JPH05223359A - Freezing cycle - Google Patents

Freezing cycle

Info

Publication number
JPH05223359A
JPH05223359A JP31671592A JP31671592A JPH05223359A JP H05223359 A JPH05223359 A JP H05223359A JP 31671592 A JP31671592 A JP 31671592A JP 31671592 A JP31671592 A JP 31671592A JP H05223359 A JPH05223359 A JP H05223359A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid separator
liquid
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31671592A
Other languages
Japanese (ja)
Inventor
Kazuhisa Makita
和久 牧田
Kazuo Tokushima
一雄 徳島
Manabu Maeda
学 前田
Hisatsugu Matsunaga
久嗣 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP31671592A priority Critical patent/JPH05223359A/en
Publication of JPH05223359A publication Critical patent/JPH05223359A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent freezing capability from being lowered by keeping intermediate pressure substantially constant. CONSTITUTION:A freezing cycle 1 comprises a first pressure reduction device 4 composed of pressure reduction parts 13, 14 each disposed on parallel refrigerant flow passages 11, 12, a bypass passage 8 connecting the refrigerant gas side of a gas/liquid separator 5 and the suction side of a refrigerant compressor 2, a solenoid valve 22 for intermittently opening/closing a refrigerant flow passage 19 on which there are disposed a second pressure reduction device 6 and a refrigerant evaporator 7, and a solenoid valve 15 for intermittently opening/ closing the refrigerant flow passage 12. In the first pressure reduction device 4, refrigerant is reduced in its pressure with its greater opening area by opening the refrigerant flow passage 12 when the refrigerant flows into the bypass passage 8. Further, when the refrigerant flows into the refrigerant evaporator 7, the refrigerant is reduced in its pressure in the first pressure reduction device 4 with a smaller opening area by closing the refrigerant flow passage 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷凍装置または
冷蔵装置に組み込まれる間欠ガスインジェクションサイ
クル方式の冷凍サイクルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermittent gas injection cycle type refrigeration cycle incorporated in, for example, a refrigerating apparatus or a refrigerating apparatus.

【0002】[0002]

【従来の技術】間欠ガスインジェクションサイクル方式
の冷凍サイクル(特願平1−271376号:平成1年
10月18日出願)においては、図10に示したよう
に、冷媒圧縮機101、冷媒凝縮器102、第1減圧装
置103、気液分離器104、第2減圧装置105およ
び冷媒蒸発器106を順次接続している。
2. Description of the Related Art In a refrigerating cycle of an intermittent gas injection cycle system (Japanese Patent Application No. 1-271376: filed on October 18, 1991), a refrigerant compressor 101, a refrigerant condenser, as shown in FIG. 102, the first pressure reducing device 103, the gas-liquid separator 104, the second pressure reducing device 105, and the refrigerant evaporator 106 are sequentially connected.

【0003】そして、その冷凍サイクルは、気液分離器
104の冷媒ガス側と冷媒圧縮機101の吸入側とを、
第2減圧装置105と冷媒蒸発器106を迂回するバイ
パス路107で接続し、このバイパス路107中にバイ
パス路107を間欠的に開閉する開閉弁108を配し、
さらに、そのバイパス路107から冷媒蒸発器106の
下流側への冷媒の逆流を阻止する逆止弁109を配して
いる。この冷凍サイクルは、開閉弁108を間欠的に開
閉して行われるガスインジェクションにより、気液分離
器104内に常に過冷却された液冷媒が溜まるので、冷
媒蒸発器106側へ過冷却によって冷凍効果の大きくな
った液冷媒が供給される。このため、冷凍サイクルの冷
凍能力を向上させている。
In the refrigeration cycle, the refrigerant gas side of the gas-liquid separator 104 and the suction side of the refrigerant compressor 101 are
The second pressure reducing device 105 and the refrigerant evaporator 106 are connected by a bypass path 107 that bypasses, and an on-off valve 108 that intermittently opens and closes the bypass path 107 is arranged in this bypass path 107.
Further, a check valve 109 that blocks the reverse flow of the refrigerant from the bypass passage 107 to the downstream side of the refrigerant evaporator 106 is arranged. In this refrigeration cycle, since the supercooled liquid refrigerant is constantly accumulated in the gas-liquid separator 104 by the gas injection performed by intermittently opening and closing the opening / closing valve 108, the refrigerating effect due to the supercooling to the refrigerant evaporator 106 side. The liquid refrigerant having an increased size is supplied. Therefore, the refrigerating capacity of the refrigerating cycle is improved.

【0004】[0004]

【発明が解決しようとする課題】ところが、前述の冷凍
サイクルにおいては、図10に示したように、気液分離
器104の上流側に設けられた第1減圧装置103がキ
ャピラリチューブ等の固定絞りの場合に、間欠的なガス
インジェクションによるバイパス路107内を流れる冷
媒流量と冷媒蒸発器106内を流れる冷媒流量との流量
差に起因する中間圧力、すなわち、気液分離器104内
の圧力が変動する。このため、理想中間圧力を保つこと
ができず、冷凍効果が低下する。よって、それに伴い冷
凍能力も低下してしまうという問題があった。本発明
は、中間圧力をほぼ一定に保って、冷凍能力の低下を防
止する冷凍サイクルの提供を目的とする。
However, in the above-mentioned refrigeration cycle, as shown in FIG. 10, the first decompression device 103 provided on the upstream side of the gas-liquid separator 104 has a fixed throttle such as a capillary tube. In the case of, the intermediate pressure due to the flow rate difference between the flow rate of the refrigerant flowing in the bypass passage 107 and the flow rate of the refrigerant flowing in the refrigerant evaporator 106, that is, the pressure in the gas-liquid separator 104 fluctuates due to intermittent gas injection. To do. Therefore, the ideal intermediate pressure cannot be maintained and the refrigerating effect is reduced. Therefore, there is a problem that the refrigerating capacity is also reduced accordingly. It is an object of the present invention to provide a refrigeration cycle that keeps an intermediate pressure substantially constant and prevents a reduction in refrigeration capacity.

