiliary storage device to the main storage device, and executes the various control programs read into the main storage device by the central processing unit.
 制御部45は、例えばリモートコントローラーのような入力装置に入力される要求に基づいて四方弁11の状態を切り替えて、冷凍サイクル装置1の冷房運転と暖房運転とを切り替える。 The control unit 45 switches the state of the four-way valve 11 based on a request input to an input device such as a remote controller, for example, to switch between the cooling operation and the heating operation of the refrigeration cycle apparatus 1.
 また、制御部45は、室外熱交換器3と過冷却回路5との間の第四主冷媒管31dに流れる冷媒の温度を測定する第一温度センサ46、過冷却回路5と第一配管接続部31fとの間の第四主冷媒管31dに流れる冷媒の温度を測定する第二温度センサ47、第三迂回冷媒管32cに流れる冷媒の温度を測定する第三温度センサ48、および吸込飽和温度に基づいて、過冷却用膨張弁41の開度を制御する。 Further, the control unit 45 includes a first temperature sensor 46 for measuring the temperature of the refrigerant flowing in the fourth main refrigerant pipe 31d between the outdoor heat exchanger 3 and the subcooling circuit 5, and a connection between the subcooling circuit 5 and the first pipe. A second temperature sensor 47 for measuring the temperature of the refrigerant flowing through the fourth main refrigerant pipe 31d between the first and second portions 31f, a third temperature sensor 48 for measuring the temperature of the refrigerant flowing through the third bypass refrigerant pipe 32c, and a suction saturation temperature. , The opening degree of the subcooling expansion valve 41 is controlled.
 吸込飽和温度は、第四主冷媒管31dに流れる冷媒の圧力を測定する吸込圧力センサ49の値を換算して求められる。 飽和 The suction saturation temperature is obtained by converting the value of the suction pressure sensor 49 that measures the pressure of the refrigerant flowing through the fourth main refrigerant pipe 31d.
 冷房運転の際、冷凍サイクル装置1は、圧縮された高温高圧の冷媒を圧縮機2から吐出し、四方弁11を介してこの冷媒を室外熱交換器3へ送る。室外熱交換器3は、建物の外の空気とチューブ内を通る冷媒との間で熱交換を行い、冷媒を冷却して高圧の液状態にする。つまり、冷房運転時、室外熱交換器3は、凝縮器として機能する。室外熱交換器3を通過した冷媒は、室内膨張弁6を通過して減圧され低圧の気液二相冷媒になって室内熱交換器7に到達する。室内熱交換器7は、建物の中の空気とチューブ内を通る冷媒との間で熱交換を行い、建物内の空気を冷却する。このとき、室内熱交換器7は、冷媒を蒸発させて気体状態にする蒸発器として機能する。室内熱交換器7を通過した冷媒は、圧縮機2へ吸い込まれて戻る。 際 During the cooling operation, the refrigeration cycle apparatus 1 discharges the compressed high-temperature and high-pressure refrigerant from the compressor 2 and sends the refrigerant to the outdoor heat exchanger 3 via the four-way valve 11. The outdoor heat exchanger 3 exchanges heat between the air outside the building and the refrigerant passing through the tube, and cools the refrigerant to a high-pressure liquid state. That is, during the cooling operation, the outdoor heat exchanger 3 functions as a condenser. The refrigerant that has passed through the outdoor heat exchanger 3 passes through the indoor expansion valve 6 and is reduced in pressure to become a low-pressure gas-liquid two-phase refrigerant and reaches the indoor heat exchanger 7. The indoor heat exchanger 7 exchanges heat between the air in the building and the refrigerant passing through the tubes to cool the air in the building. At this time, the indoor heat exchanger 7 functions as an evaporator that evaporates the refrigerant to a gaseous state. The refrigerant that has passed through the indoor heat exchanger 7 is sucked into the compressor 2 and returned.
 他方、暖房運転の際、冷凍サイクル装置1は、四方弁11を反転させて冷凍サイクルに冷房時の冷媒の流れと逆向きの冷媒の流れを生じさせ、室内熱交換器7を凝縮器として機能させ、室外熱交換器3を蒸発器として機能させる。 On the other hand, during the heating operation, the refrigeration cycle apparatus 1 inverts the four-way valve 11 to generate a refrigerant flow in the refrigeration cycle in a direction opposite to the refrigerant flow during cooling, and the indoor heat exchanger 7 functions as a condenser. Then, the outdoor heat exchanger 3 functions as an evaporator.
 なお、冷凍サイクル装置1は、四方弁11を備えない、冷却専用のものであってもよい。この場合、圧縮機2の吐出側は冷媒管8を通じて室外熱交換器3に接続され、圧縮機2の吸込側は冷媒管8を通じて室内熱交換器7に接続される。 The refrigeration cycle apparatus 1 may not be provided with the four-way valve 11 and may be dedicated to cooling. In this case, the discharge side of the compressor 2 is connected to the outdoor heat exchanger 3 through the refrigerant pipe 8, and the suction side of the compressor 2 is connected to the indoor heat exchanger 7 through the refrigerant pipe 8.
 そして、過冷却回路5は、室外熱交換器3から室内膨張弁6へ向かう冷媒の乾き度を低減させるため、また室内ユニット16を循環する冷媒の量を低減するために用いられる。 The supercooling circuit 5 is used to reduce the dryness of the refrigerant flowing from the outdoor heat exchanger 3 to the indoor expansion valve 6 and to reduce the amount of the refrigerant circulating in the indoor unit 16.
