JP2020131503A - 造形方法及び造形装置 - Google Patents

造形方法及び造形装置 Download PDF

Info

Publication number
JP2020131503A
JP2020131503A JP2019025752A JP2019025752A JP2020131503A JP 2020131503 A JP2020131503 A JP 2020131503A JP 2019025752 A JP2019025752 A JP 2019025752A JP 2019025752 A JP2019025752 A JP 2019025752A JP 2020131503 A JP2020131503 A JP 2020131503A
Authority
JP
Japan
Prior art keywords
layer
modeled object
color
thickness
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019025752A
Other languages
English (en)
Inventor
武亮 風穴
Takeaki Kazaana
武亮 風穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mimaki Engineering Co Ltd
Original Assignee
Mimaki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimaki Engineering Co Ltd filed Critical Mimaki Engineering Co Ltd
Priority to JP2019025752A priority Critical patent/JP2020131503A/ja
Priority to US16/782,067 priority patent/US20200262132A1/en
Publication of JP2020131503A publication Critical patent/JP2020131503A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

【課題】外部から視認される造形物の色に内部層が影響を与えることを防止できる造形方法及び造形装置を提供する。【解決手段】本実施形態の造形方法は、着色されると共に造形物30の表面を形成するカラー層50とカラー層50の下層を形成する反射層52とを少なくとも含んで構成される造形物30の造形方法であって、造形物30の外郭に対する法線方向を基準に反射層52の厚さを決定する。本構成によれば、反射層52の厚さをカラー層50の色を反射するのに十分な厚さとすることで、反射層52の下に形成される内部層54を任意の色又は材料としても、外部から視認される造形物30の色に内部層54が影響を与えることを防止できる。【選択図】図2