【0005】[0005]

【課題を解決するための手段】本発明は、冷媒圧縮機、
冷媒凝縮器、第1減圧装置、気液分離器、第2減圧装置
および冷媒蒸発器を順次接続してなり、さらに、前記気
液分離器の冷媒ガス側と前記冷媒圧縮機の吸入側とを、
前記第2減圧装置と前記冷媒蒸発器を迂回するバイパス
路で接続し、このバイパス路中に、バイパス路を間欠的
に開閉する開閉手段を配した冷凍サイクルにおいて、前
記第1減圧装置は、前記冷媒凝縮器の下流側と前記気液
分離器の上流側との間に並列して接続された複数の減圧
部よりなる。さらに、前記冷凍サイクルは、前記冷媒凝
縮器内から流出した冷媒を、前記複数の減圧部のうちの
一部を通して前記気液分離器内に送る第1経路と、前記
冷媒凝縮器内から流出した冷媒を、前記複数の減圧部の
全部を通して前記気液分離器内に送る第2経路と、前記
開閉手段により前記バイパス路が開かれたときに前記第
2経路側に切り替え、前記開閉手段により前記バイパス
路が閉じられたときに前記第1経路側に切り替える経路
切替手段とを備えた技術手段を採用した。
The present invention provides a refrigerant compressor,
A refrigerant condenser, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device and a refrigerant evaporator are sequentially connected, and the refrigerant gas side of the gas-liquid separator and the suction side of the refrigerant compressor are connected. ,
In a refrigeration cycle in which the second pressure reducing device is connected to a bypass that bypasses the refrigerant evaporator, and an opening / closing unit that intermittently opens and closes the bypass is arranged in the bypass, the first pressure reducing device is It is composed of a plurality of decompression units connected in parallel between the downstream side of the refrigerant condenser and the upstream side of the gas-liquid separator. Further, in the refrigeration cycle, the refrigerant that has flowed out of the refrigerant condenser flows out of the refrigerant condenser, and a first path that sends the refrigerant into the gas-liquid separator through some of the plurality of depressurization units. A second path for sending the refrigerant into the gas-liquid separator through all of the plurality of depressurization parts, and switching to the second path side when the bypass path is opened by the opening / closing means, and the opening / closing means The technical means including the path switching means for switching to the first path side when the bypass path is closed is adopted.

【0006】[0006]

【作用】開閉手段によりバイパス路が開かれた場合に
は、気液分離器内の冷媒ガスが第2減圧装置と冷媒蒸発
器を迂回して直接冷媒圧縮機の吸入側に送られてくる。
よって、冷媒圧縮機の吸入圧力損失が小さくなるので、
冷凍サイクルを循環する冷媒の循環量が多くなる。この
ため、経路切替手段により第2経路側に切り替えて、冷
媒凝縮器から流出した冷媒を、第1減圧装置を構成する
複数の減圧部の全部を通過させるようにする。したがっ
て、第1減圧装置において、より開口面積の大きい状態
で冷媒を減圧させることになる。
When the bypass passage is opened by the opening / closing means, the refrigerant gas in the gas-liquid separator bypasses the second pressure reducing device and the refrigerant evaporator and is directly sent to the suction side of the refrigerant compressor.
Therefore, since the suction pressure loss of the refrigerant compressor becomes small,
The circulation amount of the refrigerant circulating in the refrigeration cycle increases. Therefore, the path switching unit switches to the second path side so that the refrigerant flowing out of the refrigerant condenser is allowed to pass through all of the plurality of depressurization units forming the first depressurization device. Therefore, in the first decompression device, the refrigerant is decompressed in a state where the opening area is larger.

【0007】開閉手段によりバイパス路が閉じられた場
合には、気液分離器内の液冷媒が第2減圧装置と冷媒蒸
発器を通って冷媒圧縮機の吸入側に送られてくる。よっ
て、冷媒圧縮機の吸入圧力損失が大きくなるので、冷凍
サイクルを循環する冷媒の循環量が少なくなる。このた
め、経路切替手段により第1経路側に切り替えて、冷媒
凝縮器から流出した冷媒を、第1減圧装置を構成する複
数の減圧部の一部を通過させるようにする。したがっ
て、第1減圧装置において、より開口面積の小さい状態
にして冷媒を減圧させることになる。この結果、バイパ
ス路を開いた時と閉じた時とが対応した減圧度合となる
ため、中間圧力の変動が小さくなる。
When the bypass passage is closed by the opening / closing means, the liquid refrigerant in the gas-liquid separator is sent to the suction side of the refrigerant compressor through the second pressure reducing device and the refrigerant evaporator. Therefore, since the suction pressure loss of the refrigerant compressor becomes large, the circulation amount of the refrigerant circulating in the refrigeration cycle becomes small. Therefore, the path switching unit switches to the first path side so that the refrigerant flowing out from the refrigerant condenser is allowed to pass through a part of the plurality of pressure reducing units constituting the first pressure reducing device. Therefore, in the first decompression device, the refrigerant is decompressed in a state where the opening area is smaller. As a result, the degree of pressure reduction corresponds to when the bypass passage is opened and when the bypass passage is closed, so that fluctuations in the intermediate pressure are reduced.

【0008】[0008]

【実施例】本発明の冷凍サイクルを図1ないし図9に示
す実施例に基づいて説明する。 〔第1実施例の構成〕図1ないし図5は本発明の第1実
施例を示す。図1は本発明を適用した冷凍サイクルを示
した図である。冷凍サイクル1は、間欠式のガスインジ
ェクションサイクル方式で冷凍装置または冷蔵装置に組
み込まれている。この冷凍サイクル1は、冷媒圧縮機
2、冷媒凝縮器3、第1減圧装置4、気液分離器5、第
2減圧装置6および冷媒蒸発器7を順次接続してなる。
また、冷凍サイクル1には、第2減圧装置6と冷媒蒸発
器7を迂回して、気液分離器5の冷媒ガス側と冷媒圧縮
機2の吸入側とを連結するバイパス路8が配設されてい
る。
EXAMPLE A refrigerating cycle of the present invention will be described based on an example shown in FIGS. [Structure of First Embodiment] FIGS. 1 to 5 show a first embodiment of the present invention. FIG. 1 is a diagram showing a refrigeration cycle to which the present invention is applied. The refrigerating cycle 1 is incorporated in a refrigerating apparatus or a refrigerating apparatus by an intermittent gas injection cycle method. This refrigeration cycle 1 comprises a refrigerant compressor 2, a refrigerant condenser 3, a first pressure reducing device 4, a gas-liquid separator 5, a second pressure reducing device 6 and a refrigerant evaporator 7, which are sequentially connected.
Further, the refrigeration cycle 1 is provided with a bypass passage 8 that bypasses the second pressure reducing device 6 and the refrigerant evaporator 7 and connects the refrigerant gas side of the gas-liquid separator 5 and the suction side of the refrigerant compressor 2. Has been done.

