JP2002200402A - Gas-liquid separator and gas-liquid separating apparatus provided therewith - Google Patents

Gas-liquid separator and gas-liquid separating apparatus provided therewith

Info

Publication number
JP2002200402A
JP2002200402A JP2000403439A JP2000403439A JP2002200402A JP 2002200402 A JP2002200402 A JP 2002200402A JP 2000403439 A JP2000403439 A JP 2000403439A JP 2000403439 A JP2000403439 A JP 2000403439A JP 2002200402 A JP2002200402 A JP 2002200402A
Authority
JP
Japan
Prior art keywords
gas
liquid
hollow portion
rectifying
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000403439A
Other languages
Japanese (ja)
Inventor
Ryosaku Fujisato
良策 藤里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000403439A priority Critical patent/JP2002200402A/en
Publication of JP2002200402A publication Critical patent/JP2002200402A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separator in which gas-liquid separation of a fluid can be carried out without decentering the axis of a gas stream to be formed on the inside even when the fluid contains minute air bubbles and to provide a gas-liquid separating apparatus in which gas-liquid separation can be carried out efficiently while the internal pressure is adjusted by adjusting a flow rate control valve. SOLUTION: This gas-liquid separator is constituted of a flow rectifying part having such a shape that it converges almost from the center toward both ends, a gas collecting tool one end of which is communicated with one end of the flow rectifying part coaxially and which has a hollow part for collecting the gas, a liquid collecting tool one end of which is communicated with the other end of the flow rectifying part coaxially and which has a hollow part for collecting the liquid, a mixed fluid injecting hole opened on a flow rectifying tool in the tangential direction, a gas sending hole opened to the gas collecting tool on the axial line of the hollow part for collecting the gas and a liquid sending hole opened to the liquid collecting tool.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄水場等における
殺菌ガスによる浄化後の殺菌ガスの分離、化学反応槽等
における気液接触反応後の気体の分離、食品製造ライン
等における気体混入による変質劣化を防止するための気
体の分離等の液体に混入した気体を分離する気液分離器
及びそれを備えた気液分離装置に関する。
The present invention relates to the separation of sterilizing gas after purification by a sterilizing gas in a water purification plant, the separation of gas after a gas-liquid contact reaction in a chemical reaction tank, etc., and the alteration due to gas mixing in a food production line or the like. The present invention relates to a gas-liquid separator for separating gas mixed in a liquid such as a gas for preventing deterioration, and a gas-liquid separator including the same.

【0002】[0002]

【従来の技術】近年、種々の液体に混入している気体を
分離する機能を有する装置が研究・開発されている。従
来の技術として、例えば、実開昭57−40685号公
報(以下、イ号公報という)には、「両端を閉塞した円
筒形容器の側面に、気泡を含む流体の取入管及びポンプ
吸入側に接続する取出管を装着し、該取入管の取入口及
び取出管の取出口を、前記容器の内壁の内周面に沿う旋
回流体の流れの方向に向つて開口するように配設し、且
つ円筒長手方向に、前記容器の直径の3乃至5倍に隔離
させ、また前記容器の端面中心部に負圧手段に接続する
気泡取出用排出管を配設したポンプ吸入ラインにおける
気泡除去装置」が開示されている。また、例えば、実開
昭58−63005号公報(以下、ロ号公報という)に
は、「一つの軸線に沿って延在し該軸線に垂直な断面が
該軸線を中心とする円形である如き室空間を郭定する容
器と、前記室空間に前記軸線の周りに旋回する流体流を
形成する方向に流体を噴出する流体入口と、前記室空間
の軸線方向両端部に各々開口した流体出口とを有してい
る気液分離器」が開示されている。また、例えば、実開
平03−59003号公報(以下、ハ号公報という)に
は、「立形円筒状タンクの下部側壁に対向する流入口と
流出口を設け、タンク内には上部が連通する円筒状の隔
壁で流入室と流出室に仕切ると共に、流入室は流出室に
比べてその容量が充分大きく且つ断面を略円筒状に形成
し、流入口から流入室へ入る入口部に液体が流入室の内
壁を旋回するように案内羽根を設けた空気分離器」が開
示されている。また、例えば、実開平03−59005
号公報(以下、ニ号公報という)には、「上部に気体吐
出用の弁を有し下側部に液体の流入口を有する立円筒形
の本体と、該本体内に設けられた底部が閉塞され上部が
開放され下側部に前記本体の流入口と同高さで本体の下
側部外方へ連通した流出口を有す立円筒形の内筒とから
なり、前期流入口から本体内に導かれた液体が本体内側
壁を旋回しながら液体中の気相分が本体内上部に分離さ
れて前記弁を介して排出されるとともに、液体中の液相
分のみが前記内筒の上部から下部に導かれて流出口を通
じて取り出される様にした気液分離器」が開示されてい
る。また、例えば、実開平05−22004号公報(以
下、ホ号公報という)には、「円筒状の装置本体の上部
に供給口が形成され、上記装置本体の下部に排液口が形
成され、かつ上記装置本体の上端に気体抜弁が設けられ
ると共に、上記供給口から内部への給液方向及び排液口
の外部への排液方向が上記装置本体の外周の接線方向に
設定されている気液分離装置」が開示されている。ま
た、例えば、特開平11−19406号公報(以下、ヘ
号公報という)には、「円筒形と中心軸に対して傾斜角
をもつ円錐形を組み合わせた形状の容器において、円筒
形の接線方向より注入口を設けて油、炭化水素、水溶液
等の液体を注入し、回転流を生じさせて中心軸付近に気
泡を分離、集合させ、その容器の円筒形状部分の中心軸
上に排気口を設けて気泡を排気させ、気泡を分離した液
体は円錐形状部分の直径の小さくなった箇所に設置され
た円筒形の容器から流体の流れに沿った接線方向に排出
される気泡分離排気容器を備えた気泡除去装置」が開示
されている。
2. Description of the Related Art In recent years, devices having a function of separating gases mixed in various liquids have been researched and developed. As a conventional technique, for example, Japanese Utility Model Laid-Open No. 57-40685 (hereinafter referred to as "A") discloses that "a side of a cylindrical container having both ends closed is provided with an intake pipe for a fluid containing air bubbles and a suction side of a pump. A take-out pipe to be connected is mounted, and the intake of the take-in pipe and the take-out of the take-out pipe are arranged so as to open in the direction of the flow of the swirling fluid along the inner peripheral surface of the inner wall of the container, and In the longitudinal direction of the cylinder, a bubble removing device in a pump suction line is provided which is separated by 3 to 5 times the diameter of the container, and which is provided at the center of the end face of the container with a discharge pipe for removing bubbles connected to negative pressure means. It has been disclosed. Further, for example, Japanese Utility Model Application Laid-Open No. 58-63005 (hereinafter referred to as “B”) discloses that “a cross section extending along one axis and perpendicular to the axis is a circle centered on the axis. A container defining a chamber space, a fluid inlet for ejecting fluid in a direction forming a fluid flow swirling around the axis in the chamber space, and a fluid outlet opening at both ends in the axial direction of the chamber space. Having a gas-liquid separator ". Further, for example, Japanese Utility Model Laid-Open Publication No. 03-590003 (hereinafter referred to as "C" publication) discloses that "an inlet and an outlet are provided on the lower side wall of a vertical cylindrical tank, and the upper part communicates with the inside of the tank. A cylindrical partition separates the inflow chamber and the outflow chamber, and the inflow chamber has a sufficiently large capacity compared to the outflow chamber and has a substantially cylindrical cross section, and liquid flows into the inlet from the inflow port to the inflow chamber. An air separator provided with guide vanes so as to pivot on the inner wall of the chamber is disclosed. In addition, for example, Japanese Utility Model Laid-Open No. 03-59005
Japanese Patent Application Publication (hereinafter referred to as Japanese Utility Model Application Publication No. 2) discloses that a vertical cylindrical main body having a gas discharge valve at an upper portion and a liquid inflow port at a lower portion, and a bottom provided in the main body. A vertical cylindrical inner cylinder which is closed and has an upper opening and a lower portion having an outlet communicating with the lower portion of the main body at the same height as the inlet of the main body, and having an outlet communicating with the outside of the lower portion of the main body. While the liquid guided into the inside swirls the inner wall of the main body, the gaseous phase component in the liquid is separated to the upper part in the main body and discharged through the valve, and only the liquid phase component in the liquid is in the inner cylinder. A gas-liquid separator which is guided from the upper part to the lower part and taken out through the outlet is disclosed. Also, for example, Japanese Utility Model Laid-Open No. 05-22004 (hereinafter referred to as “E”) discloses that “a supply port is formed at an upper portion of a cylindrical device main body, and a drain port is formed at a lower portion of the device main body. A gas vent valve is provided at an upper end of the apparatus main body, and a liquid supply direction from the supply port to the inside and a liquid discharge direction to the outside of the liquid discharge port are set to be tangential to the outer periphery of the apparatus main body. Liquid separation device "is disclosed. For example, Japanese Patent Application Laid-Open No. H11-19406 (hereinafter referred to as “F”) discloses that “in a container having a shape combining a cylindrical shape and a conical shape having an inclination angle with respect to a central axis, the cylindrical tangential direction A liquid inlet such as oil, hydrocarbon, aqueous solution, etc. is injected to create a rotary flow, bubbles are separated and collected near the central axis, and an exhaust port is provided on the central axis of the cylindrical portion of the container. A bubble separation and exhaust container is provided in which a bubble is evacuated and the bubble separated liquid is discharged in a tangential direction along the flow of the fluid from a cylindrical container installed at a portion where the diameter of the conical portion is reduced. Bubble removing device "is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術は以下の課題を有していた。 (1)イ号公報に記載の技術は、取入管が配設されてい
る円筒形容器の形状が単なる円筒形状であるため、特に
円筒形容器内への流体の流入量や流速が不規則な場合は
気泡の集まった気柱が偏心して形成され易く、気体を気
泡取出用排出管から排出させることが困難であるという
問題点を有していた。 (2)また、イ号公報に記載の技術は、気泡取出用排出
管と取出管がともに円筒形容器の上部側にあるため、流
体の流入量や流速によっては、気泡取出用排出管から液
体が排出されてしまうという問題点を有していた。 (3)ロ号公報に記載の技術は、円筒容器の流体入口が
形成されている部分が単なる円筒形状であるため、特に
円筒容器内への流体の流速が不規則な場合は気泡が集ま
って形成される軸が偏心して形成され易く、気体を流体
出口から排出させることが困難であるという問題点を有
していた。 (4)また、ロ号公報に記載の技術は、液体用の流体出
口が円筒容器の軸線上にあるので、流体出口付近は乱流
であり、ノッキングを起こす等して液体を定常的に流出
させることが困難であるという問題点を有していた。 (5)ハ号公報に記載の技術は、流入口が配設されてい
るタンクが単なる円筒形状であるため、特にタンク内へ
の流体の流速が不規則な場合は気泡が集まって形成され
る気泡軸が偏心して形成され易く、気体を弁から排出さ
せることが困難であるという問題点を有していた。 (6)また、ハ号公報に記載の技術は、液体が旋回しな
がら弁の方向へ向っていくので、流体の流入量や流速に
よっては、弁から気体と共に液体も流出するという問題
点を有していた。 (7)ニ号公報に記載の技術は、本体の内部に内筒を備
えているので気泡が集まってできる気泡軸が形成されに
くく、また、液体が弁に向って移動していくので、流体
の流入量や流速によっては、弁から気体と共に液体が流
出されてしまうという問題点を有していた。 (8)また、ニ号公報に記載の技術は、本体の内部に内
筒を備えているので装置が大型化し、生産性に欠けると
いう問題点を有していた。 (9)ホ号公報に記載の技術は、装置本体の供給口が形
成されている部分の形状が単なる円筒状であるので、特
に装置本体内への流体の流速が不規則な場合は気泡が集
まって形成される気泡軸が偏心して形成され易く、気体
を弁から排出させることが困難であるという問題点を有
していた。 (10)また、ホ号公報に記載の技術は、排液口が装置
本体の内径が小さい部分に形成されているので、排液口
付近で液体が乱流になりやすく、ノッキングを起こす等
して液体を定常的に流出させることが困難であるという
問題点を有していた。 (11)ヘ号公報に記載の技術は、注入口は気泡除去装
置の円筒形の部分に形成されているので、特に装置本体
内への流体の流速が不規則な場合は気泡が集まって形成
される気泡軸が偏心して形成され易く、気体を弁から排
出させることが困難であるという問題点を有していた。
However, the above-mentioned prior art has the following problems. (1) In the technique described in Japanese Patent Laid-Open Publication No. H06-27139, since the shape of the cylindrical container in which the intake pipe is provided is merely a cylindrical shape, the flow rate and the flow rate of the fluid into the cylindrical container are particularly irregular. In this case, the air column in which bubbles are collected tends to be formed eccentrically, and there is a problem that it is difficult to discharge the gas from the discharge pipe for removing bubbles. (2) In addition, in the technology described in Japanese Patent Publication No. A, since the discharge pipe for removing air bubbles and the extraction pipe are both located on the upper side of the cylindrical container, depending on the inflow amount and the flow velocity of the fluid, the liquid is discharged from the discharge pipe for removing air bubbles. Had to be discharged. (3) In the technique described in Japanese Patent Application Laid-Open Publication No. H8-27, since the portion of the cylindrical container where the fluid inlet is formed has a mere cylindrical shape, bubbles are collected particularly when the flow rate of the fluid into the cylindrical container is irregular. There is a problem that the formed shaft is easily formed eccentrically, and it is difficult to discharge the gas from the fluid outlet. (4) In the technique described in Japanese Patent Application Laid-Open Publication No. H08-27138, since the fluid outlet for the liquid is on the axis of the cylindrical container, turbulence is generated near the fluid outlet, and the liquid flows out steadily due to knocking or the like. There was a problem that it was difficult to make it. (5) According to the technique described in Japanese Patent Publication No. C, since the tank in which the inflow port is provided has a mere cylindrical shape, bubbles are formed particularly when the flow velocity of the fluid into the tank is irregular. There was a problem that the bubble axis was easily formed eccentrically, and it was difficult to discharge gas from the valve. (6) Further, the technique described in the publication No. C has a problem that the liquid flows out of the valve along with the gas depending on the inflow amount and the flow velocity of the fluid, because the liquid turns and turns toward the valve. Was. (7) In the technique described in Japanese Patent Application Laid-Open Publication No. H06-27139, since the inner cylinder is provided inside the main body, it is difficult to form a bubble axis formed by the collection of bubbles, and since the liquid moves toward the valve, the fluid There is a problem that the liquid flows out from the valve together with the gas depending on the inflow amount and flow velocity of the gas. (8) Further, the technology described in Japanese Patent Application Laid-Open Publication No. H11-150686 has a problem that the device is increased in size because the inner cylinder is provided inside the main body, and the productivity is lacking. (9) According to the technology described in Japanese Patent Application Publication No. H9, since the shape of the portion where the supply port of the apparatus main body is formed is simply cylindrical, bubbles are generated particularly when the flow rate of the fluid into the apparatus main body is irregular. There has been a problem that a bubble axis formed as a group is easily formed eccentrically, and it is difficult to discharge gas from the valve. (10) Further, in the technique described in Japanese Patent Application Laid-Open Publication No. H11-107, the liquid is easily formed in a turbulent flow in the vicinity of the liquid discharge port because the liquid discharge port is formed in a portion where the inner diameter of the apparatus body is small, and knocking is caused. Therefore, it is difficult to constantly discharge the liquid. (11) In the technique described in the above publication, since the inlet is formed in the cylindrical portion of the air bubble removing device, the air bubbles collect and form especially when the flow rate of the fluid into the device body is irregular. However, there is a problem that the bubble axis is easily formed eccentrically, and it is difficult to discharge gas from the valve.