Description

本発明は、造形方法及び造形装置に関する。
近年、インクを吐出して立体物を造形する造形装置(3Dプリンタ)の利用が進んでいる。このような造形装置は、インクの層を複数層重ねる積層造形法により造形を行う。
ここで、大型の造形物は、造形に使用するインク等の材料の量も多量になる。そこで特許文献1には、内部に空洞を有する造形物を造形する方法が開示されている。これにより、造形に使用する材料の減少や造形物の軽量化が可能となる。また、造形物の内部層を任意の色の材料で形成することにより造形物のカスタマイズ性を高めたり、材料の有効利用が可能となる。
特開2007−71154号公報
しかしながら、造形物の表面を形成する着色層の下層の厚さを適切な厚さとしないと、外部から視認される造形物の色に内部層の色や内部層の空洞化が影響を与える可能性がある。
そこで本発明は、外部から視認される造形物の色に内部層が影響を与えることを防止する造形方法及び造形装置を提供することを目的とする。
本発明の造形方法は、着色されると共に造形物の表面を形成する着色層と前記着色層の下層を形成する反射層とを少なくとも含んで構成される造形物の造形方法であって、前記造形物の外郭に対する法線方向を基準に前記反射層の厚さを決定する。本構成によれば、着色層の色を反射するために、反射層の厚さを造形物の外郭に対する法線方向を基準とした十分な厚さとする。これにより、反射層の下に形成される内部層を任意の色又は材料としても、外部から視認される造形物の色に内部層が影響を与えることを防止できる。
本発明の造形方法は、前記着色層の下層を空洞とする場合、前記着色層と前記反射層とを合わせた厚さを前記造形物の機械的強度を保てる厚さとしてもよい。本構成によれば、造形物の形状を保ちつつ、造形物を構成する材料の量を削減できる。
本発明の造形方法は、前記着色層の下層を空洞とする場合、前記反射層と前記空洞との間に補強層を形成し、前記着色層と前記反射層と前記補強層とを合わせた厚さを前記造形物の機械的強度を保てる厚さとしてもよい。本構成によれば、造形物の形状を保ちつつ、造形物を構成する材料の量を削減できる。
本発明の造形方法は、前記補強層の色を指定できてもよい。本構成によれば、造形物を形成するための材料を有効に利用できる。
本発明の造形方法は、前記反射層の下層に内蔵される内蔵物に応じて、前記反射層の厚さを決定してもよい。例えば発光体を内蔵物とした場合、発光体による発光を造形物の外部から視認できることが望ましい。本構成によれば、内蔵物の作用を生かした造形物を形成できる。
本発明の造形方法は、前記造形物の外郭に対する法線方向を基準に、前記着色層及び前記反射層の厚さを示す厚さデータを生成してもよい。本構成によれば、着色層及び反射層の厚さを適切な厚さにできる。
本発明の造形方法は、前記着色層が前記造形物の外郭を基準として外側に形成されてもよい。本構成によれば、造形物に適した位置に着色層を形成できる。
本発明の造形方法は、前記着色層が前記造形物の外郭を基準として内側に形成されてもよい。本構成によれば、造形物に適した位置に着色層を形成できる。
本発明の造形装置は、着色されると共に造形物の表面を形成する着色層と前記着色層の下層を形成する反射層とを少なくとも含んで構成される造形物の造形装置であって、前記造形物の外郭に対する法線方向を基準に決定された厚さの前記反射層を前記着色層の下層に積層する。本構成によれば、外部から視認される造形物の色に内部層が影響を与えることを防止できる。
本発明は、外部から視認される造形物の色に内部層が影響を与えることを防止できる。
第1実施形態の3Dプリンタシステムの構成を示す概略図である。 第1実施形態の造形物の積層構造を示す模式図である。 第1実施形態の造形物のレイアウト画像と内部層の色の選択画像である。 第1実施形態の内部層の色に応じた造形物の断面を示す模式図である。 第1実施形態の内部層を空洞とする場合の造形方法を示す模式図である。 第1実施形態の造形物内部構造変更処理に関する機能ブロック図である。 第1実施形態の造形操作処理の流れを示すフローチャートである。 第1実施形態の造形処理の流れを示すフローチャートである。 第2実施形態の内部層を空洞とした場合における外郭補強層の設定に関する模式図である。 第2実施形態のスライスデータ生成処理の流れを示すフローチャートである。 第3実施形態の発光体を内蔵した造形物の断面を示す模式図である。
以下、本発明の実施の形態の造形方法及び造形装置について、図面を参照しながら説明する。
(第1実施形態)
以下、本発明の第1実施形態について説明する。図1は、3Dプリンタシステム1の構成を示す図である。3Dプリンタシステム1は、3Dプリンタ10、制御PC40、及びユーザPC42を備える。
3Dプリンタ10は、吐出ユニット12、主走査駆動部14、造形台16、及び制御部18を備え、吐出ユニット12から噴射した紫外線硬化樹脂を、紫外線で固めて積層することで造形物30を造形するインクジェット方式の造形装置である。
吐出ユニット12は、造形物30の材料となる有色および無色のインクやサポート用材料を含むインクを吐出するインクヘッド20、吐出したインクを硬化させる紫外線光源22、造形物30の造形中に形成される硬化性樹脂の積層面を平坦化する平坦化ローラ24を有している。図1の例では、インクヘッド20を3つ示しているが、インクヘッド20の数は、使用するインクの種類の数に応じて、適宜の数とすることができる。
