JP6159297B2 - Silver recovery method - Google Patents

Silver recovery method Download PDF

Info

Publication number
JP6159297B2
JP6159297B2 JP2014128675A JP2014128675A JP6159297B2 JP 6159297 B2 JP6159297 B2 JP 6159297B2 JP 2014128675 A JP2014128675 A JP 2014128675A JP 2014128675 A JP2014128675 A JP 2014128675A JP 6159297 B2 JP6159297 B2 JP 6159297B2
Authority
JP
Japan
Prior art keywords
silver
iron
solution
iii
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014128675A
Other languages
Japanese (ja)
Other versions
JP2015221934A (en
Inventor
菊田 直子
直子 菊田
浅野 聡
聡 浅野
丹 敏郎
敏郎 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014128675A priority Critical patent/JP6159297B2/en
Publication of JP2015221934A publication Critical patent/JP2015221934A/en
Application granted granted Critical
Publication of JP6159297B2 publication Critical patent/JP6159297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、銀又は銀系合金を被覆した基材表面から銀又は銀系合金を溶解剥離して、基材から銀又は銀系合金中の銀を回収する銀の回収方法に関する。   The present invention relates to a silver recovery method in which silver or a silver-based alloy is dissolved and peeled from the surface of a substrate coated with silver or a silver-based alloy, and silver in the silver or silver-based alloy is recovered from the substrate.

電子材料には、鉄系合金基材上に銀ロウ等の銀系合金を塗布または成膜して銀ロウ被覆鉄合金としたものを用いることが広く行われている。例えば、セラミックやガラスに近い熱膨張係数を示す鉄−ニッケル−コバルト合金製薄板材の両表面に銀ロウを塗布したものは、金属とセラミックやガラスとの接合に適しており、接合面の形状に合わせて打ち抜き加工した上で、圧電振動子や圧電発振器などの気密封入などに利用される。   As an electronic material, it is widely used to apply a silver alloy such as silver solder on an iron alloy base material or to form a silver solder-coated iron alloy. For example, an iron-nickel-cobalt alloy sheet material that exhibits a thermal expansion coefficient close to that of ceramic or glass is coated with silver brazing on both surfaces, and is suitable for joining metal and ceramic or glass. It is used for hermetically sealing a piezoelectric vibrator, a piezoelectric oscillator, etc.

このようなに銀ロウを被覆した鉄合金を電子材料として利用する場合には、打ち抜き屑などの加工屑が多量に発生する。特に、鉄−ニッケル−コバルト合金などの高価な鉄系合金基材上に銀系合金の銀ロウを塗布している場合には、基材自身や塗布された銀もそれぞれ回収して再生利用することが望まれている。   When an iron alloy coated with silver solder is used as an electronic material, a large amount of processing waste such as punching waste is generated. In particular, when a silver-based alloy silver solder is applied on an expensive iron-based alloy base material such as an iron-nickel-cobalt alloy, the base material itself and the applied silver are also recovered and recycled. It is hoped that.

特に鉄系合金基材では、合金成分に上記のようにニッケルやコバルトといった高価な金属を用いているため、好ましくは全量溶解せずに、しかも被覆した銀ロウ等の銀系合金の部分だけを分離して回収することが望まれている。   In particular, in an iron-based alloy base material, since an expensive metal such as nickel or cobalt is used as an alloy component as described above, it is preferable that only a portion of a silver-based alloy such as a silver solder coated without being completely dissolved is coated. It is desired to separate and recover.

研削など機械的な方法による分離は、分離が不完全であり、しかも新たなコンタミネーションを生じる懸念もあるため、好ましくない。   Separation by a mechanical method such as grinding is not preferable because the separation is incomplete and there is a concern that new contamination may occur.

鉄系合金基材上の銀合金のみを溶解する方法としては、例えば特許文献1に示すように、シアン化アルカリ溶液を用いる方法が一般的に用いられている。   As a method for dissolving only the silver alloy on the iron-based alloy substrate, for example, as shown in Patent Document 1, a method using an alkali cyanide solution is generally used.

特許文献1は、銀ロウ被覆鉄合金の加工屑から、銀含有量が10ppm以下の鉄合金及び銀ロウ成分を別々に有効に回収する方法を提供するものである。   Patent Document 1 provides a method of effectively recovering an iron alloy having a silver content of 10 ppm or less and a silver brazing component separately from the processing waste of the silver brazing coated iron alloy.

特許文献1の方法は、具体的に、銀ロウ被覆鉄合金の加工屑を小片化し且つ表面同士が密着しないように変形させる前処理工程、銀ロウ被覆鉄合金の小片を導電性且つ通液性の籠に収容し、籠をシアン化合物水溶液中に浸漬し、籠をアノードとし、籠の外にカソードを設け、電解処理して、鉄合金表面から銀ロウ成分を除去してカソードに移動させる電解剥離処理工程を有する。更に、特許文献1の方法は、電解処理した銀ロウ被覆鉄合金の小片を、酸素又は酸化剤を含有するシアン化合物水溶液中に浸漬して鉄合金表面から銀ロウ成分を十分に除去する仕上剥離処理工程、及び鉄合金表面から銀ロウ成分を除去した小片を水洗する水洗工程を有し、銀ロウ被覆鉄合金からの鉄合金及び銀ロウ成分を回収する。   Specifically, the method of Patent Document 1 is a pretreatment step in which processing waste of silver braze-coated iron alloy is shredded and deformed so that the surfaces do not adhere to each other; Electrolysis to remove the silver wax component from the iron alloy surface and move to the cathode by electrolytic treatment by immersing the bag in a cyanide aqueous solution, using the bag as an anode, and providing a cathode outside the bag. It has a peeling treatment process. Furthermore, the method of Patent Document 1 is a finish peeling that sufficiently removes the silver brazing component from the surface of the iron alloy by immersing a small piece of the silver solder coated iron alloy that has been subjected to electrolytic treatment in an aqueous solution of a cyanide compound containing oxygen or an oxidizing agent. A treatment step and a water washing step of washing the small piece from which the silver brazing component has been removed from the surface of the iron alloy are washed, and the iron alloy and the silver brazing component from the silver brazing coated iron alloy are recovered.

特許文献1のようなシアン化アルカリ溶液を用いる手法は、鉄系合金基材を損失することなく、全て溶解して銀系合金のみを分離回収することができる。しかしながら、特許文献1の方法では、毒物であるシアン化アルカリを使用するために、特定の専用作業施設を設け、発生する洗浄液中のシアンを完全分解する排水処理設備が必要となるなど管理上の手間とコストが大きくなる課題があった。   The technique using an alkali cyanide solution as in Patent Document 1 can separate and recover only the silver-based alloy by dissolving it all without losing the iron-based alloy substrate. However, in the method of Patent Document 1, in order to use a toxic alkali cyanide, a specific dedicated work facility is provided, and a wastewater treatment facility for completely decomposing cyanide in the generated cleaning liquid is required. There was a problem of increasing labor and cost.

一方、シアン化アルカリを用いない方法としては、下記の特許文献2に硝酸鉄(III)の水溶液を用いる方法が開示されている。この方法は、金属材料を被覆した鉄基合金素材を硝酸第二コバルト、硝酸第二銅、硝酸第二鉄から採択される1種又は2種以上を含有する剥離溶液に浸漬することを特徴とする鉄基合金素材に被覆された金属材料の回収方法である。   On the other hand, as a method not using alkali cyanide, a method using an aqueous solution of iron (III) nitrate is disclosed in Patent Document 2 below. This method is characterized in that an iron-based alloy material coated with a metal material is immersed in a stripping solution containing one or more selected from cupric nitrate, cupric nitrate, and ferric nitrate. This is a method for recovering a metal material coated with an iron-based alloy material.

特許文献2のような、硝酸鉄(III)の溶液を用いる手法は、Fe3+を酸化剤として、下記の式1に銀メタルについて、式2に銅メタルについて例示する溶解反応により、銀ロウに含まれる銀メタルや銅メタルを溶解するものである。この方法は、毒物に該当する薬剤を使用しないため、設備立地への制限が少ないという利点がある。 The technique using a solution of iron nitrate (III) as in Patent Document 2 uses a solution of Fe 3+ as an oxidant to form silver brazing by a dissolution reaction exemplified for Formula 1 below for silver metal and Formula 2 for copper metal. It dissolves silver metal and copper metal contained. This method has an advantage that there are few restrictions on the facility location because no chemicals corresponding to poisons are used.

Fe3+(NO + Ag
→ Fe2+(NO + Ag(NO )・・・<式1>
2Fe3+(NO + Cu
→ 2Fe2+(NO + Cu2+(NO ・・・<式2>
Fe 3+ (NO 3 ) 3 + Ag
→ Fe 2+ (NO 3 -) 2 + Ag + (NO 3 -) ··· < Formula 1>
2Fe 3+ (NO 3 ) 3 + Cu
→ 2Fe 2+ (NO 3 -) 2 + Cu 2+ (NO 3 -) 2 ··· < formula 2>

しかしながら、Fe3+が酸化剤として働いてFe2+になる反応と、Agが還元されてAgメタルに戻る反応の標準電極電位は、ほぼ同レベルである。このため、式1の反応が進んで液中のFe2+やAgの濃度が上昇してくると、式1の逆反応、すなわち一旦溶解した銀の析出反応が起こるという問題がある。 However, the standard electrode potential of the reaction in which Fe 3+ acts as an oxidizing agent to become Fe 2+ and the reaction in which Ag + is reduced to return to Ag metal are approximately the same level. For this reason, when the reaction of Formula 1 proceeds and the concentration of Fe 2+ and Ag + in the liquid increases, there is a problem that the reverse reaction of Formula 1, that is, the precipitation reaction of silver once dissolved occurs.

銀ロウを被覆した鉄系合金基材を再利用する場合には、一般に、基材中の銀品位を数十ppm以下にまで低減する必要がある。このため、式1の逆反応によって基材上に銀メタルの再析出現象が生じると、回収した基材をそのまま鉄系合金原料として再利用することは難しくなる問題がある。   When reusing an iron-based alloy base material coated with silver brazing, it is generally necessary to reduce the silver quality in the base material to several tens of ppm or less. For this reason, when the reprecipitation phenomenon of silver metal arises on a base material by the reverse reaction of Formula 1, it will become difficult to reuse the collect | recovered base material as an iron-type alloy raw material as it is.

式1から逆反応による銀の再析出を防止するには、式1の右辺の反応系におけるFe2+やAgに比べて左辺の生成系で、大過剰のFe3+イオンが存在する状態を維持すれば良いとも考えられる。しかしながら、使用する硝酸鉄(III)量が回収する基材や銀などの有価物に対して多くなった場合には、コストが嵩んでしまう。また、硝酸鉄(III)は、環境への窒素負荷が大きいため、処理するには環境への窒素負荷を許容範囲まで低減させる処理が必要となる。そのため、硝酸鉄(III)の溶液の使用量が多くなると、それに伴って大量の溶液を処理する必要があるため、より手間がかかり、また大量の溶液を処理する設備が必要となる。 In order to prevent reprecipitation of silver due to the reverse reaction from Equation 1, maintain a state in which a large excess of Fe 3+ ions are present in the production system on the left side compared to Fe 2+ and Ag + in the reaction system on the right side of Equation 1. I think that it should be done. However, when the amount of iron (III) nitrate used is increased with respect to the base material to be recovered and valuable materials such as silver, the cost increases. Further, since iron (III) nitrate has a large nitrogen load on the environment, the treatment requires a treatment for reducing the nitrogen load on the environment to an allowable range. For this reason, when the amount of the iron (III) nitrate solution used is increased, it is necessary to process a large amount of solution accordingly, which requires more time and equipment for processing a large amount of solution.