【0009】冷媒圧縮機2は、電磁クラッチ9が通電
(オン)されると、内燃機関または電動モータ(いずれ
も図示せず)により回転駆動され、気液分離器5または
冷媒蒸発器7から内部に吸入した冷媒ガスを圧縮して、
高温高圧の冷媒ガスを冷媒凝縮器3に向けて吐出する。
冷媒凝縮器3は、冷媒圧縮機2の吐出側に接続され、冷
媒圧縮機2から内部に流入した冷媒ガスを、電動ファン
10により吹き付けられる空気と熱交換させることによ
って凝縮させる。
When the electromagnetic clutch 9 is energized (turned on), the refrigerant compressor 2 is driven to rotate by an internal combustion engine or an electric motor (neither of which is shown), and the refrigerant compressor 2 or the refrigerant evaporator 7 is internally driven. Compress the refrigerant gas sucked into
The high-temperature high-pressure refrigerant gas is discharged toward the refrigerant condenser 3.
The refrigerant condenser 3 is connected to the discharge side of the refrigerant compressor 2 and condenses the refrigerant gas flowing in from the refrigerant compressor 2 by exchanging heat with the air blown by the electric fan 10.

【0010】第1減圧装置4は、冷媒凝縮器3の下流側
と気液分離器5の上流側との間に並列して接続された2
つの冷媒流路11、12にそれぞれ1個ずつ配設された
減圧部13、14により構成されている。これらの2つ
の減圧部13、14は、共にキャピラリチューブやオリ
フィス等の固定絞りで、冷媒凝縮器3から内部に流入し
た冷媒を断熱膨張する。なお、冷媒流路12には、この
冷媒流路12を間欠的に開閉する電磁弁15が配されて
いる。電磁弁15は、本発明の経路切替手段であって、
閉弁すると、冷媒凝縮器3内から流出した冷媒を、一方
の減圧部13のみを通して気液分離器5内に送る第1経
路(図1において実線で示す)16を形成する。また、
電磁弁15は、開弁すると、一方の減圧部13および他
方の減圧部14の両方を通して気液分離器5内に送る第
2経路(図1において破線で示す)17を形成する。
The first pressure reducing device 4 is connected in parallel between the downstream side of the refrigerant condenser 3 and the upstream side of the gas-liquid separator 5
Each of the refrigerant flow paths 11 and 12 is composed of a pressure reducing portion 13 and 14, respectively. These two decompression units 13 and 14 are both fixed throttles such as capillary tubes and orifices, and adiabatically expand the refrigerant flowing from the refrigerant condenser 3 into the inside. An electromagnetic valve 15 that intermittently opens and closes the refrigerant passage 12 is arranged in the refrigerant passage 12. The solenoid valve 15 is the path switching means of the present invention,
When the valve is closed, the first path (shown by the solid line in FIG. 1) 16 for sending the refrigerant flowing out of the refrigerant condenser 3 to the inside of the gas-liquid separator 5 through only one pressure reducing section 13 is formed. Also,
When the solenoid valve 15 is opened, the solenoid valve 15 forms a second path (indicated by a broken line in FIG. 1) 17 to be sent into the gas-liquid separator 5 through both the one pressure reducing unit 13 and the other pressure reducing unit 14.

【0011】気液分離器5は、2つの減圧部13、14
の下流側に接続され、冷媒ガスと液冷媒とを分離して、
冷媒ガスを直接冷媒圧縮機2の吸入側に戻し、液冷媒を
第2減圧装置6に送る。第2減圧装置6は、気液分離器
5の液冷媒側に接続され、気液分離器5から内部に流入
した冷媒を断熱膨張する。この第2減圧装置6は、通常
の温度式膨張弁を用いている。冷媒蒸発器7は、冷媒圧
縮機2の吸入側と第2減圧装置6の下流側との間に接続
され、第2減圧装置6から内部に流入した液冷媒を、電
動ファン18により吹き付けられる空気と熱交換させる
ことによって蒸発させる。なお、第2減圧装置6と冷媒
蒸発器7を配し、バイパス路8に並設された冷媒流路1
9には、この冷媒流路19を間欠的に開閉する電磁弁2
0、および冷媒が逆流するのを阻止する逆止弁21が配
設されている。バイパス路8には、このバイパス路8を
開閉する開閉手段として電磁弁22が配設されている。
The gas-liquid separator 5 has two depressurization units 13 and 14.
Connected to the downstream side of, to separate the refrigerant gas and liquid refrigerant,
The refrigerant gas is directly returned to the suction side of the refrigerant compressor 2, and the liquid refrigerant is sent to the second pressure reducing device 6. The second decompression device 6 is connected to the liquid refrigerant side of the gas-liquid separator 5 and adiabatically expands the refrigerant flowing from the gas-liquid separator 5 into the inside. The second pressure reducing device 6 uses a normal temperature type expansion valve. The refrigerant evaporator 7 is connected between the suction side of the refrigerant compressor 2 and the downstream side of the second pressure reducing device 6, and the liquid refrigerant flowing into the inside from the second pressure reducing device 6 is blown by the electric fan 18 into the air. Evaporate by exchanging heat with. In addition, the second decompression device 6 and the refrigerant evaporator 7 are arranged, and the refrigerant passage 1 is arranged in parallel in the bypass passage 8.
9 is a solenoid valve 2 for intermittently opening and closing the refrigerant flow path 19.
A check valve 21 for preventing the reverse flow of 0 and the refrigerant is provided. An electromagnetic valve 22 is arranged in the bypass 8 as an opening / closing means for opening / closing the bypass 8.

【0012】図2は冷凍サイクル1の制御装置23を示
した図で、図3は冷凍サイクル1の制御装置23の作動
および冷凍サイクル1の中間圧力変動を示したタイムチ
ャートである。制御装置23には、運転スイッチ24を
介してバッテリ25より電力が供給される。この制御装
置23は、運転スイッチ24および庫内温度センサ26
の出力する電気信号に応じて、リレーコイル27〜29
への通電(オン)および通電の停止(オフ)を制御す
る。リレーコイル27のオン、オフにより開閉されるリ
レースイッチ30には、電磁クラッチ9、電動ファン1
0、18が接続されている。リレーコイル28のオン、
オフにより開閉されるリレースイッチ31には、電磁弁
20が接続されている。リレーコイル29のオン、オフ
により開閉されるリレースイッチ32には、電磁弁1
5、22が接続されている。
FIG. 2 is a diagram showing the control device 23 of the refrigeration cycle 1, and FIG. 3 is a time chart showing the operation of the control device 23 of the refrigeration cycle 1 and the intermediate pressure fluctuation of the refrigeration cycle 1. Electric power is supplied to the control device 23 from the battery 25 via the operation switch 24. The control device 23 includes an operation switch 24 and an inside temperature sensor 26.
Relay coils 27 to 29 according to the electric signal output by
Controls energization (ON) and stop (OFF) of energization. The relay switch 30, which is opened and closed by turning on and off the relay coil 27, includes an electromagnetic clutch 9 and an electric fan 1.
0 and 18 are connected. ON of the relay coil 28,
The solenoid valve 20 is connected to the relay switch 31 which is opened and closed by turning it off. The relay switch 32 that is opened / closed by turning on / off the relay coil 29 includes a solenoid valve 1
5, 22 are connected.