【0004】本発明は上記従来の課題を解決するもの
で、内部に形成される気体軸が偏心することがなく、微
細な気泡を含む流体であっても気液分離させることがで
きる気液分離器の提供、及び、開口径調節バルブを調節
することにより内部の圧力を調節し効率良く気液分離さ
せることができる気液分離装置の提供を目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and has a gas axis formed therein without eccentricity, and is capable of gas-liquid separation even for a fluid containing fine bubbles. It is an object of the present invention to provide a vessel and a gas-liquid separation device capable of adjusting an internal pressure by adjusting an opening diameter adjustment valve and efficiently separating gas and liquid.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明の気液分離器及びそれを備えた気液分離装置
は、以下の構成を有している。
Means for Solving the Problems To solve the above-mentioned problems, a gas-liquid separator of the present invention and a gas-liquid separator equipped with the same have the following arrangement.

【0006】本発明の請求項1に記載の気液分離器は、
a.略中央から両端に向かって収束する形状の整流用中
空部を有する整流部と、b.一端側が整流用中空部の一
端側に同軸で連通し径が整流用中空部の最小径と同径の
円柱状の気体用中空部を有する気体用器体と、c.一端
側が整流用中空部の他端側に同軸で連通し径が整流用中
空部の最小径と同径の円柱状の液体用中空部を有する液
体用器体と、d.整流用中空部の径が最大の部分に連通
させて整流部に接線方向に開口された混相流体用注入孔
と、e.気体用中空部の他端側に連通させて気体用中空
部の頂部の気体用器体に開口された気体用送出孔と、
f.液体用中空部の他端側に連通させて液体用器体に開
口された液体用送出孔と、を備えている構成を有してい
る。
[0006] The gas-liquid separator according to claim 1 of the present invention comprises:
a. A rectifying portion having a rectifying hollow portion having a shape converging from substantially the center toward both ends; b. A gas container having a cylindrical gas hollow portion having one end coaxially connected to one end of the rectifying hollow portion and having the same diameter as the minimum diameter of the rectifying hollow portion; c. A liquid container having a cylindrical liquid hollow portion having one end coaxially connected to the other end of the rectifying hollow portion and having the same diameter as the minimum diameter of the rectifying hollow portion; d. An injection hole for a multiphase fluid, which is tangentially opened to the rectifying portion by communicating with the portion having the largest diameter of the rectifying hollow portion; e. A gas delivery hole that is communicated with the other end side of the gas hollow portion and is opened to the gas container at the top of the gas hollow portion,
f. And a liquid delivery hole that is opened to the liquid container so as to communicate with the other end of the liquid hollow portion.

【0007】この構成により、以下のような作用が得ら
れる。 (1)混相流体用注入孔が整流部に接線方向に開口され
ているので、混相流体用注入孔から整流用中空部に流入
した混相流体は整流部の内壁に沿って旋回し、遠心分離
の原理により液体と気体とに分離され、整流部の中心軸
線上に気体軸が形成される。 (2)整流用中空部は略中央から両端に向って収束する
形状を有し、混相流体用注入孔は整流用中空部の径が最
大の部分に連通しているので、混相流体の旋回運動の径
は整流用中空部の両端に近づくにつれて小さくなってい
く。これにより、整流用中空部では、乱流が極めて生じ
にくく、気体軸は整流用中空部の中心軸線上に安定して
形成される。 (3)気体用中空部及び液体用中空部は整流用中空部に
同軸で連通しているので、混相流体は気体用中空部及び
液体用中空部においても旋回し、遠心分離の原理により
液体と気体が分離され、気体用中空部,整流用中空部,
液体用中空部の中心軸線上に気体軸が形成される。 (4)気体用送出孔は気体用中空部の頂部の気体用器体
に開口されているので、気体軸に集まった気体は気体用
送出孔から気液分離器外へ順次送出される。 (5)気体が取り除かれた液体は、液体用送出孔から気
液分離器外へ順次送出される。 (6)気体用中空部,整流用中空部,液体用中空部の中
心軸線上に気体軸を安定して形勢することができるの
で、混相流体に微細な気泡が含有されており、かつ、整
流用中空部に供給される混相流体の速度が不規則であっ
ても、確実に気体と液体を分離させることができる。こ
こで、気液分離器は、浄水場等における殺菌ガスによる
浄化後の殺菌ガスの分離、化学反応槽等における気液接
触反応後の気体の分離、食品製造ライン等における気体
混入による変質劣化を防止するための気体の分離等に使
用される。各中空部の寸法や、各孔の開口径は、混相流
体の供給量や液体の粘度等により適宜選択される。整流
用中空部の形状としては、球型、卵型状等が用いられ
る。液体としては、例えば、水、反応液、液体食品等が
用いられる。また、気体としては、例えば、大気、反応
ガス等が用いられる。各器体の材質としては、合成樹脂
製等が用いられる。気液分離器は、横置き型として用い
ても、液体用器体を下にして縦置き型として用いてもよ
いが、縦置き型として用いることが好ましい。横置き型
として用いた場合は、気液分離器内を旋回する液体が気
体軸方向に対して垂直方向の力(重力)を受け、気体用
の流体の軸が安定して形成されにくい傾向にある。これ
に対して、縦置き型として用いた場合は、気液分離器内
を旋回する液体が気体軸方向と平行な力(重力)を受
け、気体軸が安定して形成されやすく、また、気体と液
体は重力によっても上下に分離されるので、気体と液体
との分離がさらに効率的に行われる。
With this configuration, the following operation is obtained. (1) Since the multi-phase fluid injection hole is tangentially opened to the rectifying portion, the multi-phase fluid flowing from the multi-phase fluid injection hole into the rectifying hollow portion swirls along the inner wall of the rectifying portion and is subjected to centrifugal separation. Liquid and gas are separated according to the principle, and a gas axis is formed on the central axis of the rectification unit. (2) The rectifying hollow portion has a shape that converges from substantially the center to both ends, and the multi-phase fluid injection hole communicates with a portion where the diameter of the rectifying hollow portion is largest, so that the swirling motion of the multi-phase fluid. Becomes smaller as it approaches both ends of the rectifying hollow portion. Thereby, turbulence is extremely unlikely to occur in the rectifying hollow portion, and the gas axis is stably formed on the central axis of the rectifying hollow portion. (3) Since the gas hollow portion and the liquid hollow portion are coaxially communicated with the rectifying hollow portion, the multiphase fluid also swirls in the gas hollow portion and the liquid hollow portion as well, and is separated from the liquid by the principle of centrifugal separation. The gas is separated and the gas hollow, rectifying hollow,
A gas axis is formed on the central axis of the liquid hollow portion. (4) Since the gas delivery hole is opened in the gas body at the top of the gas hollow part, the gas collected on the gas axis is sequentially delivered from the gas delivery hole to the outside of the gas-liquid separator. (5) The liquid from which the gas has been removed is sequentially sent out of the gas-liquid separator from the liquid delivery hole. (6) Since the gas axis can be stably formed on the central axis of the hollow portion for gas, the hollow portion for rectification, and the hollow portion for liquid, fine bubbles are contained in the multiphase fluid, and rectification is performed. Even if the speed of the multiphase fluid supplied to the hollow part is irregular, the gas and the liquid can be surely separated. Here, the gas-liquid separator is used to separate germicidal gas after purification by germicidal gas in a water purification plant, to separate gas after gas-liquid contact reaction in a chemical reaction tank, etc. It is used for separation of gas for prevention. The size of each hollow portion and the opening diameter of each hole are appropriately selected depending on the supply amount of the multiphase fluid, the viscosity of the liquid, and the like. As the shape of the rectifying hollow portion, a spherical shape, an oval shape, or the like is used. As the liquid, for example, water, a reaction liquid, a liquid food, or the like is used. In addition, as the gas, for example, the atmosphere, a reaction gas, or the like is used. As a material of each container, a synthetic resin or the like is used. The gas-liquid separator may be used as a horizontal type or as a vertical type with the liquid container facing down, but is preferably used as a vertical type. When used as a horizontal type, the liquid swirling in the gas-liquid separator receives a force (gravity) in the direction perpendicular to the gas axis direction, and the axis of the gas fluid tends to be difficult to form stably. is there. On the other hand, when used as a vertical type, the liquid swirling in the gas-liquid separator receives a force (gravity) parallel to the gas axis direction, and the gas axis is easily formed stably. Since the liquid and the liquid are separated vertically by gravity, the gas and the liquid are separated more efficiently.

