JP2020132981A - Metal recovery method and metal recovery apparatus - Google Patents

Metal recovery method and metal recovery apparatus Download PDF

Info

Publication number
JP2020132981A
JP2020132981A JP2019031518A JP2019031518A JP2020132981A JP 2020132981 A JP2020132981 A JP 2020132981A JP 2019031518 A JP2019031518 A JP 2019031518A JP 2019031518 A JP2019031518 A JP 2019031518A JP 2020132981 A JP2020132981 A JP 2020132981A
Authority
JP
Japan
Prior art keywords
metal
recovered
solution
metal recovery
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019031518A
Other languages
Japanese (ja)
Inventor
博成 浅井
Hironari Asai
博成 浅井
祥 廣濱
Sho Hirohama
祥 廣濱
寛三 鳥居
Kanzo Torii
寛三 鳥居
雄貴 内野
Katsutaka Uchino
雄貴 内野
正治 武田
Masaharu Takeda
正治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Yuka Industry Corp
Original Assignee
Sanwa Yuka Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Yuka Industry Corp filed Critical Sanwa Yuka Industry Corp
Priority to JP2019031518A priority Critical patent/JP2020132981A/en
Publication of JP2020132981A publication Critical patent/JP2020132981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a metal recovery method that can be applied when recovering various metals regardless of the type of metal to be recovered.SOLUTION: In the metal recovery method, using a metal recovery implement having a storage unit made of a bag-shaped body or a bottomed tubular body formed of a predetermined filter cloth, a metal recovery implementation that contains a substitution material made of a metal that is more base than the metal to be recovered in the storage unit is immersed in a solution to be treated in which the metal to be recovered is present in an ionic state, and the solution to be treated and the substitution material are brought into contact with each other in the storage unit of the metal recovery implement to substitute and precipitate the metal to be recovered.SELECTED DRAWING: Figure 2

Description

本発明は、金属回収方法及び金属回収装置に係り、特に、各種の廃棄物より有用な金属資源を有利に回収することが出来る方法に関するものである。 The present invention relates to a metal recovery method and a metal recovery device, and more particularly to a method capable of advantageously recovering useful metal resources from various wastes.

従来より、有用な金属資源の再利用を図るべく、廃棄物より各種の金属を回収する方法等が種々、提案されている。 Conventionally, various methods for recovering various metals from waste have been proposed in order to reuse useful metal resources.

例えば、特許文献1(特開2007−56367号公報)においては、ITO膜洗浄などに用いたブラスト粒子から、インジウムをスズと分離して効率よく回収することができるインジウムの回収方法が、また、特許文献2(特開2006−150196号公報)においては、酸化In系スクラップ粉からブラスト粉を分離する粉末濃縮方法が、各々、提案されている。一方、特許文献3(特開2007−253288号公報)においては、酸化インジウム系酸化物を含む使用済みブラスト粉から、経済的で実用可能なように再利用可能なブラスト分を回収し、製造する方法が提案されており、特許文献4(特開2006−241558号公報)においては、インジウム酸化物を含むサンドブラスト廃粉から、連続的な溶出処理によって効率よくインジウムを回収することができるインジウム溶出装置が提案されており、加えて特許文献5(特開2006−348340号公報)では、ITO薄膜製造時に飛散したITOの回収物等を酸で溶解してなる溶液を用いる、インジウム・スズ含有メタルの製造方法が提案されている。 For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2007-56367), there is also a method for recovering indium that can efficiently recover indium by separating it from tin from the blast particles used for cleaning the ITO film or the like. Patent Document 2 (Japanese Unexamined Patent Publication No. 2006-150196) proposes powder concentration methods for separating blast powder from Indium-oxidized scrap powder. On the other hand, in Patent Document 3 (Japanese Unexamined Patent Publication No. 2007-253288), a reusable blast component is recovered from used blast powder containing an indium oxide-based oxide so as to be economical and practical, and produced. A method has been proposed, and in Patent Document 4 (Japanese Unexamined Patent Publication No. 2006-241558), an indium elution device capable of efficiently recovering indium from sandblast waste powder containing indium oxide by continuous elution treatment. In addition, in Patent Document 5 (Japanese Unexamined Patent Publication No. 2006-348340), an indium tin-containing metal using a solution obtained by dissolving the recovered product of ITO scattered during the production of an ITO thin film with an acid is used. A manufacturing method has been proposed.

上記したものを始めとして、有用な金属資源の再利用を図るための手法等については、様々な技術が提案されているものの、経済性が低いことや事業化が困難であること等を理由として、多数の廃棄物については再利用(リサイクル)が確立していないのが現状である。即ち、これまでに提案されている金属回収方法等の多くは、特定の廃棄物を処理することや特定の金属資源を回収すること等を目的として開発されたものであり、このような特定の廃棄物処理や金属資源回収のために、事業化を前提としてリサイクル設備やプロセスを設計すると、初期投資が大きいことや、1回当たりの処理量が少なく、労務費(人件費)の割合が大きいこと等に起因して、経済性が更に悪化し、それ故に事業化を断念せざるを得ない状況となっているのである。 Although various technologies have been proposed for methods for reusing useful metal resources, including those mentioned above, they are not economically viable and are difficult to commercialize. At present, reuse (recycling) has not been established for a large amount of waste. That is, many of the metal recovery methods proposed so far have been developed for the purpose of treating specific wastes, recovering specific metal resources, etc., and such specific methods have been developed. When designing recycling equipment and processes on the premise of commercialization for waste treatment and metal resource recovery, the initial investment is large, the amount of treatment per treatment is small, and the ratio of labor costs (labor costs) is large. Due to such factors, the economic efficiency has further deteriorated, and therefore the situation has been forced to abandon commercialization.

特開2007−56367号公報Japanese Unexamined Patent Publication No. 2007-56367 特開2006−150196号公報Japanese Unexamined Patent Publication No. 2006-150196 特開2007−253288号公報JP-A-2007-253288 特開2006−241558号公報Japanese Unexamined Patent Publication No. 2006-241558 特開2006−348340号公報Japanese Unexamined Patent Publication No. 2006-348340

ここで、本発明は、かかる事情を背景にして為されたものであって、その解決すべき課題とするところは、回収対象である金属の種類を問わず、様々な金属を回収する際に適用することが可能な金属回収方法を提供することにある。また、本発明は、そのような優れた金属回収方法を有利に実施することが出来る金属回収装置を提供することも、その解決課題とするものである。 Here, the present invention has been made in the context of such circumstances, and the problem to be solved is when recovering various metals regardless of the type of metal to be recovered. The purpose is to provide a metal recovery method that can be applied. Another object of the present invention is to provide a metal recovery device capable of advantageously implementing such an excellent metal recovery method.