【0013】〔第1実施例の作用〕この冷凍サイクル1
の作動を図1ないし図5に基づいて簡単に説明する。こ
こで、図4は図1における冷凍サイクル1の冷媒回路の
冷媒の状態点をモリエル線図上に描いたもので、図1の
冷凍サイクル1の冷媒回路上のA〜Fの冷媒の状態が図
4のモリエル線図上のA〜Fに対応する。運転スイッチ
24が閉じられ、庫内温度センサ26で検出された庫内
温度が設定温度以上に上昇していると、リレーコイル2
7がオンされ、リレースイッチ30が閉じられる。この
ため、図3のタイムチャートに示したように、電磁クラ
ッチ9および電動ファン10、18が通電され、冷凍サ
イクル1が始動する。
[Operation of First Embodiment] This refrigeration cycle 1
1 will be briefly described with reference to FIGS. Here, FIG. 4 is a diagram in which the state points of the refrigerant of the refrigerant circuit of the refrigeration cycle 1 in FIG. 1 are drawn on the Mollier diagram, and the states of the refrigerants A to F on the refrigerant circuit of the refrigeration cycle 1 of FIG. It corresponds to A to F on the Mollier diagram of FIG. When the operation switch 24 is closed and the inside temperature detected by the inside temperature sensor 26 rises above the set temperature, the relay coil 2
7 is turned on and the relay switch 30 is closed. Therefore, as shown in the time chart of FIG. 3, the electromagnetic clutch 9 and the electric fans 10 and 18 are energized to start the refrigeration cycle 1.

【0014】ここで、制御装置23によりリレーコイル
28がオンされ、リレーコイル29がオフされると、リ
レースイッチ31が閉じられ、リレースイッチ32が開
かれる。このため、図3のタイムチャートに示したよう
に、電磁弁20が開弁し、電磁弁15、22が閉弁す
る。この場合には、図4に実線で示したように、冷媒圧
縮機2で圧縮された冷媒ガス(状態点A)は、冷媒凝縮
器3で凝縮液化される(状態点A→状態点B)。
When the control device 23 turns on the relay coil 28 and turns off the relay coil 29, the relay switch 31 is closed and the relay switch 32 is opened. Therefore, as shown in the time chart of FIG. 3, the solenoid valve 20 opens and the solenoid valves 15 and 22 close. In this case, as shown by the solid line in FIG. 4, the refrigerant gas (state point A) compressed by the refrigerant compressor 2 is condensed and liquefied by the refrigerant condenser 3 (state point A → state point B). ..

【0015】なお、電磁弁20を開弁し、冷媒蒸発器7
に冷媒を通過させる(冷媒蒸発器モード)場合には、冷
媒圧縮機2の吸入圧力損失が大きいため、冷凍サイクル
1の冷媒の循環量が少なくなる。このため、この実施例
では、電磁弁15を閉弁して冷媒凝縮器3から流出した
冷媒を一方の減圧部13のみを通過させることによっ
て、より開口面積の小さい状態で断熱膨張させるように
している(状態点B→状態点C)。そして、一方の減圧
部13より気液分離器5に流入した冷媒は、冷媒ガスと
液冷媒とに分離されて、電磁弁22が閉じられているの
で冷媒ガスがバイパス路8に流入せず、液冷媒(状態点
D)のみが第2減圧装置6に流入する。第2減圧装置6
に流入した冷媒は、この第2減圧装置6を通過する際に
断熱膨張され(状態点D→状態点E)、エンタルピiの
小さい霧状冷媒が冷媒蒸発器7に流入して周囲の空気よ
り熱を奪って蒸発(状態点E→状態点F)するので、冷
凍能力の非常に高い冷却が行われる。
The solenoid valve 20 is opened and the refrigerant evaporator 7 is opened.
When the refrigerant is allowed to pass through (refrigerant evaporator mode), the suction pressure loss of the refrigerant compressor 2 is large, so the refrigerant circulation amount in the refrigeration cycle 1 is small. For this reason, in this embodiment, the solenoid valve 15 is closed and the refrigerant flowing out of the refrigerant condenser 3 is allowed to pass through only the one pressure reducing portion 13 so that the refrigerant is adiabatically expanded in a state where the opening area is smaller. (State point B → state point C). The refrigerant that has flown into the gas-liquid separator 5 from the one pressure reducing section 13 is separated into the refrigerant gas and the liquid refrigerant, and the electromagnetic valve 22 is closed, so that the refrigerant gas does not flow into the bypass passage 8. Only the liquid refrigerant (state point D) flows into the second pressure reducing device 6. Second decompression device 6
The refrigerant that has flowed into the second decompression device 6 undergoes adiabatic expansion when passing through the second pressure reducing device 6 (state point D → state point E), and the atomized refrigerant having a small enthalpy i flows into the refrigerant evaporator 7 and is discharged from the surrounding air. Since heat is taken and evaporated (state point E → state point F), cooling with a very high refrigerating capacity is performed.