 過冷却回路5は、一般的には冷房運転で使用される。過冷却回路5は、室外熱交換器3で凝縮された液冷媒の一部を分岐部33で分岐し、過冷却用膨張弁41で低圧膨張させる。過冷却熱交換器42は、過冷却用膨張弁41で低圧膨張した二相冷媒と主回路管31(詳細には第四主冷媒管31dにおける分岐部33よりも上流部分)を流れる冷媒とを熱交換させて、主回路管31を流れる冷媒を冷却する。 The supercooling circuit 5 is generally used in a cooling operation. The subcooling circuit 5 branches a part of the liquid refrigerant condensed in the outdoor heat exchanger 3 at the branching section 33 and causes the subcooling expansion valve 41 to perform low pressure expansion. The supercooling heat exchanger 42 converts the two-phase refrigerant that has been low-pressure expanded by the subcooling expansion valve 41 and the refrigerant flowing through the main circuit pipe 31 (specifically, the upstream part of the branch 33 in the fourth main refrigerant pipe 31d). The refrigerant flowing through the main circuit tube 31 is cooled by heat exchange.
 ところで、室外熱交換器3で冷媒の一部が凝縮されず、ガス冷媒のまま第四主冷媒管31dに流れ出た場合には、過冷却回路5に二相冷媒が流入する虞がある。一般的に、過冷却用膨張弁41は、二相冷媒を流通させるための十分な配管径を有していない。したがって、過冷却回路5は、冷媒の流通量を十分に確保できない。そして、過冷却回路5の熱交換量は低下する。過冷却回路5の熱交換量が低下した場合には、主回路管31の第四主冷媒管31dにガス冷媒が混入し、ガス冷媒が室内ユニット16に送られてしまう。 By the way, when a part of the refrigerant is not condensed in the outdoor heat exchanger 3 and flows out to the fourth main refrigerant pipe 31d as a gas refrigerant, there is a possibility that the two-phase refrigerant flows into the supercooling circuit 5. Generally, the subcooling expansion valve 41 does not have a sufficient pipe diameter for flowing the two-phase refrigerant. Therefore, the subcooling circuit 5 cannot secure a sufficient circulation amount of the refrigerant. Then, the heat exchange amount of the subcooling circuit 5 decreases. When the heat exchange amount of the subcooling circuit 5 decreases, the gas refrigerant mixes into the fourth main refrigerant pipe 31 d of the main circuit pipe 31, and the gas refrigerant is sent to the indoor unit 16.
 そこで、本実施形態に係る冷凍サイクル装置1の分岐部33は、上流管部51と、上流管部51から上方(図2中の実線矢印U)へ向かって分岐して室内膨張弁6へ向かう主回路分岐管部52と、上流管部51から下方(図2中の実線矢印D)へ向かって分岐して過冷却回路5へ向かうバイパス回路分岐管部53と、を備えている。上流管部51および主回路分岐管部52は、主回路管31の第四主冷媒管31dの一部に相当し、バイパス回路分岐管部53は、バイパス回路管32の第一迂回冷媒管32aの一部に相当する。 Therefore, the branch portion 33 of the refrigeration cycle device 1 according to the present embodiment branches from the upstream pipe portion 51 and upward (solid arrow U in FIG. 2) toward the indoor expansion valve 6. A main circuit branch pipe section 52 and a bypass circuit branch pipe section 53 branching downward (solid arrow D in FIG. 2) from the upstream pipe section 51 and heading toward the supercooling circuit 5 are provided. The upstream pipe part 51 and the main circuit branch pipe part 52 correspond to a part of the fourth main refrigerant pipe 31 d of the main circuit pipe 31, and the bypass circuit branch pipe part 53 is connected to the first bypass refrigerant pipe 32 a of the bypass circuit pipe 32. Corresponds to a part of
 主回路分岐管部52とバイパス回路分岐管部53とは、ひと続きの直管55である。換言すると、直管55の一部である主回路分岐管部52は、主回路管31の第四主冷媒管31dの一部に相当し、直管55の残部であるバイパス回路分岐管部53は、バイパス回路管32の第一迂回冷媒管32aの一部に相当する。直管55は、主回路分岐管部52に相当する部位からバイパス回路分岐管部53に相当する部位に掛けて実質的に一様な流路断面積を有している。主回路管31の第四主冷媒管31dおよびバイパス回路管32の第一迂回冷媒管32aの境界は、直管55と上流管部51との合流部分である。 The main circuit branch pipe section 52 and the bypass circuit branch pipe section 53 are a continuous straight pipe 55. In other words, the main circuit branch pipe part 52 which is a part of the straight pipe 55 corresponds to a part of the fourth main refrigerant pipe 31d of the main circuit pipe 31, and the bypass circuit branch pipe part 53 which is the remaining part of the straight pipe 55. Corresponds to a part of the first bypass refrigerant pipe 32a of the bypass circuit pipe 32. The straight pipe 55 has a substantially uniform flow path cross-sectional area from a portion corresponding to the main circuit branch pipe portion 52 to a portion corresponding to the bypass circuit branch pipe portion 53. The boundary between the fourth main refrigerant pipe 31d of the main circuit pipe 31 and the first bypass refrigerant pipe 32a of the bypass circuit pipe 32 is the junction of the straight pipe 55 and the upstream pipe part 51.
 なお、第四主冷媒管31dは、直管55の一部に相当する部位を除けば屈曲していても良い。また、第一迂回冷媒管32aは、直管55の残部に相当する部位を除けば屈曲していても良い。 The fourth main refrigerant pipe 31d may be bent except for a part corresponding to a part of the straight pipe 55. The first bypass refrigerant pipe 32a may be bent except for a portion corresponding to the remaining part of the straight pipe 55.