そして、本発明は、かかる課題を解決すべく、回収対象の金属を含む廃棄物より、該回収対象の金属を固体物として回収する方法にして、前記廃棄物を用いて、前記回収対象の金属がイオン状態で存在する被処理溶液が準備される一方、30〜200メッシュの濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が準備され、前記収容部内に、前記回収対象の金属より卑な金属からなる置換材を収容してなる前記金属回収用器具を、前記被処理溶液中に浸漬せしめ、該金属回収用器具における収容部内にて該被処理溶液と前記置換材とを接触させることにより、前記回収対象の金属を置換析出せしめる、ことを特徴とする金属の回収方法を、その要旨とするものである。 Then, in order to solve such a problem, the present invention uses a method of recovering the metal to be recovered as a solid from the waste containing the metal to be recovered, and uses the waste to recover the metal to be recovered. While the solution to be treated, which is present in an ionic state, is prepared, a metal recovery device having a housing portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh is prepared. The metal recovery device, which contains a replacement material made of a metal lower than the metal to be recovered, is immersed in the solution to be treated, and the metal recovery device is used in the storage section. The gist thereof is a metal recovery method characterized in that the metal to be recovered is substituted and precipitated by contacting the solution to be treated with the replacement material.

なお、そのような本発明に従う金属の回収方法においては、前記置換材が線状又は箔状を呈することを、好ましい第一の態様とする。 In such a metal recovery method according to the present invention, it is a preferable first aspect that the replacement material has a linear or foil shape.

また、本発明に係る金属の回収方法においては、前記回収対象の金属が、インジウム、スズ、銅、ニッケル、コバルト、ビスマス、金、銀及びパラジウムからなる群より選ばれる一種又は二種以上のものであることを、好ましい第二の態様とする。 Further, in the metal recovery method according to the present invention, the metal to be recovered is one or more selected from the group consisting of indium, tin, copper, nickel, cobalt, bismuth, gold, silver and palladium. Is a preferred second aspect.

さらに、本発明の回収方法においては、前記回収対象の金属がインジウムであり、前記回収対象の金属より卑な金属がアルミニウム又は亜鉛であることを、好ましい第三の態様とする。 Further, in the recovery method of the present invention, it is a preferable third aspect that the metal to be recovered is indium and the metal baser than the metal to be recovered is aluminum or zinc.

その一方、本発明は、回収対象の金属がイオン状態にて存在する被処理溶液より、該回収対象の金属を置換析出せしめるための溶解槽を備えた金属回収装置であって、前記溶解槽内に、30〜200メッシュの濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が、着脱可能な状態で取り付けられていることを特徴とする金属回収装置をも、その要旨とするものである。 On the other hand, the present invention is a metal recovery device provided with a melting tank for substituting and precipitating the metal to be recovered from a solution in which the metal to be recovered is present in an ionic state, and the inside of the melting tank. It is characterized in that a metal recovery device having a housing portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh is attached in a detachable state. The metal recovery device is also the gist.

このように、本発明に従う金属の回収方法においては、所定の濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が用いられるのであり、かかる金属回収用器具における収容部(所定の濾布製の袋状体又は有底筒状体)の内部に、回収対象の金属より卑な金属からなる置換材が収容され、かかる置換材を収用した状態の金属回収用器具が、回収対象の金属がイオン状態で存在する被処理溶液中に浸漬せしめられる。すると、回収対象の金属がイオン状態で存在する被処理溶液は、金属回収用器具の収容部内に浸入し、そこに存在する回収対象の金属より卑な金属からなる置換材と接触せしめられ、置換材を構成する金属と被処理溶液中の金属イオンとの間で金属置換反応が効果的に進行することとなり、以て、回収対象の金属が置換析出することとなるのである。 As described above, in the metal recovery method according to the present invention, a metal recovery device having a housing portion made of a bag-shaped body or a bottomed tubular body formed of a predetermined filter cloth is used. A state in which a replacement material made of a metal lower than the metal to be recovered is housed inside a storage portion (a bag-shaped body or a bottomed tubular body made of a predetermined filter cloth) in the metal recovery device, and the replacement material is collected. The metal recovery device is immersed in a solution to be treated in which the metal to be recovered is present in an ionic state. Then, the solution to be treated in which the metal to be recovered exists in an ionic state penetrates into the accommodating portion of the metal recovery instrument and is brought into contact with a replacement material made of a metal lower than the metal to be recovered and replaced. The metal substitution reaction effectively proceeds between the metal constituting the material and the metal ion in the solution to be treated, and thus the metal to be recovered is substituted and precipitated.

本発明においては、置換材を構成する金属として、被処理溶液中にイオン状態で存在する金属より卑なものが選択されて用いられる。即ち、被処理溶液にイオン状態で含まれる金属の種類は、特に限定されるものではないのであり、本発明に従う金属回収方法は、様々な金属を回収する際に適用することが可能である。 In the present invention, as the metal constituting the substitution material, a metal that is more base than the metal existing in the ionic state in the solution to be treated is selected and used. That is, the type of metal contained in the solution to be treated in the ionic state is not particularly limited, and the metal recovery method according to the present invention can be applied when recovering various metals.

また、本発明において、回収対象の金属は、金属回収用器具における収容部(所定の濾布製の袋状体又は有底筒状体)の内部に置換析出せしめられるところから、金属置換反応の終了後に、金属回収用器具の収容部より取り出すという簡単な操作により回収対象の金属が得られるという利点も、有している。 Further, in the present invention, the metal to be recovered is substituted and precipitated inside the accommodating portion (bag-shaped body or bottomed tubular body made of a predetermined filter cloth) in the metal recovery instrument, and thus the metal substitution reaction is terminated. It also has the advantage that the metal to be recovered can be obtained by a simple operation of taking it out from the accommodating portion of the metal recovery device later.

そして、本発明に従う金属回収装置にあっては、上述した金属回収方法における効果を、より有利に享受することが可能である。 Then, in the metal recovery device according to the present invention, it is possible to more advantageously enjoy the effects of the metal recovery method described above.

本発明に従う金属回収装置における溶解槽の一例を示す平面図である。It is a top view which shows an example of the melting tank in the metal recovery apparatus according to this invention. 図1のA−A面における断面図である。It is sectional drawing on the AA plane of FIG. 金属回収用器具の一例を示す正面図である。It is a front view which shows an example of the metal recovery instrument. 図3に示す金属回収用器具の右側面図である。It is a right side view of the metal recovery instrument shown in FIG. 図3のB−B面における断面図である。It is sectional drawing on the BB plane of FIG. 図3のC−C面における断面図である。It is sectional drawing on the CC plane of FIG.

以下、図面を適宜に参照しつつ、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate.