【0016】逆に、制御装置23によりリレーコイル2
8がオフされ、リレーコイル29がオンされると、リレ
ースイッチ31が開かれ、リレースイッチ32が閉じ
る。このため、図3のタイムチャートに示したように、
電磁弁20が閉弁し、電磁弁15、22が開弁する。こ
の場合には、図4に破線で示したように、冷媒圧縮機2
で圧縮された冷媒ガス(状態点A1 )は、冷媒凝縮器3
で凝縮液化される(状態点A1 →状態点B)
On the contrary, the control device 23 controls the relay coil 2
When 8 is turned off and the relay coil 29 is turned on, the relay switch 31 is opened and the relay switch 32 is closed. Therefore, as shown in the time chart of FIG.
The solenoid valve 20 is closed and the solenoid valves 15 and 22 are opened. In this case, as shown by the broken line in FIG.
The refrigerant gas (state point A 1 ) compressed by
Is condensed and liquefied (state point A 1 → state point B)

【0017】なお、電磁弁22を開弁してバイパス路8
内に冷媒を流す(ガスインジェクションモード)場合に
は、第2減圧装置6や冷媒蒸発器7内を冷媒が通過しな
いので、冷媒圧縮機2の吸入圧力損失が小さくなるた
め、冷凍サイクル1の冷媒の循環量が多くなる。このた
め、冷媒凝縮器3から流出した冷媒を、電磁弁15を開
弁して一方の減圧部13および他方の減圧部14の両方
に導くことによって、より開口面積の大きい状態で冷媒
を断熱膨張させるようにしている(状態点B→状態点
C)。そして、一方の減圧部13および他方の減圧部1
4より気液分離器5に流入した冷媒は、冷媒ガスと液冷
媒とに分離されるが、電磁弁22が開いており、電磁弁
20が閉じているので、気液分離器5内の冷媒ガス(状
態点F1 )は、第2減圧装置6や冷媒蒸発器7を迂回し
て、バイパス路8を通って直接冷媒圧縮機2の吸入側へ
導かれる。
The solenoid valve 22 is opened to open the bypass 8
When the refrigerant flows through the inside (gas injection mode), the refrigerant does not pass through the second decompression device 6 and the refrigerant evaporator 7, so that the suction pressure loss of the refrigerant compressor 2 becomes small, so the refrigerant of the refrigeration cycle 1 is reduced. The circulation amount of is increased. Therefore, by opening the electromagnetic valve 15 and guiding the refrigerant flowing out of the refrigerant condenser 3 to both the pressure reducing section 13 on one side and the pressure reducing section 14 on the other side, the refrigerant is adiabatically expanded with a larger opening area. (State point B → state point C). Then, one decompression unit 13 and the other decompression unit 1
The refrigerant flowing into the gas-liquid separator 5 from 4 is separated into the refrigerant gas and the liquid refrigerant, but since the electromagnetic valve 22 is open and the electromagnetic valve 20 is closed, the refrigerant in the gas-liquid separator 5 is The gas (state point F 1 ) bypasses the second pressure reducing device 6 and the refrigerant evaporator 7, and is directly guided to the suction side of the refrigerant compressor 2 through the bypass passage 8.

【0018】〔第1実施例の効果〕冷凍サイクル1の冷
凍能力は、冷凍効果(冷媒蒸発器7の入口と出口とのエ
ンタルピの差)と、冷媒の循環量の積で表される。ここ
で、冷凍効果について見てみると、図4に示すように、
従来方式では、バイパス路を開く時と閉じる時との冷媒
の循環量の差により中間圧力、すなわち、気液分離器内
の圧力がPa{バイパス路を閉じた直後の圧力(図3の
破線参照)}からPb{バイパス路を閉じてからある時
間経過後の圧力(図3の破線参照)}まで変動するた
め、冷媒蒸発器7の入口のエンタルピもiaからibに
変動し、平均的に見ると冷媒蒸発器7の入口のエンタル
ピはicとなってしまう。一方、この実施例によると、
バイパス路8を開く時と閉じる時とで第1減圧装置4が
それぞれ対応した減圧度合となるため、中間圧力、すな
わち、気液分離器内の圧力はPaにほぼ一定に保たれる
ため、冷媒蒸発器7の入口のエンタルピもiaとなる。
したがって、冷凍効果について見てみると、図4に示し
たように、従来方式ではid−icであったものが、i
d−iaとなり、冷凍効果が増大し、それに伴い冷凍能
力も図5に示したように、著しく向上する。
[Effect of First Embodiment] The refrigerating capacity of the refrigerating cycle 1 is represented by the product of the refrigerating effect (the difference in enthalpy between the inlet and the outlet of the refrigerant evaporator 7) and the circulating amount of the refrigerant. Here, looking at the freezing effect, as shown in FIG.
In the conventional method, the intermediate pressure, that is, the pressure in the gas-liquid separator is Pa {pressure immediately after the bypass is closed (see the broken line in FIG. 3) due to the difference in the circulating amount of the refrigerant when the bypass is opened and when the bypass is closed. )} To Pb {pressure after a certain time has elapsed since the bypass passage was closed (see the broken line in FIG. 3)}, the enthalpy at the inlet of the refrigerant evaporator 7 also fluctuates from ia to ib, and is viewed on average. Therefore, the enthalpy at the inlet of the refrigerant evaporator 7 becomes ic. On the other hand, according to this embodiment,
Since the first pressure reducing device 4 has a corresponding degree of pressure reduction when the bypass passage 8 is opened and when the bypass passage 8 is closed, the intermediate pressure, that is, the pressure in the gas-liquid separator is kept substantially constant at Pa. The enthalpy at the inlet of the evaporator 7 is also ia.
Therefore, when looking at the freezing effect, as shown in FIG. 4, what is id-ic in the conventional method is i-ic.
d-ia, the refrigerating effect is increased, and the refrigerating capacity is also significantly improved as shown in FIG.

【0019】〔第2実施例〕図6ないし図9は本発明の
第2実施例を示し、図6および図7は気液分離器を示し
た図である。この実施例の気液分離器5は、渦流発生部
51、液冷媒流出管52および冷媒ガス流出管53によ
って構成されている。渦流発生部51は、円形の内周壁
面を有する円筒容器54と、気液二相状態の冷媒を円筒
容器54の内周壁面に沿って流れるように流入させるこ
とにより、液冷媒の渦流を発生させる気液流入口55と
からなる。
[Second Embodiment] FIGS. 6 to 9 show a second embodiment of the present invention, and FIGS. 6 and 7 are views showing a gas-liquid separator. The gas-liquid separator 5 of this embodiment includes a vortex flow generating portion 51, a liquid refrigerant outflow pipe 52, and a refrigerant gas outflow pipe 53. The vortex flow generating unit 51 generates a vortex flow of a liquid refrigerant by causing a cylindrical container 54 having a circular inner peripheral wall surface and a refrigerant in a gas-liquid two-phase state to flow along the inner peripheral wall surface of the cylindrical container 54. And a gas-liquid inflow port 55.