したがって、銀又は銀系合金を被覆した基材表面から銀を回収する方法には、環境への負荷を軽減でき、安全性とコストの両面で安定した方法が求められている。   Accordingly, a method for recovering silver from the surface of a base material coated with silver or a silver-based alloy is required to be able to reduce the burden on the environment and to be stable in both safety and cost.

特開2003−89894号公報JP 2003-89894 A 特開平02−159324号公報Japanese Patent Laid-Open No. 02-159324

そこで、本発明は、このような実情に鑑みて提案されたものであり、基材を溶出させることなく、基材に被覆された銀又は銀合金を完全に溶解し、基材も再利用できる形で回収でき、かつ銀も回収することができる銀の回収方法を提供することを目的とする。また、本発明は、環境負荷低減と安全性とコスト削減を安定的に満たす銀の回収方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such circumstances, and without dissolving the base material, the silver or silver alloy coated on the base material can be completely dissolved, and the base material can also be reused. An object of the present invention is to provide a silver recovery method that can be recovered in a form and that can also recover silver. Another object of the present invention is to provide a silver recovery method that stably satisfies environmental load reduction, safety, and cost reduction.

上述した目的を達成する本発明に係る銀の回収方法は、銀又は銀系合金を被覆した基材に硝酸鉄(III)含有溶液を添加し、銀又は銀系合金を溶解させ、基材から銀又は銀系合金を剥離する溶解剥離工程と、銀又は銀系合金が溶解した溶液に塩酸を加えて、塩化銀沈殿物を生成する塩化銀生成工程と、溶解剥離工程後の溶液に含まれる2価の鉄イオンを3価の鉄イオンに酸化し、硝酸鉄(III)含有溶液を再生する硝酸鉄再生工程と、硝酸鉄再生工程後に、硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の濃度を溶解剥離工程に使用する硝酸鉄(III)含有溶液の濃度に調整する硝酸鉄(III)含有溶液調整工程とを有し、溶解剥離工程では、基材を添加した後の硝酸鉄(III)含有溶液中のFe3+濃度がFe2+濃度の1.5倍量以上となるように維持し、硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液を溶解剥離工程で使用し、硝酸鉄(III)含有溶液調整工程では、溶解剥離工程で溶解した銀以外の銀合金成分と当量の硝酸イオンを硝酸を添加することにより補充して、硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の硝酸イオン濃度を調整することを特徴とする。 The method for recovering silver according to the present invention for achieving the above-described object includes adding a ferric nitrate (III) -containing solution to a substrate coated with silver or a silver-based alloy, dissolving the silver or silver-based alloy, and Included in dissolution and peeling process for peeling silver or silver-based alloy, silver chloride generating process for adding silver chloride to solution in which silver or silver-based alloy is dissolved to form silver chloride precipitate, and solution after dissolution and peeling process An iron nitrate regeneration process that oxidizes divalent iron ions to trivalent iron ions to regenerate an iron nitrate (III) -containing solution, and contains iron nitrate (III) produced in the iron nitrate regeneration process after the iron nitrate regeneration process An iron nitrate (III) -containing solution adjustment step for adjusting the concentration of the solution to the concentration of the iron nitrate (III) -containing solution used in the dissolution peeling step . In the dissolution peeling step, the iron nitrate after adding the base material (III) Fe 3+ concentration Fe 2+ concentration of the solution containing Maintained as a 1.5 times or more, using the iron (III) nitrate containing solution produced by the iron nitrate regeneration step by dissolving stripping step, the iron (III) nitrate containing solution adjusting step, by dissolving the peeling step Nitrate ions equivalent to dissolved silver alloy components other than dissolved silver are supplemented by adding nitric acid to adjust the nitrate ion concentration of the iron (III) nitrate-containing solution produced in the iron nitrate regeneration step. .

本発明では、基材を溶出させることなく、基材に被覆された銀又は銀合金を完全に溶解し、基材も再利用できる形で回収でき、かつ銀も回収することができる。本発明では、シアンを用いていないため、環境への負荷を軽減でき、経済的に銀を回収することができる。また、本発明では、銀や銀合金の溶出に使用する硝酸鉄(III)含有溶液を多数回繰り返して利用することにより、環境負荷低減と安全性とコスト削減を安定的に満たすことができる。   In the present invention, silver or a silver alloy coated on the base material can be completely dissolved without elution of the base material, and the base material can be recovered in a reusable form, and silver can also be recovered. In the present invention, since cyan is not used, the burden on the environment can be reduced and silver can be recovered economically. Moreover, in this invention, an environmental impact reduction, safety | security reduction, and cost reduction can be satisfy | filled stably by repeatedly using the iron (III) nitrate containing solution used for elution of silver or a silver alloy many times.

銀の回収方法のフローチャートである。It is a flowchart of the collection | recovery method of silver. 実施例で用いた回転撹拌槽の概略図である。It is the schematic of the rotation stirring tank used in the Example. 酸化再生時の酸化還元電位の測定値の経時変化例をグラフ化した図である。It is the figure which graphed the example of a time-dependent change of the measured value of the oxidation-reduction potential at the time of oxidation regeneration.

以下に、本発明を適用した銀の回収方法について図面を参照して詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。   Hereinafter, a silver recovery method to which the present invention is applied will be described in detail with reference to the drawings. Note that the present invention is not limited to the following detailed description unless otherwise specified.

1.溶解剥離工程
2.塩化銀生成工程
3.硝酸鉄再生工程
4.硝酸鉄(III)含有溶液調整工程
5.銀以外の金属回収工程
6.基材水洗工程
1. Dissolution peeling step 2. Silver chloride production process 3. Iron nitrate regeneration process 4. Preparation of iron nitrate (III) -containing solution Metal recovery process other than silver Substrate water washing process

<銀の回収方法>
銀の回収方法は、銀又は銀合金によって表面が被覆された基材が対象である。処理対象としては、例えば、鉄合金基材の表面に銀又は銀系合金が塗布又は成膜された銀被覆基材を挙げることができる。処理対象は、その形状や大きさ、処理設備の形態や大きさに応じて、切断、裁断、破砕などの適切な前処理を施してから、銀を回収するための処理に供する。また、ゴミ、埃、油等が付着している場合は、付着物に応じた方法で事前に洗浄前処理を施すことが好ましい。
<Silver recovery method>
The silver recovery method is for a substrate whose surface is coated with silver or a silver alloy. Examples of the treatment target include a silver-coated substrate in which silver or a silver-based alloy is applied or formed on the surface of an iron alloy substrate. The object to be processed is subjected to an appropriate pretreatment such as cutting, cutting and crushing according to its shape and size and the form and size of the processing equipment, and then subjected to processing for collecting silver. In addition, when dust, dust, oil, or the like is attached, it is preferable to perform a pre-cleaning process in advance by a method corresponding to the attached matter.

具体的に、処理対象としては、鉄合金基材に、銀と銅の合金からなる銀ロウを被覆した銀ロウ被覆基材がある。処理対象の銀ロウ被覆基材としては、鉄−ニッケル−コバルト合金製薄板材の表面に銀ロウを塗布した電子材料の加工屑やスペックアウト品など、あるいはこの材料を用いた製品のスクラップ等を挙げることができる。   Specifically, as a processing target, there is a silver solder coated base material in which an iron alloy base material is coated with a silver solder made of an alloy of silver and copper. The processing target silver brazing coated base material includes processing scraps and spec-out products of electronic materials in which silver brazing is applied to the surface of an iron-nickel-cobalt alloy sheet, or scraps of products using this material. Can be mentioned.

なお、一般的な銀ロウは、銀に銅、亜鉛、スズ、などを加えて合金化したものである。例えば電子材料に用いられる銀ロウは、銀に10〜30%の銅が配合されている合金である。なお、電子材料に用いられる銀ロウは、亜鉛やスズが配合されていないか、配合されていても極微量である。   A general silver solder is an alloy obtained by adding copper, zinc, tin, or the like to silver. For example, silver brazing used for electronic materials is an alloy in which 10-30% copper is blended with silver. In addition, the silver wax used for an electronic material does not mix | blend zinc and tin, or it is a trace amount even if it mix | blends.

銀の回収方法については、銀ロウ被覆基材を例に挙げて説明する。なお、この銀の回収方法は、銀や銀合金を被覆した基材であれば同様に銀を回収することができる。   The silver recovery method will be described by taking a silver wax-coated substrate as an example. In addition, if this silver collection | recovery method is a base material which coat | covered silver and a silver alloy, it can collect | recover silver similarly.

銀の回収方法は、図1に示すように、適切な前処理を施した銀ロウ被覆基材片に硝酸鉄(III)含有溶液を添加して銀ロウを溶解して剥離する溶解剥離工程と、溶解させた銀を塩化銀として生成する塩化銀生成工程と、溶解剥離工程後の溶液に含まれる2価の鉄イオンを3価の鉄イオンに酸化し、硝酸鉄(III)含有溶液を再生する硝酸鉄再生工程とを有する。また、銀の回収方法は、溶解剥離工程で剥離した鉄合金基材を水洗する基材水洗工程を有する。さらに、銀の回収方法は、硝酸鉄(III)含有溶液を再利用するにあたり、硝酸イオン濃度を調整する硝酸鉄(III)含有溶液調整工程を有する。   As shown in FIG. 1, the silver recovery method includes a dissolving and peeling step of adding an iron (III) nitrate-containing solution to a silver wax-coated base piece that has been subjected to appropriate pretreatment to dissolve and peel the silver wax. , A silver chloride production process for producing dissolved silver as silver chloride, and divalent iron ions contained in the solution after the dissolution and peeling process are oxidized to trivalent iron ions to regenerate the iron (III) nitrate-containing solution. An iron nitrate regeneration step. Moreover, the collection | recovery method of silver has a base-material water-washing process of water-washing the iron alloy base material peeled at the melt | dissolution peeling process. Furthermore, the silver recovery method has an iron nitrate (III) -containing solution adjustment step of adjusting the nitrate ion concentration when reusing the iron nitrate (III) -containing solution.

<1.溶解剥離工程>
溶解剥離工程は、適切な前処理を施した銀ロウ被覆基材片から銀ロウを溶解して、銀ロウを鉄合金基材から剥離する。この溶解剥離工程では、鉄合金基材片を溶解させず、また基材片を損傷させることなく、基材原料として再生利用できる形で銀ロウを剥離する。具体的に、溶解剥離工程は、溶解処理液に銀ロウ被覆基材片を浸漬させて、銀ロウを溶解させて鉄合金基材から銀ロウを剥離する。
<1. Dissolution peeling process>
In the dissolution and peeling step, the silver wax is dissolved from the silver wax-coated base piece that has been subjected to an appropriate pretreatment, and the silver wax is peeled off from the iron alloy base material. In this melting and peeling step, the silver solder is peeled in a form that can be recycled as a base material without dissolving the iron alloy base piece and damaging the base piece. Specifically, in the dissolution and peeling step, the silver wax-coated substrate piece is immersed in the dissolution treatment solution to dissolve the silver wax and peel the silver wax from the iron alloy substrate.