吐出ユニット12は、例えば、紫外線の照射により硬化する硬化性樹脂のインク滴等を吐出し、硬化させることにより、造形物30を構成する各層を形成する。具体的には、吐出ユニット12は、例えば、制御部18の指示に応じてインク滴を吐出することにより、硬化性樹脂の層を形成する層形成動作と、層形成動作で形成された硬化性樹脂の層を硬化させる硬化動作とを複数回繰り返して行う。これにより、吐出ユニット12は、硬化した硬化性樹脂の層を複数層重ねて形成する。なお、3Dプリンタ10は、紫外線硬化樹脂を用いたものに限らず、吐出ユニット12から高温状態で噴射し、常温に冷やして硬化させる熱可塑性の硬化性樹脂を積層する方式であっても良い。
主走査駆動部14は、吐出ユニット12に主走査動作を行わせる駆動部である。ここで、主走査動作とは、例えば、吐出ユニット12が予め設定された主走査方向(図中のY方向)へ移動しつつインク滴を吐出する動作である。
主走査駆動部14は、キャリッジ32及びガイドレール34を有する。キャリッジ32は、吐出ユニット12を造形台16と対向させて保持する保持部である。すなわち、キャリッジ32は、インク滴の吐出方向が造形台16へ向かう方向になるように、吐出ユニット12を保持する。また、主走査動作時において、キャリッジ32は吐出ユニット12を保持した状態でガイドレール34に沿って移動する。ガイドレール34は、キャリッジ32の移動をガイドするレール状部材であり、主走査動作時において制御部18の指示に応じてキャリッジ32を移動させる。
なお、主走査動作における吐出ユニット12の移動は、造形物30に対する相対的な移動であってよい。例えば、吐出ユニット12の位置を固定して、造形台16を移動させることによって造形物30を移動させてもよい。
造形台16は、造形中の造形物30を載置する載置台である。造形台16は、上面を上下方向(図1のZ方向)へ移動させる機能を有しており、制御部18の指示に応じて、造形物30の造形の進行に合わせて上面を移動させる。これにより、造形途中の造形物30における被造形面と、吐出ユニット12との間の距離(ギャップ)を適宜調整する。ここで、造形物30の被造形面とは、例えば、吐出ユニット12により次の層が形成される面である。なお、吐出ユニット12に対して造形台16を上下動させるZ方向への走査は、例えば吐出ユニット12の側を移動させることで行われてもよい。
制御部18は、例えば3Dプリンタ10のCPUであり、造形すべき造形物30の形状情報や、カラー画像情報等を示したスライスデータに基づいて3Dプリンタ10の各部を制御することにより、造形物30の造形の動作を制御する。
制御PC40は、造形物30を所定形式で示した3次元データ(以下「3Dモデルデータ」という。)をユーザPC42から受信する。3Dモデルデータは、造形物30の形状及びその表面色等を示すデータであり、例えば、3DCADデータや製造すべき造形物30を撮影した外観のデータ等に基づいて作成される。制御PC40は、ユーザPC42から受信した3Dモデルデータに基づいて、造形物30の各位置の断面に対応するスライスデータを生成する。そして、制御PC40は、各位置に対応するスライスデータを3Dプリンタ10へ送信する。
ユーザPC42は、3Dモデルデータを制御PC40へ送信する。また、ユーザは、ユーザPC42は、モニタ42Aに表示する設定画像を介して、ユーザによる入力操作に応じて造形物30の内部層等の色や厚さを設定する。この設定については詳細を後述する。なお、図1に示されるユーザPC42は、一つであるが、ユーザPC42は複数でもよい。
図2は本実施形態の造形物30の積層構造を示す模式図であり、一例として、球体である造形物30の断面構造を模式的に示している。図2に示されるように、本実施形態の造形物30は、着色されると共に造形物30の表面を形成するカラー層50、カラー層50の下層を形成する反射層52、反射層52の下層を形成する内部層54で構成される。なお、反射層52と内部層54とを総称して造形層ともいう。
カラー層50は、3Dモデルデータによって指定された色を再現する着色層であり、造形物30の色として視認されることになる。カラー層50の厚さは例えば0.2mm〜0.4mmである。
反射層52は、カラー層50の色を外部に反射するのに十分な厚さとされる。すなわち、反射層52が薄すぎると外部から視認される造形物30の色に内部層54の色が影響を与える可能性がある。なお、反射層52の色は一例としてホワイトであるが、これに限らず、カラー層50の色に応じてホワイト以外とされてもよい。
内部層54は、ユーザによって任意の色や材料とされる。また、内部層54は、全体又は一部が空洞とされてもよい。図3は、ユーザPC42のモニタ42Aに表示される3Dプリントの設定画像の一例であり、モニタ42Aには造形物30のレイアウト画像60と共に内部層54の色を選択するための選択画像62が表示される。なお、図3における破線で示される部分は、内部層54の色の選択時の表示状態を示した拡大図である。図3で示されるように、内部層54の色はホワイトがデフォルトとされているものの、その他の色(シアン、マゼンタ、イエロー、ブラック等)及び内部層54を空洞とすることが選択可能となっている。なお、以下の説明では、ユーザが選択した内部層54の色を指定色という。
また、図3に示す選択画像62では、一例として、ユーザがカラー層50の厚さ(以下「カラー層厚」という。)を選択することが可能とされている。例えば、造形物30の色の濃淡を調整したい場合にユーザはカラー層厚を選択する。より具体的には、濃色とする場合には厚くなるようにユーザはカラー層厚を選択し、淡色とする場合には薄くなるようにユーザはカラー層厚を選択する。