先ず、本発明において用いられる、回収対象の金属を含む廃棄物としては、従来より公知のものであれば、特に限定されることなく使用することが出来る。例えば、インジウム、スズ、銅、ニッケル、コバルト、ビスマス、金、銀及びパラジウムからなる群より選ばれる一種又は二種以上の金属又はこれらの合金等を含む鉱滓や汚泥等の廃棄物であれば、本発明において用いることが可能である。より具体的には、ITO(酸化インジウムスズ)含有ブラスト粉、パラジウム含有廃酸、酸化スズ含有汚泥、アルミ粉含有インジウムスクラップ、粉状又は粒状の希土類磁石、硫化物含有還元スラグ等を、例示することが出来る。 First, as the waste containing the metal to be recovered used in the present invention, any conventionally known waste can be used without particular limitation. For example, waste such as slag and sludge containing one or more metals selected from the group consisting of indium, tin, copper, nickel, cobalt, bismuth, gold, silver and palladium, or alloys thereof. It can be used in the present invention. More specifically, ITO (indium tin oxide) -containing blast powder, palladium-containing waste acid, tin oxide-containing sludge, aluminum powder-containing indium scrap, powdery or granular rare earth magnets, sulfide-containing reduced slag, and the like are exemplified. Can be done.

そのような廃棄物のうち、固体状等の非液状を呈し、回収対象の金属がイオン状態で存在しないものにあっては、水を加えてスラリー化した後、酸又はアルカリが添加されて、回収対象の金属がイオン状態で存在する溶液(被処理溶液)が調製される。 Among such wastes, those which are in a non-liquid state such as a solid state and the metal to be recovered does not exist in an ionic state are slurried by adding water, and then an acid or an alkali is added. A solution (solution to be treated) in which the metal to be recovered exists in an ionic state is prepared.

ここで、本発明において、回収対象の金属がイオン状態で存在する溶液(被処理溶液)は、後述する金属回収用器具における収容部内に効果的に透過し得るように、常温で200メッシュの濾布を容易に透過する程度の流動性を有することが好ましい。その程度の流動性を発揮するように、水が加えられてスラリー状とされる。また、回収対象の金属を溶解してイオン化せしめる酸又はアルカリとしては、塩酸や硫酸、水酸化ナトリウム水溶液等を例示することが出来る。 Here, in the present invention, a solution in which the metal to be recovered exists in an ionic state (solution to be treated) is a 200-mesh filter at room temperature so that it can be effectively permeated into the accommodating portion of the metal recovery instrument described later. It is preferable that the fluidity is such that it easily permeates the cloth. Water is added to form a slurry so as to exhibit such fluidity. Further, examples of the acid or alkali that dissolves and ionizes the metal to be recovered include hydrochloric acid, sulfuric acid, and an aqueous sodium hydroxide solution.

また、被処理溶液中の硝酸イオン濃度が高すぎると、金属置換反応の進行を阻害したり、金属置換反応によって生じた回収対象の金属の固体物が再度、溶液に溶解する恐れがある。従って、硝酸イオンを含む被処理溶液については、従来より公知の手法に従って硝酸イオンの濃度を1000ppm以下とした後に、本発明の回収方法に供されることが好ましい。 Further, if the nitrate ion concentration in the solution to be treated is too high, the progress of the metal substitution reaction may be hindered, or the solid metal to be recovered generated by the metal substitution reaction may be dissolved in the solution again. Therefore, it is preferable that the solution to be treated containing nitrate ions is subjected to the recovery method of the present invention after the nitrate ion concentration is set to 1000 ppm or less according to a conventionally known method.

なお、回収対象の金属がイオン状態で存在する液状の廃棄物にあっても、必要に応じて適宜に水及び/又は酸(アルカリ)を添加し、調製することが可能であり、そのように調製したものを本発明の被処理溶液として用いることも可能である。 Even if the metal to be recovered is a liquid waste existing in an ionic state, it can be prepared by appropriately adding water and / or an acid (alkali) as needed. It is also possible to use the prepared one as the solution to be treated of the present invention.

上述の如くして、回収対象の金属がイオン状態で存在する被処理溶液が準備される一方で、回収対象の金属より卑な金属からなる置換材が準備される。 As described above, while the solution to be treated in which the metal to be recovered exists in an ionic state is prepared, a replacement material made of a metal baser than the metal to be recovered is prepared.

ここで、回収対象の金属より卑な金属とは、回収対象の金属よりイオン化傾向が大きい金属を意味するものである。本発明において、置換材を構成する金属は、回収対象の金属より卑なもの(イオン化傾向が大きいもの)であれば、特に限定されることなく使用可能である。具体的には、回収対象の金属がインジウムである場合、アルミニウム、亜鉛又は鉄からなる置換材が、好ましくはアルミニウム又は亜鉛からなる置換材が、用いられることとなる。 Here, the metal that is more base than the metal to be recovered means a metal having a higher ionization tendency than the metal to be recovered. In the present invention, the metal constituting the substitution material can be used without particular limitation as long as it is lower than the metal to be recovered (has a high ionization tendency). Specifically, when the metal to be recovered is indium, a substitute material made of aluminum, zinc or iron, preferably a substitute material made of aluminum or zinc is used.

また、本発明において、置換材の形状は特に限定されるものではないが、置換材は、線状を呈するもの(線状体)又は箔状を呈するもの(箔状体)であることが好ましい。より好ましくは、線状体にあっては、0.5〜1.5mm程度の直径(線径)を有するものが用いられる。また、箔状体にあっては、複数枚の金属箔を2〜10MPa程度のプレス圧にてプレス成形して得られるものが、より有利に用いられる。このような所定の形状を有する置換材を用いることにより、金属置換反応がより有利に進行することとなり、対象とする金属をより効果的に回収することが可能となる。 Further, in the present invention, the shape of the replacement material is not particularly limited, but the replacement material is preferably linear (linear body) or foil-like (foil-like body). .. More preferably, a linear body having a diameter (wire diameter) of about 0.5 to 1.5 mm is used. Further, as the foil-like body, one obtained by press-molding a plurality of metal foils at a press pressure of about 2 to 10 MPa is more advantageously used. By using a substitution material having such a predetermined shape, the metal substitution reaction proceeds more advantageously, and the target metal can be recovered more effectively.

そして、本発明においては、上述した置換材は、30〜200メッシュの濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具の収容部内に収容された状態にて、回収対象の金属がイオン状態で存在する被処理溶液中に浸漬せしめられるのである。 Then, in the present invention, the above-mentioned replacement material is accommodated in the accommodating portion of the metal recovery device provided with the accommodating portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh. In this state, the metal to be recovered is immersed in the solution to be treated, which exists in an ionic state.