溶解剥離工程で用いる溶解処理液には、硝酸鉄(III)を含有する水溶液、または後述する硝酸鉄再生工程で得られた硝酸鉄(III)を含有する水溶液(以下、それぞれを硝酸鉄(III)含有溶液という)を用いることができる。   The dissolution treatment liquid used in the dissolution and peeling step includes an aqueous solution containing iron nitrate (III) or an aqueous solution containing iron nitrate (III) obtained in the iron nitrate regeneration step described later (hereinafter, each of which is iron nitrate (III). ) Containing solution).

溶解剥離工程では、下記の式1、式2に示す反応が生じる。なお、電子部品に用いられる銀ロウは、銀以外の銀合金成分の殆どが銅である。したがって、式2に銅の反応式を示す。
Fe(NO + Ag → Fe(NO + Ag(NO
・・・<式1>
2Fe(NO + Cu
→ 2Fe(NO + Cu(NO・・・<式2>
In the dissolution and peeling step, reactions shown in the following formulas 1 and 2 occur. In addition, most of silver alloy components other than silver are silver solder used for an electronic component. Therefore, Formula 2 shows the reaction formula of copper.
Fe (NO 3 ) 3 + Ag → Fe (NO 3 ) 2 + Ag (NO 3 )
... <Formula 1>
2Fe (NO 3 ) 3 + Cu
→ 2Fe (NO 3 ) 2 + Cu (NO 3 ) 2 ... (Formula 2)

即ち、溶解剥離工程では、硝酸鉄(III)が酸化剤として働き、銀ロウ中の銀を硝酸銀として溶解させ、銅を硝酸銅として溶解させる。ここで、Fe3+がFe2+になる反応の標準酸化還元電位と、Agが還元されてAgメタルに戻る反応の標準酸化還元電位とは、ほぼ同じである。このため、溶解剥離工程では、式1に示す反応が進み、Fe2+やAgの濃度が上昇すると、式1の逆反応が生じ、一旦溶解した銀の析出反応が生じる。 That is, in the dissolution and peeling step, iron (III) nitrate acts as an oxidizing agent, so that silver in the silver wax is dissolved as silver nitrate and copper is dissolved as copper nitrate. Here, the standard redox potential of the reaction in which Fe 3+ becomes Fe 2+ and the standard redox potential of the reaction in which Ag + is reduced to return to Ag metal are substantially the same. For this reason, in the dissolution and peeling step, when the reaction shown in Formula 1 proceeds and the concentration of Fe 2+ or Ag + increases, the reverse reaction of Formula 1 occurs, and the precipitated silver precipitates once.

そこで、発明者らは、溶解剥離工程で式1の逆反応を抑制するための条件を求めて試験を重ねた結果、溶解処理液に銀ロウ被覆基材を浸漬した状態、即ち溶解反応中における溶解処理液中のFe3+イオン量が、常にFe2+イオンの1.5倍量以上になるよう維持することが好ましく、2.5倍量以上になるよう維持することが更に好ましいことを見出した。 Therefore, the inventors obtained the conditions for suppressing the reverse reaction of Formula 1 in the dissolution and peeling step, and as a result of repeated tests, the inventors have immersed the silver wax-coated substrate in the dissolution treatment liquid, that is, during the dissolution reaction. It has been found that the amount of Fe 3+ ions in the dissolution treatment liquid is preferably maintained to be always 1.5 times or more of Fe 2+ ions, and more preferably 2.5 times or more. .

溶解処理液中のFe3+イオン量が、常にFe2+イオンの1.5倍量以上、好ましくは2.0倍量以上、更に好ましくは2.5倍量以上になるよう溶解処理液を維持する必要がある。即ち、溶解剥離工程では、単に溶解処理液中のFe3+が過剰となるように硝酸鉄(III)の濃度を高くするのではなく、銀の還元反応を抑制するのに最低限必要な硝酸鉄(III)の濃度とする。これにより、この溶解剥離工程では、硝酸鉄(III)含有溶液を必要量だけ使用すればよいため、硝酸鉄(III)含有溶液の処理する場合には環境への窒素負荷を許容範囲まで軽減する手間及びコストを削減することができる。また、本実施の形態では、後述するように硝酸鉄(III)含有溶液を再利用しているが、必要な量で繰り返し使用することができるためコストを削減することができる。 The dissolution treatment liquid is maintained so that the amount of Fe 3+ ions in the dissolution treatment liquid is always 1.5 times or more, preferably 2.0 times or more, more preferably 2.5 times or more of Fe 2+ ions. There is a need. That is, in the dissolution and peeling process, the iron nitrate (III) that is the minimum necessary for suppressing the reduction reaction of silver is not used, but the concentration of iron (III) is not increased so that Fe 3+ in the dissolution treatment liquid is excessive. The concentration is (III). As a result, in this dissolution and peeling step, since only a necessary amount of the iron (III) nitrate-containing solution needs to be used, when processing the iron (III) nitrate-containing solution, the nitrogen load on the environment is reduced to an allowable range. Time and cost can be reduced. Moreover, in this Embodiment, although the iron nitrate (III) containing solution is reused so that it may mention later, since it can be used repeatedly in a required quantity, cost can be reduced.

Fe3+濃度を常にFe2+濃度の1.5倍量以上となるように維持するとは、例えばバッチ式溶解剥離処理を例に挙げると、1バッチで処理する銀ロウ被覆基材片に含まれる銀や銅などの溶解対象となるメタル量を事前に把握し、これらを全て溶解する際に発生すると見積もられるFe2+イオン量の、2.5倍量以上のFe3+イオンを含む硝酸鉄(III)含有溶液始液を用いて溶解処理を開始する必要がある、ということである。Fe3+イオン量を常にFe2+イオンの2.5倍量以上になるよう維持するためには、発生すると見積もられるFe2+イオン量の3.5倍量以上のFe3+イオンを含む硝酸鉄(III)含有溶液始液を用いて処理を開始する。 To maintain the Fe 3+ concentration to be always 1.5 times or more the Fe 2+ concentration, for example, in the case of a batch-type dissolution and peeling treatment, silver contained in a silver brazing-coated substrate piece processed in one batch The amount of metal to be dissolved, such as copper and copper, is grasped in advance, and iron (III) nitrate containing Fe 3+ ions that are 2.5 times the amount of Fe 2+ ions that are estimated to be generated when all of these metals are dissolved That is, it is necessary to start the dissolution treatment using the containing solution starting solution. To always maintained so as to be more than 2.5 times the amount of Fe 2+ ions Fe 3+ ion content is estimated to occur Fe 2+ ion content of 3.5 iron nitrate containing times more Fe 3+ ions (III ) Start the treatment with the solution starting solution.

なお、硝酸鉄(III)含有溶液中のFe2+、Fe3+を合わせた鉄濃度が10g/l(0.18mol/l)以下の場合でも、銀ロウを溶解する反応は行なえるが、処理する銀ロウ被覆基材量当たりに必要な液量が多くなり過ぎるため現実的ではない。また、鉄濃度が150g/l(2.67mol/l)以上になると、液の粘性や比重が高くなって、操業操作上、好ましくない。したがって、鉄濃度は、60〜90g/l(1.07〜1.60mol/l)が好ましく、60〜70g/l(1.07〜1.25mol/l)が更に好ましい。 Even if the iron concentration of Fe 2+ and Fe 3+ in the iron (III) nitrate-containing solution is 10 g / l (0.18 mol / l) or less, the reaction to dissolve the silver wax can be performed, but the treatment is performed. This is not realistic because the amount of liquid required per amount of the silver wax-coated substrate becomes too large. On the other hand, if the iron concentration is 150 g / l (2.67 mol / l) or more, the viscosity and specific gravity of the liquid increase, which is not preferable in terms of operation. Therefore, the iron concentration is preferably 60 to 90 g / l (1.07 to 1.60 mol / l), more preferably 60 to 70 g / l (1.07 to 1.25 mol / l).

溶解剥離工程では、溶解反応中においてFe3+濃度がFe2+濃度の1.5倍量以上に維持した状態で銀ロウを溶解させることで、銀を再び鉄合金基材に還元析出させず、銀を完全に溶解させることができ、かつ鉄合金基材を再利用できる形で銀ロウと分離することができる。 In the dissolution and peeling process, silver is not reduced and deposited again on the iron alloy base material by dissolving silver wax in a state where the Fe 3+ concentration is maintained at 1.5 times the Fe 2+ concentration or more during the dissolution reaction. Can be completely dissolved, and the iron alloy substrate can be separated from the silver solder in a reusable form.

<2.塩化銀生成工程>
次に、銀及び銅が溶解した溶液から銀を塩化銀として生成及び回収する塩化銀生成工程を行う。具体的には、塩化銀生成工程は、溶液に溶け込んでいるAgイオンと当量以下の量の塩酸を溶液に添加して塩化銀を生成、沈殿させる。そして、塩化銀生成工程は、塩化銀沈殿物を溶液から固液分離することにより、銀ロウ由来の銀を回収する。その反応式を下記の式3に示す。
Ag(NO) + HCl → AgCl↓ + HNO ・・・<式3>
<2. Silver chloride production process>
Next, the silver chloride production | generation process which produces | generates and collect | recovers silver as silver chloride from the solution which silver and copper melt | dissolved is performed. Specifically, in the silver chloride production step, silver chloride is produced and precipitated by adding hydrochloric acid in an amount equal to or less than an equivalent amount of Ag + ions dissolved in the solution. And a silver chloride production | generation process collect | recovers silver derived from a silver wax by carrying out solid-liquid separation of the silver chloride deposit from a solution. The reaction formula is shown in the following formula 3.
Ag (NO 3 ) + HCl → AgCl ↓ + HNO 3 (Formula 3)

この塩化銀生成工程では、溶存するAgイオンの当量を超える塩酸を添加すると、添加後の液中に塩化物イオン(Clイオン)が残留することになる。この残留した塩化物イオンは、後述するように硝酸鉄(III)含有溶液を再生して、再び溶解剥離工程で使用して銀ロウを溶解する際に、塩化銀の沈殿を発生させてしまう。溶解剥離工程では、溶解途中の銀ロウ表面に塩化銀が析出すると、銀ロウと硝酸鉄(III)含有溶液との接触が妨害される可能性があり、好ましくない。したがって、塩化銀生成工程では、塩化銀生成後の液中にAgイオンが少量残留しているように塩酸の添加量を制御することが好ましい。 In this silver chloride production step, when hydrochloric acid exceeding the equivalent of dissolved Ag + ions is added, chloride ions (Cl ions) remain in the liquid after the addition. The residual chloride ions cause the precipitation of silver chloride when the iron (III) -containing solution is regenerated as described later and used again in the dissolution and peeling process to dissolve the silver wax. In the dissolution and peeling step, if silver chloride is deposited on the surface of the silver wax being dissolved, the contact between the silver wax and the iron (III) nitrate-containing solution may be hindered, which is not preferable. Therefore, in the silver chloride production step, it is preferable to control the amount of hydrochloric acid added so that a small amount of Ag + ions remain in the solution after silver chloride production.

分離した塩化銀沈殿物は、水洗により付着液を除去した後、銀メタルの原料として再利用される。銀ロウ由来の銀以外の金属元素は、この塩化銀生成工程では除去されずに液中に蓄積することになる。   The separated silver chloride precipitate is reused as a raw material for silver metal after removing the adhering liquid by washing with water. Metal elements other than silver derived from silver wax accumulate in the liquid without being removed in the silver chloride production step.