図4は、内部層54の色に応じた造形物30の断面を示す模式図であり、(a)は内部層54の色をホワイトとした場合を示し、(b)は内部層54の色をホワイト以外の色(一例としてマゼンタ)とした場合を示す。
図4(a)に示すように、内部層54の色をホワイトとすると同様にホワイトとされている反射層52と実質的に区別されない。このように、内部層54の色と反射層52の色とが同じ色の場合には反射層52の厚さ(以下「反射層厚」という。)をユーザが設定することはない。
一方、図4(b)に示すように、内部層54と反射層52とが異なる色の場合は、反射層厚が設定される。反射層厚は、カラー層50の色を反射するのに十分な厚さとされる値が決定されている。なお、反射層厚は、一例として、カラー層50の色や厚さに応じて予め規定されてもよいし、所定の演算式を用いてカラー層50の色や厚さに応じて決定されてもよい。
また、図4(b)の例では、ユーザが反射層厚を選択することも可能とされている。例えば、反射層52を薄く形成すると共に内部層54に着色し、内部層54の着色を透かせて外部から視認させたい場合や、反射層52を薄く形成すると共に内部層54を空洞にして光源を配設し、外部から光源の明かりを視認させたい場合等にユーザは反射層厚を任意に選択する。
ここで、本実施形態のカラー層50は、造形物30の外郭に対する法線方向N(図2参照)を基準に厚さが決定される。このように法線方向におけるカラー層50の厚さを一定とすることにより、造形物30の色を適切に表現することが可能となる。
なお、カラー層50は、造形物30の外郭を基準として外側に形成されてもよいし、造形物30の外郭を基準として内側に形成されてもよい。例えば、造形物30の大きさが小さく、カラー層厚が相対的に造形物30の大きさに影響を与えるような場合には、カラー層50は造形物30の外郭を基準として内側に形成される。一方、造形物30の強度をより高めたい場合には、カラー層50は造形物30の外郭を基準として外側に形成される。これにより、本実施形態では造形物30に適した位置にカラー層50を形成できる。
そして、本実施形態の反射層52は、造形物30の外郭に対する法線方向Nを基準に厚さが決定される。すなわち、造形物30の外郭の法線方向Nに対して反射層厚にバラツキがあると、外部から視認される造形物30の色に内部層54が影響を与える可能性が生じる。そこで、造形物30の外郭に対する法線方向Nを基準に反射層厚を決定することにより、造形物30の外郭に対して反射層厚は一定となるので、外部から視認される造形物30の色に内部層54が影響を与えることを防止できる。
なお、内部層54を空洞とした場合も図4(b)と同様に、造形物30の外郭に対する法線方向Nを基準に厚さが決定され、反射層厚はカラー層50の色を反射するのに十分な厚さとされる。
図5は、内部層54を空洞54Aとする場合の造形方法を示す模式図であり、造形物30の断面を模式的に表している。図5(a)に示すように、3Dプリンタ10は、造形物30の内部が設定された大きさの中空(抜き空間)になるようにカラー層50及び反射層52を積層することで空洞54Aを形成する。
その後、図5(b)に示すように、3Dプリンタ10は、造形物30の造形面上に蓋部材56を載置する。この場合、造形物30の造形面とは、造形物30においてその時点で形成されている最上部の層の上面のことである。また、蓋部材56は、XY平面において空洞54Aの上部を覆うことが可能なサイズとされる。なお、図5(a)に示されるように、蓋部材56を支持するための段差である支持部52Aが反射層52の上部に形成される。
そして、図5(c)に示すように、3Dプリンタ10は、蓋部材56を含む造形物30の上部に反射層52及びカラー層50をさらに積層することで、造形物30を完成させる。
なお、このような蓋部材56を用いて空洞54Aが形成される造形物30の造形方法は、特開2017−71154号公報に詳述されている。
図6は、本実施形態の造形物内部構造変更処理に関する機能ブロック図である。本実施形態の3Dプリンタシステム1は、積層構造決定部64及び造形処理部66を備える。なお、本実施形態の3Dプリンタシステム1は、一例として、ユーザPC42が積層構造決定部64の機能を有し、制御PC40が造形処理部66の機能を有する。
積層構造決定部64は、造形物30(3Dモデルデータ)に対するユーザによる反射層52や内部層54の色等の選択を受け付け、造形物30の積層構造を決定する。なお、積層構造決定部64によって、反射層厚も決定される。
造形処理部66は、積層構造決定部64で決定した積層構造及び3Dモデルデータに基づいて、造形物30を示す3Dモデルを描画し、造形物30の各位置の断面に対応するスライスデータを生成して3Dプリンタ10へ送信する。スライスデータは、各スライスにおいて、どの部分がカラー層50、反射層52、内部層54であるかを規定すると共に、各部分の色も規定している。
また、本実施形態のスライスデータは、造形物30の外郭に対する法線方向を基準に、カラー層50及び反射層52の厚さを示す厚さデータを含むデータとして生成される。これにより、3Dプリンタは、カラー層50及び反射層52の厚さが適切な厚さとなるように造形物30を造形できる。
次に、図7,8を参照して、本実施形態の造形方法の具体的な処理の流れを説明する。
図7は、ユーザによる造形操作の流れを示したフローチャートであり、ユーザが3Dプリンタ10に造形物30を造形させる場合に実行される。なお、ステップS100,S102は上述の積層構造決定部64によって実行され、ステップS104は上述の造形処理部66によって実行される。
