JP2020129443A - Induction heating coil and method of manufacturing the same - Google Patents

Induction heating coil and method of manufacturing the same Download PDF

Info

Publication number
JP2020129443A
JP2020129443A JP2019020477A JP2019020477A JP2020129443A JP 2020129443 A JP2020129443 A JP 2020129443A JP 2019020477 A JP2019020477 A JP 2019020477A JP 2019020477 A JP2019020477 A JP 2019020477A JP 2020129443 A JP2020129443 A JP 2020129443A
Authority
JP
Japan
Prior art keywords
flow path
coil
induction heating
quenching agent
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019020477A
Other languages
Japanese (ja)
Other versions
JP7106467B2 (en
Inventor
一平 大沼
Ippei Onuma
一平 大沼
恭二 近藤
Kyoji Kondo
恭二 近藤
浩 永田
Hiroshi Nagata
浩 永田
忠雄 折戸
Tadao Orito
忠雄 折戸
将司 細矢
Shoji Hosoya
将司 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP2019020477A priority Critical patent/JP7106467B2/en
Publication of JP2020129443A publication Critical patent/JP2020129443A/en
Application granted granted Critical
Publication of JP7106467B2 publication Critical patent/JP7106467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an induction heating coil and a method of manufacturing the same capable of reducing a flow channel resistance of a coolant flow channel to increase a coolant flow rate and cool the entire coil down to a lower temperature compared with the conventional art, and thereby, effectively reducing accumulation of thermal fatigue, melting of a brazing part and rise in electric resistance.SOLUTION: An induction heating coil comprises: a coil part 10 for induction-heating an object to be processed 1; and a power supply part 50 for supplying a power to the coil part 10. The coil part 10 has a coolant flow channel 20, a quenching agent flow channel 22 and a plurality of injection flow channels 24. The coolant flow channel 20 has an annular shape, is arranged at a radially inner side of the coil part 10 and is configured to circulate coolant 3 around the object to be processed 1. The quenching agent flow channel 22 has an annular shape, is arranged at a radially outer side in the coil part, and is configured to circulate a quenching agent 4 around the coolant flow channel 20. The plurality of injection flow channels 24 penetrate through the coolant flow channel 20 in a radial direction to communicate between the quenching agent flow channel 22 and an inner surface 10a of the coil part 10.SELECTED DRAWING: Figure 3

Description

本発明は、誘導加熱コイルに係り、さらに詳しくは、定置一発焼入れ用の誘導加熱コイルとその製造方法に関する。 The present invention relates to an induction heating coil, and more particularly to an induction heating coil for stationary one-shot quenching and a method for manufacturing the same.

誘導加熱コイルは、電磁誘導原理により金属部品を高周波焼入するために用いられる。
また、「定置一発焼入れ」とは、高周波焼入の対象物(金属部品)を定められた位置に固定し、定位置において対象物を加熱し、かつ同じ位置で対象物を急冷して焼入れする金属硬化処理方法である。
定置一発焼入れ用の誘導加熱コイルは、定位置において連続した高周波加熱と焼入剤の噴射による急冷を実施可能な多機能部品である。しかし、かかる誘導加熱コイルは、構造が複雑となり製造が困難である。
そこで、金属積層造形法を用いた誘導加熱コイルとその製造方法が提案されている(例えば特許文献1)。
Induction heating coils are used to induction harden metal parts by the electromagnetic induction principle.
In addition, "stationary one-shot quenching" means that the object (metal part) for induction hardening is fixed at a predetermined position, the object is heated at a fixed position, and the object is rapidly cooled and quenched at the same position. It is a metal hardening method.
The induction heating coil for stationary one-shot quenching is a multi-functional component that can perform continuous high-frequency heating and quenching by injection of quenching agent at a fixed position. However, such an induction heating coil has a complicated structure and is difficult to manufacture.
Therefore, an induction heating coil using a metal additive manufacturing method and a manufacturing method thereof have been proposed (for example, Patent Document 1).