【0008】本発明の請求項2に記載の発明は請求項1
に記載の気液分離器であって、気体用器体に代えて、整
流用中空部と同軸で整流部に配設され、一端側が整流用
中空部に配設され、両端が開口された気体用管を備えて
いる構成を有している。
The second aspect of the present invention is the first aspect.
The gas-liquid separator according to the above, wherein instead of a gas container, a gas is disposed coaxially with the rectifying hollow portion in the rectifying portion, one end is disposed in the rectifying hollow portion, and both ends are opened. It has a configuration provided with a service pipe.

【0009】この構成により、請求項1の作用に加え、
以下のような作用が得られる。 (1)気体用管が整流用中空部の中心軸線上に配設され
ているので、気体軸は気体用管の外周壁の周囲,整流用
中空部,液体用中空部の中心軸線上に形成され、気体軸
に集まった気体は気体用管から順次送出される。 (2)気体用管が整流用中空部の中心軸線上に配設され
ているので、整流用中空部内の気体用管の開口端は気体
軸内に位置し、液体が気体用管から送出されてしまうこ
とを防止できる。 (3)気体用器体が不要なので、気液分離器を小型化す
ることができる。ここで、気体用管の管径や長さは、各
中空部の寸法や各孔の開口径,混相流体の供給量,液体
の粘度等に応じて、適宜選択される。
With this configuration, in addition to the function of claim 1,
The following operation is obtained. (1) Since the gas pipe is disposed on the central axis of the rectifying hollow, the gas axis is formed around the outer peripheral wall of the gas pipe, and on the central axis of the rectifying hollow and the liquid hollow. The gas collected on the gas axis is sequentially sent out from the gas pipe. (2) Since the gas pipe is disposed on the central axis of the rectifying hollow part, the opening end of the gas pipe in the rectifying hollow part is located in the gas axis, and the liquid is discharged from the gas pipe. Can be prevented. (3) Since the gas container is unnecessary, the size of the gas-liquid separator can be reduced. Here, the diameter and length of the gas pipe are appropriately selected according to the dimensions of each hollow portion, the opening diameter of each hole, the supply amount of the multiphase fluid, the viscosity of the liquid, and the like.

【0010】本発明の請求項3に記載の発明は請求項1
又は2に記載の気液分離器であって、液体用送出孔が、
液体用器体に接線方向に開口されている構成を有してい
る。
The third aspect of the present invention is the first aspect.
Or the gas-liquid separator according to 2, wherein the liquid delivery hole is:
The liquid container has a configuration that is opened in the tangential direction.

【0011】この構成により、請求項1又は2の作用に
加え、以下のような作用が得られる。 (1)液体用送出孔が接線方向に開口されており、旋回
しながら液体用中空部に流入した液体を素直に液体用送
出孔から送出させることができるので、定常的な液体の
送出量を得ることができる。下流側整流用中空部の寸法
は、他の各中空部の寸法や各孔開口径,混相流体の供給
量,液体の粘度等に応じて適宜選択される。
With this configuration, the following operation is obtained in addition to the operation of the first or second aspect. (1) The liquid delivery hole is opened in the tangential direction, and the liquid that has flowed into the liquid hollow portion while rotating can be directly delivered from the liquid delivery hole. Obtainable. The size of the downstream rectifying hollow portion is appropriately selected according to the size of each of the other hollow portions, the opening diameter of each hole, the supply amount of the multiphase fluid, the viscosity of the liquid, and the like.

【0012】本発明の請求項4に記載の発明は請求項1
乃至3の何れか一項に記載の気液分離器であって、一端
側が液体用中空部の他端側に同軸で連通し最小径が液体
用中空部の径と同径であり略中央から両端に向って収束
する形状の下流側整流用中空部を有する下流側器体を備
え、液体用送出孔が、下流側整流用中空部の径が最大の
部分に連通させて下流側整流部に開口されている構成を
有している。
The invention described in claim 4 of the present invention is claim 1.
The gas-liquid separator according to any one of claims 1 to 3, wherein one end is coaxially communicated with the other end of the liquid hollow portion, and the minimum diameter is the same as the diameter of the liquid hollow portion, and is substantially from the center. A downstream container having a downstream rectifying hollow portion converging toward both ends is provided, and the liquid delivery hole communicates with a portion where the diameter of the downstream rectifying hollow portion is the largest and forms a downstream rectifying portion. It has an open configuration.

【0013】この構成により、請求項1乃至3の何れか
一項の作用に加え、以下のような作用が得られる。 (1)旋回しながら液体用中空部から下流側整流用中空
部に流入した液体は、徐々に旋回速度を弱められて液体
用送出孔から送出されるので、さらに定常的な液体の送
出量を得ることができる。ここで、下流側整流用中空部
の形状としては、球型、卵型状等が用いられる。
With this configuration, the following operation is obtained in addition to the operation of any one of the first to third aspects. (1) The liquid that has flowed from the liquid hollow portion into the downstream straightening hollow portion while swirling is gradually reduced in swirling speed and is sent out from the liquid sending hole. Obtainable. Here, as the shape of the downstream rectifying hollow portion, a spherical shape, an oval shape, or the like is used.

【0014】本発明の請求項5に記載の発明は請求項1
乃至4の内何れか一項に記載の気液分離器であって、液
体用中空部内に液体用中空部と同軸で配設され一端側が
液体用器体に配設された、又は、下流側整流用中空部に
下流側整流用中空部と同軸で配設され一端側が下流側整
流部に配設された気体軸抑止部を備えている構成を有し
ている。
[0014] The invention described in claim 5 of the present invention is claim 1.
The gas-liquid separator according to any one of claims 1 to 4, wherein the liquid hollow part is disposed coaxially with the liquid hollow part, and one end side is disposed in the liquid container, or the downstream side. The rectifying hollow portion is provided with a gas axis suppressing portion disposed coaxially with the downstream rectifying hollow portion and having one end disposed in the downstream rectifying portion.

【0015】この構成により、請求項1乃至4の内何れ
か一項の作用に加え、以下のような作用が得られる。 (1)気液分離器内の中心軸線上に集まった気体が、気
体軸抑止部に抑止され、液体用送出孔の近傍まで達しな
いので、気体が液体送出孔から送出されてしまうのを防
止することができる。ここで、気体軸抑止部の形状とし
ては、一端側が下流側整流部に配設され他端側が皿状に
形成されたもの等が用いられる。
With this configuration, the following operation can be obtained in addition to the operation of any one of the first to fourth aspects. (1) Gas collected on the central axis line in the gas-liquid separator is suppressed by the gas axis suppression unit and does not reach the vicinity of the liquid delivery hole, thereby preventing gas from being delivered from the liquid delivery hole. can do. Here, as the shape of the gas axis suppressing portion, one having one end disposed in the downstream rectifying portion and the other end formed in a dish shape is used.

【0016】本発明の請求項6に記載の気液分離装置
は、請求項1乃至5の内何れか一項に記載の気液分離器
と、一端側が気体用管の他端側又は気体用送出孔に接続
された気体用送出管と、一端側が液体用送出孔に接続さ
れた液体用送出管と、一端側が混相流体用注入孔に接続
された混相流体用注入管と、混相流体用注入管の所定部
に配設された混相流体吐出ポンプと、を備えている構成
を有している。
According to a sixth aspect of the present invention, there is provided a gas-liquid separator according to any one of the first to fifth aspects, wherein one end of the gas-liquid separator is connected to the other end of the gas pipe or to the gas. A gas delivery tube connected to the delivery hole, a liquid delivery tube connected at one end to the liquid delivery hole, a multiphase fluid injection tube connected at one end to the multiphase fluid injection hole, and a multiphase fluid injection. And a multi-phase fluid discharge pump disposed at a predetermined portion of the pipe.