 主回路分岐管部52およびバイパス回路分岐管部53は、実質的に鉛直方向へ延びている。主回路分岐管部52およびバイパス回路分岐管部53は、鉛直線VLに対して30度(±30度)の範囲で傾いていても良い。 The main circuit branch pipe part 52 and the bypass circuit branch pipe part 53 extend substantially in the vertical direction. The main circuit branch pipe section 52 and the bypass circuit branch pipe section 53 may be inclined within a range of 30 degrees (± 30 degrees) with respect to the vertical line VL.
 上流管部51は、直管55に突き立てられている。換言すると、上流管部51は、直管55の径方向から直管55に突き当たっている。上流管部51は、実質的に水平方向へ延びている。上流管部51は、水平面HPに対して45度(±45度)の範囲で傾いていても良い。なお、上流管部51と直管55とがなす角θは、45度以上であることが好ましい。 The upstream pipe part 51 is protruded from the straight pipe 55. In other words, the upstream pipe portion 51 abuts on the straight pipe 55 from the radial direction of the straight pipe 55. The upstream pipe portion 51 extends substantially in the horizontal direction. The upstream pipe portion 51 may be inclined in a range of 45 degrees (± 45 degrees) with respect to the horizontal plane HP. The angle θ formed between the upstream pipe portion 51 and the straight pipe 55 is preferably 45 degrees or more.
 例えば、上流管部51が直管55の径方向から直管55に突き当たっている場合には、上流管部51と直管55とがなす角θは90度である。この場合、上流管部51および直管55は、T字を90度倒したような形状を呈する。 For example, when the upstream pipe 51 abuts on the straight pipe 55 from the radial direction of the straight pipe 55, the angle θ formed by the upstream pipe 51 and the straight pipe 55 is 90 degrees. In this case, the upstream pipe portion 51 and the straight pipe 55 have a shape in which the T-shape is turned down by 90 degrees.
 直管55の流路断面積PA1は、上流管部51の流路断面積PA2の2倍以上ある。 流 路 The flow path cross-sectional area PA1 of the straight pipe 55 is at least twice the flow path cross-sectional area PA2 of the upstream pipe part 51.
 本実施形態に係る冷凍サイクル装置1の分岐部33は、図2中の実線矢印Aの方向へ主流(主回路管31を流れる冷媒の流れ)を生じさせ、図2中の実線矢印Bの方向へ迂回流(過冷却回路5を流れる冷媒の流れ)を生じさせる。過冷却回路5へ迂回する冷媒量は、バイパス回路管32の内径および過冷却用膨張弁41の弁開度によって決まる。過冷却回路5へ迂回する冷媒量は、例えば、主流の0パーセント(過冷却用膨張弁41全閉時)から20パーセント(過冷却用膨張弁41全開時)である。そのため、第一迂回冷媒管32a内では、浮力と重力との影響によって、ガス冷媒は上方へと、液冷媒は下方へと分離される。そして、過冷却回路5へ流れ込む液冷媒の割合が増加し、過冷却回路5へ流れ込むガス冷媒の割合が減少する。 The branch portion 33 of the refrigeration cycle device 1 according to the present embodiment generates a main flow (a flow of the refrigerant flowing through the main circuit tube 31) in a direction of a solid arrow A in FIG. 2 and a direction of a solid arrow B in FIG. To generate a bypass flow (flow of the refrigerant flowing through the supercooling circuit 5). The amount of refrigerant diverted to the subcooling circuit 5 is determined by the inner diameter of the bypass circuit tube 32 and the degree of opening of the subcooling expansion valve 41. The amount of refrigerant diverted to the subcooling circuit 5 is, for example, 0% (when the subcooling expansion valve 41 is fully closed) to 20% (when the subcooling expansion valve 41 is fully open) of the main flow. Therefore, in the first bypass refrigerant pipe 32a, the gas refrigerant is separated upward and the liquid refrigerant is separated downward due to buoyancy and gravity. Then, the ratio of the liquid refrigerant flowing into the subcooling circuit 5 increases, and the ratio of the gas refrigerant flowing into the subcooling circuit 5 decreases.
 一度、過冷却回路5へ流れる液冷媒の流量が確保されると、室外熱交換器3から気液二相冷媒が流出したとしても、過冷却回路5で気液二相冷媒を液冷媒に凝縮させることが可能になる。つまり、室内ユニット16側へのガス冷媒の流出は、抑制される。 Once the flow rate of the liquid refrigerant flowing to the subcooling circuit 5 is secured, even if the gas-liquid two-phase refrigerant flows out of the outdoor heat exchanger 3, the supercooling circuit 5 condenses the gas-liquid two-phase refrigerant into the liquid refrigerant. It becomes possible to do. That is, outflow of the gas refrigerant to the indoor unit 16 side is suppressed.