<3.硝酸鉄再生工程>
硝酸鉄再生工程は、溶解剥離工程で銀や銅の溶解反応により生成したFe2+イオンを、Fe3+イオンに酸化して、硝酸鉄(III)含有溶液を再生する。この硝酸鉄酸化工程は、塩化銀生成工程後に限らず、溶解剥離工程後であって塩化銀生成工程前に行っても問題はない。
<3. Iron nitrate regeneration process>
In the iron nitrate regeneration step, the Fe 2+ ions generated by the dissolution reaction of silver or copper in the dissolution and peeling step are oxidized to Fe 3+ ions to regenerate the iron (III) nitrate-containing solution. This iron nitrate oxidation process is not limited to the process after the silver chloride production process, and there is no problem even if it is performed after the dissolution and peeling process and before the silver chloride production process.

硝酸鉄再生工程では、銀や銅の溶解後の溶液、例えば図1に示すように銀を除去した後の脱銀後液に酸化剤を供給して、Fe2+イオンを酸化する。供給する酸化剤としては、空気(中の酸素)が適している。その他の酸化剤としては、酸素濃縮装置などを介した酸素濃縮空気、純酸素、オゾン、過酸化水素等を挙げることができる。硝酸鉄再生工程は、Fe2+イオンをFe3+イオンにすることができればよく、条件は特に限定されない。なお、溶液を加温すると、常温の場合より反応が進みやすく処理時間を短縮できるので好ましい。 In the iron nitrate regeneration step, an oxidizing agent is supplied to a solution after dissolution of silver or copper, for example, a solution after desilvering after removing silver as shown in FIG. 1 to oxidize Fe 2+ ions. Air (internal oxygen) is suitable as the oxidant to be supplied. Examples of other oxidizing agents include oxygen-enriched air, pure oxygen, ozone, and hydrogen peroxide through an oxygen concentrator. The iron nitrate regeneration step is not particularly limited as long as the Fe 2+ ions can be changed to Fe 3+ ions. In addition, it is preferable to warm the solution because the reaction can proceed more easily than at room temperature, and the processing time can be shortened.

具体的には、銀を除去した後の脱銀後液(硝酸鉄溶液)の液温を45℃以上70℃以下に維持しながら、空気を吹き込むエアレーションを行い、Fe2+イオンを酸化する。このような方法では、3時間、あるいは1〜2時間程度の短時間で効率よく硝酸鉄(II)溶液を硝酸鉄(III)溶液へと酸化再生させることができる。 Specifically, aeration of blowing air is performed while oxidizing the Fe 2+ ions while maintaining the temperature of the post-desilvering solution (iron nitrate solution) after removing silver at 45 ° C. or higher and 70 ° C. or lower. In such a method, the iron nitrate (II) solution can be efficiently oxidized and regenerated into the iron nitrate (III) solution in a short time of about 3 hours or 1 to 2 hours.

なお、液温が45℃未満では、短時間で酸化処理することが出来ず、同じ設備を用いてエアレーションを行っても3時間を超える時間を要し、ばらつきも多くなる。一方で、液温を45℃以上とすることで酸化反応が早くなり、3時間以内の短時間で安定して酸化再生処理をすることができる。   If the liquid temperature is lower than 45 ° C., the oxidation treatment cannot be performed in a short time, and even if aeration is performed using the same equipment, it takes more than 3 hours and the variation increases. On the other hand, when the liquid temperature is set to 45 ° C. or higher, the oxidation reaction is accelerated, and the oxidative regeneration treatment can be stably performed in a short time within 3 hours.

また、液温は、高くなるほどより迅速に酸化が進行するが、75℃を超えても蒸発による溶液の減少量が多くなることや加温にかかる熱量が増大してコストが増加するわりに再生速度が顕著に増加することはない。したがって、75℃以下の温度で酸化することが適している。   In addition, the higher the liquid temperature, the faster the oxidation proceeds. However, even if it exceeds 75 ° C, the amount of decrease in the solution due to evaporation increases, the amount of heat required for heating increases, and the cost increases to increase the regeneration rate. Does not increase significantly. Therefore, it is suitable to oxidize at a temperature of 75 ° C. or lower.

酸化の終点は、過マンガン酸カリウムを利用した酸化還元滴定法などによりFe2+イオン残存量を定量することにより判定することが好ましい。 The end point of oxidation is preferably determined by quantifying the residual amount of Fe 2+ ions by a redox titration method using potassium permanganate.

エアレーション手段としては、図2に例示するようなエアー供給管4と撹拌羽根3の組み合わせの他に、エジェクタ方式の気液混合器の利用や、マイクロバブル発生装置の利用、などが考えられるが、これに限定されるものではない。   As the aeration means, in addition to the combination of the air supply pipe 4 and the stirring blade 3 illustrated in FIG. 2, use of an ejector type gas-liquid mixer, use of a microbubble generator, etc. can be considered. It is not limited to this.

なお、銀の回収方法では、得られた硝酸鉄(III)含有溶液をそのまま溶解剥離工程で再利用してもよいが、次に説明するように、硝酸等を添加して濃度や液量を調整してもよい。   In addition, in the silver recovery method, the obtained iron nitrate (III) -containing solution may be reused as it is in the dissolution and peeling step. However, as described below, nitric acid or the like is added to adjust the concentration and liquid volume. You may adjust.

<4.硝酸鉄(III)含有溶液調整工程>
硝酸鉄(III)含有溶液の再利用の回数が少ない間は、得られた硝酸鉄(III)含有溶液をそのまま溶解剥離工程で再利用することができる。しかしながら、硝酸鉄(III)含有溶液をより多数回繰り返して利用するには、硝酸鉄再生工程後に、溶解剥離工程で溶解した銀以外の銀合金成分と当量の硝酸イオンを硝酸を添加することにより補充して、硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の硝酸イオンの濃度を調整する必要がある。なお、例えば電子材料に用いられる銀ロウは、銀以外の銀合金成分は殆どが銅であるため、以下では銅を例に挙げて説明する。
<4. Step of preparing a solution containing iron (III) nitrate>
While the number of reuse of the iron (III) nitrate-containing solution is small, the obtained iron (III) nitrate-containing solution can be reused as it is in the dissolution and peeling step. However, in order to repeatedly use the iron nitrate (III) -containing solution more many times, by adding nitric acid equivalent to the silver alloy components other than silver dissolved in the dissolution peeling step after the iron nitrate regeneration step, nitric acid is added. It is necessary to replenish and adjust the concentration of nitrate ions in the iron (III) nitrate-containing solution produced in the iron nitrate regeneration step. Note that, for example, silver brazing used for electronic materials is mostly made of copper, and the following description will be made by taking copper as an example.

即ち、硝酸鉄(III)含有溶液調整工程では、硝酸鉄再生工程により生成した硝酸鉄(III)含有溶液を溶解剥離工程で再利用できるように、硝酸鉄の濃度を調整する。硝酸鉄(III)含有溶液調整工程は、硝酸鉄再生工程で得られた硝酸鉄(III)を含有する溶液に、銅により消費された硝酸イオンを補充するための硝酸や、水、更には硝酸鉄(III)を添加して、溶解剥離工程で再利用できる硝酸鉄(III)含有溶液に液性、液量を調整してもよい。   That is, in the iron nitrate (III) -containing solution adjustment step, the iron nitrate concentration is adjusted so that the iron nitrate (III) -containing solution generated in the iron nitrate regeneration step can be reused in the dissolution and peeling step. In the iron nitrate (III) -containing solution adjustment step, the solution containing iron nitrate (III) obtained in the iron nitrate regeneration step is supplemented with nitric acid, water, or nitric acid for supplementing nitrate ions consumed by copper. Iron (III) may be added to adjust the liquidity and volume of the solution to an iron (III) nitrate-containing solution that can be reused in the dissolution and peeling step.

ここで、硝酸鉄(III)含有溶液調整工程における硝酸イオンの補充について説明する。溶解剥離工程にて式1で示される反応により溶解した銀のほぼ全量は、塩化銀生成工程で回収される。式2で示される反応により溶解した銅は、全量が硝酸鉄再生工程後の硝酸鉄(III)含有溶液中に残存する。即ち、硝酸鉄再生工程後の硝酸鉄(III)含有溶液では、溶解剥離工程にて溶解した銅の当量分の硝酸イオンが不足する。   Here, replenishment of nitrate ions in the iron (III) nitrate-containing solution adjustment step will be described. Almost all of the silver dissolved by the reaction represented by Formula 1 in the dissolution and peeling process is recovered in the silver chloride production process. The total amount of copper dissolved by the reaction represented by Formula 2 remains in the iron (III) nitrate-containing solution after the iron nitrate regeneration step. That is, in the iron nitrate (III) -containing solution after the iron nitrate regeneration step, the equivalent amount of nitrate ions of copper dissolved in the dissolution peeling step is insufficient.

発明者らは、硝酸鉄再生工程後の硝酸鉄(III)含有溶液に硝酸イオンを補充するための硝酸を添加せずに、硝酸鉄再生工程後の硝酸鉄(III)含有溶液を使用して溶解剥離工程から硝酸鉄再生工程までの処理を多数回重ねる試験を行った。その結果、硝酸イオンの不足が一定レベルを超えると、上述の硝酸鉄再生工程において酸化する際に、酸化中にFe3+イオンの一部が加水分解して沈殿が発生することを確認した。 The inventors used the iron nitrate (III) -containing solution after the iron nitrate regeneration step without adding nitric acid for supplementing nitrate ions to the iron nitrate (III) -containing solution after the iron nitrate regeneration step. A test was conducted in which the treatment from the dissolution peeling step to the iron nitrate regeneration step was repeated many times. As a result, it was confirmed that when the deficiency of nitrate ions exceeded a certain level, a part of Fe 3+ ions was hydrolyzed during the oxidation and precipitation occurred during oxidation in the iron nitrate regeneration step.

なお、溶解剥離工程にて溶解した銀以外の銀合金成分と当量分の硝酸イオンを補填するために行う硝酸添加を、硝酸鉄再生工程の前に行うと、Fe2+イオンをFe3+イオンに酸化する反応速度が著しく遅くなることも確認した。 In addition, if nitric acid addition is performed before the iron nitrate regeneration step to add the equivalent amount of nitrate ions to the silver alloy components other than silver dissolved in the dissolution and peeling step, the Fe 2+ ions are oxidized to Fe 3+ ions. It has also been confirmed that the reaction rate is significantly slow.

従って、硝酸鉄(III)含有溶液をより多数回繰返し利用するためには、硝酸鉄再生工程の後に、溶解剥離工程で溶解した銀以外の銅等の銀合金成分と当量の硝酸イオンを硝酸を添加することにより補填して、硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の硝酸イオン濃度を調整する必要がある。これにより、銀の回収方法では、硝酸鉄再生工程において沈殿の発生が抑えられ、かつ硝酸鉄(III)含有溶液を再利用できるため、低コストで効率良く硝酸鉄再生工程を行うことができる。   Therefore, in order to repeatedly use the iron (III) nitrate-containing solution more many times, after the iron nitrate regeneration step, nitric acid equivalent to the silver alloy component such as copper other than silver dissolved in the dissolution and peeling step is equivalent to nitric acid. It is necessary to adjust the nitrate ion concentration of the iron (III) nitrate-containing solution generated in the iron nitrate regeneration step by making up for the addition. Thus, in the silver recovery method, the occurrence of precipitation is suppressed in the iron nitrate regeneration step and the iron nitrate (III) -containing solution can be reused, so that the iron nitrate regeneration step can be performed efficiently at low cost.