【0020】円筒容器54は、上部に設けられた渦巻き
状の天壁板56と下部に設けられた円形状の底壁板57
との間を連結する円筒状の側壁板58よりなり、内部に
気液分離室59を形成する。なお、天壁板56の略中心
位置、つまり液冷媒の渦流の中心軸線の上方側には、冷
媒ガス流出管53が差し込まれる円形状の貫通孔60が
形成されている。また、底壁板57の中心位置より偏心
した箇所、つまり液冷媒の渦流の中心軸線より偏心した
箇所には、液冷媒流出管52が差し込まれる円形状の貫
通孔61が形成されている。気液流入口55は、側壁板
58の上端に凹所を形成することによって天壁部56と
側壁板58の上端との間に、円筒状の側壁板58の内周
壁面の接線方向に延びるように形成されている。
The cylindrical container 54 has a spiral top wall plate 56 provided at the upper portion and a circular bottom wall plate 57 provided at the lower portion.
It is composed of a cylindrical side wall plate 58 for connecting the space between and, and forms a gas-liquid separation chamber 59 inside. A circular through hole 60 into which the refrigerant gas outflow pipe 53 is inserted is formed at a substantially central position of the top wall plate 56, that is, above the central axis of the vortex flow of the liquid refrigerant. Further, a circular through hole 61 into which the liquid refrigerant outflow pipe 52 is inserted is formed at a position eccentric from the center position of the bottom wall plate 57, that is, a position eccentric from the central axis of the vortex flow of the liquid refrigerant. The gas-liquid inlet 55 extends in the tangential direction of the inner wall surface of the cylindrical side wall plate 58 between the top wall portion 56 and the upper end of the side wall plate 58 by forming a recess at the upper end of the side wall plate 58. Is formed.

【0021】液冷媒流出管52は、本発明の第1出口部
であって、底壁板57に形成された貫通孔61に固定さ
れ、第2減圧装置6の上流側に接続されている。この液
冷媒流出管52は、円筒容器54内で液冷媒と冷媒ガス
とに分離した冷媒のうち液冷媒のみを第2減圧装置6を
介して冷媒蒸発器7へ供給する。冷媒ガス流出管53
は、本発明の第2出口部であって、天壁板56に形成さ
れた貫通孔60に固定され、バイパス路8を介して冷媒
圧縮機2の吸入側に接続されている。この冷媒ガス流出
管53は、円筒容器54内で液冷媒と冷媒ガスとに分離
した冷媒のうち液冷媒のみをバイパス路8を介して冷媒
圧縮機2へ供給する。ここで、円筒容器54は、内部で
液冷媒の渦流が発生する形状であれば円筒形状に限られ
るものではない。また、気液流入口55は円筒容器54
内に液冷媒の渦流を発生させる位置に設けられていてい
ればどのような位置に設けられていても良く、また管形
状であっても良い。
The liquid refrigerant outlet pipe 52 is the first outlet of the present invention, is fixed to the through hole 61 formed in the bottom wall plate 57, and is connected to the upstream side of the second pressure reducing device 6. The liquid refrigerant outflow pipe 52 supplies only the liquid refrigerant of the refrigerant separated into the liquid refrigerant and the refrigerant gas in the cylindrical container 54 to the refrigerant evaporator 7 via the second pressure reducing device 6. Refrigerant gas outflow pipe 53
Is a second outlet of the present invention, is fixed to a through hole 60 formed in the ceiling wall plate 56, and is connected to the suction side of the refrigerant compressor 2 via the bypass passage 8. The refrigerant gas outflow pipe 53 supplies only the liquid refrigerant of the refrigerant separated into the liquid refrigerant and the refrigerant gas in the cylindrical container 54 to the refrigerant compressor 2 via the bypass passage 8. Here, the cylindrical container 54 is not limited to the cylindrical shape as long as the eddy flow of the liquid refrigerant is generated inside. Further, the gas-liquid inlet 55 is a cylindrical container 54.
It may be provided at any position as long as it is provided at a position where a vortex flow of the liquid refrigerant is generated, and it may have a tubular shape.

【0022】この実施例の冷凍サイクル1の気液分離器
5の作用を図6ないし図9に基づいて簡単に説明する。
第1減圧装置4より流出した気液二相状態の冷媒は、気
液分離器5の円筒容器54に形成された気液流入口55
を通って気液分離室59内に流入する。なお、気液流入
口55が円筒容器54の側壁板58の内周壁面の接線方
向に設けられ、且つ側壁板58が円筒状に形成されてい
る。このため、気液分離室59内に流入した気液二相状
態の冷媒は、側壁板58の内周壁面に沿って流れる。
The operation of the gas-liquid separator 5 of the refrigeration cycle 1 of this embodiment will be briefly described with reference to FIGS. 6 to 9.
The gas-liquid two-phase refrigerant flowing out from the first pressure reducing device 4 is a gas-liquid inlet 55 formed in the cylindrical container 54 of the gas-liquid separator 5.
To flow into the gas-liquid separation chamber 59. The gas-liquid inlet 55 is provided in the tangential direction of the inner peripheral wall surface of the side wall plate 58 of the cylindrical container 54, and the side wall plate 58 is formed in a cylindrical shape. Therefore, the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber 59 flows along the inner peripheral wall surface of the side wall plate 58.

【0023】ここで、気液二相状態の冷媒が気液分離室
59内に流入すると、冷媒の流れ方向が急激に変更され
ることによって液冷媒と冷媒ガスとに遠心分離される。
すなわち、気液二相状態の冷媒が円筒状の側壁板58の
内周壁面に沿って流れる時に、図8および図9に示した
ように、液冷媒が側壁板58の内周壁面に沿って渦状に
流れながら下方に向かう。このとき、液冷媒の渦流の中
心軸線は円筒容器54の底壁板57の中心と一致する。
また、冷媒ガスは、液冷媒より分離した後に浮力で液冷
媒の上方に残留するようになる。
Here, when the refrigerant in the gas-liquid two-phase state flows into the gas-liquid separation chamber 59, the flow direction of the refrigerant is suddenly changed, and the refrigerant is centrifugally separated into the liquid refrigerant and the refrigerant gas.
That is, when the refrigerant in the gas-liquid two-phase state flows along the inner peripheral wall surface of the cylindrical side wall plate 58, as shown in FIGS. 8 and 9, the liquid refrigerant flows along the inner peripheral wall surface of the side wall plate 58. It flows downward in a spiral fashion. At this time, the central axis of the vortex flow of the liquid refrigerant coincides with the center of the bottom wall plate 57 of the cylindrical container 54.
Further, the refrigerant gas becomes buoyant and remains above the liquid refrigerant after being separated from the liquid refrigerant.