 直管55の流路断面積が上流管部51の流路断面積の2倍以上ある場合には、直管55における冷媒の流速が抑制される。この抑制効果は、第一迂回冷媒管32aにおける冷媒の流速(つまり迂回流の流速)を第四主冷媒管31dにおける冷媒の流速(つまり主流の流速)の例えば1割程度に抑える。この冷媒の流速の抑制は、ガス冷媒の浮力を液冷媒の流れから受ける力より大きくする。そのため、気液分離の効果がより顕著に表れる。 場合 When the cross-sectional area of the flow passage of the straight pipe 55 is twice or more the cross-sectional area of the flow passage of the upstream pipe part 51, the flow velocity of the refrigerant in the straight pipe 55 is suppressed. This suppression effect suppresses the flow velocity of the refrigerant in the first bypass refrigerant pipe 32a (that is, the flow velocity of the bypass flow) to, for example, about 10% of the flow velocity of the refrigerant in the fourth main refrigerant pipe 31d (that is, the flow velocity of the main flow). This suppression of the flow velocity of the refrigerant makes the buoyancy of the gas refrigerant larger than the force received from the flow of the liquid refrigerant. Therefore, the effect of gas-liquid separation appears more remarkably.
 図3は、本発明の実施形態に係る冷凍サイクル装置の過冷却回路の熱交換量と比較例の過冷却回路の熱交換量とを比べた図である。 FIG. 3 is a diagram comparing the amount of heat exchange of the supercooling circuit of the refrigeration cycle apparatus according to the embodiment of the present invention with the amount of heat exchange of the supercooling circuit of the comparative example.
 図3中の実線αは、本実施形態に係る冷凍サイクル装置1の過冷却回路5における乾き度と熱交換量との関係を表している。図3中の破線βは、比較例の冷凍サイクル装置の過冷却回路における乾き度と熱交換量との関係を表している。 実 The solid line α in FIG. 3 represents the relationship between the degree of dryness and the amount of heat exchange in the supercooling circuit 5 of the refrigeration cycle apparatus 1 according to the present embodiment. A broken line β in FIG. 3 indicates a relationship between the degree of dryness and the amount of heat exchange in the supercooling circuit of the refrigeration cycle device of the comparative example.
 ここで先ず、比較例の冷凍サイクル装置の分岐部は、室外熱交換器3と室内熱交換器7とを繋いで水平方向に延びる主回路配管(第四主冷媒管31dに相当する。)と、主回路配管の下面から下方へ垂れ下がって分岐し、過冷却用膨張弁41に繋がるバイパス回路管(第一迂回冷媒管32aに相当する。)と、を備えているものとする。換言すると、比較例の冷凍サイクル装置は、主回路配管、および主回路配管の直管部分から垂れ下がるバイパス回路管が描くT字形の分岐部を備えている。 Here, first, the branch portion of the refrigeration cycle device of the comparative example is connected to a main circuit pipe (corresponding to the fourth main refrigerant pipe 31d) extending in the horizontal direction by connecting the outdoor heat exchanger 3 and the indoor heat exchanger 7. And a bypass circuit pipe (corresponding to the first bypass refrigerant pipe 32a) that hangs downward from the lower surface of the main circuit pipe, branches off, and connects to the supercooling expansion valve 41. In other words, the refrigeration cycle device of the comparative example includes a main circuit pipe and a T-shaped branch drawn by a bypass circuit pipe hanging down from a straight pipe portion of the main circuit pipe.
 図3に示すように、比較例の冷凍サイクル装置は、乾き度が零値以下でなければ過冷却膨張弁における流量を確保できない。そのため、比較例の過冷却回路は、乾き度が零値を超えると熱交換量が不足する。 示 す As shown in FIG. 3, the refrigeration cycle device of the comparative example cannot secure the flow rate in the supercooling expansion valve unless the dryness is equal to or less than zero. Therefore, in the supercooling circuit of the comparative example, when the dryness exceeds the zero value, the heat exchange amount is insufficient.
 本実施形態に係る冷凍サイクル装置1は、分岐部33の気液分離効果によって、乾き度が零値より大きい気液二相領域であっても、過冷却用膨張弁41に液冷媒を流すことができる。そのため、本実施形態に係る過冷却回路5は、乾き度が零値より大きい場合であっても、熱交換量を上昇させることが可能である。 The refrigeration cycle apparatus 1 according to the present embodiment allows the liquid refrigerant to flow through the supercooling expansion valve 41 even in a gas-liquid two-phase region where the dryness is greater than zero due to the gas-liquid separation effect of the branch portion 33. Can be. Therefore, the supercooling circuit 5 according to the present embodiment can increase the heat exchange amount even when the dryness is larger than the zero value.
 図4および図5は、本発明の実施形態に係る冷凍サイクル装置の分岐部の他の例を示す断面図である。図4は、分岐部33の上流管部51の中心を通り、かつ主回路分岐管部52およびバイパス回路分岐管部53の中心に直交する断面図である。図5は、主回路分岐管部52およびバイパス回路分岐管部53の中心を通る断面図である。 FIGS. 4 and 5 are cross-sectional views showing another example of the branch portion of the refrigeration cycle device according to the embodiment of the present invention. FIG. 4 is a cross-sectional view passing through the center of the upstream pipe 51 of the branch 33 and orthogonal to the centers of the main circuit branch 52 and the bypass circuit branch 53. FIG. 5 is a cross-sectional view passing through the centers of the main circuit branch pipe section 52 and the bypass circuit branch pipe section 53.