なお、硝酸鉄(III)含有溶液調整工程は、溶解剥離工程から硝酸鉄再生工程までの間に固液分離時の付着などでロスした分の硝酸鉄(III)や水も添加して、溶解剥離工程で再利用できる硝酸鉄(III)含有溶液に液性、液量を調整してもよい。   In addition, the iron nitrate (III) -containing solution adjustment process is also performed by adding iron nitrate (III) and water lost due to adhesion during solid-liquid separation between the dissolution peeling process and the iron nitrate regeneration process. The liquidity and liquid volume may be adjusted to a solution containing iron (III) nitrate that can be reused in the peeling step.

<5.銀以外の金属回収工程>
銀以外の金属回収工程は、再生した硝酸鉄(III)含有溶液に含まれている銅等の銀以外の金属を回収する。回収方法は、電気分解で析出させたり、水酸化物として沈殿させて回収する方法等を挙げることができる。この金属回収工程では、硝酸鉄(III)溶液調整工程で調整した水溶液から銅等の不純物を除去することができる。これにより、不純物を含まない硝酸鉄(III)含有溶液を溶解剥離工程で再利用することができる。
<5. Metal recovery process other than silver>
In the metal recovery step other than silver, a metal other than silver such as copper contained in the regenerated iron nitrate (III) -containing solution is recovered. Examples of the recovery method include a method of depositing by electrolysis or a method of recovering by precipitation as a hydroxide. In this metal recovery step, impurities such as copper can be removed from the aqueous solution adjusted in the iron nitrate (III) solution adjustment step. Thereby, the iron nitrate (III) containing solution which does not contain impurities can be reused in the dissolution and peeling step.

<6.基材水洗工程>
基材水洗工程は、溶解剥離工程で得られた銀ロウ分離後の基材片を水洗する。この基材水洗工程は、基材片を水洗して付着液を除去する。これにより、洗浄した基材片は、基材原料の鉄系合金として再利用することができる。
<6. Substrate water washing process>
In the base water washing step, the base piece after the silver wax separation obtained in the dissolution and peeling step is washed with water. In this base water washing step, the base piece is washed with water to remove the attached liquid. Thereby, the cleaned base material piece can be reused as the iron-based alloy of the base material.

上述の銀の回収方法では、銀ロウ被覆基材を処理対象として説明したが、銀又は銀合金を被覆した基材の場合であっても同様に、基材を損傷させることなく、銀を回収することができる。例えば、銀を被覆した基材の場合には、硝酸鉄再生工程により得られた硝酸鉄(III)含有溶液から他の金属を除去する必要がないため、そのまま溶解剥離工程で再利用でき、また必要に応じて濃度調整を行うのみで再利用することができる。銀ロウの他に、銀と他の金属の合金の場合でも、上述の場合とほぼ同様であり、含まれている他の金属に合わせて金属の回収方法を選択すればよい。   In the silver recovery method described above, the silver wax-coated base material has been described as a processing target. However, even in the case of a base material coated with silver or a silver alloy, silver is recovered without damaging the base material. can do. For example, in the case of a substrate coated with silver, it is not necessary to remove other metals from the iron nitrate (III) -containing solution obtained by the iron nitrate regeneration process, so that it can be reused in the dissolution and peeling process as it is. It can be reused only by adjusting the density as required. In the case of an alloy of silver and another metal other than silver brazing, the method is almost the same as that described above, and a metal recovery method may be selected in accordance with the other metal contained.

以上のような銀の回収方法は、溶解剥離工程においてFe3+イオン量が、常にFe2+イオンの1.5倍量以上となるように維持することにより、Agの再析出を抑えることができ、基材への銀の残留量を安定的に少なくすることができる。また、この銀の回収方法では、溶解剥離工程にて基材を溶解させることなく、銀又は銀合金を完全に溶解して基材から剥離することができる。これにより、この銀の回収方法では、基材を再利用するあたり必要とされる銀品位にまで低減することができ、かつ損傷がなく、再利用できる形で基材を回収することができる。 The silver recovery method as described above can suppress the reprecipitation of Ag by maintaining the amount of Fe 3+ ions at least 1.5 times the amount of Fe 2+ ions in the dissolution and peeling step. The amount of silver remaining on the substrate can be stably reduced. Further, in this silver recovery method, silver or a silver alloy can be completely dissolved and peeled off from the substrate without dissolving the substrate in the dissolving and peeling step. As a result, in this silver recovery method, the silver quality required for reusing the base material can be reduced, and the base material can be recovered in a form that is not damaged and can be reused.

また、銀の回収方法では、基材に被覆されていた銀又は銀合金を完全に溶解させ、銀の再析出を抑えることができるため、ほぼすべての銀を回収することができる。   Further, in the silver recovery method, silver or a silver alloy coated on the base material can be completely dissolved and reprecipitation of silver can be suppressed, so that almost all silver can be recovered.

更に、この銀の回収方法では、銀又は銀合金の剥離後の溶液に含まれている2価の鉄イオンを3価の鉄イオンに酸化し、硝酸鉄(III)含有溶液とすることで、溶解剥離工程で多数回再利用することができる。このため、この銀の回収方法で発生した硝酸を含む溶液は、使い捨てしないため、硝酸を処理する手間やコストを削減でき、更に環境への窒素負荷を軽減することができる。また、この銀の回収方法では、シアンを用いていないため、排水処理設備等を設ける必要がない。以上のことから、この銀の回収方法は、環境への負荷を軽減でき、安全で、経済的に銀を回収することができる。   Furthermore, in this silver recovery method, by oxidizing the divalent iron ions contained in the solution after the peeling of the silver or silver alloy into trivalent iron ions, a solution containing iron (III) nitrate is obtained. It can be reused many times in the dissolution and peeling process. For this reason, since the solution containing nitric acid generated by this silver recovery method is not disposable, it is possible to reduce the labor and cost of treating nitric acid and further reduce the nitrogen load on the environment. In addition, since this silver recovery method does not use cyan, there is no need to provide wastewater treatment equipment. From the above, this silver recovery method can reduce the burden on the environment, and can recover silver safely and economically.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。   Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples.

実施例及び比較例では、Fe−Ni−Co合金からなる板の表面に銀ロウを被覆した材料の加工屑である銀ロウ被覆基材片を原料とした。この原料の品位を以下の表1に示す。なお、分析はICP(Inductively Coupled Plasma)を用いて行なった。銀ロウ被覆基材片1kgに含まれる銀ロウ成分量は、銀が200g、銅が47gである。この量の銀ロウ成分を溶解する際に発生するFe2+イオンの量は、約3.3molになる。 In the examples and comparative examples, the raw material was a silver wax-coated substrate piece, which is a processing waste of a material in which a surface of a plate made of an Fe—Ni—Co alloy was coated with silver wax. The quality of this raw material is shown in Table 1 below. The analysis was performed using ICP (Inductively Coupled Plasma). The amount of the silver wax component contained in 1 kg of the silver wax-coated substrate piece is 200 g for silver and 47 g for copper. The amount of Fe 2+ ions generated when this amount of the silver wax component is dissolved is about 3.3 mol.

Figure 0006159297
Figure 0006159297

<実施例1>
実施例1では、銀ロウ被覆基材片1kgと、表2に示す濃度および液量の硝酸鉄(III)溶液を、容量30Lの図2に示すような撹拌用邪魔板付き回転撹拌槽1に投入し、20rpmの回転速度で3時間撹拌混合し、銀ロウを溶解剥離して溶解後の溶液と溶解残渣とからなるスラリーとした。
<Example 1>
In Example 1, 1 kg of a silver wax-coated base piece and an iron (III) nitrate solution having a concentration and a liquid amount shown in Table 2 were placed in a rotary stirring tank 1 with a baffle plate for stirring as shown in FIG. The mixture was stirred and mixed for 3 hours at a rotation speed of 20 rpm, and the silver wax was dissolved and peeled to form a slurry composed of the dissolved solution and the dissolved residue.

図2に示す撹拌槽1は、撹拌用邪魔板2を備えた容量30Lの撹拌槽である。撹拌槽1には、円板付撹拌羽根3、及び撹拌槽1の底部の中央から槽内に空気を送り込むエアー供給管4が取り付けられている。また、撹拌槽1には、溶液の液温を測る温度センサー5が取り付けられている。   The stirring tank 1 shown in FIG. 2 is a stirring tank with a capacity of 30 L provided with a baffle plate 2 for stirring. The stirring tank 1 is provided with a disc-shaped stirring blade 3 and an air supply pipe 4 for sending air into the tank from the center of the bottom of the stirring tank 1. In addition, a temperature sensor 5 for measuring the liquid temperature of the solution is attached to the stirring tank 1.

次に、実施例1では、ヌッチェと濾瓶を用いて、溶解後の溶液と浸出残渣を分離し、浸出残渣を合計3Lの水で洗浄して、753gの基材片を回収した。この基材片の銀品位は、10ppm未満であり、新たな銀ロウ被覆基材の原料として再生できる品位であった。また、基材の溶解ロスは0.2%未満だった。さらに9.7L回収した溶解後の溶液にも、基材洗浄液中にも、沈殿物は全く観察されなかった。   Next, in Example 1, using a Nutsche and a filter bottle, the dissolved solution and the leaching residue were separated, and the leaching residue was washed with a total of 3 L of water to recover 753 g of the base material piece. The silver quality of this base material piece was less than 10 ppm, and it was a quality that can be regenerated as a raw material for a new silver solder coated base material. The dissolution loss of the base material was less than 0.2%. Furthermore, no precipitate was observed in the 9.7 L recovered solution or the substrate cleaning solution.

引き続き、実施例1では、溶解後の溶液を容量15Lの撹拌羽根付き凝集沈殿槽に入れ、200rpmで撹拌しながら36重量%の塩酸(濃塩酸)130mlを投入し、塩化銀を生成し、固液分離した銀濃度3.1g/Lの脱銀後液を9.2Lを得た。   Subsequently, in Example 1, the solution after dissolution was placed in a coagulating sedimentation tank with a stirring blade having a capacity of 15 L, and 130 ml of 36% by weight hydrochloric acid (concentrated hydrochloric acid) was added while stirring at 200 rpm to produce silver chloride. 9.2 L of liquid after desilvering with a silver concentration of 3.1 g / L was obtained.

次に、この脱銀後液を図2に示す構成と同様の構成の容量20Lの回転撹拌槽1に入れ、液温を45℃に加温・維持しながら、エアー供給管5から空気曝気量10L/分で3時間かけて空気を供給し、硝酸鉄(III)の再生を実施した。その結果、液中残留するFe2+濃度は0.1g/L未満と、再利用に支障がないレベルにまで低下したことが確認できた。 Next, this desilvered solution is put into a 20-liter rotating stirring tank 1 having the same configuration as that shown in FIG. 2, and the air aeration amount is supplied from the air supply pipe 5 while heating and maintaining the solution temperature at 45 ° C. Air was supplied at 10 L / min over 3 hours to regenerate iron (III) nitrate. As a result, it was confirmed that the Fe 2+ concentration remaining in the liquid was less than 0.1 g / L, which was reduced to a level that does not hinder reuse.