【0024】そして、気液分離室59内で分離された液
冷媒は、底壁板57の中心位置より偏心した箇所、つま
り液冷媒の渦流の中心軸線より偏心した箇所に固定され
た液冷媒流出管52より第2減圧装置6を介して冷媒蒸
発器7へ供給される。また、液冷媒より遠心分離されて
上方に残留した冷媒ガスは、天壁板56の略中心位置、
つまり液冷媒の渦流の中心軸線の上方側に固定された冷
媒ガス流出管53よりバイパス路8を通って冷媒圧縮機
2の吸入側に吸入される。したがって、気液分離器5の
気液分離性能を向上することができる。すなわち、液冷
媒流出管52より冷媒ガスを含まない単相の液冷媒のみ
を第2減圧装置6内へ供給することができ、且つ冷媒ガ
ス流出管53より液冷媒を含まない単相の冷媒ガスを冷
媒圧縮機2の吸入側へ供給することができる。このた
め、間欠式のガスインジェクションサイクルの冷凍サイ
クル1の冷凍能力の向上効果を十分発揮することができ
る。
The liquid refrigerant separated in the gas-liquid separation chamber 59 is fixed to an eccentric position from the central position of the bottom wall plate 57, that is, a liquid refrigerant outflow fixed to a position eccentric from the central axis of the vortex flow of the liquid refrigerant. It is supplied from the pipe 52 to the refrigerant evaporator 7 via the second pressure reducing device 6. In addition, the refrigerant gas that has been centrifugally separated from the liquid refrigerant and remains above the liquid refrigerant is at a substantially central position of the ceiling wall plate 56,
That is, the liquid refrigerant is sucked into the suction side of the refrigerant compressor 2 through the bypass passage 8 from the refrigerant gas outflow pipe 53 fixed above the central axis of the vortex flow. Therefore, the gas-liquid separation performance of the gas-liquid separator 5 can be improved. That is, only the single-phase liquid refrigerant containing no refrigerant gas can be supplied from the liquid refrigerant outflow pipe 52 into the second decompression device 6, and the single-phase refrigerant gas containing no liquid refrigerant from the refrigerant gas outflow pipe 53. Can be supplied to the suction side of the refrigerant compressor 2. Therefore, the effect of improving the refrigerating capacity of the refrigerating cycle 1 of the intermittent gas injection cycle can be sufficiently exerted.

【0025】〔変形例〕本実施例では、本発明を冷凍装
置または冷蔵装置に適用したが、冷房装置に適用しても
良い。また、本発明をヒートポンプ式冷凍サイクルに適
用しても良い。この場合には、冷媒圧縮機2の冷媒吸入
効率が向上し、冷媒の循環量を増大させることができる
ため、暖房能力の向上や暖房時の成績係数の向上が図ら
れる。本実施例では、2つの減圧部によって第1減圧装
置を構成したが、3つ以上の減圧部によって第1減圧装
置を構成しても良い。この場合には、第1経路に切り替
えられている時に、冷凍負荷や冷媒の循環量に対して減
圧部の使用個数を変えても良い。
[Modification] In the present embodiment, the present invention is applied to the refrigerating device or the refrigerating device, but it may be applied to the cooling device. Further, the present invention may be applied to a heat pump type refrigeration cycle. In this case, the refrigerant suction efficiency of the refrigerant compressor 2 is improved, and the circulation amount of the refrigerant can be increased, so that the heating capacity and the coefficient of performance during heating are improved. In the present embodiment, the first decompression device is composed of two decompression units, but the first decompression device may be composed of three or more decompression units. In this case, the number of pressure reducing units to be used may be changed with respect to the refrigeration load and the circulation amount of the refrigerant when the first path is being switched to.

【0026】[0026]

【発明の効果】本発明は、中間圧力を理想中間圧力に保
つことができるので、冷凍効果の低下を防止でき、それ
に伴い冷凍能力を向上することができる。
According to the present invention, since the intermediate pressure can be maintained at the ideal intermediate pressure, it is possible to prevent the refrigerating effect from being lowered and to improve the refrigerating capacity accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかる冷凍サイクルを示
した冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle according to a first embodiment of the present invention.

【図2】本発明の第1実施例にかかる冷凍サイクルの制
御装置を示した電気回路図である。
FIG. 2 is an electric circuit diagram showing a refrigeration cycle control device according to the first embodiment of the present invention.

【図3】本発明の第1実施例にかかる冷凍サイクルの制
御装置の作動および冷凍サイクルの中間圧力の変動を示
したタイムチャートである。
FIG. 3 is a time chart showing the operation of the refrigeration cycle control device according to the first embodiment of the present invention and the fluctuation of the intermediate pressure of the refrigeration cycle.

【図4】本発明の第1実施例にかかる冷凍サイクルのモ
リエル線図である。
FIG. 4 is a Mollier diagram of the refrigeration cycle according to the first embodiment of the present invention.

【図5】冷凍能力比と中間圧力の変動幅との関係を示し
たグラフである。
FIG. 5 is a graph showing the relationship between the refrigerating capacity ratio and the fluctuation range of the intermediate pressure.

【図6】本発明の第2実施例にかかる気液分離器を示し
た正面図である。
FIG. 6 is a front view showing a gas-liquid separator according to a second embodiment of the present invention.

【図7】図6のA−A断面図である。7 is a cross-sectional view taken along the line AA of FIG.

【図8】本発明の第2実施例にかかる気液分離器を示し
た作用説明図である。
FIG. 8 is an operation explanatory view showing the gas-liquid separator according to the second embodiment of the present invention.

【図9】本発明の第2実施例にかかる気液分離器を示し
た作用説明図である。
FIG. 9 is an operation explanatory view showing the gas-liquid separator according to the second embodiment of the present invention.

【図10】従来の冷凍サイクルを示した冷媒回路図であ
る。
FIG. 10 is a refrigerant circuit diagram showing a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 2 冷媒圧縮機 3 冷媒凝縮器 4 第1減圧装置 5 気液分離器 6 第2減圧装置 7 冷媒蒸発器 8 バイパス路 13 一方の減圧部 14 他方の減圧部 15 電磁弁(経路切替手段) 16 第1経路 17 第2経路 22 電磁弁(開閉手段) 51 渦流発生部 52 液冷媒流出管(第1出口部) 53 冷媒ガス流出管(第2出口部) DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Refrigerant compressor 3 Refrigerant condenser 4 First decompression device 5 Gas-liquid separator 6 Second decompression device 7 Refrigerator evaporator 8 Bypass passage 13 One decompression portion 14 Other decompression portion 15 Solenoid valve (path switching means) ) 16 1st path 17 2nd path 22 Solenoid valve (opening / closing means) 51 Eddy current generation part 52 Liquid refrigerant outflow pipe (first outlet part) 53 Refrigerant gas outflow pipe (second outlet part)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 久嗣 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Matsunaga 1-1-1, Showa-cho, Kariya city, Aichi Prefecture NIDEC CORPORATION