まず、ステップS100では、ユーザPC42のモニタ42Aにユーザが選択した3Dモデルデータをレイアウト表示させる。このレイアウト表示は、例えば図3で示されるような表示である。
次のステップS102では、カラー層50、反射層52、内部層54に関する各種設定を行う。より具体的には、カラー層50及び反射層52の厚さや、内部層54の色又は空洞54Aの設定等が行われる。ここで、内部層54の色又は空洞54Aの設定はユーザによって選択され、カラー層厚や反射層厚も決定される。そして、ユーザPC42は、これらの設定が行われた3Dモデルデータを3Dプリンタ10の制御部18へ送信する。
次のステップS104では、造形処理を実行する。
図8は、ステップ104で実行される造形処理の流れを示したフローチャートである。
ステップS200では、制御PC40がユーザPC42から受信した3Dモデルデータを読み込む。
次のステップS202では、3Dモデルデータに基づいたスライスデータの生成処理を行う。
次のステップS204では、生成したスライスデータを3Dプリンタへ送信する。
次のステップS206では、3Dモデルデータにより示される造形物30における全断面のスライスデータの生成及び3Dプリンタ10への送信が完了したか否かを判定し、肯定判定の場合は造形処理を終了し、否定判定の場合はステップS202へ戻る。なお、制御PC40で生成されたスライスデータは3Dプリンタ10の制御部18へ送信される。そして、制御部18は受信したスライスデータに基づいて吐出ユニット12を制御して3Dプリンタ10に造形物30を造形させる。
(第2実施形態)
以下、本発明の第2実施形態について説明する。本実施形態の造形方法は、カラー層50の下層を空洞54Aとする場合、カラー層50と反射層52とを合わせた厚さを造形物30の機械的強度を保てる厚さとする。これによれば、造形物30の内部を空洞54Aとしても造形物30の形状を保ちつつ、造形物30を構成する材料の量を削減できる。
本実施形態では、カラー層50と反射層52とを総合して外郭層といい、外郭層の厚さを外郭厚という。そして、本実施形態では外郭層厚は、造形物30の機械的強度を保つ厚さとされ、造形物30の大きさ、空洞54Aの大きさ、及び造形物30の重量等に応じて規定され、例えば所定の演算式により算出される。
図9は、内部層54を空洞54Aとした場合における外郭補強層70の設定に関する模式図である。なお、図9に示される設定は、一例として、ユーザPC42によって行われる。
図9(a)は、外郭厚が1.2mmに規定されているところ、カラー層厚も1.2mmとなっている。すなわち、カラー層厚が機械的強度を保てる厚さとして十分なため、反射層52は不要とされている。なお、図9(a)の例では、カラー層厚が十分に厚いため、反射層厚が0mmでも外部から視認される造形物30の色に空洞54Aとされた内部層54が影響を与えることはない。
図9(b)では、外郭厚が1.2mmに規定されているところ、カラー層厚は0.2mmとなっている。このため、外郭厚が1.2mmとなるように反射層厚が1.0mmとされる。なお、ユーザによって反射層厚が選択され、カラー層厚と反射層厚との合計値が規定される外郭厚よりも厚くなってもよい。
図9(c)では、外郭厚が2.0mmに規定されているところ、カラー層厚は0.2mm、反射層厚は1.0mmとなっている。このため、カラー層厚と反射層厚の合計値では外郭厚に達しない。そこで、外郭補強層70が反射層52の下層に形成される。このように、図9(c)の例では、反射層52と空洞54Aとの間に外郭補強層70を形成し、カラー層50と反射層52と外郭補強層70とを合わせた厚さを造形物30の機械的強度を保てる厚さとする。なお、外郭補強層70の厚さ(以下「外郭補強層厚」という。)は、後述のように制御PC40で算出される。
また、外郭補強層70の色(指定色)は、ユーザによって選択可能とされる。すなわち、外郭補強層70も内部層54と同様に、ユーザが指定色を任意に選択可能であるため、造形物30を形成するための材料を有効に利用できる。
このようにして設定された各層の厚さや色は、3Dモデルデータと共にユーザPC42から制御PC40へ送信される。
図10は、本実施形態のスライスデータ生成処理(図8のステップ202に対応)の流れを示すフローチャートである。スライスデータ生成処理は、造形処理部66(制御PC40)で実行される。
まず、ステップS300では、3Dモデルデータにより示される内部層54が空洞54Aであるか否かを判定し、肯定判定の場合はステップS302へ移行し、否定判定の場合はステップS316へ移行する。
ステップS302では、内部層54を空洞54Aとし、3Dモデルデータに基づいた造形物30を示す描画データを描画する。
次のステップS304では、描画データに対してカラー層厚分を3Dモデルデータで示される色で描画する。
次のステップS306では、描画データに対して反射層厚分をホワイトで描画する。
次のステップS308では、カラー層厚と反射層厚の合計値が規定されている外郭厚よりも小さいか否かが判定され、肯定判定の場合はステップS310へ移行する。一方、否定判定、すなわちカラー層厚と反射層厚の合計値が規定値と同じがそれ以上の場合には、ステップS314へ移行する。
ステップS310では、外郭厚からカラー層厚と反射層厚の合計値を減算した値を外郭補強層厚として算出する。