<実施例2>
実施例2では、実施例1と同じ銀ロウ被覆基材片と、表2に示す濃度および液量の硝酸鉄(III)溶液を、実施例1と同じ回転撹拌槽に投入し、実施例1と同じ撹拌条件にて銀ロウの溶解剥離を実施した。
<Example 2>
In Example 2, the same silver wax-coated base piece as in Example 1 and the iron nitrate (III) solution having the concentrations and liquid amounts shown in Table 2 were put into the same rotating stirring tank as in Example 1, and Example 1 The silver wax was dissolved and peeled under the same stirring conditions as in.

次に、銀ロウ分離後の基材片を実施例1と同様に水洗浄して、752gの基材片を回収した。この基材片の銀品位は、10ppm未満であり、問題なく銀ロウ被覆基材原料として再生できる品位であった。また、基材の溶解ロスが0.2%未満であることも確認できた。   Next, the base material piece after silver wax separation was washed with water in the same manner as in Example 1 to recover 752 g of the base material piece. The silver quality of this base material piece was less than 10 ppm, and it was a quality that could be regenerated as a silver wax-coated base material without problems. It was also confirmed that the dissolution loss of the substrate was less than 0.2%.

実施例2では、銀ロウを溶解した後の溶液中に銀粉状物の析出が少し観察されたため、硬質濾紙とヌッチェと濾瓶を用いた吸引濾過を行った。その結果、9.5Lの溶解後の溶液を回収するとともに、析出した銀粉を洗浄・乾燥したところ乾燥状態で4.8gの銀粉を回収した。   In Example 2, since slight precipitation of silver powder was observed in the solution after dissolving the silver wax, suction filtration using a hard filter paper, Nutsche and a filter bottle was performed. As a result, 9.5 L of the dissolved solution was recovered, and the precipitated silver powder was washed and dried to recover 4.8 g of silver powder in a dry state.

引き続き、実施例2では、溶解後の溶液を実施例1と同じ凝集沈殿槽に入れて、実施例1と同様の撹拌条件で36重量%の塩酸180mlを投入し、塩化銀を生成し、固液分離して銀濃度4.7g/Lの脱銀後液を9.2L得た。   Subsequently, in Example 2, the solution after dissolution was placed in the same coagulation sedimentation tank as in Example 1, and 180 ml of 36 wt% hydrochloric acid was added under the same stirring conditions as in Example 1 to produce silver chloride. Liquid separation was performed to obtain 9.2 L of a solution after desilvering with a silver concentration of 4.7 g / L.

実施例2では、この脱銀後液を、実施例1と同じ回転撹拌槽に入れ、実施例1と同様の硝酸鉄(III)の再生を実施したところ、液中残留Fe2+濃度が0.1g/L未満と、再利用に支障がないレベルに低下できたことが確認できた。 In Example 2, when this desilvered solution was put into the same rotary stirring tank as in Example 1 and iron (III) nitrate was regenerated in the same manner as in Example 1, the residual Fe 2+ concentration in the solution was 0.00. It was confirmed that the level could be reduced to a level of less than 1 g / L with no trouble in reuse.

<比較例1>
比較例1では、重量1kgの銀ロウ被覆基材片と、表2に示す濃度および液量の硝酸鉄(III)溶液を、実施例1と同じ回転撹拌槽に投入し、実施例1と同じ撹拌条件にて銀ロウを溶解剥離した。
<Comparative Example 1>
In Comparative Example 1, a silver wax-coated base piece having a weight of 1 kg and an iron nitrate (III) solution having the concentrations and liquid amounts shown in Table 2 were put into the same rotating stirring tank as in Example 1, and the same as in Example 1. Silver wax was dissolved and peeled under stirring conditions.

次に、銀ロウ分離後の基材片を実施例1と同様に水洗浄して、752gの基材片を回収した。この基材片の銀品位は、100ppmとなり、そのままでは銀ロウ被覆基材原料として再生できない品位であった。   Next, the base material piece after silver wax separation was washed with water in the same manner as in Example 1 to recover 752 g of the base material piece. The silver quality of this base material piece was 100 ppm, and it was a quality that could not be regenerated as a raw material for the silver solder coated base material.

さらに、比較例1では、溶解後の溶液に銀粉状物の析出も多く観察されたため、実施例2と同様の方法で銀粉の回収を実施した。その結果、銀粉11.3gを分離した。   Furthermore, in Comparative Example 1, a large amount of silver powder was precipitated in the solution after dissolution, and therefore silver powder was collected in the same manner as in Example 2. As a result, 11.3 g of silver powder was separated.

表2に、実施例及び比較例において、回収した基材片の銀品位、溶解剥離工程後の溶液に含まれていた銀粉量、溶解剥離工程後の溶液中の銀濃度をまとめた。溶解剥離工程後の溶液に含まれていた銀粉量は、銀の還元析出反応により一度溶解したAgの析出量といえる。   Table 2 summarizes the silver quality of the recovered base material pieces, the amount of silver powder contained in the solution after the dissolution and peeling step, and the silver concentration in the solution after the dissolution and peeling step in Examples and Comparative Examples. It can be said that the amount of silver powder contained in the solution after the dissolution and peeling step is the amount of precipitated Ag once dissolved by the reduction precipitation reaction of silver.

表2に示す結果から、実施例1では、銀ロウ被覆基材片に含まれていた銀のすべてが溶解しており、溶解剥離後の溶液には銀粉が含まれておらず、銀の還元反応が起きていないことがわかる。したがって、実施例1では、銀ロウ中の銀をすべて回収できることがわかる。また、実施例1では、基材片の銀品位が非常に低いことがわかる。   From the results shown in Table 2, in Example 1, all of the silver contained in the silver wax-coated substrate piece was dissolved, and the solution after dissolution and peeling did not contain silver powder. It can be seen that no reaction has occurred. Therefore, in Example 1, it turns out that all the silver in a silver wax can be collect | recovered. Moreover, in Example 1, it turns out that the silver quality of a base material piece is very low.

実施例2は、銀が多少析出したものの、ほとんどの銀が溶解した状態であり、充分に銀を回収できることがわかる。また、実施例2では、実施例1と同様に、基材片に残留する銀品位が非常に低いことがわかる。   In Example 2, although some silver was precipitated, most of the silver was dissolved, and it can be seen that the silver can be sufficiently recovered. Moreover, in Example 2, like Example 1, it turns out that the silver quality remaining on a base material piece is very low.

一方、比較例1は、実施例と比べて、銀の析出量が多く、銀の溶解量が少ないため、回収できる銀の量が少なくなった。また、比較例1では、基材片の銀品位が非常に高くなった。   On the other hand, in Comparative Example 1, the amount of silver that can be recovered was small because the amount of silver deposited was large and the amount of silver dissolved was small compared to the Examples. Moreover, in the comparative example 1, the silver quality of the base material piece became very high.

Figure 0006159297
Figure 0006159297

(実施例3)
実施例3では、実施例1と同じ装置と材料を用いて実施例1と同じ方法で銀ロウ被覆基材を溶解し、脱銀した脱銀後液(硝酸鉄溶液)を得た。この脱銀後液(硝酸鉄溶液)を900ml分取し、容量2Lの図2に示すような回転撹拌槽1に入れて加温し、同時に撹拌槽1の底部の中央へエアー供給管4からエアレーションを行い、円板付撹拌羽根3を用いて撹拌して酸化した。
(Example 3)
In Example 3, the silver wax-coated substrate was dissolved by the same method as in Example 1 using the same apparatus and materials as in Example 1, and a desilvered post-desilvered solution (iron nitrate solution) was obtained. 900 ml of this desilvered solution (iron nitrate solution) is taken, put in a rotating stirring tank 1 as shown in FIG. 2 having a capacity of 2 L, and heated, and at the same time, from the air supply pipe 4 to the center of the bottom of the stirring tank 1. Aeration was performed, and the mixture was oxidized by stirring using a stirring blade 3 with a disk.

酸化の程度は、銀・塩化銀電極を参照電極として撹拌槽1中に装入し、銀−塩化銀電極を参照電極として測定した酸化還元電位(ORP)が、ほぼIII価の鉄イオンの形態となるORP810mVに到達するまでの時間で評価した。酸化還元電位の変化を図3に示す。なお、以降に示す酸化還元電位の値は、銀−塩化銀電極を用いた測定値である。   The degree of oxidation was determined by charging the redox potential (ORP) measured in the stirring tank 1 using a silver / silver chloride electrode as a reference electrode and using the silver-silver chloride electrode as a reference electrode. The time until reaching ORP810 mV was evaluated. The change in redox potential is shown in FIG. In addition, the value of the oxidation-reduction potential shown below is a measured value using a silver-silver chloride electrode.

図3に示すように、脱銀後液を60℃に維持した場合には、酸化還元電位が810mV以上となるまでに1〜2時間程度の短時間で到達し、実施例1における3時間よりも早く酸化できた。   As shown in FIG. 3, when the solution after desilvering is maintained at 60 ° C., it reaches in a short time of about 1 to 2 hours until the oxidation-reduction potential becomes 810 mV or more, and from 3 hours in Example 1 I was able to oxidize as soon as possible.

また、酸化終了時の脱銀後液(硝酸鉄溶液)中の鉄(II)濃度は、表3に示すように、酸化前の19g/lから0.1g/l未満に減少し、再利用に支障のないレベルにまで低下していることが確認できた。   In addition, as shown in Table 3, the concentration of iron (II) in the post-desilvering solution (iron nitrate solution) at the end of oxidation decreased from 19 g / l before oxidation to less than 0.1 g / l, and reused. It has been confirmed that the level has been reduced to a level at which there is no problem.

(比較例2)
比較例2では、脱銀後液(硝酸鉄溶液)を室温に維持して酸化したこと以外は実施例3と同様にして行った。比較例2では、酸化に10時間以上の時間を要した。
(Comparative Example 2)
In Comparative Example 2, the same process as in Example 3 was performed except that the post-desilvering solution (iron nitrate solution) was oxidized at a room temperature. In Comparative Example 2, the oxidation took 10 hours or more.

実施例3及び比較例2の結果から、脱銀後液(硝酸鉄溶液)の液温を45℃以上に加温してFe2+の酸化を行う方が効率よく酸化できることがわかる。 From the results of Example 3 and Comparative Example 2, it can be seen that it is possible to more efficiently oxidize Fe 2+ by heating the liquid temperature of the solution after desilvering (iron nitrate solution) to 45 ° C. or higher.

Figure 0006159297
Figure 0006159297

<実施例4>
実施例4では、銀ロウ被覆基材片1kgと、表4に示す組成の鉄濃度として67g/Lに調製した硝酸鉄(III)溶液10Lを、図2に示す容量30Lの撹拌用邪魔板付き回転撹拌槽1に投入し、20rpmの回転速度で3時間撹拌混合し、銀ロウを溶解剥離して溶解後の溶液と溶解残渣とからなるスラリーとした。
<Example 4>
In Example 4, 1 kg of a silver wax-coated base piece and 10 L of an iron (III) nitrate solution prepared to an iron concentration of 67 g / L with the composition shown in Table 4 were attached with a baffle for stirring having a capacity of 30 L shown in FIG. The slurry was put into the rotary stirring tank 1 and stirred and mixed at a rotational speed of 20 rpm for 3 hours to dissolve and peel the silver wax to obtain a slurry composed of the dissolved solution and the dissolved residue.