【0017】この構成により、請求項1乃至5の内何れ
か一項の作用に加え、以下のような作用が得られる。 (1)混相流体用注入管の他端側を混相流体が貯留され
た槽等に接続し、混相流体吐出ポンプを駆動させること
により、混相流体を整流用中空部に供給することができ
る。 (2)気体用送出管の他端側を気体を貯留する槽等に接
続することにより気体を回収することができる。 (3)液体用送出管の他端側を液体を貯留する槽等に接
続することにより液体を回収することができる。ここ
で、気液分離装置は、浄水場等における殺菌ガスによる
浄化後の殺菌ガスの分離、化学反応槽等における気液接
触反応後の気体の分離、食品製造ライン等における気体
混入による変質劣化を防止するための気体の分離等に使
用される。混相流体吐出ポンプの能力は、混相流体の粘
度や各々の器体の中空部の径等により、適宜選択され
る。
According to this configuration, the following operation is obtained in addition to the operation of any one of the first to fifth aspects. (1) The other end of the multiphase fluid injection pipe is connected to a tank or the like in which the multiphase fluid is stored, and the multiphase fluid discharge pump is driven to supply the multiphase fluid to the rectifying hollow portion. (2) The gas can be collected by connecting the other end of the gas delivery pipe to a tank or the like that stores the gas. (3) The liquid can be recovered by connecting the other end of the liquid delivery pipe to a tank or the like that stores the liquid. Here, the gas-liquid separation device is used to separate germicidal gas after purification by germicidal gas in a water purification plant, separation of gas after gas-liquid contact reaction in a chemical reaction tank, etc. It is used for separation of gas for prevention. The capacity of the multiphase fluid discharge pump is appropriately selected depending on the viscosity of the multiphase fluid, the diameter of the hollow portion of each vessel, and the like.

【0018】本発明の請求項7に記載の発明は請求項6
に記載の気液分離装置であって、気体用送出管、気体用
管、液体用送出管、混相流体用注入管の内少なくとも1
つの管の所定部に配設された開口径調節バルブを備えて
いる構成を有している。
The invention according to claim 7 of the present invention is the invention according to claim 6
2. The gas-liquid separation device according to claim 1, wherein at least one of a gas delivery pipe, a gas pipe, a liquid delivery pipe, and a multiphase fluid injection pipe.
It has a configuration provided with an opening diameter adjusting valve disposed at a predetermined portion of one of the tubes.

【0019】この構成により、請求項6の作用に加え、
以下のような作用が得られる。 (1)開口径調節バルブを調節することにより、混相流
体の流入速度や各々の器体内の圧力を混相流体の特性等
に応じて調節することができるので汎用性に優れる。
According to this structure, in addition to the function of claim 6,
The following operation is obtained. (1) By adjusting the opening diameter adjusting valve, the inflow speed of the multi-phase fluid and the pressure in each vessel can be adjusted according to the characteristics of the multi-phase fluid and the like, so that the versatility is excellent.

【0020】[0020]

【発明の実施の形態】(実施の形態1)本発明の実施の
形態1における気液分離器及びそれを備えた気液分離装
置について、以下図面を参照しながら説明する。
(Embodiment 1) A gas-liquid separator according to Embodiment 1 of the present invention and a gas-liquid separator provided with the same will be described below with reference to the drawings.

【0021】図1は本発明の実施の形態1における気液
分離器及びそれを備えた気液分離装置の要部縦断面図で
ある。図1において、1は本発明の実施の形態1におけ
る気液分離器、2は本発明の実施の形態1における気液
分離器1を備えた気液分離装置、3は気液分離器1の所
定部で膨出状に形成され略中央から上下端に向かって収
束する形状(卵型状)かつ中心軸に対して左右対称の整
流用中空部3aを有する整流部、3bは整流用中空部3
aの径が最大の部分に連通させて整流部3に接線方向に
開口された混相流体用注入孔、4は上端が整流用中空部
3aの下端に同軸で連通し径が整流用中空部3aの最小
径と同径の円柱状の液体用中空部4aを有する液体用器
体、4bは液体用中空部4aの下部側に連通させて液体
用器体4に接線方向に開口された液体用送出孔、5は下
端が整流用中空部3aの上端に同軸で連通し径が整流用
中空部3aの最小径と同径の円柱状の気体用中空部5a
を有する気体用器体、5bは気体用中空部5aの頂部の
気体用器体5の頂部に気体用中空部5aに連通させて開
口された気体用送出孔、6は整流部3の混相流体用注入
孔3bに接続された混相流体用注入管である。混相流体
用注入管6の他端側は浄水場等の水槽や化学工場の反応
槽、食品工場の製造ライン等に接続されており、殺菌ガ
スによる浄化後の液体や反応槽で気液反応が行われた後
の水溶液等の液体中に気体が含有されている混相流体を
整流用中空部3aに供給する。7は混相流体用注入管6
の所定部に配設された混相流体吐出ポンプ、8は液体用
送出孔4bに接続された液体用送出管、9は液体用送出
管8の所定部に配設された開口径調節バルブ、10は気
体用送出孔5bに接続された気体用送出管、11は気体
用送出管10の所定部に配設された開口径調節バルブで
ある。
FIG. 1 is a longitudinal sectional view of a main part of a gas-liquid separator and a gas-liquid separator provided with the same according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a gas-liquid separator according to Embodiment 1 of the present invention, reference numeral 2 denotes a gas-liquid separator provided with the gas-liquid separator 1 according to Embodiment 1 of the present invention, and reference numeral 3 denotes a gas-liquid separator 1. A rectifying portion having a bulging shape formed at a predetermined portion and converging substantially from the center toward the upper and lower ends (egg shape) and having a rectifying hollow portion 3a symmetrical with respect to the central axis, and 3b is a rectifying hollow portion. 3
The upper end of the injection hole 4 for the multiphase fluid, which communicates with the portion having the largest diameter and is opened in the tangential direction to the rectification portion 3, has the upper end coaxial with the lower end of the rectification hollow portion 3 a and has a communication diameter of the rectification hollow portion 3 a The liquid container 4b having a columnar liquid hollow portion 4a having the same diameter as the minimum diameter of the liquid container 4b communicates with the lower portion of the liquid hollow portion 4a and is opened in the liquid container 4 in a tangential direction. The delivery hole 5 has a lower end coaxial with the upper end of the rectifying hollow portion 3a and communicates with the upper end of the rectifying hollow portion 3a.
5b is a gas delivery hole opened at the top of the gas container 5 at the top of the gas hollow portion 5a so as to communicate with the gas hollow portion 5a, and 6 is a multiphase fluid of the rectification unit 3. Is a multiphase fluid injection pipe connected to the injection hole 3b. The other end of the multi-phase fluid injection pipe 6 is connected to a water tank such as a water purification plant, a reaction tank of a chemical factory, a production line of a food factory, and the like. The mixed phase fluid in which gas is contained in the liquid such as the aqueous solution after the supply is supplied to the rectifying hollow portion 3a. 7 is an injection pipe for a multiphase fluid
, A liquid delivery pipe connected to the liquid delivery hole 4b, 9 is an opening diameter adjustment valve provided at a predetermined portion of the liquid delivery pipe 8, Reference numeral denotes a gas delivery pipe connected to the gas delivery hole 5b, and reference numeral 11 denotes an opening diameter adjusting valve provided at a predetermined portion of the gas delivery pipe 10.

【0022】以上のように構成された本発明の実施の形
態1における気液分離器及びそれを備えた気液分離装置
について、その動作を以下図面を参照しながら説明す
る。図1において、混相流体吐出ポンプ7を駆動するこ
とにより、混相流体は、混相流体用注入孔3bから整流
用中空部3aに接線方向から流入する。整流用中空部3
aに流入した混相流体は、整流部3の内壁に沿って旋回
しながら、液体用中空部4a側及び気体用中空部5a側
に移動していく。この際、遠心分離の原理により、比重
の重い液体は遠心力を受け気液分離器2の内周壁側に集
まる。遠心力により、密度の高くなった液体により液中
に分散した微小気体粒子は押し出されながら、気液分離
器2の中心軸線上に集合し気体軸Aを形成する。また、
液体用中空部4a内の中心軸線上の流体は上昇運動を行
い、液体用中空部4aの下部で液体から分離された微細
な気体もこの上昇運動と浮力により上昇し気体軸Aと合
体する。気体軸Aに集まった気体は気体用器体5に開口
された気体用送出孔5bから順次流出される。一方、気
体が取り除かれた液体は、液体用送出孔4bから送出さ
れる。
The operation of the gas-liquid separator and the gas-liquid separator provided with the gas-liquid separator according to Embodiment 1 of the present invention configured as described above will be described below with reference to the drawings. In FIG. 1, by driving the multiphase fluid discharge pump 7, the multiphase fluid flows from the multiphase fluid injection hole 3b into the rectifying hollow portion 3a in a tangential direction. Rectification hollow part 3
The multiphase fluid that has flowed into a moves toward the liquid hollow portion 4a and the gas hollow portion 5a while turning along the inner wall of the rectifying section 3. At this time, due to the principle of centrifugation, the liquid having a high specific gravity receives centrifugal force and collects on the inner peripheral wall side of the gas-liquid separator 2. Due to the centrifugal force, the fine gas particles dispersed in the liquid by the liquid whose density has been increased are gathered on the central axis of the gas-liquid separator 2 while being extruded to form the gas axis A. Also,
The fluid on the central axis in the liquid hollow portion 4a moves upward, and the fine gas separated from the liquid at the lower portion of the liquid hollow portion 4a also rises due to the rising motion and buoyancy, and merges with the gas axis A. The gas collected on the gas axis A is sequentially discharged from a gas delivery hole 5b opened in the gas container 5. On the other hand, the liquid from which the gas has been removed is delivered from the delivery hole 4b for liquid.