 図4および図5に示すように、本実施形態に係る冷凍サイクル装置1は分岐部33Aを備えている。分岐部33Aの上流管部51の中心線Caの延長線は、主回路分岐管部52の中心線Cbおよびバイパス回路分岐管部53の中心線Ccに交差しない。換言すると、上流管部51の中心線Caの延長線は、主回路分岐管部52の中心線Cbおよびバイパス回路分岐管部53の中心線Ccに対して、主回路分岐管部52およびバイパス回路分岐管部53の径方向外側へ偏倚している。 冷凍 As shown in FIGS. 4 and 5, the refrigeration cycle apparatus 1 according to the present embodiment includes a branch portion 33A. The extension of the center line Ca of the upstream pipe portion 51 of the branch portion 33A does not intersect with the center line Cb of the main circuit branch pipe portion 52 and the center line Cc of the bypass circuit branch pipe portion 53. In other words, the extension of the center line Ca of the upstream pipe 51 is different from the center line Cb of the main circuit branch pipe 52 and the center line Cc of the bypass circuit branch pipe 53 by the main circuit branch pipe 52 and the bypass circuit. It is deviated radially outward of the branch pipe portion 53.
 なお、上流管部51は、図4の断面において、主回路分岐管部52およびバイパス回路分岐管部53の接線TLに沿って接続されていることが好ましい。 In addition, it is preferable that the upstream pipe part 51 is connected along the tangent line TL of the main circuit branch pipe part 52 and the bypass circuit branch pipe part 53 in the cross section of FIG.
 また、上流管部51の管径は、主回路分岐管部52およびバイパス回路分岐管部53の管径の2分の1以下であることが好ましい。 上流 Further, it is preferable that the pipe diameter of the upstream pipe part 51 is not more than half of the pipe diameter of the main circuit branch pipe part 52 and the bypass circuit branch pipe part 53.
 分岐部33Aでは、上流管部51から直管55(主回路分岐管部52およびバイパス回路分岐管部53)に流れ込む冷媒が直管55内に円周方向の流れ(実線矢印R)を生じさせる。この旋回流Rは、上流管部51と直管55との分岐部分において遠心力によるガス冷媒gと液冷媒lとの分離効果を生じる。また、旋回流Rは、直管55における長手方向の冷媒の流速を低下させる。この流速の低下は、ガス冷媒を上方へ浮き上がらせ易くし、液冷媒を下方へ落下(降下)させ易くする。つまり、過冷却回路5への液冷媒の供給割合が向上する。 In the branch part 33A, the refrigerant flowing from the upstream pipe part 51 into the straight pipe 55 (the main circuit branch pipe part 52 and the bypass circuit branch pipe part 53) causes a circumferential flow (solid arrow R) in the straight pipe 55. . This swirling flow R produces an effect of separating the gas refrigerant g and the liquid refrigerant 1 by centrifugal force at the branch portion between the upstream pipe portion 51 and the straight pipe 55. Further, the swirling flow R reduces the flow velocity of the refrigerant in the longitudinal direction in the straight pipe 55. This decrease in the flow velocity makes it easier for the gas refrigerant to float upward and for the liquid refrigerant to drop (fall) downward. That is, the supply ratio of the liquid refrigerant to the subcooling circuit 5 is improved.
 本実施形態に係る冷凍サイクル装置1は、上流管部51から上方へ向かって分岐して室内膨張弁6へ向かう主回路分岐管部52と、上流管部51から下方へ向かって分岐して過冷却回路5へ向かうバイパス回路分岐管部53と、を有する分岐部33、33Aを備えている。そのため、冷凍サイクル装置1は、室外熱交換器3から気液二相状態の冷媒が流れ出た場合であっても、過冷却回路5へ流れ込む液冷媒の割合を増加させ、過冷却回路5へ流れ込むガス冷媒の割合を減少させる。そして、一度、過冷却回路5へ流れる液冷媒の流量が確保されると、室外熱交換器3から気液二相状態の冷媒が流れ出たとしても、過冷却回路5で気液二相状態の冷媒を液冷媒に凝縮させることが可能になる。つまり、冷凍サイクル装置1は、簡便な構造の分岐部33、33Aによって、室内ユニット16側へのガス冷媒の流出を抑制できる。 The refrigeration cycle apparatus 1 according to the present embodiment includes a main circuit branch pipe section 52 that branches upward from the upstream pipe section 51 and heads toward the indoor expansion valve 6, and a main circuit branch pipe section 52 that branches downward from the upstream pipe section 51. And a bypass circuit branch pipe section 53 leading to the cooling circuit 5. Therefore, even when the refrigerant in the gas-liquid two-phase state flows out of the outdoor heat exchanger 3, the refrigeration cycle apparatus 1 increases the ratio of the liquid refrigerant flowing into the subcooling circuit 5 and flows into the subcooling circuit 5. Reduce the proportion of gas refrigerant. Once the flow rate of the liquid refrigerant flowing to the subcooling circuit 5 is secured, even if the gas-liquid two-phase state refrigerant flows out of the outdoor heat exchanger 3, the gas-liquid two-phase state The refrigerant can be condensed into a liquid refrigerant. That is, in the refrigeration cycle apparatus 1, the outflow of the gas refrigerant to the indoor unit 16 can be suppressed by the branch portions 33 and 33A having a simple structure.
 また、本実施形態に係る冷凍サイクル装置1は、主回路分岐管部52およびバイパス回路分岐管部53としてのひと続きの直管55と、直管55に突き立てられる上流管部51と、を備えている。そのため、冷凍サイクル装置1は、極めて簡便な構造の分岐部33、33Aによって、室内ユニット16側へのガス冷媒の流出を抑制できる。 Further, the refrigeration cycle apparatus 1 according to the present embodiment includes a continuous straight pipe 55 as the main circuit branch pipe section 52 and the bypass circuit branch pipe section 53, and an upstream pipe section 51 protruded from the straight pipe 55. Have. Therefore, in the refrigeration cycle apparatus 1, the outflow of the gas refrigerant to the indoor unit 16 can be suppressed by the branch portions 33 and 33A having an extremely simple structure.