特許文献1の「誘導加熱コイル」は、被処理物を誘導加熱するためのコイル部と、コイル部に電力を供給するための電力供給部と、電力供給部内およびコイル部内に配置されコイル部に冷媒を供給するための冷媒流路と、を備える。コイル部、電力供給部、および冷媒流路は、金属積層造形法を用いて形成されている。また、冷媒流路は、コイル部に形成されたコイル部側通路を含み、コイル部側通路は起伏部を有し、起伏部はコイル部の周方向に沿って進むに従い、コイル部の厚み方向に起伏するように延びている。 The "induction heating coil" of Patent Document 1 includes a coil portion for inductively heating an object to be processed, a power supply portion for supplying electric power to the coil portion, a power supply portion, and a coil portion arranged in the coil portion. A coolant channel for supplying a coolant. The coil part, the power supply part, and the coolant flow path are formed by using the metal additive manufacturing method. Further, the refrigerant flow path includes a coil portion side passage formed in the coil portion, the coil portion side passage has an undulation portion, and the undulation portion advances in the circumferential direction of the coil portion, and thus, in the thickness direction of the coil portion. It extends up and down.

特許第6219228号公報Patent No. 6219228

定置一発焼入れ用の誘導加熱コイル(以下、コイル)を用いた高周波焼入処理は、一般的に数秒〜数十秒の加熱冷却サイクルを繰り返す。この加熱冷却サイクルによりコイルは、熱膨張と熱収縮の繰り返しにより、以下の問題が発生する。
(1)熱膨張と熱収縮の繰り返しによる熱疲労の蓄積
(2)ロウ付け部の溶融による破損
(3)電気抵抗の上昇による効率低下
Induction hardening using an induction heating coil (hereinafter, coil) for stationary one-shot quenching generally repeats a heating/cooling cycle of several seconds to several tens of seconds. Due to this heating/cooling cycle, the coil causes the following problems due to repeated thermal expansion and thermal contraction.
(1) Accumulation of thermal fatigue due to repeated thermal expansion and thermal contraction (2) Damage due to melting of brazed part (3) Efficiency decrease due to increase in electrical resistance

上述した特許文献1の誘導加熱コイルは、ロウ付け部の溶融による破損を防止するため、全体が金属積層造形法を用いて形成されている。しかし、コイル部に形成された冷媒流路の起伏部がコイル部の周方向に沿って厚み方向に起伏するように延びているため、起伏部流路の断面積が小さく、冷媒流路の流路抵抗が大きく、冷媒流量が不足する。
そのため、コイル部の冷却が不足してコイル部が例えば70℃以上に過熱され、熱疲労の蓄積と、電気抵抗の増加による効率低下の回避が困難であった。
The above-described induction heating coil of Patent Document 1 is entirely formed by metal additive manufacturing in order to prevent damage due to melting of the brazing portion. However, since the undulations of the refrigerant channel formed in the coil portion extend along the circumferential direction of the coil portion so as to undulate in the thickness direction, the cross-sectional area of the undulation channel is small and the flow of the refrigerant channel is small. The road resistance is large and the flow rate of the refrigerant is insufficient.
Therefore, cooling of the coil portion is insufficient and the coil portion is overheated to, for example, 70° C. or more, and it is difficult to avoid accumulation of thermal fatigue and reduction in efficiency due to increase in electric resistance.

本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、冷媒流路の流路抵抗を低減して冷媒流量を増大させ、コイル全体を従来よりも低温(例えば50℃以下)に冷却できる誘導加熱コイルとその製造方法を提供することにある。 The present invention was created to solve the above-mentioned problems. That is, an object of the present invention is to provide an induction heating coil capable of cooling the entire coil at a lower temperature (for example, 50° C. or lower) than conventional ones by reducing the flow resistance of the coolant flow passage to increase the flow rate of the coolant, and a manufacturing method thereof. To do.

本発明によれば、被処理物を誘導加熱するためのコイル部と、
前記コイル部に電力を供給するための電力供給部と、を備え、
前記コイル部は、その半径方向内側に配置され、前記被処理物を囲んで冷媒を流す環状の冷媒流路と、
前記コイル部内の半径方向外側に配置され、前記冷媒流路を囲んで焼入剤を流す環状の焼入剤流路と、
前記冷媒流路を半径方向に貫通し、前記焼入剤流路と前記コイル部の内面との間を連通する複数の噴射流路と、を有する、誘導加熱コイルが提供される。
According to the present invention, a coil portion for inductively heating an object to be processed,
A power supply unit for supplying power to the coil unit,
The coil portion is arranged on the inner side in the radial direction thereof, and has an annular refrigerant flow path that surrounds the object to be treated and causes a refrigerant to flow.
A ring-shaped quenching agent flow path that is arranged radially outside in the coil portion and that flows the quenching agent around the refrigerant flow path,
An induction heating coil is provided, which has a plurality of injection channels that penetrate the coolant channel in the radial direction and communicate between the quenching agent channel and the inner surface of the coil portion.