【0023】以上のように構成された本発明の実施の形
態1の気液分離器及びそれを備えた実施の形態1の気液
分離装置によれば、以下のような作用が得られる。 (1)混相流体用注入孔3bが整流部3に接線方向に開
口されているので、混相流体用注入孔3bから整流用中
空部3aに流入した混相流体は整流部3の内壁に沿って
旋回し、遠心分離の原理により比重の重い液体と比重の
軽い気体とに分離され、整流部3の中心軸線上に気体軸
Aが形成される。 (2)整流用中空部3aは略中央から両端に向って収束
する形状を有し、混相流体用注入孔3bは整流用中空部
3aの径が最大の部分に連通しているので、混相流体の
旋回運動の径は整流用中空部3aの両端に近づくにつれ
て小さくなっていく。これにより、整流用中空部3aで
は、乱流が極めて生じにくく、気体軸Aは整流用中空部
3aの中心軸線上に安定して形成される。 (3)気体用中空部5a及び液体用中空部4aは気体用
中空部5aに同軸で連通しているので、混相流体は気体
用中空部5a及び液体用中空部4aにおいても旋回し、
遠心力により比重の軽い気体が分離されながら中央部
(軸芯部)に集まり、気体用中空部5a,整流用中空部
3a,液体用中空部4aの中心軸線上に気体軸Aが形成
される。 (4)気体用送出孔5bは気体用中空部5aの頂部の気
体用器体5に開口されているので、気体軸Aに集まった
気体は気体用送出孔5bから気体用送出管10へ速やか
に送出される。 (5)気体が取り除かれた液体は、液体用送出孔4bか
ら液体用送出管8へ速やかに送出される。 (6)気体用中空部5a,整流用中空部3a,液体用中
空部4aの中心軸線上に気体軸Aを安定して形成するこ
とができるので、混相流体に微細な気泡が含有され、か
つ、整流用中空部3aに供給される混相流体の速度が不
規則であっても、強い線速度で混流体注入孔3bから注
入されるので、ラセン力により遠心効果で確実に気体と
液体を分離させることができる。 (7)液体用送出孔4bが接線方向に開口されており、
旋回しながら周部の気泡を有しない重たい水が、液体用
中空部4aに流入し液体用送出孔4bから送出させるこ
とができるので、定常的な送出量で液体を液体用送出管
8へ送出させることができる。 (8)混相流体用注入管6の他端側を混相流体が貯留さ
れた槽等に接続し、混相流体吐出ポンプ7を駆動させる
ことにより、混相流体を整流用中空部3aに供給するこ
とができる。 (9)気体用送出管10の他端側の配管の一部に水トラ
ップを設けることにより、気体中の予備乾燥されたコン
デンスを防止できる。 (10)開口径調節バルブ9,11を調節することによ
り、混相流体の流入量や速度,各々の器体内の圧力を混
相流体の特性等に応じて調節することができるので汎用
性に優れる。尚、本実施の形態1においては、整流用中
空部3aは卵型状としたが、球型のものや円盤状のも
の、中央が大口径のもの等を用いても同様に実施可能で
ある。また、各中空部の寸法や、各孔の開口径は、混相
流体の供給量や液体の粘度等により適宜選択される。例
えば、液体の粘度が大きく、気体用中空部5a内におい
て、気体用送出孔5b付近まで上昇する可能性がある場
合は、気体用中空部5aをより長くする。
According to the gas-liquid separator of the first embodiment of the present invention configured as described above and the gas-liquid separator of the first embodiment including the same, the following operations can be obtained. (1) Since the multi-phase fluid injection hole 3b is opened tangentially to the rectification section 3, the multi-phase fluid flowing into the rectification hollow section 3a from the multi-phase fluid injection hole 3b turns along the inner wall of the rectification section 3. Then, the gas is separated into a liquid having a high specific gravity and a gas having a low specific gravity according to the principle of centrifugation, and a gas axis A is formed on the central axis of the rectification unit 3. (2) The rectifying hollow portion 3a has a shape that converges from substantially the center to both ends, and the multi-phase fluid injection hole 3b communicates with a portion where the diameter of the rectifying hollow portion 3a is largest. The diameter of the turning motion becomes smaller as approaching both ends of the rectifying hollow portion 3a. Thus, turbulence is extremely unlikely to occur in the rectifying hollow portion 3a, and the gas axis A is stably formed on the central axis of the rectifying hollow portion 3a. (3) Since the gas hollow portion 5a and the liquid hollow portion 4a communicate with the gas hollow portion 5a coaxially, the multiphase fluid also swirls in the gas hollow portion 5a and the liquid hollow portion 4a,
The gas having a low specific gravity is separated by the centrifugal force and gathers at the center (axial portion) while being separated, and the gas axis A is formed on the central axis of the gas hollow portion 5a, the rectifying hollow portion 3a, and the liquid hollow portion 4a. . (4) Since the gas delivery hole 5b is opened in the gas container 5 at the top of the gas hollow portion 5a, the gas collected on the gas axis A is quickly sent from the gas delivery hole 5b to the gas delivery pipe 10. Sent to (5) The liquid from which the gas has been removed is quickly sent out to the liquid delivery pipe 8 from the liquid delivery hole 4b. (6) Since the gas axis A can be stably formed on the central axis of the gas hollow portion 5a, the rectifying hollow portion 3a, and the liquid hollow portion 4a, fine bubbles are contained in the multiphase fluid, and Even if the speed of the mixed phase fluid supplied to the rectifying hollow portion 3a is irregular, the gas is injected from the mixed fluid injection hole 3b at a high linear velocity, so that the gas and the liquid are surely separated by the centrifugal effect by the spiral force. Can be done. (7) The liquid delivery hole 4b is tangentially opened,
Heavy water that does not have bubbles in the peripheral portion while rotating can flow into the liquid hollow portion 4a and be sent out from the liquid sending hole 4b, so that the liquid is sent to the liquid sending pipe 8 at a constant sending amount. Can be done. (8) The other end of the multiphase fluid injection pipe 6 is connected to a tank or the like in which the multiphase fluid is stored, and the multiphase fluid discharge pump 7 is driven to supply the multiphase fluid to the rectifying hollow portion 3a. it can. (9) By providing a water trap in a part of the pipe on the other end side of the gas delivery pipe 10, it is possible to prevent the pre-dried condensation in the gas. (10) By adjusting the opening diameter adjusting valves 9 and 11, the inflow amount and speed of the multi-phase fluid and the pressure in each vessel can be adjusted in accordance with the characteristics of the multi-phase fluid and the like, so that the versatility is excellent. In the first embodiment, the rectifying hollow portion 3a has an oval shape. However, the rectifying hollow portion 3a can be implemented in a similar manner by using a spherical shape, a disk shape, or a large-diameter central portion. . The size of each hollow portion and the opening diameter of each hole are appropriately selected depending on the supply amount of the multiphase fluid, the viscosity of the liquid, and the like. For example, when the viscosity of the liquid is large and there is a possibility that the liquid may rise to the vicinity of the gas delivery hole 5b in the gas hollow portion 5a, the gas hollow portion 5a is made longer.

【0024】(実施の形態2)本発明の実施の形態2に
おける気液分離器及びそれを備えた気液分離装置につい
て、以下図面を参照しながら説明する。
(Embodiment 2) A gas-liquid separator according to Embodiment 2 of the present invention and a gas-liquid separator provided with the same will be described below with reference to the drawings.

【0025】図2は本発明の実施の形態2における気液
分離装置の要部縦断面図である。図2において、21は
本発明の実施の形態2における気液分離器、22は気液
分離器、23は略中央から上下に向かって収束する形状
(卵型状)かつ中心軸に対して左右対称の整流用中空部
23aを有する整流部、23bは整流用中空部23aの
径が最大の部分に連通させて整流部23に接線方向に開
口された混相流体用注入孔、24は上端が整流用中空部
23aの下端に同軸で連通し径が整流用中空部23aの
最小径と同径の円柱状の液体用中空部24aを有する液
体用器体、25は整流用中空部23aと同軸で整流部2
3に配設され下端から所定高さまでが整流用中空部23
aに配設され下端部が整流用中空部23aの下部で開口
し上端部が整流部23の上方で開口した気体用管、26
は上端が整流用中空部23aの下端に同軸で連通し最小
径が整流用中空部23aの径と同径であり略中央から両
端に向かって収束する形状(卵型状)の下流側整流用中
空部26aを有する下流側整流部、26bは下流側整流
用中空部26aの径が最大の部分に連通させて下流側整
流部26に接線方向に開口された液体用送出孔、27は
下流側整流用中空部26aに下流側整流用中空部26a
と同軸で配設され下部が下流側整流部26の下端部に固
定され上部が液体用中空部24aに配設された気体軸抑
止部である。液体用中空部24aの中心軸線上に集まっ
た気体は気体軸抑止部27の当接部27aにより液体用
送出孔26b側への侵入を抑止される。28は整流部2
3の混相流体用注入孔23bに接続された混相流体用注
入管である。混相流体用注入管28の他端側は浄水場等
の水槽や化学工場の反応槽、食品工場の製造ライン等に
接続されており、殺菌ガスによる浄化後の液体や反応槽
で気液反応が行われた後の水溶液、飲料水等の液体中に
気体が含有されている混相流体を整流用中空部23aに
供給する。29は混相流体用注入管28の所定部に配設
された混相流体吐出ポンプ、30は液体用送出孔26b
に接続された液体用送出管、31は液体用送出管30の
所定部に配設された開口径調節バルブ、32は気体用管
25に接続された気体用送出管、33は気体用送出管3
2の所定部に配設された開口径調節バルブである。
FIG. 2 is a longitudinal sectional view of a main part of a gas-liquid separation device according to Embodiment 2 of the present invention. In FIG. 2, reference numeral 21 denotes a gas-liquid separator according to Embodiment 2 of the present invention, reference numeral 22 denotes a gas-liquid separator, and reference numeral 23 denotes a shape (oval) converging from substantially the center upward and downward and left and right with respect to the central axis. A rectifying portion having a symmetrical rectifying hollow portion 23a, 23b is a multi-phase fluid injection hole opened in the tangential direction to the rectifying portion 23 by communicating with a portion where the diameter of the rectifying hollow portion 23a is the largest, and 24 is a rectifying portion at the upper end. A liquid container having a columnar liquid hollow portion 24a having the same diameter as the minimum diameter of the rectifying hollow portion 23a and being coaxially connected to the lower end of the rectifying hollow portion 23a, 25 is coaxial with the rectifying hollow portion 23a. Rectifier 2
And a rectifying hollow portion 23 from the lower end to a predetermined height.
a gas pipe 26 having a lower end opening below the rectifying hollow portion 23a and an upper end opening above the rectifying portion 23;
The upper end is coaxially connected to the lower end of the rectifying hollow portion 23a and communicates with the lower end of the rectifying hollow portion 23a. A downstream rectifying portion having a hollow portion 26a, a liquid sending hole 26b communicated with a portion where the diameter of the downstream rectifying hollow portion 26a is the largest and opened in the tangential direction to the downstream rectifying portion 26, and 27 is a downstream side. The rectifying hollow portion 26a is connected to the downstream rectifying hollow portion 26a.
The lower part is fixed to the lower end part of the downstream rectification part 26, and the upper part is a gas axis restraining part provided in the liquid hollow part 24a. Gas collected on the central axis of the liquid hollow portion 24a is prevented from entering the liquid delivery hole 26b by the contact portion 27a of the gas axis suppressing portion 27. 28 is a rectifying unit 2
3 is a multiphase fluid injection pipe connected to the third multiphase fluid injection hole 23b. The other end of the multi-phase fluid injection pipe 28 is connected to a water tank such as a water purification plant, a reaction tank of a chemical factory, a production line of a food factory, and the like. The mixed phase fluid in which the gas is contained in the liquid such as the aqueous solution or the drinking water after the operation is supplied to the rectifying hollow portion 23a. 29 is a multi-phase fluid discharge pump disposed at a predetermined portion of the multi-phase fluid injection pipe 28, and 30 is a liquid delivery hole 26b.
, A reference numeral 31 denotes an opening diameter adjusting valve provided at a predetermined portion of the liquid delivery pipe 30, a reference numeral 32 denotes a gas delivery pipe connected to the gas pipe 25, and a reference numeral 33 denotes a gas delivery pipe. 3
2 is an opening diameter adjustment valve disposed at a predetermined portion.