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒圧縮機、冷媒凝縮器、第1減圧装
置、気液分離器、第2減圧装置および冷媒蒸発器を順次
接続してなり、 さらに、前記気液分離器の冷媒ガス側と前記冷媒圧縮機
の吸入側とを、前記第2減圧装置と前記冷媒蒸発器を迂
回するバイパス路で接続し、このバイパス路中に、バイ
パス路を間欠的に開閉する開閉手段を配した冷凍サイク
ルにおいて、 前記第1減圧装置は、前記冷媒凝縮器の下流側と前記気
液分離器の上流側との間に並列して接続された複数の減
圧部よりなり、 前記冷凍サイクルは、 前記冷媒凝縮器内から流出した冷媒を、前記複数の減圧
部のうちの一部を通して前記気液分離器内に送る第1経
路と、 前記冷媒凝縮器内から流出した冷媒を、前記複数の減圧
部の全部を通して前記気液分離器内に送る第2経路と、 前記開閉手段により前記バイパス路が開かれたときに前
記第2経路側に切り替え、前記開閉手段により前記バイ
パス路が閉じられたときに前記第1経路側に切り替える
経路切替手段とを備えたことを特徴とする冷凍サイク
ル。
1. A refrigerant compressor, a refrigerant condenser, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device and a refrigerant evaporator are sequentially connected, and further, the gas side of the gas-liquid separator is connected to the refrigerant gas side. A refrigeration cycle in which the suction side of the refrigerant compressor is connected by a bypass path that bypasses the second pressure reducing device and the refrigerant evaporator, and an opening / closing means for intermittently opening and closing the bypass path is arranged in the bypass path. In the above, the first decompression device includes a plurality of decompression units connected in parallel between the downstream side of the refrigerant condenser and the upstream side of the gas-liquid separator, and the refrigeration cycle comprises the refrigerant condensation A first path for sending the refrigerant flowing out from the inside of the container to the inside of the gas-liquid separator through a part of the plurality of pressure reducing parts, and the refrigerant flowing out of the inside of the refrigerant condenser, all of the plurality of pressure reducing parts. A second path through the through to the gas-liquid separator, Path switching means for switching to the second path side when the bypass path is opened by the opening / closing means, and for switching to the first path side when the bypass path is closed by the opening / closing means. Characterizing refrigeration cycle.
【請求項2】 請求項1に記載の冷凍サイクルにおい
て、 前記気液分離器は、前記第1減圧装置の下流側に接続さ
れ、前記気液分離器内に液冷媒の渦流を発生させる渦流
発生部、 前記気液分離器の下部において、前記液冷媒の渦流の中
心軸線より偏心した箇所に設けられ、前記第2減圧装置
の上流側に接続される第1出口部、 および前記気液分離器の上部において、前記液冷媒の渦
流の中心軸線上に設けられ、前記バイパス路を介して前
記冷媒圧縮機の吸入側に接続される第2出口部を有する
ことを特徴とする冷凍サイクル。
2. The refrigeration cycle according to claim 1, wherein the gas-liquid separator is connected to a downstream side of the first pressure reducing device, and a vortex flow generating a vortex flow of a liquid refrigerant in the gas-liquid separator is generated. Part, a first outlet part provided in a lower part of the gas-liquid separator at a position eccentric from the central axis of the vortex flow of the liquid refrigerant, and connected to the upstream side of the second pressure reducing device, and the gas-liquid separator A refrigeration cycle characterized in that it has a second outlet portion that is provided on the central axis of the vortex flow of the liquid refrigerant and that is connected to the suction side of the refrigerant compressor via the bypass passage.
JP31671592A 1991-12-06 1992-11-26 Freezing cycle Pending JPH05223359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31671592A JPH05223359A (en) 1991-12-06 1992-11-26 Freezing cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-322995 1991-12-06
JP32299591 1991-12-06
JP31671592A JPH05223359A (en) 1991-12-06 1992-11-26 Freezing cycle

Publications (1)

Publication Number Publication Date
JPH05223359A true JPH05223359A (en) 1993-08-31

Family

ID=26568771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31671592A Pending JPH05223359A (en) 1991-12-06 1992-11-26 Freezing cycle

Country Status (1)

Country Link
JP (1) JPH05223359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117072A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Refrigerating device
EP3859230A1 (en) * 2018-09-25 2021-08-04 Toshiba Carrier Corporation Refrigeration cycle device
EP4105576A1 (en) * 2021-06-17 2022-12-21 Carrier Corporation Economizer for refrigeration system and refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117072A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Refrigerating device
EP3859230A1 (en) * 2018-09-25 2021-08-04 Toshiba Carrier Corporation Refrigeration cycle device
EP3859230A4 (en) * 2018-09-25 2022-05-04 Toshiba Carrier Corporation Refrigeration cycle device
EP4105576A1 (en) * 2021-06-17 2022-12-21 Carrier Corporation Economizer for refrigeration system and refrigeration system

Similar Documents

Publication Publication Date Title
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
US7823401B2 (en) Refrigerant cycle device
US7059150B2 (en) Vapor-compression refrigerant cycle system with ejector
JP3321191B2 (en) refrigerator
US6430937B2 (en) Vortex generator to recover performance loss of a refrigeration system
JP4923838B2 (en) Ejector refrigeration cycle
US20010020366A1 (en) Method and apparatus for increasing the efficiency of a refrigeration system
CN100436964C (en) Ejector cycle
JP2007155230A (en) Air conditioner
JP2003114063A (en) Ejector cycle
JP2002022295A (en) Ejector cycle
JP4665601B2 (en) Cycle using ejector
JPH09229497A (en) Refrigerating cycle
JP2003074992A (en) Refrigeration cycle apparatus
JP2006138525A (en) Freezing device, and air conditioner
JP4082435B2 (en) Refrigeration equipment
EP3225939B1 (en) Refrigerant cycle with an ejector
JP4274250B2 (en) Refrigeration equipment
JPH05223359A (en) Freezing cycle
JP2014149103A (en) Refrigeration cycle device
JP2022088798A (en) Refrigeration cycle apparatus
JPH0960986A (en) Refrigerating cycle device
JPH08285384A (en) Freezing cycle
JP6327088B2 (en) Ejector refrigeration cycle
JP3326835B2 (en) Refrigeration cycle