 さらに、本実施形態に係る冷凍サイクル装置1は、上流管部51の流路断面積の2倍以上の流路断面積を有する直管55を備えている。そのため、冷凍サイクル装置1は、直管55における冷媒の流速を抑制できる。この抑制効果は、第一迂回冷媒管32aにおける冷媒の流速を第四主冷媒管31dにおける冷媒の流速よりも大きく低減する。この冷媒の流速の低減は、ガス冷媒の浮力を液冷媒の流れから受ける力より大きくする。つまり、冷凍サイクル装置1は、気液分離の効果をより顕著に発揮できる。 冷凍 Furthermore, the refrigeration cycle apparatus 1 according to the present embodiment includes a straight pipe 55 having a flow path cross-sectional area that is twice or more the flow path cross-sectional area of the upstream pipe part 51. Therefore, the refrigeration cycle apparatus 1 can suppress the flow velocity of the refrigerant in the straight pipe 55. This suppression effect reduces the flow velocity of the refrigerant in the first bypass refrigerant pipe 32a more than the flow velocity of the refrigerant in the fourth main refrigerant pipe 31d. This reduction in the flow rate of the refrigerant makes the buoyancy of the gas refrigerant larger than the force received from the flow of the liquid refrigerant. That is, the refrigeration cycle apparatus 1 can exert the effect of gas-liquid separation more remarkably.
 また、本実施形態に係る冷凍サイクル装置1は、実質的に水平方向へ延びる上流管部51と、実質的に鉛直方向へ延びる主回路分岐管部52およびバイパス回路分岐管部53と、を備えている。そのため、冷凍サイクル装置1は、分岐部33、33Aに流れ込む気液二相状態の冷媒をより確実にガス冷媒と液冷媒に分離し、かつ分離した液冷媒を過冷却回路5へ導入できる。 Further, the refrigeration cycle apparatus 1 according to the present embodiment includes an upstream pipe part 51 extending substantially in the horizontal direction, a main circuit branch pipe part 52 and a bypass circuit branch pipe part 53 extending substantially in the vertical direction. ing. Therefore, the refrigeration cycle apparatus 1 can more reliably separate the gas-liquid two-phase refrigerant flowing into the branch portions 33 and 33A into a gas refrigerant and a liquid refrigerant, and can introduce the separated liquid refrigerant into the supercooling circuit 5.
 さらに、本実施形態に係る冷凍サイクル装置1は、主回路分岐管部52の中心線およびバイパス回路分岐管部53の中心線に交差しない、上流管部51の中心線の延長線を有している。そのため、冷凍サイクル装置1は、分岐部33Aに旋回流を生じさせ、重力によるガス冷媒と液冷媒との分離効果に加えて、遠心力によるガス冷媒と液冷媒との分離効果を相乗させることができる。 Furthermore, the refrigeration cycle apparatus 1 according to the present embodiment has an extension of the center line of the upstream pipe portion 51 that does not intersect with the center line of the main circuit branch pipe portion 52 and the center line of the bypass circuit branch pipe portion 53. I have. Therefore, the refrigeration cycle apparatus 1 generates a swirling flow in the branch portion 33A, and can synergize the separation effect of the gas refrigerant and the liquid refrigerant by centrifugal force in addition to the separation effect of the gas refrigerant and the liquid refrigerant by gravity. it can.
 したがって、本実施形態に係る冷凍サイクル装置1によれば、容易な構成の分岐部33、33Aによって過冷却回路5の性能を十分に発揮することができる。 Therefore, according to the refrigeration cycle apparatus 1 according to the present embodiment, the performance of the supercooling circuit 5 can be sufficiently exhibited by the easily configured branch portions 33 and 33A.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.
 1…冷凍サイクル装置、2…圧縮機、3…室外熱交換器、5…過冷却回路、6…室内膨張弁、7…室内熱交換器、8…冷媒管、9…室外膨張弁、11…四方弁、12…アキュムレータ、15…室外ユニット、16…室内ユニット、21…室外送風機、22…室外送風機のプロペラファン、23…室外送風機の電動機、25…室内送風機、26…室内送風機のプロペラファン、27…室内送風機の電動機、31…主回路管、31a…第一主冷媒管、31b…第二主冷媒管、31c…第三主冷媒管、31d…第四主冷媒管、31e…第五主冷媒管、31f…第一配管接続部、31g…第二配管接続部、31h…第三配管接続部、31i…第四配管接続部、32…バイパス回路管、32a…第一迂回冷媒管、32b…第二迂回冷媒管、32c…第三迂回冷媒管、33、33A…分岐部、41…過冷却用膨張弁、42…過冷却熱交換器、45…制御部、46…第一温度センサ、47…第二温度センサ、48…第三温度センサ、51…上流管部、52…主回路分岐管部、53…バイパス回路分岐管部、55…直管。 DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Compressor, 3 ... Outdoor heat exchanger, 5 ... Supercooling circuit, 6 ... Indoor expansion valve, 7 ... Indoor heat exchanger, 8 ... Refrigerant pipe, 9 ... Outdoor expansion valve, 11 ... Four-way valve, 12 ... accumulator, 15 ... outdoor unit, 16 ... indoor unit, 21 ... outdoor blower, 22 ... propeller fan of outdoor blower, 23 ... electric motor of outdoor blower, 25 ... indoor blower, 26 ... propeller fan of indoor blower, 27: electric motor of the indoor blower, 31: main circuit pipe, 31a: first main refrigerant pipe, 31b: second main refrigerant pipe, 31c: third main refrigerant pipe, 31d: fourth main refrigerant pipe, 31e: fifth main pipe Refrigerant pipe, 31f: first pipe connection, 31g: second pipe connection, 31h: third pipe connection, 31i: fourth pipe connection, 32: bypass circuit pipe, 32a: first bypass refrigerant pipe, 32b ... second bypass refrigerant pipe, 32c ... Bypass refrigerant pipe, 33, 33A branch, 41 supercooling expansion valve, 42 supercooling heat exchanger, 45 control part, 46 first temperature sensor, 47 second temperature sensor, 48 third Temperature sensor, 51: upstream pipe section, 52: main circuit branch pipe section, 53: bypass circuit branch pipe section, 55: straight pipe.