【0026】以上のように構成された本発明の実施の形
態2における気液分離器及びそれを備えた気液分離装置
について、その動作を以下図面を参照しながら説明す
る。図2において、混相流体吐出ポンプ29を駆動する
ことにより、混相流体は、混相流体用注入孔23bから
整流用中空部23aに接線方向から流入する。整流用中
空部23aに流入した混相流体は、整流部23の内壁に
沿って旋回しながら、整流用中空部23aの収束方向
(上下)に移動していく。この際、遠心分離の原理によ
り、混相流体中の液体は遠心力を受け気液分離器22の
内周壁側に集まり、気体は向心力を受け気体用管25の
外壁の周囲及び気液分離器2の中心軸線上に集合し気体
軸Bを形成される。また、液体用中空部24a内の中心
軸線上の流体は上昇運動を行い、液体用中空部24aの
下部で遠心分離された微細な気体もこの上昇運動と浮
力、及び当接部27aによる抑止により上昇し気体軸B
と合体する。気体軸Bに集まった気体は気体用管25か
ら順次送出される。一方、気体が取り除かれた液体は下
流側整流用中空部26a内で整流され(旋回速度を小さ
くされ)、液体用送出孔26bから送出される。
The operation of the gas-liquid separator and the gas-liquid separator having the same according to the second embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, by driving the multiphase fluid discharge pump 29, the multiphase fluid flows from the multiphase fluid injection hole 23b into the rectifying hollow portion 23a in a tangential direction. The multi-phase fluid that has flowed into the rectifying hollow portion 23a moves in the convergence direction (up and down) of the rectifying hollow portion 23a while turning along the inner wall of the rectifying portion 23. At this time, due to the principle of centrifugation, the liquid in the multiphase fluid receives centrifugal force and collects on the inner peripheral wall side of the gas-liquid separator 22, and the gas receives centripetal force around the outer wall of the gas pipe 25 and the gas-liquid separator 2. And the gas axis B is formed on the central axis of Further, the fluid on the central axis in the liquid hollow portion 24a performs a rising motion, and the fine gas centrifugally separated at the lower portion of the liquid hollow portion 24a also undergoes the rising motion, buoyancy, and suppression by the contact portion 27a. Ascending gas axis B
And coalesce. The gas collected on the gas axis B is sequentially sent out from the gas pipe 25. On the other hand, the liquid from which the gas has been removed is rectified in the downstream rectification hollow portion 26a (the swirling speed is reduced), and is discharged from the liquid discharge hole 26b.

【0027】以上のように構成された本発明の実施の形
態2の気液分離器及びそれを備えた実施の形態2の気液
分離装置によれば、実施の形態1で得られる作用に加
え、以下のような作用が得られる。 (1)気体用管25が整流用中空部23aの中心軸線上
に配設されているので、気体軸Bは気体用管25の外周
壁の周囲,整流用中空部23a及び液体用中空部24a
の中心軸線上に形成され、気体軸Bに集まった気体は気
体用管25から順次送出される。 (2)気体用管25が整流用中空部23aの中心軸線上
に配設されているので、整流用中空部23a内の気体用
管25の開口端は気体軸B内に位置し、液体が気体用管
25から送出されてしまうことを防止できる。 (3)気体用器体が不要なので、気液分離器22を小型
化することができる。 (4)旋回しながら液体用中空部24aから下流側整流
用中空部26aに流入した液体は、徐々に旋回速度を弱
められて液体用送出孔26bから送出されるので、さら
に定常的な液体の送出量を得ることができる。 (5)気液分離器22内の中心軸線上に集まった気体
が、気体軸抑止部27の当接部27aに抑止され、液体
用送出孔26bの近傍まで達しないので、気体軸に集ま
った気体が液体用送出孔26bから送出されてしまうの
を防止することができる。尚、本実施の形態2において
は、整流用中空部23a及び下流側整流用中空部26a
は卵型状としたが、球型のものを用いても同様に実施可
能である。また、各中空部の寸法や、各孔の開口径は、
混相流体の供給量や液体の粘度等により適宜選択され
る。
According to the gas-liquid separator of Embodiment 2 of the present invention configured as described above and the gas-liquid separator of Embodiment 2 provided with the same, in addition to the effects obtained in Embodiment 1, The following effects are obtained. (1) Since the gas pipe 25 is disposed on the central axis of the rectifying hollow part 23a, the gas axis B is located around the outer peripheral wall of the gas pipe 25, the rectifying hollow part 23a and the liquid hollow part 24a.
Formed on the central axis of the gas and collected on the gas axis B are sequentially sent out from the gas pipe 25. (2) Since the gas pipe 25 is disposed on the central axis of the rectifying hollow part 23a, the opening end of the gas pipe 25 in the rectifying hollow part 23a is located in the gas axis B, and It can be prevented from being sent out from the gas pipe 25. (3) Since the gas container is unnecessary, the gas-liquid separator 22 can be downsized. (4) The liquid flowing into the downstream rectifying hollow portion 26a from the liquid hollow portion 24a while swirling is gradually reduced in swirling speed and is sent out from the liquid sending hole 26b. The delivery volume can be obtained. (5) The gas collected on the central axis in the gas-liquid separator 22 is suppressed by the contact portion 27a of the gas axis suppressing portion 27 and does not reach the vicinity of the liquid delivery hole 26b, so that the gas collects on the gas axis. The gas can be prevented from being sent out from the liquid sending hole 26b. In the second embodiment, the rectifying hollow portion 23a and the downstream rectifying hollow portion 26a
Is an oval shape, but a spherical shape can be similarly used. Also, the dimensions of each hollow part and the opening diameter of each hole,
It is appropriately selected according to the supply amount of the multiphase fluid, the viscosity of the liquid, and the like.

【0028】(実施の形態3)本発明の実施の形態3に
おける気液分離器について、以下図面を参照しながら説
明する。
Embodiment 3 A gas-liquid separator according to Embodiment 3 of the present invention will be described below with reference to the drawings.

【0029】図3は本発明の実施の形態3における気液
分離器の要部拡大縦断面図である。図3において、4は
液体用器体、4aは液体用中空部、5は気体用器体、5
aは気体用中空部、6は混相流体注入管、7は混相流体
吐出ポンプであり、これらは、実施の形態1と同様のも
のなので同一の符号を付してその説明を省略する。40
は本発明の実施の形態3における気液分離器、41は略
中央から上下に向かって収束する円盤形状かつ中心軸に
対して左右対称の整流用中空部41aを有する整流部、
41bは整流用中空部41aの径が最大の部分に連通さ
せて整流部41に接線方向に開口された混相流体用注入
孔である。本実施の形態3における気液分離器40が、
実施の形態1の気液分離器1と異なる点は、整流部41
の整流用中空部41aの径が、整流部3の整流用中空部
3aより水平方向に大きい点である。これにより、実施
の形態1の気液分離器1に比べ、本実施の形態3におけ
る気液分離器40は、整流用中空部41aにおいて、流
体に大きな遠心力がかかるので、より粘性が大きい流体
からも気体を容易に分離することができる。
FIG. 3 is an enlarged longitudinal sectional view of a main part of a gas-liquid separator according to Embodiment 3 of the present invention. In FIG. 3, reference numeral 4 denotes a liquid container, 4a denotes a liquid hollow portion, 5 denotes a gas container, and 5 denotes a gas container.
a is a gas hollow portion, 6 is a multi-phase fluid injection pipe, and 7 is a multi-phase fluid discharge pump. These are the same as those in the first embodiment, and are denoted by the same reference numerals and description thereof is omitted. 40
Is a gas-liquid separator according to Embodiment 3 of the present invention; 41 is a rectifying unit having a disc-shaped rectifying hollow portion 41a that converges substantially vertically from the center and symmetrical with respect to the center axis,
Reference numeral 41b denotes an injection hole for a multiphase fluid which is opened in the tangential direction to the rectification portion 41 while communicating with the portion where the diameter of the rectification hollow portion 41a is the largest. The gas-liquid separator 40 according to the third embodiment includes:
The difference from the gas-liquid separator 1 of the first embodiment is that the rectifier 41
Is that the diameter of the rectifying hollow portion 41 a is larger in the horizontal direction than the rectifying hollow portion 3 a of the rectifying portion 3. Thereby, compared with the gas-liquid separator 1 of the first embodiment, the gas-liquid separator 40 of the third embodiment applies a large centrifugal force to the fluid in the rectifying hollow portion 41a, so that a fluid having a higher viscosity is used. Can be easily separated from the gas.

【0030】(実施の形態4)本発明の実施の形態4に
おける気液分離器について、以下図面を参照しながら説
明する。
(Embodiment 4) A gas-liquid separator according to Embodiment 4 of the present invention will be described below with reference to the drawings.

【0031】図4は本発明の実施の形態4における気液
分離器の要部拡大縦断面図である。図4において、4は
液体用器体、4aは液体用中空部、5は気体用器体、5
aは気体用中空部、6は混相流体注入管、7は混相流体
吐出ポンプであり、これらは、実施の形態1と同様のも
のなので同一の符号を付してその説明を省略する。50
は本発明の実施の形態4における気液分離器、51は略
中央から上下に向かって収束するそろばんの駒形状かつ
中心軸に対して左右対称の整流用中空部51aを有する
整流部、51bは整流用中空部51aの径が最大の部分
に連通させて整流部51に接線方向に開口された混相流
体用注入孔である。本実施の形態4における気液分離器
50が、実施の形態1の気液分離器1と異なる点は、整
流部51の整流用中空部51aの径が、整流部3の整流
用中空部3aより水平方向に大きく、かつ、縦断面が菱
形状である。これにより、実施の形態1の気液分離器1
に比べ、本実施の形態4における気液分離器50は、整
流用中空部51aにおいて、流体に大きな遠心力がかか
り、中央部で流体を圧縮するので、気体粒子を押し出
し、気体を容易に分離することができる。
FIG. 4 is an enlarged longitudinal sectional view of a main part of a gas-liquid separator according to Embodiment 4 of the present invention. In FIG. 4, 4 is a liquid container, 4a is a liquid hollow portion, 5 is a gas container, 5
a is a gas hollow portion, 6 is a multi-phase fluid injection pipe, and 7 is a multi-phase fluid discharge pump. These are the same as those in the first embodiment, and are denoted by the same reference numerals and description thereof is omitted. 50
Is a gas-liquid separator in Embodiment 4 of the present invention, 51 is a rectifying section having a rectifying hollow section 51a symmetrical with respect to the center axis and having an abacus piece shape converging from the center upward and downward, and 51b is a rectifying section. The rectifying hollow portion 51a is a multi-phase fluid injection hole that is connected to a portion where the diameter of the rectifying portion is the largest and is opened in the rectifying portion 51 in a tangential direction. The difference between the gas-liquid separator 50 of the fourth embodiment and the gas-liquid separator 1 of the first embodiment is that the diameter of the rectifying hollow portion 51a of the rectifying portion 51 is different from that of the rectifying hollow portion 3a of the rectifying portion 3. It is larger in the horizontal direction and has a diamond-shaped vertical section. Thereby, the gas-liquid separator 1 of the first embodiment
In the gas-liquid separator 50 according to the fourth embodiment, a large centrifugal force is applied to the fluid in the rectifying hollow portion 51a and the fluid is compressed in the central portion, so that gas particles are pushed out and gas is easily separated. can do.