即ち、かかる浸漬により、金属回収用器具の収容部内において、置換材と被処理溶液とが接触せしめられ、置換材を構成する金属と被処理溶液中の金属イオンとの間で金属置換反応が進行することにより、回収対象の金属は、置換析出せしめられて、固体物として生成されることとなるのである。また、収容部を構成する濾布は、メッシュ数が所定の範囲内のものであるところから、生成した固体物は収容部内に有利に止められることとなり、金属置換反応の終了後に収容部より取り出すという簡単な操作により、目的とする金属を回収することが可能である。 That is, by such immersion, the replacement material and the solution to be treated are brought into contact with each other in the accommodating portion of the metal recovery device, and the metal substitution reaction proceeds between the metal constituting the replacement material and the metal ions in the solution to be treated. By doing so, the metal to be recovered is subjected to substitution precipitation and is produced as a solid substance. Further, since the filter cloth constituting the accommodating portion has a mesh number within a predetermined range, the produced solid matter is advantageously stopped in the accommodating portion and is taken out from the accommodating portion after the completion of the metal substitution reaction. It is possible to recover the target metal by such a simple operation.

本発明において用いられる金属回収用器具は、濾布にて形成された袋状体又は有底筒状体からなる収容部を備えたものであるところ、収容部を構成する濾布のメッシュ数が大きすぎる場合、被処理溶液の透過(浸入)が阻害され、金属置換反応が効果的に進行しない恐れがある。その一方で、収容部を構成する濾布のメッシュ数が小さすぎる場合には、生成した、回収対象の金属からなる固体物が、収容部より脱落する恐れがある。このため、本発明においては、30〜200メッシュの濾布、好ましくは80〜150メッシュの濾布、にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が、用いられることとなる。尚、濾布は、耐酸性(耐アルカリ性)に優れた合成樹脂からなるものが、一般的に用いられる。 The metal recovery device used in the present invention is provided with an accommodating portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth, and the number of meshes of the filter cloth constituting the accommodating portion is large. If it is too large, the permeation (penetration) of the solution to be treated may be hindered and the metal substitution reaction may not proceed effectively. On the other hand, if the number of meshes of the filter cloth constituting the accommodating portion is too small, the generated solid material made of the metal to be collected may fall off from the accommodating portion. Therefore, in the present invention, for metal recovery having a storage portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh, preferably a filter cloth of 80 to 150 mesh. The instrument will be used. As the filter cloth, a filter cloth made of a synthetic resin having excellent acid resistance (alkali resistance) is generally used.

また、置換材を収容した金属回収用器具の被処理溶液中への浸漬時間、浸漬中の被処理溶液のpHや温度等の各種条件は、回収対象の金属と置換材を構成する金属との組合せや、被処理溶液の量、更には被処理溶液に含まれる回収対象の金属イオンの量等を総合的に考慮して、適宜に決定されることとなる。更に、金属置換反応を効率よく進行させるために、置換材を収容した金属回収用器具は、撹拌処理が実施されている被処理溶液中に浸漬されることが好ましい。 In addition, various conditions such as the immersion time of the metal recovery device containing the replacement material in the solution to be treated and the pH and temperature of the solution to be treated during immersion are the same as the metal to be recovered and the metal constituting the replacement material. It will be appropriately determined by comprehensively considering the combination, the amount of the solution to be treated, the amount of metal ions to be recovered contained in the solution to be treated, and the like. Further, in order to allow the metal substitution reaction to proceed efficiently, it is preferable that the metal recovery instrument containing the substitution material is immersed in the solution to be treated, which has been subjected to the stirring treatment.

ところで、本発明に従う金属回収方法は、例えば、図1及び図2に示される溶解槽を備えた金属回収装置を用いることにより、有利に実施することが可能である。図1は、本発明を実施することが可能な金属回収装置の溶解槽を模式的に示す平面図であり、図2は、図1のA−A面における断面図である。なお、図2において、槽本体部(12)、ジャケット部(16)及び蓋部(18)以外の部位については、図面を明りょうなものとするために、ハッチングが付されていないことが理解されるべきである。 By the way, the metal recovery method according to the present invention can be advantageously carried out, for example, by using a metal recovery device provided with a melting tank shown in FIGS. 1 and 2. FIG. 1 is a plan view schematically showing a melting tank of a metal recovery device capable of carrying out the present invention, and FIG. 2 is a cross-sectional view taken along the plane AA of FIG. It should be noted that in FIG. 2, it is understood that the parts other than the tank main body (12), the jacket (16) and the lid (18) are not hatched in order to make the drawing clear. It should be.

それら図1及び図2より明らかなように、先ず、溶解槽10は、溶液を収容するための槽本体部12を有しており、かかる槽本体部12の外方には、空隙14を隔ててジャケット部16が、槽本体部12の外周を覆うように配設されている。空隙14には、液状の熱媒体(図示せず)が封入されており、この熱媒体が、図示しない加熱・冷却機構にて加熱又は冷却されることにより、槽本体部12及びそこに収容される溶液の温度調節が可能とされている。 As is clear from FIGS. 1 and 2, first, the dissolution tank 10 has a tank main body 12 for accommodating the solution, and a gap 14 is separated from the outer side of the tank main body 12. The jacket portion 16 is arranged so as to cover the outer periphery of the tank main body portion 12. A liquid heat medium (not shown) is sealed in the gap 14, and the heat medium is heated or cooled by a heating / cooling mechanism (not shown) to be accommodated in the tank main body 12 and the space 14 thereof. It is possible to control the temperature of the solution.

また、槽本体部12の開口側には、槽本体部12内を密閉空間とすることが可能な蓋部18が配設されている。蓋部18には、液体供給管20が取付部22を介して配設されており、pH計24が、槽本体部12側に位置するように取付部26を介して組み付けられている。金属置換反応中の被処理溶液のpHは、pH計24にて逐次、測定され、その測定値に応じて必要な量の酸、アルカリ又は水が、適宜、液体供給管20より槽本体部12内に供給されるようになっている。 Further, on the opening side of the tank body 12, a lid 18 that can make the inside of the tank body 12 a closed space is arranged. A liquid supply pipe 20 is arranged on the lid portion 18 via a mounting portion 22, and a pH meter 24 is assembled via the mounting portion 26 so as to be located on the tank body portion 12 side. The pH of the solution to be treated during the metal substitution reaction is sequentially measured by a pH meter 24, and the required amount of acid, alkali or water is appropriately added to the tank body 12 from the liquid supply pipe 20 according to the measured value. It is supposed to be supplied inside.

さらに、蓋部18には、排気管28が取付部30を介して配設されており(図1を参照)、金属置換反応の際に生ずるガスが適宜、排出されるようになっている。また、撹拌機32が、その撹拌羽根34が槽本体部12側に位置するように蓋部18に組み付けられており、槽本体部12に収容された被処理溶液の撹拌が可能とされている。 Further, the lid portion 18 is provided with an exhaust pipe 28 via a mounting portion 30 (see FIG. 1) so that the gas generated during the metal substitution reaction is appropriately discharged. Further, the stirrer 32 is assembled to the lid 18 so that the stirring blade 34 is located on the tank body 12 side, so that the solution to be treated contained in the tank body 12 can be stirred. ..