次のステップS312では、描画データに対して外郭補強層厚分を指定色で描画し、ステップ314へ移行する。
ステップS314では、描画データからスライスデータを生成して出力する。出力されたスライスデータは、3Dプリンタ10へ送信される。
ステップS300で否定判定となった場合に移行するステップS316では、3Dモデルデータにより示される内部層54がホワイトであるか否かを判定し、肯定判定の場合はステップS318へ移行し、否定判定の場合はステップS322へ移行する。
ステップS318では、描画データに対して内部層厚分をホワイトで描画する。
次のステップS320では、描画データに対してカラー層厚分を3Dモデルデータで示される色で描画し、ステップS314へ移行する。
ステップS322では、描画データに対して内部層厚分を指定色で描画する。
次のステップS324では、描画データに対してカラー層厚分を3Dモデルデータで示される色で描画する。
次のステップS326では、描画データに対して反射層厚分をホワイトで描画し、ステップS314へ移行する。
(第3実施形態)
以下、本発明の第3実施形態について説明する。本実施形態は反射層52の下層に内蔵される内蔵物に応じて、反射層52の厚さを決定する。これによれば、内蔵物の作用を生かした造形物30を形成できる。
図11は、内蔵物の一例として発光体72を内蔵した造形物30の断面を示す模式図である。発光体72は、例えば、LED(Light Emitting Diode)装置や蓄光機能を有する物体である。なお、造形物30は発光体72を内部に載置するために内部層54が空洞54Aとされている。このように、発光体72を内蔵物とした場合、発光体72による発光を造形物30の外部から視認できることが望ましい。
そこで、図11の例では、造形物30の上面30A及び側面30Bの反射層厚を発光体72の光が透過する厚さとする。一方、造形物30の下面30Cの反射層厚は、発光体72を空洞54Aに載置しても造形物30が破損しないように、機械強度を保てる厚さとされる。なお、反射層厚は、ユーザによって入力される内蔵物の大きさや重量、及びその作用に基づいて、積層構造決定部64によって決定される。
また、内蔵物は、発光体72に限らず、造形物30の重心を低くするための重りとなる重量物とされてもよい。この場合、造形物30の上面30A及び側面30Bの反射層厚を、外部から視認される造形物30の色に空洞54Aが影響を与えることを防止する厚さとする。一方、造形物30の下面30Cの反射層厚は、重量物を空洞54Aに載置しても造形物30が破損しない機械強度を保てる厚さとされる。
(実施形態の効果)
(1)本実施形態の造形方法は、着色されると共に造形物30の表面を形成するカラー層50とカラー層50の下層を形成する反射層52とを少なくとも含んで構成される造形物30の造形方法であって、造形物30の外郭に対する法線方向を基準に反射層52の厚さを決定する。本構成によれば、カラー層50の色を反射するために、反射層52の厚さを造形物30の外郭に対する法線方向Nを基準とした十分な厚さとする。これにより、反射層52の下に形成される内部層54を任意の色又は材料としても、外部から視認される造形物30の色に内部層54が影響を与えることを防止できる。
本実施形態の造形方法は、カラー層50の下層を空洞とする場合、カラー層50と反射層52とを合わせた厚さを造形物30の機械的強度を保てる厚さとしてもよい。本構成によれば、造形物30の形状を保ちつつ、造形物30を構成する材料の量を削減できる。
本実施形態の造形方法は、カラー層50の下層を空洞とする場合、反射層52と空洞との間に補強層を形成し、カラー層50と反射層52と外郭補強層70とを合わせた厚さを造形物30の機械的強度を保てる厚さとしてもよい。本構成によれば、造形物30の形状を保ちつつ、造形物30を構成する材料の量を削減できる。
本実施形態の造形方法は、外郭補強層70の色を指定できてもよい。本構成によれば、造形物30を形成するための材料を有効に利用できる。
本実施形態の造形方法は、反射層52の下層に内蔵される内蔵物に応じて、反射層52の厚さを決定してもよい。例えば発光体を内蔵物とした場合、発光体による発光を造形物30の外部から視認できることが望ましい。本構成によれば、内蔵物の作用を生かした造形物30を形成できる。
本実施形態の造形方法は、造形物30の外郭に対する法線方向を基準に、カラー層50及び反射層52の厚さを示す厚さデータを生成してもよい。本構成によれば、カラー層50及び反射層52の厚さを適切な厚さにできる。
本実施形態の造形方法は、カラー層50が造形物30の外郭を基準として外側に形成されてもよい。本構成によれば、造形物30に適した位置にカラー層50を形成できる。
本実施形態の造形方法は、カラー層50が造形物30の外郭を基準として内側に形成されてもよい。本構成によれば、造形物30に適した位置にカラー層50を形成できる。
本実施形態の造形装置は、着色されると共に造形物30の表面を形成するカラー層50とカラー層50の下層を形成する反射層52とを少なくとも含んで構成される造形物30の造形装置であって、造形物30の外郭に対する法線方向を基準に決定された厚さの反射層52をカラー層50の下層に積層する。本構成によれば、外部から視認される造形物30の色に内部層54が影響を与えることを防止できる。
本発明は、積層造形法により造形物を造形する造形方法に関する。
10 3Dプリンタ(造形装置)
30 造形物
50 カラー層(着色層)
52 反射層
70 外郭補強層(補強層)
72 発光体(内蔵物)