【0032】[0032]

【発明の効果】以上のように本発明のによれば、以下の
ような有利な効果が得られる。請求項1に記載の発明に
よれば、以下の効果を有する。 (1)混相流体用注入孔が整流部に接線方向に開口され
ているので、混相流体用注入孔から整流用中空部に流入
した混相流体は整流部の内壁に沿って旋回し、遠心分離
の原理により液体と気体とに分離され、整流部の中心軸
線上に気体軸が形成される。 (2)整流用中空部は略中央から両端に向って収束する
形状を有し、混相流体用注入孔は整流用中空部の径が最
大の部分に連通しているので、混相流体の旋回運動の径
は整流用中空部の両端に近づくにつれて小さくなってい
く。これにより、整流用中空部では、乱流が極めて生じ
にくく、気体軸は整流用中空部の中心軸線上に安定して
形成される。 (3)気体用中空部及び液体用中空部は整流用中空部に
同軸で連通しているので、混相流体は気体用中空部及び
液体用中空部においても旋回し、遠心分離の原理により
液体と気体が分離され、気体用中空部,整流用中空部,
液体用中空部の中心軸線上に気体軸が形成される。 (4)気体用送出孔は気体用中空部の頂部の気体用器体
に開口されているので、気体軸に集まった気体は気体用
送出孔から気液分離器外へ順次送出される。 (5)気体が取り除かれた液体は、液体用送出孔から気
液分離器外へ順次送出される。 (6)気体用中空部,整流用中空部,液体用中空部の中
心軸線上に気体軸を安定して形勢することができるの
で、混相流体に微細な気泡が含有されており、かつ、整
流用中空部に供給される混相流体の速度が不規則であっ
ても、確実に気体と液体を分離させることができる。
As described above, according to the present invention, the following advantageous effects can be obtained. According to the first aspect of the present invention, the following effects are obtained. (1) Since the multi-phase fluid injection hole is tangentially opened to the rectifying portion, the multi-phase fluid flowing from the multi-phase fluid injection hole into the rectifying hollow portion swirls along the inner wall of the rectifying portion and is subjected to centrifugal separation. Liquid and gas are separated according to the principle, and a gas axis is formed on the central axis of the rectification unit. (2) The rectifying hollow portion has a shape that converges from substantially the center to both ends, and the multi-phase fluid injection hole communicates with a portion where the diameter of the rectifying hollow portion is largest, so that the swirling motion of the multi-phase fluid. Becomes smaller as it approaches both ends of the rectifying hollow portion. Thereby, turbulence is extremely unlikely to occur in the rectifying hollow portion, and the gas axis is stably formed on the central axis of the rectifying hollow portion. (3) Since the gas hollow portion and the liquid hollow portion are coaxially communicated with the rectifying hollow portion, the multiphase fluid also swirls in the gas hollow portion and the liquid hollow portion as well, and is separated from the liquid by the principle of centrifugal separation. The gas is separated and the gas hollow, rectifying hollow,
A gas axis is formed on the central axis of the liquid hollow portion. (4) Since the gas delivery hole is opened in the gas body at the top of the gas hollow part, the gas collected on the gas axis is sequentially delivered from the gas delivery hole to the outside of the gas-liquid separator. (5) The liquid from which the gas has been removed is sequentially sent out of the gas-liquid separator from the liquid delivery hole. (6) Since the gas axis can be stably formed on the central axis of the hollow portion for gas, the hollow portion for rectification, and the hollow portion for liquid, fine bubbles are contained in the multiphase fluid, and rectification is performed. Even if the speed of the multiphase fluid supplied to the hollow part is irregular, the gas and the liquid can be surely separated.

【0033】請求項2に記載の発明によれば、請求項1
の効果に加え、以下の効果を有する。 (1)気体用管が整流用中空部の中心軸線上に配設され
ているので、気体軸は気体用管の外周壁の周囲,整流用
中空部,液体用中空部の中心軸線上に形成され、気体軸
に集まった気体は気体用管から順次送出される。 (2)気体用管が整流用中空部の中心軸線上に配設され
ているので、整流用中空部内の気体用管の開口端は気体
軸内に位置し、液体が気体用管から送出されてしまうこ
とを防止できる。 (3)気体用器体が不要なので、気液分離器を小型化す
ることができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects described above, the following effects are provided. (1) Since the gas pipe is disposed on the central axis of the rectifying hollow, the gas axis is formed around the outer peripheral wall of the gas pipe, and on the central axis of the rectifying hollow and the liquid hollow. The gas collected on the gas axis is sequentially sent out from the gas pipe. (2) Since the gas pipe is disposed on the central axis of the rectifying hollow part, the opening end of the gas pipe in the rectifying hollow part is located in the gas axis, and the liquid is discharged from the gas pipe. Can be prevented. (3) Since the gas container is unnecessary, the size of the gas-liquid separator can be reduced.

【0034】請求項3に記載の発明によれば、請求項1
又は2の効果に加え、以下の効果を有する。 (1)液体用送出孔が接線方向に開口されており、旋回
しながら液体用中空部に流入した液体を素直に液体用送
出孔から送出させることができるので、定常的な液体の
送出量を得ることができる。
According to the third aspect of the present invention, the first aspect is provided.
In addition to the effects of 2 or 3, the following effects are provided. (1) The liquid delivery hole is opened in the tangential direction, and the liquid that has flowed into the liquid hollow portion while rotating can be directly delivered from the liquid delivery hole. Obtainable.

【0035】請求項4に記載の発明によれば、請求項1
乃至3の内何れか一項の効果に加え、以下の効果を有す
る。 (1)旋回しながら液体用中空部から下流側整流用中空
部に流入した液体は、徐々に旋回速度を弱められて液体
用送出孔から送出されるので、さらに定常的な液体の送
出量を得ることができる。
According to the invention described in claim 4, according to claim 1
The following effects are obtained in addition to the effects described in any one of (3) to (3). (1) The liquid that has flowed from the liquid hollow portion into the downstream straightening hollow portion while swirling is gradually reduced in swirling speed and is sent out from the liquid sending hole. Obtainable.

【0036】請求項5に記載の発明によれば、請求項1
乃至4の内何れか一項の効果に加え、以下の効果を有す
る。 (1)気液分離器内の中心軸線上に集まった気体が、気
体軸抑止部に抑止され、液体用送出孔の近傍まで達しな
いので、気体が液体送出孔から送出されてしまうのを防
止することができる。
According to the invention described in claim 5, according to claim 1,
The following effects are provided in addition to the effects described in any one of (4) to (4). (1) Gas collected on the central axis line in the gas-liquid separator is suppressed by the gas axis suppression unit and does not reach the vicinity of the liquid delivery hole, thereby preventing gas from being delivered from the liquid delivery hole. can do.

【0037】請求項6に記載の発明によれば、請求項1
乃至5の内何れか一項の効果に加え、以下の効果を有す
る。 (1)混相流体用注入管の他端側を混相流体が貯留され
た槽等に接続し、混相流体吐出ポンプを駆動させること
により、混相流体を整流用中空部に供給することができ
る。 (2)気体用送出管の他端側を気体を貯留する槽等に接
続することにより気体を回収することができる。 (3)液体用送出管の他端側を液体を貯留する槽等に接
続することにより液体を回収することができる。
According to the invention of claim 6, according to claim 1,
The following effects are provided in addition to the effects described in any one of the first to fifth aspects. (1) The other end of the multiphase fluid injection pipe is connected to a tank or the like in which the multiphase fluid is stored, and the multiphase fluid discharge pump is driven to supply the multiphase fluid to the rectifying hollow portion. (2) The gas can be collected by connecting the other end of the gas delivery pipe to a tank or the like that stores the gas. (3) The liquid can be recovered by connecting the other end of the liquid delivery pipe to a tank or the like that stores the liquid.

【0038】請求項7に記載の発明によれば、請求項6
の効果に加え、以下の効果を有する。 (1)開口径調節バルブを調節することにより、混相流
体の流入速度や各々の器体内の圧力を混相流体の特性等
に応じて調節することができるので汎用性に優れる。
According to the invention of claim 7, according to claim 6,
In addition to the effects described above, the following effects are provided. (1) By adjusting the opening diameter adjusting valve, the inflow speed of the multi-phase fluid and the pressure in each vessel can be adjusted according to the characteristics of the multi-phase fluid and the like, so that the versatility is excellent.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における気液分離器及び
それを備えた気液分離装置の要部縦断面図
FIG. 1 is a longitudinal sectional view of a main part of a gas-liquid separator and a gas-liquid separator provided with the same according to a first embodiment of the present invention.

【図2】本発明の実施の形態2における気液分離器及び
それを備えた気液分離装置の要部縦断面図
FIG. 2 is a vertical sectional view of a main part of a gas-liquid separator and a gas-liquid separator provided with the same according to a second embodiment of the present invention.

【図3】本発明の実施の形態3における気液分離器の要
部拡大縦断面図
FIG. 3 is an enlarged longitudinal sectional view of a main part of a gas-liquid separator according to a third embodiment of the present invention.