Claims (5)

  1. 圧縮機と、
     凝縮器と、
     室内膨張弁と、
     前記凝縮器と前記室内膨張弁との間に配置される過冷却回路と、
     蒸発器と、
     前記圧縮機、前記凝縮器、前記過冷却回路、前記室内膨張弁、および前記蒸発器を接続して冷媒を流通させる冷媒管と、を備え、
     前記冷媒管は、前記圧縮機、前記凝縮器、前記過冷却回路、前記室内膨張弁、および前記蒸発器に前記冷媒を循環させる主回路管と、前記過冷却回路と前記室内膨張弁とを繋ぐ前記主回路管の途中から分岐して前記圧縮機へ前記冷媒を迂回させるバイパス回路管と、前記主回路管と前記バイパス回路管との分岐部と、を有し、
     前記分岐部は、上流管部と、前記上流管部から上方へ向かって分岐して前記室内膨張弁へ向かう主回路分岐管部と、前記上流管部から下方へ向かって分岐して前記過冷却回路へ向かうバイパス回路分岐管部と、を有する冷凍サイクル装置。
    A compressor,
    A condenser,
    An indoor expansion valve;
    A supercooling circuit disposed between the condenser and the indoor expansion valve;
    An evaporator,
    A refrigerant pipe that connects the compressor, the condenser, the subcooling circuit, the indoor expansion valve, and the evaporator to flow a refrigerant,
    The refrigerant pipe connects a main circuit pipe that circulates the refrigerant to the compressor, the condenser, the subcooling circuit, the indoor expansion valve, and the evaporator, and connects the subcooling circuit and the indoor expansion valve. A bypass circuit pipe that branches off from the middle of the main circuit pipe to bypass the refrigerant to the compressor, and a branch portion between the main circuit pipe and the bypass circuit pipe;
    The branch section includes an upstream pipe section, a main circuit branch pipe section that branches upward from the upstream pipe section toward the indoor expansion valve, and a subcooled branch that branches downward from the upstream pipe section. A refrigeration cycle apparatus comprising: a bypass circuit branch pipe section leading to a circuit;
  2. 前記主回路分岐管部と前記バイパス回路分岐管部とは、ひと続きの直管であり、
     前記上流管部は、前記直管に突き立てられている請求項1に記載の冷凍サイクル装置。
    The main circuit branch pipe section and the bypass circuit branch pipe section are a continuous straight pipe,
    The refrigeration cycle apparatus according to claim 1, wherein the upstream pipe is protruded from the straight pipe.
  3. 前記直管の流路断面積は、前記上流管部の流路断面積の2倍以上ある請求項1または2に記載の冷凍サイクル装置。 3. The refrigeration cycle apparatus according to claim 1, wherein the cross-sectional area of the flow passage of the straight pipe is at least twice the cross-sectional area of the flow passage of the upstream pipe portion.
  4. 前記上流管部は、実質的に水平方向へ延び、
    前記主回路分岐管部および前記バイパス回路分岐管部は実質的に鉛直方向へ延びている請求項1から3のいずれか1項に記載の冷凍サイクル装置。
    The upstream pipe portion extends substantially horizontally;
    4. The refrigeration cycle apparatus according to claim 1, wherein the main circuit branch pipe and the bypass circuit branch pipe extend substantially vertically. 5.
  5. 前記上流管部の中心線の延長線は、前記主回路分岐管部の中心線および前記バイパス回路分岐管部の中心線に交差しない請求項1から4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein an extension of a center line of the upstream pipe does not intersect a center line of the main circuit branch pipe and a center line of the bypass circuit branch pipe. .