次に、実施例4では、ヌッチェと濾瓶を用いて、溶解後の溶液と浸出残渣を分離し、浸出残渣を合計3Lの水で洗浄して、753gの基材片を回収した。この基材片の銀品位は、10ppm未満であり、新たな基材原料として再生できる品位であった。また、基材の溶解ロスは0.2%未満だった。さらに9.7L回収した溶解後の溶液にも、基材洗浄液中にも、沈殿物は全く観察されなかった。回収した溶解後の溶液(溶解後液)の銀と銅の濃度を表4に示す。   Next, in Example 4, the solution after dissolution and the leaching residue were separated using a Nutsche and a filter bottle, and the leaching residue was washed with a total of 3 L of water to recover 753 g of the base material piece. The silver quality of this base material piece was less than 10 ppm, and it was a quality that could be regenerated as a new base material. The dissolution loss of the base material was less than 0.2%. Furthermore, no precipitate was observed in the 9.7 L recovered solution or the substrate cleaning solution. Table 4 shows the concentrations of silver and copper in the collected solution after dissolution (solution after dissolution).

引き続き、実施例4では、溶解後の溶液を容量15Lの撹拌羽根付き凝集沈殿槽に入れ、200rpmで撹拌しながら36重量%の塩酸(濃塩酸)145mlを投入し、塩化銀を生成し、固液分離した銀濃度1.1g/Lの脱銀後液9.5Lを得た。   Subsequently, in Example 4, the solution after dissolution was placed in a coagulation sedimentation tank with a stirring blade having a capacity of 15 L, and 145 ml of 36 wt% hydrochloric acid (concentrated hydrochloric acid) was added while stirring at 200 rpm to produce silver chloride. 9.5 L of liquid after desilvering with a silver concentration of 1.1 g / L was obtained.

次に、この脱銀後液を図2に示す構成と同様の容量20Lの撹拌曝気槽1に入れ、液温を55℃に加温・維持しながらエアー供給管5から空気曝気量10L/分で空気を供給し、3時間かけて硝酸鉄(III)の再生を実施した。その結果、液中に残留するFe2+濃度は0.1g/L未満となり、再利用に支障がないレベルにまで低下した。 Next, the solution after desilvering is placed in a stirred aeration tank 1 having a capacity of 20 L as in the configuration shown in FIG. 2, and the air aeration rate is 10 L / min from the air supply pipe 5 while heating and maintaining the liquid temperature at 55 ° C. Then, air was supplied and iron (III) nitrate was regenerated over 3 hours. As a result, the Fe 2+ concentration remaining in the liquid was less than 0.1 g / L, and was reduced to a level that does not hinder reuse.

硝酸鉄再生工程で得られた再生後液8.8Lの鉄と銅の濃度は、表4に示す値であったため、これに溶解剥離工程で液中に加わった銅量と当量分の硝酸(0.68mol分)と固液分離時の液ロスにより失った3価鉄45g分の硝酸鉄(III)試薬を補填した上で、液量を10.0Lに調整した。その後、2回目の溶解剥離工程へ繰り返した。調整後の硝酸鉄(III)溶液(調整後液)の組成を表4に示す。   Since the concentration of 8.8 L of iron and copper in the post-regeneration solution obtained in the iron nitrate regeneration step was the value shown in Table 4, the amount of copper added to the solution and the equivalent amount of nitric acid ( 0.68 mol) and the iron (III) nitrate reagent for 45 g of trivalent iron lost due to liquid loss during the solid-liquid separation were supplemented, and the liquid volume was adjusted to 10.0 L. Then, it repeated to the 2nd melt | dissolution peeling process. Table 4 shows the composition of the adjusted iron (III) nitrate solution (adjusted solution).

硝酸鉄(III)溶液を繰返し液として用いる他は、1回目と同じ条件で原料1kgの溶解剥離処理を実施したところ、回収・水洗した基材片の銀品位は、10ppm未満であり、新たな基材原料として再生できる品位であった。この結果から、硝酸鉄再生工程後の硝酸鉄(III)溶液の硝酸イオン濃度を調整することにより、再利用した硝酸鉄(III)溶液であっても、銀合金を溶解し、再利用できる基材片が得られることがわかる。   Except for using an iron (III) nitrate solution as a repetitive solution, 1 kg of the raw material was dissolved and peeled under the same conditions as the first time. The silver quality of the recovered and washed base piece was less than 10 ppm. It was of a quality that can be recycled as a base material. From this result, by adjusting the nitrate ion concentration of the iron nitrate (III) solution after the iron nitrate regeneration step, even a reused iron nitrate (III) solution can dissolve and reuse the silver alloy. It can be seen that a piece of wood is obtained.

<実施例5>
実施例5では、実施例4に準じて更に4回繰返し利用して、合計5回目の再生を行った後の硝酸鉄(III)溶液を用いる他は、実施例4と同様の溶解剥離処理を行った。5回目の再生を行った後の液の組成は表4に示す通りである。合計6回目の溶解剥離処理後に回収して実施例4と同様の洗浄処理を行った基材片の銀品位は、10ppm未満であり、新たな基材原料として再生できる品位であった。また、基材の溶解ロスは0.2%未満だった。さらに回収した溶解後の溶液にも、基材洗浄液中にも、沈殿物は全く観察されなかった。回収した溶解後の溶液(溶解後液)の銀と銅の濃度を表4に示す。
<Example 5>
In Example 5, the same stripping treatment as in Example 4 was performed except that the iron (III) nitrate solution after the fifth regeneration was used in total four times more in accordance with Example 4 and used. went. The composition of the liquid after the fifth regeneration is as shown in Table 4. The silver quality of the base material pieces collected after the 6th total dissolution treatment and subjected to the same cleaning treatment as in Example 4 was less than 10 ppm, which was reproducible as a new base material. The dissolution loss of the base material was less than 0.2%. In addition, no precipitate was observed in the recovered solution or the substrate cleaning solution. Table 4 shows the concentrations of silver and copper in the collected solution after dissolution (solution after dissolution).

引き続き、回収した溶解後液を対象に、実施例4と同じ条件で塩化銀生成工程の処理を実施し、脱銀後液9.3Lを得た。更に脱銀後液に対して、実施例4と同じ処理条件で3時間の硝酸鉄(III)再生処理を実施した結果、液中に残留するFe2+濃度は0.1g/L未満となり、再利用に支障がないレベルにまで低下した。 Subsequently, the recovered silver chloride solution was subjected to the treatment of the silver chloride production step under the same conditions as in Example 4 to obtain 9.3 L after silver removal. Further, the iron (III) nitrate regeneration treatment for 3 hours was performed on the solution after desilvering under the same treatment conditions as in Example 4. As a result, the Fe 2+ concentration remaining in the solution became less than 0.1 g / L, The level has been reduced to a level that does not hinder use.

硝酸鉄再生工程で得られた再生後液8.8Lの鉄と銅の濃度は、表4に示す値であったため、これに0.67mol分の硝酸と3価鉄63g分の硝酸鉄(III)試薬を補填した上で、液量を10.0Lに調整した。その後、合計7回目の溶解剥離工程を行った。調整後の硝酸鉄(III)溶液(調整後液)の組成を表4に示す。   The concentration of 8.8 L of iron and copper in the post-regeneration solution obtained in the iron nitrate regeneration step was the value shown in Table 4, so that 0.67 mol of nitric acid and trivalent iron 63 g of iron nitrate (III ) After supplementing the reagent, the liquid volume was adjusted to 10.0L. Then, the 7th melt | dissolution peeling process was performed in total. Table 4 shows the composition of the adjusted iron (III) nitrate solution (adjusted solution).

硝酸鉄(III)溶液を繰返し液として用いる他は、1回目と同じ条件で原料1kgの溶解剥離処理を実施したところ、回収・水洗した基材片の銀品位は、10ppm未満であり、新たな基材原料として再生できる品位であった。この結果から、硝酸鉄再生工程の硝酸鉄(III)溶液の硝酸イオン濃度を調整することにより、再利用及び複数回酸化再生した硝酸鉄(III)溶液であっても、銀合金を溶解し、再利用できる基材片が得られることがわかる。   Except for using an iron (III) nitrate solution as a repetitive solution, 1 kg of the raw material was dissolved and peeled under the same conditions as the first time. The silver quality of the recovered and washed base piece was less than 10 ppm. It was of a quality that can be recycled as a base material. From this result, by adjusting the nitrate ion concentration of the iron nitrate (III) solution in the iron nitrate regeneration process, even in the iron nitrate (III) solution that has been reused and regenerated multiple times, the silver alloy is dissolved, It can be seen that a reusable substrate piece is obtained.

<比較例3>
比較例3では、溶解剥離工程と塩化銀生成工程は、実施例4に準じて行った。溶解剥離処理後に回収して実施例4と同様の洗浄処理を行った基材片の銀品位は、10ppm未満であり、新たな基材原料として再生できる品位であった。また、基材の溶解ロスは0.2%未満だった。更に、回収した溶解後の溶液(溶解後液)にも、基材洗浄液中にも、沈殿物は全く観察されなかった。回収した溶解後液の銀と銅の濃度を表4に示す。
<Comparative Example 3>
In Comparative Example 3, the dissolution peeling process and the silver chloride production process were performed according to Example 4. The silver quality of the base material piece collected after the dissolution and peeling treatment and subjected to the same cleaning treatment as in Example 4 was less than 10 ppm, and it was a quality that could be regenerated as a new base material. The dissolution loss of the base material was less than 0.2%. Furthermore, no precipitate was observed in the recovered solution after dissolution (solution after dissolution) or in the substrate cleaning solution. Table 4 shows the concentrations of silver and copper in the recovered solution after dissolution.

引き続き、回収した溶解後液を対象に、実施例4と同じ条件で塩化銀生成工程の処理を実施し、脱銀後液9.5Lを得た。   Subsequently, the recovered silver chloride solution was subjected to a silver chloride production step under the same conditions as in Example 4 to obtain 9.5 L of a solution after desilvering.

ここで、比較例3では、硝酸鉄再生処理の前に、溶解剥離工程で液中に加わった銅量と当量分の硝酸(0.68mol分)を添加した後、実施例4と同じ処理条件で3時間の硝酸鉄(III)再生処理を実施した。その結果、液中Fe2+は3.2g/Lであり、そのまま次の溶解剥離工程には再利用できないレベルであった。したがって、硝酸の補填を硝酸鉄再生処理の前に行うと、酸化再生工程の反応効率が悪化し、硝酸鉄(III)溶液の再生利用を効率が悪く経済的に行うことができないことがわかる。この結果から、硝酸鉄再生処理の前に硝酸イオンの濃度を調整すると、Fe(III)イオンの再生及び硝酸鉄(III)溶液の再生利用の効率が悪くなることがわかる。 Here, in Comparative Example 3, the same amount of nitric acid (0.68 mol) as the amount of copper added to the solution in the dissolution and peeling step was added before the iron nitrate regeneration treatment, and then the same processing conditions as in Example 4 The iron nitrate (III) regeneration treatment was carried out for 3 hours. As a result, the Fe 2+ in the liquid was 3.2 g / L, which was a level that could not be reused in the next dissolution and peeling process. Therefore, it can be seen that if the nitric acid supplementation is performed before the iron nitrate regeneration treatment, the reaction efficiency of the oxidation regeneration process deteriorates, and the recycling of the iron (III) nitrate solution is inefficient and cannot be economically performed. From this result, it can be seen that if the concentration of nitrate ions is adjusted before the iron nitrate regeneration treatment, the efficiency of regeneration of Fe (III) ions and recycling of the iron nitrate (III) solution is deteriorated.