【図4】本発明の実施の形態4における気液分離器の要
部拡大縦断面図
FIG. 4 is an enlarged longitudinal sectional view of a main part of a gas-liquid separator according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 気液分離器 2 気液分離装置 3 整流部 3a 整流用中空部 3b 混相流体用注入孔 4 液体用器体 4a 液体用中空部 4b 液体用送出孔 5 気体用器体 5a 気体用中空部 5b 気体用送出孔 6 混相流体用注入管 7 混相流体吐出ポンプ 8 液体用送出管 9 開口径調節バルブ 10 気体用送出管 11 開口径調節バルブ 21 気液分離器 22 気液分離装置 23 整流部 23a 整流用中空部 23b 混相流体用注入孔 24 液体用器体 24a 液体用中空部 25 気体用管 26 下流側整流部 26a 下流側整流用中空部 26b 液体用送出孔 27 気体軸抑止部 27a 当接部 28 混相流体用注入管 29 混相流体吐出ポンプ 30 液体用送出管 31 開口径調節バルブ 32 気体用送出管 33 開口径調節バルブ 40 気液分離器 41 整流部 41a 整流用中空部 41b 混相流体用注入孔 50 気液分離器 51 整流部 51a 整流用中空部 51b 混相流体用注入孔 DESCRIPTION OF SYMBOLS 1 Gas-liquid separator 2 Gas-liquid separator 3 Rectifier 3a Rectifier hollow 3b Injection hole for mixed phase fluid 4 Liquid body 4a Liquid hollow 4b Liquid delivery hole 5 Gas body 5a Gas hollow 5b Gas delivery hole 6 Multi-phase fluid injection pipe 7 Multi-phase fluid discharge pump 8 Liquid delivery pipe 9 Opening diameter adjustment valve 10 Gas delivery pipe 11 Opening diameter adjustment valve 21 Gas-liquid separator 22 Gas-liquid separator 23 Rectifier 23a Rectification Hollow portion 23b Injection hole for multi-phase fluid 24 Liquid container 24a Liquid hollow portion 25 Gas tube 26 Downstream rectification portion 26a Downstream rectification hollow portion 26b Liquid delivery hole 27 Gas axis restraining portion 27a Contact portion 28 Multi-phase fluid injection pipe 29 Multi-phase fluid discharge pump 30 Liquid delivery pipe 31 Opening diameter adjustment valve 32 Gas delivery pipe 33 Opening diameter adjustment valve 40 Gas-liquid separator 41 Rectifier 41 a Rectifying hollow part 41b Injection hole for multi-phase fluid 50 Gas-liquid separator 51 Rectifying part 51a Rectifying hollow part 51b Injection hole for multi-phase fluid

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 a.略中央から両端に向かって収束する
形状の整流用中空部を有する整流部と、 b.一端側が前記整流用中空部の一端側に同軸で連通し
径が前記整流用中空部の最小径と同径の円柱状の気体用
中空部を有する気体用器体と、 c.一端側が前記整流用中空部の他端側に同軸で連通し
径が前記整流用中空部の最小径と同径の円柱状の液体用
中空部を有する液体用器体と、 d.前記整流用中空部の径が最大の部分に連通させて前
記整流部に接線方向に開口された混相流体用注入孔と、 e.前記気体用中空部の他端側に連通させて前記気体用
中空部の頂部の前記気体用器体に開口された気体用送出
孔と、 f.前記液体用中空部の他端側に連通させて前記液体用
器体に開口された液体用送出孔と、を備えていることを
特徴とする気液分離器。
1. A method comprising: a. A rectifying portion having a rectifying hollow portion having a shape converging from substantially the center toward both ends; b. A gas container having a cylindrical gas hollow portion having one end coaxially connected to one end of the rectifying hollow portion and having a diameter equal to the minimum diameter of the rectifying hollow portion; c. A liquid container having a columnar liquid hollow portion having one end coaxially connected to the other end of the rectifying hollow portion and having the same diameter as the minimum diameter of the rectifying hollow portion; d. An injection hole for a multiphase fluid, which is tangentially opened to the rectifying portion so as to communicate with a portion having the largest diameter of the rectifying hollow portion; e. A gas delivery hole opened to the gas container at the top of the gas hollow portion so as to communicate with the other end of the gas hollow portion; f. A liquid delivery hole which is opened to the liquid container so as to communicate with the other end of the liquid hollow portion.
【請求項2】 前記気体用器体に代えて、 前記整流用中空部と同軸で前記整流部に配設され、一端
側が前記整流用中空部に配設され、両端が開口された気
体用管を備えていることを特徴とする請求項1に記載の
気液分離器。
2. A gas pipe, which is disposed in the rectification portion coaxially with the rectification hollow portion, and has one end disposed in the rectification hollow portion and both ends opened instead of the gas container. The gas-liquid separator according to claim 1, further comprising:
【請求項3】 前記液体用送出孔が、前記液体用器体に
接線方向に開口されていることを特徴とする請求項1又
は2に記載の気液分離器。
3. The gas-liquid separator according to claim 1, wherein the liquid delivery hole is tangentially opened in the liquid container.
【請求項4】 一端側が前記液体用中空部の他端側に同
軸で連通し最小径が前記液体用中空部の径と同径であり
略中央から両端に向って収束する形状の下流側整流用中
空部を有する下流側器体を備え、 前記液体用送出孔が、前記下流側整流用中空部の径が最
大の部分に連通させて前記下流側整流部に開口されてい
ることを特徴とする請求項1乃至3の内何れか一項に記
載の気液分離器。
4. A downstream rectifier in which one end is coaxially communicated with the other end of the liquid hollow portion and the minimum diameter is the same as the diameter of the liquid hollow portion and converges from substantially the center toward both ends. A downstream container having a hollow portion for use, wherein the delivery hole for liquid is opened to the downstream rectifying portion by communicating with a portion where the diameter of the downstream rectifying hollow portion is the largest. The gas-liquid separator according to any one of claims 1 to 3.
【請求項5】 前記液体用中空部内に前記液体用中空部
と同軸で配設され一端側が前記液体用器体に配設され
た、又は、前記下流側整流用中空部に前記下流側整流用
中空部と同軸で配設され一端側が前記下流側整流部に配
設された気体軸抑止部を備えていることを特徴とする請
求項1乃至4の内何れか一項に記載の気液分離器。
5. The liquid rectifying hollow portion is disposed coaxially with the liquid hollow portion in the liquid hollow portion and one end thereof is disposed in the liquid container, or the downstream rectifying hollow portion is provided in the downstream rectifying hollow portion. The gas-liquid separation according to any one of claims 1 to 4, wherein the gas-liquid separation is provided with a gas axis restraining portion provided coaxially with the hollow portion and having one end side provided in the downstream rectification portion. vessel.
【請求項6】 請求項1乃至5の内何れか一項に記載の
気液分離器と、 一端側が前記気体用管の他端側又は前記気体用送出孔に
接続された気体用送出管と、 一端側が前記液体用送出孔に接続された液体用送出管
と、 一端側が前記混相流体用注入孔に接続された混相流体用
注入管と、 前記混相流体用注入管の所定部に配設された混相流体吐
出ポンプと、を備えていることを特徴とする気液分離装
置。
6. The gas-liquid separator according to claim 1, wherein one end of the gas-liquid separator is connected to the other end of the gas tube or the gas discharge hole. A liquid delivery pipe having one end connected to the liquid delivery hole; a multiphase fluid injection pipe having one end connected to the multiphase fluid injection hole; and a predetermined portion of the multiphase fluid injection pipe. A multi-phase fluid discharge pump.
【請求項7】 前記気体用送出管、前記気体用管、前記
液体用送出管、前記混相流体用注入管の内少なくとも1
つの管の所定部に配設された開口径調節バルブを備えて
いることを特徴とする請求項6に記載の気液分離装置。
7. At least one of the gas delivery pipe, the gas pipe, the liquid delivery pipe, and the multiphase fluid injection pipe.
7. The gas-liquid separation device according to claim 6, further comprising an opening diameter adjustment valve disposed at a predetermined portion of the two pipes.
JP2000403439A 2000-12-28 2000-12-28 Gas-liquid separator and gas-liquid separating apparatus provided therewith Withdrawn JP2002200402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000403439A JP2002200402A (en) 2000-12-28 2000-12-28 Gas-liquid separator and gas-liquid separating apparatus provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000403439A JP2002200402A (en) 2000-12-28 2000-12-28 Gas-liquid separator and gas-liquid separating apparatus provided therewith

Publications (1)

Publication Number Publication Date
JP2002200402A true JP2002200402A (en) 2002-07-16

Family

ID=18867560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000403439A Withdrawn JP2002200402A (en) 2000-12-28 2000-12-28 Gas-liquid separator and gas-liquid separating apparatus provided therewith

Country Status (1)

Country Link
JP (1) JP2002200402A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120398A (en) * 2005-10-27 2007-05-17 Toyota Boshoku Corp Air bubble separator
CN100538210C (en) * 2007-09-14 2009-09-09 西安交通大学 A kind of gas-liquid separator for heat pump that adopts the siphon mode oil return
WO2011040286A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
EP2413067A1 (en) * 2009-04-08 2012-02-01 Sanden Corporation Oil separator
CN109631433A (en) * 2018-12-07 2019-04-16 珠海格力电器股份有限公司 A kind of separator
EP3859230A1 (en) * 2018-09-25 2021-08-04 Toshiba Carrier Corporation Refrigeration cycle device
CN116730547A (en) * 2023-07-06 2023-09-12 武汉东碧环保科技有限公司 Wastewater treatment device and treatment method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120398A (en) * 2005-10-27 2007-05-17 Toyota Boshoku Corp Air bubble separator
CN100538210C (en) * 2007-09-14 2009-09-09 西安交通大学 A kind of gas-liquid separator for heat pump that adopts the siphon mode oil return
EP2413067A1 (en) * 2009-04-08 2012-02-01 Sanden Corporation Oil separator
EP2413067A4 (en) * 2009-04-08 2013-04-17 Sanden Corp Oil separator
WO2011040286A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
CN102549357A (en) * 2009-09-30 2012-07-04 大金工业株式会社 Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
EP3859230A1 (en) * 2018-09-25 2021-08-04 Toshiba Carrier Corporation Refrigeration cycle device
EP3859230A4 (en) * 2018-09-25 2022-05-04 Toshiba Carrier Corporation Refrigeration cycle device
CN109631433A (en) * 2018-12-07 2019-04-16 珠海格力电器股份有限公司 A kind of separator
CN116730547A (en) * 2023-07-06 2023-09-12 武汉东碧环保科技有限公司 Wastewater treatment device and treatment method
CN116730547B (en) * 2023-07-06 2024-01-26 武汉东碧环保科技有限公司 Wastewater treatment device and treatment method

Similar Documents

Publication Publication Date Title
US7144437B2 (en) Vertically arranged separator for separating liquid from a gas flow
US4857197A (en) Liquid separator with tangential drive fluid introduction
US7934606B2 (en) Induced vortex particle separator
CN101347687B (en) Device for generating oil-containing water with micro air bubble
CN201179364Y (en) Vertical gas (steam) liquid cyclone separator with built-in helical commutating device
CA2736436A1 (en) Vortex waste separator apparatus
CN107596797B (en) Gas-liquid separator and gas-liquid separation method
CN105201870B (en) A kind of centrifugal pump of preposition rotational flow type gas-liquid separater
CN106040452A (en) Cyclone separator
CN107899307A (en) A kind of screw type gas-liquid separator
JP2002200402A (en) Gas-liquid separator and gas-liquid separating apparatus provided therewith
JP2016511140A (en) Centrifuge with stretched struts
CN204656167U (en) gas-liquid separator
CN215352481U (en) Gas-liquid separation tank and gas-liquid separation system
JP4104708B2 (en) Gas-liquid separator with variable flow rate
JP4722273B2 (en) Gas-liquid separator
CN111039432B (en) Oil-water separation device convenient for integration of cyclone air floatation process
CN209952298U (en) Centrifugal separation bubble trap
CN209242727U (en) Solid matter aperture swirl nozzle separator
JP4722279B2 (en) Gas-liquid separator
CN201283275Y (en) Device for generating oil-containing water with micro air bubble
JPH1119406A (en) Bubble removing device
JPH0725231Y2 (en) Mist separator
CN211384164U (en) Elastic separation device
JP2002340289A (en) Gas-liquid separator having drain valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304