加えて、本発明の溶解槽10における蓋部18には、金属回収用器具36を挿入し、保持するための開口部38が設けられており、この開口部38に金属回収用器具36を挿入した状態で上方に蓋部材40を配置することにより、金属回収用器具36は固定せしめられるように構成されている。 In addition, the lid 18 of the melting tank 10 of the present invention is provided with an opening 38 for inserting and holding the metal recovery instrument 36, and the metal recovery instrument 36 is inserted into the opening 38. By arranging the lid member 40 above in this state, the metal recovery instrument 36 is configured to be fixed.

金属回収用器具36について、より詳細に説明する。図3乃至図4は、金属回収用器具36が示されている説明図であって、図3は正面図、図4は右側面図、図5は図3のB−B面における断面図、図6は図3のC−C面における断面図である。それら図3乃至図6に示されているように、金属回収用器具36は、支持体42及び有底筒状体44にて構成されている。なお、図5及び図6において、有底筒状体44の断面は太点線にて表されている。 The metal recovery device 36 will be described in more detail. 3 to 4 are explanatory views showing the metal recovery device 36, FIG. 3 is a front view, FIG. 4 is a right side view, and FIG. 5 is a sectional view taken along the line BB of FIG. FIG. 6 is a cross-sectional view taken along the line CC of FIG. As shown in FIGS. 3 to 6, the metal recovery device 36 is composed of a support 42 and a bottomed tubular body 44. In addition, in FIG. 5 and FIG. 6, the cross section of the bottomed tubular body 44 is represented by a thick dotted line.

支持体42は、塩化ビニル樹脂製の棒状部材が複数、組み付けられて、全体として直方体状を呈する支持部46aと、かかる支持部46aの上方に組み付けられたフランジ部46bとから構成されている。支持部46aに有底筒状体44が装着され、固定されている。なお、フランジ部46bが蓋部18の開口部38と係止することにより、金属回収用器具36が槽本体部12内に脱落しないようにされている。また、有底筒状体44は、30〜200メッシュ濾布にて形成されている。このような支持体42及び有底筒状体44からなる金属回収用器具36は、その上方が開口しており、かかる開口部より置換材の投入(挿入)が可能である。 The support 42 is composed of a support portion 46a in which a plurality of rod-shaped members made of vinyl chloride resin are assembled to form a rectangular parallelepiped as a whole, and a flange portion 46b assembled above the support portion 46a. A bottomed tubular body 44 is attached to and fixed to the support portion 46a. By locking the flange portion 46b with the opening 38 of the lid portion 18, the metal recovery instrument 36 is prevented from falling into the tank body portion 12. The bottomed tubular body 44 is formed of a 30-200 mesh filter cloth. The metal recovery instrument 36 composed of such a support 42 and a bottomed tubular body 44 has an opening above the support, and a replacement material can be inserted (inserted) from such an opening.

そして、このような構成に係る溶解槽10を備えた金属回収装置を用いて、本発明に従って金属の回収を実施するに際しては、先ず、蓋部18を上方に移動させ、槽本体部12内にスラリー状の廃棄物が投入される。次いで、蓋部18を下方に移動させ、槽本体部12内を密閉空間とした後、槽本体部12内のスラリー状の廃棄物に対して、液体供給管20を通じて酸又はアルカリ水溶液を添加することにより、回収対象の金属がイオン状態で存在する溶液(被処理溶液)が準備される。その後、所定の置換材を収容した金属回収用器具36を、蓋部18より槽本体部12内に挿入し、被処理溶液中に浸漬せしめて、金属回収用器具36内の置換材と被処理溶液とを所定時間、接触させると、金属置換反応が進行し、以て、目的とする金属が置換析出せしめられるのである。本発明においては、置換析出した金属の固体物は金属回収用器具36内に効果的に止まるところから、金属置換反応の終了後に蓋部18より金属回収用器具36を取り外し、かかる器具36内より金属の固体物を取り出すという簡単な操作により、回収対象の金属の固体物が得られるという利点がある。なお、金属置換反応終了後の槽本体部12内にある溶液は、従来と同様の手法に従って中和、ろ過等の処理が実施されることとなる。 Then, when recovering the metal according to the present invention using the metal recovery device provided with the melting tank 10 having such a configuration, first, the lid portion 18 is moved upward and into the tank main body portion 12. Slurry waste is put in. Next, the lid portion 18 is moved downward to make the inside of the tank main body 12 a closed space, and then an acid or alkaline aqueous solution is added to the slurry-like waste in the tank main body 12 through the liquid supply pipe 20. As a result, a solution (solution to be treated) in which the metal to be recovered exists in an ionic state is prepared. After that, the metal recovery device 36 containing the predetermined replacement material is inserted into the tank body 12 from the lid 18 and immersed in the solution to be treated, and the metal recovery device 36 in the metal recovery device 36 is to be treated. When the solution is brought into contact with the solution for a predetermined time, the metal substitution reaction proceeds, so that the target metal is substituted and precipitated. In the present invention, the metal recovery instrument 36 is removed from the lid 18 after the metal substitution reaction is completed, and the metal recovery instrument 36 is removed from the inside of the metal recovery instrument 36 from the place where the replaced and precipitated metal solid matter effectively stops in the metal recovery instrument 36. There is an advantage that the solid metal to be recovered can be obtained by a simple operation of taking out the solid metal. The solution in the tank body 12 after the completion of the metal substitution reaction is subjected to treatments such as neutralization and filtration according to the same method as in the past.

以上、本発明の代表的な実施形態について詳述したが、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づき、種々なる変更、修正、改良等が加え得るものであることが、理解されるべきところである。 Although the typical embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various aspects are based on the knowledge of those skilled in the art as long as the gist of the present invention is not deviated. It should be understood that changes, corrections, improvements, etc. can be made.

ところで、本発明に従う金属回収方法の効果を確認すべく、以下の金属回収試験を実施した。 By the way, in order to confirm the effect of the metal recovery method according to the present invention, the following metal recovery test was carried out.

−実施例1−
50gのインジウム含有廃棄物(インジウムの含有割合:20質量%)、150mLの水道水、及び50mLの35%塩酸を、300mLビーカに投入し、撹拌することにより、インジウムがイオン状態で存在する被処理溶液を調製した。一方、金属回収用器具として、80メッシュの濾布にて形成された、直径が50mmであり、高さが60mmである円筒状の有底筒状体(但し、底部が存在するのは一方の端部にのみ。)を準備すると共に、置換材として、アルミニウム線(直径:1.0mm、長さ:30mm)を準備した。
− Example 1-
50 g of indium-containing waste (indium content: 20% by mass), 150 mL of tap water, and 50 mL of 35% hydrochloric acid are added to a 300 mL beaker and stirred to allow indium to be present in an ionic state. A solution was prepared. On the other hand, as a metal recovery instrument, a cylindrical bottomed tubular body having a diameter of 50 mm and a height of 60 mm, which is formed of an 80-mesh filter cloth (however, one has a bottom). (Only at the end) was prepared, and an aluminum wire (diameter: 1.0 mm, length: 30 mm) was prepared as a replacement material.