また本発明によれば、上記の誘導加熱コイルの製造方法であって、
前記冷媒流路と前記噴射流路を有する中空筒形の内部構造部を、金属積層造形法を用いて一体成形し、
中空筒形の外周部材を前記内部構造部の外周面に接合して、その間に前記焼入剤流路を形成し、
側板を前記内部構造部に接合して、その間に前記冷媒流路を形成する、誘導加熱コイルの製造方法が提供される。
Further, according to the present invention, there is provided a method for manufacturing the above induction heating coil,
A hollow cylindrical internal structure portion having the refrigerant flow path and the injection flow path, integrally molded using a metal additive manufacturing method,
A hollow cylindrical outer peripheral member is joined to the outer peripheral surface of the internal structure portion to form the quenching agent flow path therebetween,
A method for manufacturing an induction heating coil is provided, in which a side plate is joined to the internal structure portion and the refrigerant flow path is formed therebetween.

本発明によれば、コイル部の半径方向内側に配置され、冷媒を被処理物を囲んで流す環状の冷媒流路を備えるので、冷媒流路の断面積を大きく設定して冷媒流路の流路抵抗を大幅に低減できる。 According to the present invention, since the annular refrigerant flow path that is disposed inside the coil portion in the radial direction and that allows the refrigerant to flow around the object to be processed is provided, the cross-sectional area of the refrigerant flow path is set large and the flow of the refrigerant flow path is set. Road resistance can be reduced significantly.

また、複数の噴射流路が、環状の冷媒流路を半径方向に貫通し、半径方向外側に配置された焼入剤流路とコイル部の内面との間を連通するので、冷媒流路内の冷媒により噴射流路を常に冷媒に近い温度まで冷却することができる。 In addition, since the plurality of injection flow paths radially penetrate the annular coolant flow path and communicate between the quenching agent flow path arranged on the radially outer side and the inner surface of the coil portion, With this refrigerant, the injection flow path can always be cooled to a temperature close to that of the refrigerant.

従って、本発明の構成により、冷媒流量を増大させ、コイル全体を従来よりも低温(例えば50℃以下)に冷却でき、これにより、熱疲労の蓄積、ロウ付け部の溶融、及び電気抵抗の上昇を効果的に低減することができる。 Therefore, with the configuration of the present invention, the refrigerant flow rate can be increased and the entire coil can be cooled to a temperature lower than the conventional one (for example, 50° C. or lower), whereby thermal fatigue is accumulated, the brazing portion is melted, and the electric resistance is increased. Can be effectively reduced.

本発明による誘導加熱コイルの全体斜視図である。1 is an overall perspective view of an induction heating coil according to the present invention. 誘導加熱コイルの平面図(A)とそのB−B矢視図(B)である。It is a top view (A) and its BB arrow line view (B) of an induction heating coil. 図2のC−C断面図(A)とD−O−D断面図(B)である。It is CC sectional drawing (A) and DOD sectional drawing (B) of FIG. 図3(B)の別の実施形態を示す図である。It is a figure which shows another embodiment of FIG.3(B).

本発明の好ましい実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 A preferred embodiment of the present invention will be described with reference to the drawings. In addition, in each figure, the common part is denoted by the same reference numeral, and the duplicated description will be omitted.

図1は、本発明による誘導加熱コイル100の全体斜視図である。
この図において、誘導加熱コイル100は、被処理物1を誘導加熱するためのコイル部10と、コイル部10に電力を供給するための電力供給部50とを備える。
FIG. 1 is an overall perspective view of an induction heating coil 100 according to the present invention.
In this figure, the induction heating coil 100 includes a coil unit 10 for induction heating the workpiece 1, and a power supply unit 50 for supplying electric power to the coil unit 10.

被処理物1は、好ましくはコイル部10の中心軸に対し、この例では実質的に同心に位置する円筒形の金属部材であるが、その他の形状(例えば多角形)であってもよい。 The object 1 to be processed is preferably a cylindrical metal member located substantially concentrically with respect to the central axis of the coil portion 10 in this example, but may have another shape (for example, a polygonal shape).