Claims (9)

  1. 着色されると共に造形物の表面を形成する着色層と前記着色層の下層を形成する反射層とを少なくとも含んで構成される造形物の造形方法であって、
    前記造形物の外郭に対する法線方向を基準に前記反射層の厚さを決定する造形方法。
  2. 前記着色層の下層を空洞とする場合、前記着色層と前記反射層とを合わせた厚さを前記造形物の機械的強度を保てる厚さとする請求項1記載の造形方法。
  3. 前記着色層の下層を空洞とする場合、前記反射層と前記空洞との間に補強層を形成し、
    前記着色層と前記反射層と前記補強層とを合わせた厚さを前記造形物の機械的強度を保てる厚さとする請求項1記載の造形方法。
  4. 前記補強層の色を指定できる請求項3記載の造形方法。
  5. 前記反射層の下層に内蔵される内蔵物に応じて、前記反射層の厚さを決定する請求項1から請求項4の何れか1項記載の造形方法。
  6. 前記造形物の外郭に対する法線方向を基準に、前記着色層及び前記反射層の厚さを示す厚さデータを生成する請求項1から請求項5の何れか1項記載の造形方法。
  7. 前記着色層は、前記造形物の外郭を基準として外側に形成される請求項1から請求項6の何れか1項記載の造形方法。
  8. 前記着色層は、前記造形物の外郭を基準として内側に形成される請求項1から請求項6の何れか1項記載の造形方法。
  9. 着色されると共に造形物の表面を形成する着色層と前記着色層の下層を形成する反射層とを少なくとも含んで構成される造形物の造形装置であって、
    前記造形物の外郭に対する法線方向を基準に決定された厚さの前記反射層を前記着色層の下層に積層する造形装置。
JP2019025752A 2019-02-15 2019-02-15 造形方法及び造形装置 Pending JP2020131503A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019025752A JP2020131503A (ja) 2019-02-15 2019-02-15 造形方法及び造形装置
US16/782,067 US20200262132A1 (en) 2019-02-15 2020-02-05 Shaping method and shaping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025752A JP2020131503A (ja) 2019-02-15 2019-02-15 造形方法及び造形装置