内部に置換材を収容した金属回収用器具(濾布製の有底筒状体)を、ビーカ上方から吊るすようにして被処理溶液中に浸漬し、かかる器具内の置換材と濾布を透過した被処理溶液とを接触させた。金属回収用器具の浸漬中は、ビーカ内の被処理溶液のpHが1.5〜2.5を維持するように適宜、ビーカ内に塩酸を添加し、また、ウォーターバスを利用してビーカ内の被処理溶液の液温を50〜60℃に保ち、そのような状態で3時間、維持した。3時間の浸漬の後、ビーカ内より金属回収用器具を取り出し、その内部を確認したところ、固体物の生成が認められた。この固体物は、微量のアルミニウムを含んでいるものの、インジウムを主成分とするものであることが、成分分析にて確認された。得られた固体物に含まれるインジウムの量(回収金属量)を測定し、インジウムの回収率を、下記式(1)より算出した。その結果を、下記表1に示す。
回収率(%)={回収金属量(g)}/{被処理溶液中の回収対象金属量(g)}
×100 ・・・(1)
A metal recovery instrument (bottomed tubular body made of filter cloth) containing a replacement material inside was immersed in the solution to be treated by hanging it from above the beaker, and the replacement material and filter cloth in the device were permeated. It was brought into contact with the solution to be treated. During immersion of the metal recovery device, hydrochloric acid is appropriately added to the beaker so that the pH of the solution to be treated in the beaker is maintained at 1.5 to 2.5, and the inside of the beaker is used using a water bath. The temperature of the solution to be treated was maintained at 50 to 60 ° C., and maintained in such a state for 3 hours. After soaking for 3 hours, the metal recovery device was taken out from the beaker and the inside thereof was checked. As a result, the formation of a solid substance was observed. Although this solid product contains a trace amount of aluminum, it was confirmed by component analysis that it was mainly composed of indium. The amount of indium contained in the obtained solid (recovered metal amount) was measured, and the indium recovery rate was calculated from the following formula (1). The results are shown in Table 1 below.
Recovery rate (%) = {Amount of recovered metal (g)} / {Amount of metal to be recovered in the solution to be treated (g)}
× 100 ・ ・ ・ (1)

−実施例2〜実施例4−
金属回収用器具(有底筒状体)として、下記表1に示されるメッシュ数の濾布にて形成されたものを用いたこと以外は、実施例1と同様の手法に従い、金属回収試験を実施した。各実施例におけるインジウムの回収率を、下記表1に示す。
− Example 2 to Example 4-
A metal recovery test was carried out according to the same method as in Example 1 except that a metal recovery device (bottomed tubular body) formed of a filter cloth having the number of meshes shown in Table 1 below was used. Carried out. The recovery rate of indium in each example is shown in Table 1 below.

Figure 2020132981
Figure 2020132981

−実施例5〜実施例8−
置換材として、下記表2に示される直径(線径)のアルミニウム線を用いたこと以外は、実施例1と同様の手法に従い、金属回収試験を実施した。各実施例におけるインジウムの回収率を、下記表2に示す。

Figure 2020132981
-Example 5 to Example 8-
A metal recovery test was carried out according to the same method as in Example 1 except that an aluminum wire having a diameter (wire diameter) shown in Table 2 below was used as a replacement material. The recovery rate of indium in each example is shown in Table 2 below.
Figure 2020132981

−実施例9−
ニッケルの含有割合が10質量%であり、且つコバルトの含有割合が10質量%であるニッケル/コバルト含有廃棄物の50g、150mLの水道水、及び50mLの35%塩酸を、300mLビーカに投入し、撹拌することにより、ニッケル及びコバルトがイオン状態で存在する被処理溶液を調製した。また、金属回収用器具として、80メッシュの濾布にて形成された、直径が50mmであり、高さが60mmである円筒状の有底筒状体(但し、底部が存在するのは一方の端部にのみ。)を準備した。更に、アルミニウム箔を5枚、重ねたものを、プレス圧:2MPaにてプレスすることにより得られた箔状体を、置換材として準備した。
− Example 9−
50 g of nickel / cobalt-containing waste having a nickel content of 10% by mass and a cobalt content of 10% by mass, 150 mL of tap water, and 50 mL of 35% hydrochloric acid were added to a 300 mL beaker. By stirring, a solution to be treated in which nickel and cobalt were present in an ionic state was prepared. Further, as a metal recovery instrument, a cylindrical bottomed tubular body having a diameter of 50 mm and a height of 60 mm, which is formed of an 80-mesh filter cloth (however, one has a bottom). Only at the end.) Was prepared. Further, a foil-like body obtained by pressing five aluminum foils stacked at a pressing pressure of 2 MPa was prepared as a replacement material.

内部に置換材を収容した金属回収用器具(濾布製の有底筒状体)を、ビーカ上方から吊るすようにして被処理溶液中に浸漬し、かかる器具内の置換材と濾布を透過した被処理溶液とを接触させた。金属回収用器具の浸漬中は、ビーカ内の被処理溶液のpHが1.0〜1.5を維持するように適宜、ビーカ内に塩酸を添加し、また、ウォーターバスを利用してビーカ内の被処理溶液の液温を30℃に保ち、そのような状態で3時間、維持した。3時間の浸漬の後、ビーカ内より金属回収用器具を取り出し、その内部を確認したところ、固体物の生成が認められた。この固体物は、微量のアルミニウムを含んでいるものの、ニッケル及びコバルトを主成分とするものであることが、成分分析にて確認された。得られた固体物に含まれるニッケル及びコバルトの各々の量(回収金属量)を測定し、ニッケル及びコバルトの回収率を、上記式(1)より算出した。その結果を、下記表3に示す。 A metal recovery instrument (bottomed tubular body made of filter cloth) containing a replacement material inside was immersed in the solution to be treated by hanging it from above the beaker, and the replacement material and filter cloth in the device were permeated. It was brought into contact with the solution to be treated. During immersion of the metal recovery device, hydrochloric acid is appropriately added to the beaker so that the pH of the solution to be treated in the beaker is maintained at 1.0 to 1.5, and the inside of the beaker is used using a water bath. The temperature of the solution to be treated was maintained at 30 ° C., and maintained in such a state for 3 hours. After soaking for 3 hours, the metal recovery device was taken out from the beaker and the inside was checked. As a result, the formation of a solid substance was observed. Although this solid product contained a trace amount of aluminum, it was confirmed by component analysis that it was mainly composed of nickel and cobalt. The respective amounts (recovered metal amount) of nickel and cobalt contained in the obtained solid material were measured, and the recovery rate of nickel and cobalt was calculated from the above formula (1). The results are shown in Table 3 below.