PCT/JP2018/035376 2018-09-25 2018-09-25 Refrigeration cycle device WO2020065712A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880097837.9A CN112771319A (en) 2018-09-25 2018-09-25 Refrigeration cycle device
EP18935610.8A EP3859230A4 (en) 2018-09-25 2018-09-25 Refrigeration cycle device
JP2020547626A JP7054419B2 (en) 2018-09-25 2018-09-25 Refrigeration cycle device
PCT/JP2018/035376 WO2020065712A1 (en) 2018-09-25 2018-09-25 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035376 WO2020065712A1 (en) 2018-09-25 2018-09-25 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020065712A1 true WO2020065712A1 (en) 2020-04-02

Family

ID=69950436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035376 WO2020065712A1 (en) 2018-09-25 2018-09-25 Refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP3859230A4 (en)
JP (1) JP7054419B2 (en)
CN (1) CN112771319A (en)
WO (1) WO2020065712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992899A (en) * 2022-06-10 2022-09-02 海信空调有限公司 Air conditioner and oil blockage prevention control method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2134939A1 (en) * 1970-07-13 1972-01-20 GuIf+ Western Industries, Inc., New York, N.Y. (V.St.A.) Method and device for separating oils in cooling systems
JPS55105153A (en) * 1979-02-05 1980-08-12 Carrier Corp Steam compression type refrigerating machine and operating method thereof
JPH0461262U (en) * 1990-09-27 1992-05-26
JPH05322383A (en) * 1992-05-15 1993-12-07 Daikin Ind Ltd Gas/liquid separator
JPH09310925A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Air conditioner
JP2000179968A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerating cycle for air conditioner
JP2005233551A (en) 2004-02-20 2005-09-02 Mitsubishi Electric Corp Refrigeration cycle device
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2010210142A (en) * 2009-03-10 2010-09-24 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device mounted with the same
WO2015056704A1 (en) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 Refrigeration cycle device
JP2015143614A (en) * 2015-03-17 2015-08-06 株式会社サムスン日本研究所 Refrigerant amount detector
CN205784060U (en) * 2016-05-18 2016-12-07 天津大学 A kind of impacting type T-shaped pipe composition regulation device for non-azeotropic working medium composition regulation
WO2018047511A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Heat exchanger and air-conditioner
JP2018516355A (en) * 2015-10-27 2018-06-21 広東美的暖通設備有限公司Gd Midea Heating & Ventilating Equipment Co.,Ltd. Steam injection increased enthalpy air conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223359A (en) * 1991-12-06 1993-08-31 Nippondenso Co Ltd Freezing cycle
DE19522884A1 (en) * 1995-06-23 1997-01-02 Inst Luft Kaeltetech Gem Gmbh Compression refrigeration circuit operating system
JP2002200402A (en) * 2000-12-28 2002-07-16 Ryosaku Fujisato Gas-liquid separator and gas-liquid separating apparatus provided therewith
JP5411643B2 (en) * 2009-10-05 2014-02-12 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater
CN103225935B (en) * 2013-04-22 2015-04-22 重庆美的通用制冷设备有限公司 Gas-liquid separator, air source heat recovery system, water chiller and heat pump

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2134939A1 (en) * 1970-07-13 1972-01-20 GuIf+ Western Industries, Inc., New York, N.Y. (V.St.A.) Method and device for separating oils in cooling systems
JPS55105153A (en) * 1979-02-05 1980-08-12 Carrier Corp Steam compression type refrigerating machine and operating method thereof
JPH0461262U (en) * 1990-09-27 1992-05-26
JPH05322383A (en) * 1992-05-15 1993-12-07 Daikin Ind Ltd Gas/liquid separator
JPH09310925A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Air conditioner
JP2000179968A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerating cycle for air conditioner
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2005233551A (en) 2004-02-20 2005-09-02 Mitsubishi Electric Corp Refrigeration cycle device
JP2010210142A (en) * 2009-03-10 2010-09-24 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device mounted with the same
WO2015056704A1 (en) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 Refrigeration cycle device
JP2015143614A (en) * 2015-03-17 2015-08-06 株式会社サムスン日本研究所 Refrigerant amount detector
JP2018516355A (en) * 2015-10-27 2018-06-21 広東美的暖通設備有限公司Gd Midea Heating & Ventilating Equipment Co.,Ltd. Steam injection increased enthalpy air conditioning system
CN205784060U (en) * 2016-05-18 2016-12-07 天津大学 A kind of impacting type T-shaped pipe composition regulation device for non-azeotropic working medium composition regulation
WO2018047511A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Heat exchanger and air-conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859230A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992899A (en) * 2022-06-10 2022-09-02 海信空调有限公司 Air conditioner and oil blockage prevention control method thereof
CN114992899B (en) * 2022-06-10 2023-06-16 海信空调有限公司 Air conditioner and oil blocking prevention control method thereof

Also Published As

Publication number Publication date
CN112771319A (en) 2021-05-07
JPWO2020065712A1 (en) 2021-08-30
EP3859230A1 (en) 2021-08-04
EP3859230A4 (en) 2022-05-04
JP7054419B2 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP5640857B2 (en) Pressure reducing device and refrigeration cycle
JP5413393B2 (en) Refrigerant distributor and refrigeration cycle
JP4626531B2 (en) Ejector refrigeration cycle
KR102198311B1 (en) Air conditioning system
JP3484866B2 (en) Refrigeration equipment
KR102014466B1 (en) Ciller unit and Chiller system including the same
JP5018724B2 (en) Ejector refrigeration cycle
US10920760B2 (en) Air compressor having an oil separator, an oil cooler, first and second evaporators, and wherein intake air and the oil are simultaneously cooled in the first and second evaporators
JP2006003022A (en) Refrigerating unit and intermediate pressure receiver
JP2007024412A (en) Ejector type refrigeration cycle
EP2787314A1 (en) Double-pipe heat exchanger and air conditioner using same
US11656014B2 (en) Heat exchanger
WO2020065712A1 (en) Refrigeration cycle device
JP5262916B2 (en) Heat exchanger
US20220214082A1 (en) Refrigeration cycle apparatus
KR100883600B1 (en) Air conditioner
JP6149485B2 (en) Refrigeration equipment
JP2012077984A (en) Refrigerating circuit
JP2020056536A (en) Refrigeration cycle device
KR20160096947A (en) An air conditioning system and a method for controlling the same
JP6878550B2 (en) Refrigerator
WO2023067807A1 (en) Binary refrigeration device
KR102536383B1 (en) Device including a refrigerant cycle
JPH03164661A (en) Air conditioner
WO2022054418A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935610

Country of ref document: EP

Effective date: 20210426