Publications (1)

Publication Number Publication Date
JP2020131503A true JP2020131503A (ja) 2020-08-31

Family

ID=72041245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025752A Pending JP2020131503A (ja) 2019-02-15 2019-02-15 造形方法及び造形装置

Country Status (2)

Country Link
US (1) US20200262132A1 (ja)
JP (1) JP2020131503A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071154A (ja) * 2015-10-08 2017-04-13 株式会社ミマキエンジニアリング 立体物の製造方法及び造形装置
WO2017204094A1 (ja) * 2016-05-23 2017-11-30 株式会社ミマキエンジニアリング 造形装置、造形方法、及び造形物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071154A (ja) * 2015-10-08 2017-04-13 株式会社ミマキエンジニアリング 立体物の製造方法及び造形装置
WO2017204094A1 (ja) * 2016-05-23 2017-11-30 株式会社ミマキエンジニアリング 造形装置、造形方法、及び造形物

Also Published As

Publication number Publication date
US20200262132A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6462466B2 (ja) 三次元造形物の製造方法および製造装置
WO2018099307A1 (zh) 一种全彩色3d打印的装置和方法
JP6836897B2 (ja) 造形物および造形方法
JP2000280354A (ja) 三次元造形装置および三次元造形方法
JP2018094784A (ja) 造形方法、造形システム、及び造形装置
WO2017069245A1 (ja) 造形システム、造形動作の制御方法、造形制御装置、及びプログラム
JP2018144290A (ja) 立体物造形方法及び3次元プリンタ
JP7350461B2 (ja) 造形物
JP2002292752A (ja) 彩色三次元造形システム及び方法、彩色三次元造形用のデータ処理装置及び方法、彩色三次元造形用のデータ処理プログラム、並びに該データ処理プログラムを記録した記録媒体
JP6773517B2 (ja) 立体造形物、立体造形物製造方法、及び立体造形物製造装置
JP6705007B2 (ja) 造形システム、造形方法、及び造形物の製造方法
JP6629152B2 (ja) 造形装置及び造形方法
JP2002292748A (ja) 彩色三次元造形システム及び方法、彩色三次元造形用のデータ処理装置及び方法、彩色三次元造形用のデータ処理プログラム、並びに該データ処理プログラムを記録した記録媒体
JP6802814B2 (ja) 保護層付きのカラー3dソリッドモデルのスライス・印刷方法
JP2020131503A (ja) 造形方法及び造形装置
JP2018108717A (ja) 多色3dオブジェクトのスライスプリント方法
JP2021115796A (ja) 着色成果物の製造方法及びインク吐出装置
JP7227784B2 (ja) 立体物造形方法
JP6533763B2 (ja) 立体物の製造方法
JP7284083B2 (ja) 造形装置及びクリアインク補填量入力方法
US11627236B2 (en) Shaping device and shaping method utilizing color conversion process and color adjustment parameters
JP2019199048A (ja) 造形方法、スライスデータの生成方法、造形装置、及びスライスデータ生成装置
JP6660711B2 (ja) 造形システム、造形動作の制御方法、造形制御装置、及びプログラム
JP7479218B2 (ja) 造形装置、造形方法、及び造形プログラム
JP2002292747A (ja) 三次元造形システム及び方法、三次元造形用のデータ処理装置及び方法、三次元造形用のデータ処理プログラム、並びに該データ処理プログラムを記録した記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207