−実施例10〜実施例13−
アルミニウム箔を5枚、重ねたものを、下記表3に示すプレス圧にてプレスすることにより得られた箔状体を置換材として用いたこと以外は、実施例9と同様の手法に従い、金属回収試験を実施した。各実施例におけるニッケル及びコバルトの回収率を、下記表3に示す。
− Examples 10 to 13−
A metal obtained by pressing five aluminum foils stacked at the pressing pressure shown in Table 3 below, except that a foil-like body obtained by pressing the foil-like body was used as a replacement material according to the same method as in Example 9. A recovery test was conducted. The recovery rates of nickel and cobalt in each example are shown in Table 3 below.

Figure 2020132981
Figure 2020132981

−実施例14−
ニッケル/コバルト含有廃棄物に代えてインジウム含有廃棄物を用いたこと以外は、実施例9と同様の手法に従い、金属回収試験を実施したところ、インジウムを主成分とする固体物が得られ、インジウムを回収可能であることが確認された。
− Example 14−
A metal recovery test was carried out according to the same method as in Example 9 except that indium-containing waste was used instead of nickel / cobalt-containing waste. As a result, a solid product containing indium as a main component was obtained, and indium was obtained. Was confirmed to be recoverable.

−実施例15−
ニッケル/コバルト含有廃棄物に代えてスズ含有廃棄物を用いたこと以外は、実施例9と同様の手法に従い、金属回収試験を実施したところ、スズを主成分とする固体物が得られ、スズが回収可能であることが確認された。
− Example 15−
When a metal recovery test was carried out according to the same method as in Example 9 except that tin-containing waste was used instead of nickel / cobalt-containing waste, a solid product containing tin as a main component was obtained, and tin was obtained. Was confirmed to be recoverable.

−実施例16−
ニッケル/コバルト含有廃棄物に代えて硫酸コバルト試薬を用いたこと以外は、実施例9と同様の手法に従い、金属回収試験を実施したところ、コバルトを主成分とする固体物が得られ、コバルトが回収可能であることが確認された。
− Example 16−
When a metal recovery test was carried out according to the same method as in Example 9 except that a cobalt sulfate reagent was used instead of the nickel / cobalt-containing waste, a solid product containing cobalt as a main component was obtained, and cobalt was obtained. It was confirmed that it could be recovered.

−実施例17、実施例18−
金属回収用器具を浸漬せしめている間の被処理溶液の液温を、下記表4に示す温度としたこと以外は、実施例16と同様の手法に従い、金属回収試験を実施し、コバルトを回収した。実施例16において回収されたコバルトの量をもって回収率100%として、実施例17及び実施例18の各々におけるコバルトの回収率を算出した。その結果を、下記表4に示す。
-Example 17, Example 18-
A metal recovery test was carried out in the same manner as in Example 16 except that the temperature of the solution to be treated was set to the temperature shown in Table 4 below while the metal recovery device was immersed, and cobalt was recovered. did. The cobalt recovery rate in each of Examples 17 and 18 was calculated with the amount of cobalt recovered in Example 16 as the recovery rate of 100%. The results are shown in Table 4 below.

Figure 2020132981
Figure 2020132981

−実施例19−
アルミニウム線に代えて亜鉛線(直径:1.0mm、長さ:30mm)を置換材として用いたこと以外は、実施例1と同様の手法に従い、金属回収試験を実施した。上記式(1)に従ってインジウムの回収率を算出したところ、97%であった。
− Example 19−
A metal recovery test was carried out according to the same method as in Example 1 except that a zinc wire (diameter: 1.0 mm, length: 30 mm) was used as a substitute material instead of the aluminum wire. When the recovery rate of indium was calculated according to the above formula (1), it was 97%.

−実施例20−
50gの銅含有廃棄物(銅の含有割合:20質量%)、150mLの水道水、及び50mLの35%塩酸を、300mLビーカに投入し、撹拌することにより、銅がイオン状態で存在する被処理溶液を調製した。一方、金属回収用器具として、80メッシュの濾布にて形成された、直径が50mmであり、高さが60mmである円筒状の有底筒状体(但し、底部が存在するのは一方の端部にのみ。)を準備すると共に、置換材として、鉄線(直径:1.0mm、長さ:30mm)を準備した。
− Example 20−
50 g of copper-containing waste (copper content: 20% by mass), 150 mL of tap water, and 50 mL of 35% hydrochloric acid are put into a 300 mL beaker and stirred to treat copper in an ionic state. A solution was prepared. On the other hand, as a metal recovery instrument, a cylindrical bottomed tubular body having a diameter of 50 mm and a height of 60 mm, which is formed of an 80-mesh filter cloth (however, one has a bottom). (Only at the end) was prepared, and an iron wire (diameter: 1.0 mm, length: 30 mm) was prepared as a replacement material.

内部に置換材を収容した金属回収用器具(濾布製の有底筒状体)を、ビーカ上方から吊るすようにして被処理溶液中に浸漬し、かかる器具内の置換材と濾布を透過した被処理溶液とを接触させた。金属回収用器具の浸漬中は、ビーカ内の被処理溶液のpHが1.0〜2.0を維持するように適宜、ビーカ内に塩酸を添加し、また、ウォーターバスを利用してビーカ内の被処理溶液の液温を10〜40℃に保ち、そのような状態で3時間、維持した。3時間の浸漬の後、ビーカ内より金属回収用器具を取り出し、その内部を確認したところ、固体物の生成が認められた。この固体物は、微量の鉄を含んでいるものの、銅を主成分とするものであるであることが、成分分析にて確認された。得られた固体物に含まれる銅の量(回収金属量)を測定し、銅の回収率を上記式(1)より算出したところ、91%であった。 A metal recovery instrument (bottomed tubular body made of filter cloth) containing a replacement material inside was immersed in the solution to be treated by hanging it from above the beaker, and the replacement material and filter cloth in the device were permeated. It was brought into contact with the solution to be treated. During immersion of the metal recovery device, hydrochloric acid is appropriately added to the beaker so that the pH of the solution to be treated in the beaker is maintained at 1.0 to 2.0, and the inside of the beaker is used by using a water bath. The temperature of the solution to be treated was maintained at 10 to 40 ° C., and maintained in such a state for 3 hours. After soaking for 3 hours, the metal recovery device was taken out from the beaker and the inside thereof was checked. As a result, the formation of a solid substance was observed. Although this solid product contains a trace amount of iron, it was confirmed by component analysis that it was mainly composed of copper. The amount of copper contained in the obtained solid (recovered metal amount) was measured, and the copper recovery rate was calculated from the above formula (1) and found to be 91%.