<比較例4>
比較例4では、溶解剥離工程と塩化銀生成工程を、実施例5に準じて行った。
溶解剥離処理後に回収して実施例4と同様の洗浄処理を行った基材片の銀品位は、10ppm未満であり、新たな基材の原料として再生できる品位であった。また、基材の溶解ロスは0.2%未満だった。更に、回収した溶解後の溶液にも、基材洗浄液中にも、沈殿物は全く観察されなかった。回収した溶解後の溶液(溶解後液)の銀と銅の濃度を表4に示す。
<Comparative example 4>
In Comparative Example 4, the dissolution peeling process and the silver chloride production process were performed according to Example 5.
The silver quality of the base material piece collected after the dissolution and peeling treatment and subjected to the same cleaning treatment as in Example 4 was less than 10 ppm, and it was a quality that could be regenerated as a raw material for a new base material. The dissolution loss of the base material was less than 0.2%. Further, no precipitate was observed in the recovered solution after dissolution or in the substrate cleaning solution. Table 4 shows the concentrations of silver and copper in the collected solution after dissolution (solution after dissolution).

引き続き、回収した溶解後液を対象に、実施例4や実施例5と同じ条件で塩化銀生成工程の処理を実施し、脱銀後液9.4Lを得た。   Subsequently, the recovered solution after dissolution was subjected to a silver chloride production process under the same conditions as in Example 4 and Example 5 to obtain 9.4 L of a solution after desilvering.

ここで、比較例4では、比較例1と同様、硝酸鉄再生処理の前に、溶解剥離工程で液中に加わった銅量と当量分の硝酸(0.67mol分)を添加した後、実施例4と5と同じ処理条件で3時間の硝酸鉄(III)再生処理を実施した結果、液中Fe2+は5.4g/Lと、そのまま次の溶解剥離工程には再利用できないレベルであった。この結果から、硝酸鉄再生処理の前に硝酸イオンの濃度を調整し、溶解剥離工程から塩化銀生成工程を複数回繰り返すと、Fe2+の濃度が更に高くなり、Fe(III)イオンの再生及び硝酸鉄(III)溶液の再生利用を効率がより悪くなることがわかる。





































Here, in Comparative Example 4, as in Comparative Example 1, before the iron nitrate regeneration treatment, after adding the equivalent amount of nitric acid (0.67 mol) to the amount of copper added in the solution in the dissolution and peeling step, the test was performed. As a result of the iron nitrate (III) regeneration treatment for 3 hours under the same treatment conditions as in Examples 4 and 5, Fe 2+ in the liquid was 5.4 g / L, which was a level that could not be reused in the next dissolution and peeling process. It was. From this result, when the concentration of nitrate ions is adjusted before the iron nitrate regeneration treatment and the silver chloride production step is repeated several times from the dissolution and peeling step, the concentration of Fe 2+ is further increased, and the regeneration of Fe (III) ions and It can be seen that the recycling efficiency of the iron (III) nitrate solution becomes worse.





































Figure 0006159297
Figure 0006159297

以上のことから、本発明を適用することによって、シアンのような有毒物を使用することなく、鉄系合金基材表面に塗布又は成膜した銀系合金を、基材を損ねることなく溶解分離して、銀の回収率が高く、基材も銀もそれぞれ経済的に回収して再生利用できることがわかる。また、本発明を適用することによって、Fe2+を酸化する際に、脱銀後液の液温を45℃以上、70℃以下の範囲内にすることで、酸化を短時間で行うことができ、効率良く銀を回収できることがわかる。また、本発明を適用することによって、硝酸鉄再生工程後に、溶解剥離工程で溶解した銀以外の銀合金成分と当量の硝酸イオンを補充することによって、硝酸鉄(III)溶液を多数回繰返し利用することができ、酸化鉄再生工程を効率良く行うことができる。 From the above, by applying the present invention, the silver-based alloy applied or formed on the surface of the iron-based alloy base material is dissolved and separated without damaging the base material without using toxic substances such as cyanide. Thus, it can be seen that the silver recovery rate is high, and both the base material and silver can be recovered economically and recycled. In addition, by applying the present invention, when oxidizing Fe 2+ , the temperature of the solution after desilvering can be within a range of 45 ° C. or higher and 70 ° C. or lower so that the oxidation can be performed in a short time. It can be seen that silver can be recovered efficiently. In addition, by applying the present invention, the iron (III) solution is repeatedly used many times by replenishing the silver alloy components other than silver dissolved in the dissolution and peeling step and equivalent nitrate ions after the iron nitrate regeneration step. And the iron oxide regeneration step can be performed efficiently.

1 回転撹拌槽、2 撹拌用邪魔板、3 円板付撹拌羽根、4 エアー供給管、5 温度センサー   1 rotating stirring tank, 2 baffle plate for stirring, 3 stirring blade with disc, 4 air supply pipe, 5 temperature sensor

Claims (5)

銀又は銀系合金を被覆した基材に硝酸鉄(III)含有溶液を添加し、該銀又は銀系合金を溶解させ、該基材から該銀又は銀系合金を剥離する溶解剥離工程と、
上記銀又は銀系合金が溶解した溶液に塩酸を加えて、塩化銀沈殿物を生成する塩化銀生成工程と、
上記溶解剥離工程後の上記溶液に含まれる2価の鉄イオンを3価の鉄イオンに酸化し、硝酸鉄(III)含有溶液を再生する硝酸鉄再生工程と、
上記硝酸鉄再生工程後に、該硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の濃度を上記溶解剥離工程に使用する硝酸鉄(III)含有溶液の濃度に調整する硝酸鉄(III)含有溶液調整工程とを有し、
上記溶解剥離工程では、上記基材を添加した後の上記硝酸鉄(III)含有溶液中のFe3+濃度がFe2+濃度の1.5倍量以上となるように維持し、
上記硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液を上記溶解剥離工程で使用し、
上記硝酸鉄(III)含有溶液調整工程では、上記溶解剥離工程で溶解した銀以外の銀合金成分と当量の硝酸イオンを硝酸を添加することにより補充して、該硝酸鉄再生工程で生成した硝酸鉄(III)含有溶液の硝酸イオン濃度を調整することを特徴とする銀の回収方法。
Adding a solution containing iron nitrate (III) to a substrate coated with silver or a silver-based alloy, dissolving the silver or silver-based alloy, and removing the silver or silver-based alloy from the substrate;
Adding a hydrochloric acid to a solution in which the silver or silver-based alloy is dissolved to form a silver chloride precipitate;
An iron nitrate regeneration step of oxidizing the divalent iron ions contained in the solution after the dissolution and peeling step into trivalent iron ions to regenerate the iron nitrate (III) -containing solution ;
After the iron nitrate regeneration step, the concentration of the iron nitrate (III) -containing solution produced in the iron nitrate regeneration step is adjusted to the concentration of the iron nitrate (III) -containing solution used in the dissolution and stripping step. A solution adjustment step,
In the dissolution and peeling step, the Fe 3+ concentration in the iron nitrate (III) -containing solution after the addition of the base material is maintained to be 1.5 times the Fe 2+ concentration or more,
Using the iron nitrate (III) -containing solution generated in the iron nitrate regeneration step in the dissolution and peeling step ,
In the iron nitrate (III) -containing solution adjustment step, nitric acid equivalent to silver alloy components other than silver dissolved in the dissolution and peeling step is supplemented by adding nitric acid, and the nitric acid produced in the iron nitrate regeneration step A method for recovering silver, comprising adjusting a nitrate ion concentration of an iron (III) -containing solution .
上記Fe3+濃度をFe2+濃度の2.5倍量以上に維持することを特徴とする請求項1に記載の銀の回収方法。 The method for recovering silver according to claim 1, wherein the Fe 3+ concentration is maintained at 2.5 times or more of the Fe 2+ concentration. 上記硝酸鉄再生工程は、上記塩化銀生成工程後に行うことを特徴とする請求項1又は請求項2に記載の銀の回収方法。   3. The silver recovery method according to claim 1, wherein the iron nitrate regeneration step is performed after the silver chloride production step. 上記銀系合金を被覆した基材とは、銀ロウを被覆した鉄合金であることを特徴とする請求項1乃至請求項のいずれか1項に記載の銀の回収方法。 The method for recovering silver according to any one of claims 1 to 3 , wherein the base material coated with the silver-based alloy is an iron alloy coated with silver brazing. 上記硝酸鉄再生工程では、上記溶解剥離工程後の上記溶液の液温を45℃以上、70℃以下とすることを特徴とする請求項1乃至請求項のいずれか1項に記載の銀の回収方法。 In the above iron nitrate regeneration step, the dissolving separation step after the above solution of a liquid temperature of 45 ° C. or more, of silver according to any one of claims 1 to 4, characterized in that the 70 ° C. or less Collection method.
JP2014128675A 2013-12-25 2014-06-23 Silver recovery method Active JP6159297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128675A JP6159297B2 (en) 2013-12-25 2014-06-23 Silver recovery method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013267399 2013-12-25
JP2013267399 2013-12-25
JP2014094164 2014-04-30
JP2014094164 2014-04-30
JP2014128675A JP6159297B2 (en) 2013-12-25 2014-06-23 Silver recovery method

Publications (2)

Publication Number Publication Date
JP2015221934A JP2015221934A (en) 2015-12-10
JP6159297B2 true JP6159297B2 (en) 2017-07-05

Family

ID=54785109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128675A Active JP6159297B2 (en) 2013-12-25 2014-06-23 Silver recovery method

Country Status (1)

Country Link
JP (1) JP6159297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183802B1 (en) * 2018-11-28 2020-11-27 부경대학교 산학협력단 Method and system for recovering silver from silver scrap
JP7453002B2 (en) 2020-01-22 2024-03-19 大口電子株式会社 How to collect silver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159324A (en) * 1988-12-14 1990-06-19 Nau Kenkyusho:Kk Method for recovering metallic material coating iron-based alloy material

Also Published As

Publication number Publication date
JP2015221934A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6338296B2 (en) How to recycle an aged printed circuit board
EP3353332B1 (en) Selective removal of noble metals using acidic fluids, including fluids containing nitrate ions
CN105297020B (en) Tin stripping additive and application thereof
KR20170130408A (en) Method for producing copper and apparatus for producing copper
JP6159297B2 (en) Silver recovery method
JP2011032578A (en) Method of dissolving of fifth group element and/or sixth group element
WO2010102391A1 (en) Rhenium recovery
JP6224601B2 (en) Molten salt bath for melting WC-Co cemented carbide, and method for separating and recovering tungsten and cobalt
Mokhlis et al. Selective leaching of copper from waste printed circuit boards (PCBs) using glycine as a complexing agent
JP2010163340A (en) METHOD AND APPARATUS FOR RECOVERING Sn, AND METHOD FOR PRODUCING Sn OXIDE POWDER
JP3080947B1 (en) Electric furnace dust treatment method
JP7453002B2 (en) How to collect silver
JP7430871B2 (en) How to separate tin from tin-containing materials
JP2011032517A (en) METHOD FOR SEPARATING Sn FROM Sn-PLATED METALLIC MATERIAL
WO2023199270A1 (en) Circular electrochemical metal recovery
JPH01319689A (en) Regeneration treatment of waste tin peeling liquid
JP2018184628A (en) Recovery method of platinum group metal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6159297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250