上記した実施例より明らかなように、本発明に従う回収方法においては、置換材を構成する金属として回収対象の金属に応じたものを適宜に選択することにより、対象とする金属を有利に回収し得ることが認められるのであり、本発明の回収方法が、様々な金属の回収に好適なものであることが、確認されるのである。 As is clear from the above-mentioned examples, in the recovery method according to the present invention, the target metal is advantageously recovered by appropriately selecting a metal constituting the replacement material according to the metal to be recovered. It is acknowledged that it is obtained, and it is confirmed that the recovery method of the present invention is suitable for recovery of various metals.

10 溶解槽
12 槽本体部
18 蓋部
36 金属回収用器具
44 有底筒状体
10 Melting tank 12 Tank body 18 Lid 36 Metal recovery equipment 44 Bottomed tubular body

Claims (5)

回収対象の金属を含む廃棄物より、該回収対象の金属を固体物として回収する方法にして、
前記廃棄物を用いて、前記回収対象の金属がイオン状態で存在する被処理溶液が準備される一方、30〜200メッシュの濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が準備され、
前記収容部内に、前記回収対象の金属より卑な金属からなる置換材を収容してなる前記金属回収用器具を、前記被処理溶液中に浸漬せしめ、該金属回収用器具における収容部内にて該被処理溶液と前記置換材とを接触させることにより、前記回収対象の金属を置換析出せしめる、
ことを特徴とする金属の回収方法。
A method of recovering the metal to be recovered as a solid from waste containing the metal to be recovered is used.
The waste is used to prepare a solution to be treated in which the metal to be recovered is present in an ionic state, while the waste is composed of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh. A metal recovery device with a containment is prepared,
The metal recovery device, which contains a replacement material made of a metal lower than the metal to be recovered, is immersed in the solution to be treated, and the metal recovery device is used in the storage section. By bringing the solution to be treated into contact with the replacement material, the metal to be recovered is replaced and precipitated.
A method for recovering a metal, which is characterized in that.
前記置換材が線状又は箔状を呈する請求項1に記載の金属の回収方法。 The method for recovering a metal according to claim 1, wherein the replacement material has a linear or foil shape. 前記回収対象の金属が、インジウム、スズ、銅、ニッケル、コバルト、ビスマス、金、銀及びパラジウムからなる群より選ばれる一種又は二種以上のものである請求項1又は請求項2に記載の金属の回収方法。 The metal according to claim 1 or 2, wherein the metal to be recovered is one or more selected from the group consisting of indium, tin, copper, nickel, cobalt, bismuth, gold, silver and palladium. How to collect. 前記回収対象の金属がインジウムであり、前記回収対象の金属より卑な金属がアルミニウム又は亜鉛である請求項1又は請求項2に記載の金属の回収方法。 The method for recovering a metal according to claim 1 or 2, wherein the metal to be recovered is indium and the metal to be recovered is aluminum or zinc, which is more base than the metal to be recovered. 回収対象の金属がイオン状態にて存在する被処理溶液より、該回収対象の金属を置換析出せしめるための溶解槽を備えた金属回収装置であって、
前記溶解槽内に、30〜200メッシュの濾布にて形成された袋状体又は有底筒状体からなる収容部を備えた金属回収用器具が、着脱可能な状態で取り付けられていることを特徴とする金属回収装置。
A metal recovery device provided with a dissolution tank for substituting and precipitating the metal to be recovered from a solution in which the metal to be recovered is present in an ionic state.
A metal recovery device having a storage portion made of a bag-shaped body or a bottomed tubular body formed of a filter cloth of 30 to 200 mesh is attached to the melting tank in a detachable state. A metal recovery device characterized by.
JP2019031518A 2019-02-25 2019-02-25 Metal recovery method and metal recovery apparatus Pending JP2020132981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031518A JP2020132981A (en) 2019-02-25 2019-02-25 Metal recovery method and metal recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031518A JP2020132981A (en) 2019-02-25 2019-02-25 Metal recovery method and metal recovery apparatus

Publications (1)

Publication Number Publication Date
JP2020132981A true JP2020132981A (en) 2020-08-31

Family

ID=72277910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031518A Pending JP2020132981A (en) 2019-02-25 2019-02-25 Metal recovery method and metal recovery apparatus

Country Status (1)

Country Link
JP (1) JP2020132981A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304327A (en) * 1991-03-29 1992-10-27 Mitsubishi Materials Corp Treatment of decopperized dross
JP2007217760A (en) * 2006-02-17 2007-08-30 Kobelco Eco-Solutions Co Ltd Process for recovery of metal and equipment therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304327A (en) * 1991-03-29 1992-10-27 Mitsubishi Materials Corp Treatment of decopperized dross
JP2007217760A (en) * 2006-02-17 2007-08-30 Kobelco Eco-Solutions Co Ltd Process for recovery of metal and equipment therefor

Similar Documents

Publication Publication Date Title
CN110565115B (en) High purity tin
CN102459660A (en) Extraction of gold from cathode associated gold concentrates
KR100219989B1 (en) Alkaline leaching of galvanized steel scrap
JP2632576B2 (en) Desorption method of gold iodine complex from ion exchange resin
CN105297020B (en) Tin stripping additive and application thereof
CN101812591A (en) Method for recovering gold, copper, copper sulfate and copper chloride waste liquid of waste circuit board
CN109022795B (en) Method for removing components on waste printed circuit board by alkaline electrochemistry and special device thereof
CN102071410A (en) Method for recovering nickel resource from waste liquid of chemical nickel plating
JP5403224B2 (en) How to recover bismuth
Anand et al. Recycling of precious metal gold from waste electrical and electronic equipments (WEEE): A review
JP2020132981A (en) Metal recovery method and metal recovery apparatus
JPS61106788A (en) Metal collecting method and its device
JP3882074B2 (en) Method and apparatus for recovering metallic copper from copper metal waste
JP6159297B2 (en) Silver recovery method
JP6205290B2 (en) Method for recovering gold or silver from cyanic waste liquid containing gold or silver
US4895626A (en) Process for refining and purifying gold
RU2097438C1 (en) Method of recovering metals from scrap
JPH02298226A (en) Method for clarifying noble decoction con- taining gold leached by iodine
WO2020245736A1 (en) Procedure for retrieving the precious metal plating and the carrier from electronic components with nickel-containing intermediate layer
TW201012940A (en) Recycling of lead-free silver containing tin solder dross
JP3060574B2 (en) Metal tin recovery method
Birloaga et al. A Mobile Pilot Plant for the Recovery of Precious and Critical Raw Materials
JP6553596B2 (en) Metal recovery method and metal recovery system, solution regeneration method and solution recycling system
JPH06240373A (en) Method for separating and recovering copper, iron and the like from motor scrap and the like
GB2146316A (en) Precious metals recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208