コイル部10は、その一部に半径方向(Z軸に直交するX方向)に延びるスリット溝11を有する中空筒形部材(この例では中空円筒形部材)である。コイル部10は、この例で円筒形の内面10a、円筒形の外面10b、及び軸方向の側面10c,10dを有する。
内面10aと外面10bは、好ましくは同心に構成されている。また、側面10c,10dは、好ましくはZ軸に直交し、互いに平行に位置する。
The coil portion 10 is a hollow cylindrical member (a hollow cylindrical member in this example) having a slit groove 11 extending in the radial direction (X direction orthogonal to the Z axis) in a part thereof. The coil portion 10 in this example has a cylindrical inner surface 10a, a cylindrical outer surface 10b, and axial side surfaces 10c and 10d.
The inner surface 10a and the outer surface 10b are preferably concentric. The side surfaces 10c and 10d are preferably orthogonal to the Z axis and are parallel to each other.

コイル部10は、さらにスリット溝11を間に挟んでX方向に延びる1対の電力導入部12を有する。電力導入部12のX方向外端部は、1対の電力供給部50にそれぞれ連結されている。なお、電力導入部12と電力供給部50の連結部2は、連結部材(例えば、ボルトとナット)又はロウ付け等で強固に連結され、その間の電気抵抗が実質的に母材と同等程度に低くなっている。 The coil portion 10 further includes a pair of power introduction portions 12 extending in the X direction with the slit groove 11 interposed therebetween. The X-direction outer ends of the power introducing units 12 are connected to the pair of power supply units 50, respectively. The connecting portion 2 between the power introducing portion 12 and the power supplying portion 50 is firmly connected by a connecting member (for example, bolt and nut) or brazing, and the electric resistance therebetween is substantially equal to that of the base material. It's getting low.

1対の電力供給部50には、それぞれボルト穴51が設けられている。このボルト穴51は、図示しない高周波電源の1対の端子と連結するために用いられる。 A bolt hole 51 is provided in each of the pair of power supply units 50. The bolt holes 51 are used to connect with a pair of terminals of a high frequency power source (not shown).

上述した構成により、高周波電源から1対の電力供給部50を介してコイル部10に、図に矢印5で示すように、高周波電流Iを流し、被処理物1を誘導加熱することができる。 With the above-described configuration, the high frequency current I can be caused to flow from the high frequency power supply to the coil unit 10 through the pair of power supply units 50 as shown by an arrow 5 in FIG.

図2は、誘導加熱コイル100の平面図(A)とそのB−B矢視図(B)である。 FIG. 2 is a plan view (A) of the induction heating coil 100 and a BB arrow view (B) thereof.

この図において、コイル部10の1対の電力導入部12には、冷媒流入口12aと冷媒流出口12bがそれぞれ設けられている。冷媒流入口12aと冷媒流出口12bは、電力導入部12及びコイル部10の内部で連通している。
この構成により、冷媒流入口12aから冷媒3を供給し、電力導入部12及びコイル部10を冷却して加熱された冷媒3を、冷媒流出口12bから外部に排出することができる。冷媒3は、例えば冷却水であるが、その他の液体であってもよい。
In this figure, a pair of electric power introducing portions 12 of the coil portion 10 are provided with a refrigerant inlet 12a and a refrigerant outlet 12b, respectively. The refrigerant inflow port 12a and the refrigerant outflow port 12b communicate with each other inside the power introducing unit 12 and the coil unit 10.
With this configuration, it is possible to supply the refrigerant 3 from the refrigerant inlet 12a, cool the power introduction unit 12 and the coil unit 10, and heat the refrigerant 3 to the outside through the refrigerant outlet 12b. The coolant 3 is, for example, cooling water, but may be another liquid.

図1と図2において、コイル部10の外面10bには、焼入剤供給口13が複数設けられている。この例で、Y方向に対向して1対の焼入剤供給口13が設けられているが、1以上であってもよい。 1 and 2, the outer surface 10b of the coil portion 10 is provided with a plurality of quenching agent supply ports 13. In this example, a pair of quenching agent supply ports 13 are provided so as to face each other in the Y direction, but one or more quenching agent supply ports 13 may be provided.

また、コイル部10の内面10aには、複数の噴射口14が設けられている。
さらに、焼入剤供給口13と噴射口14は、コイル部10の内部で連通しており、かつ冷媒3とは図示しない隔壁で分離されている。
この構成により、焼入剤供給口13から焼入剤4を供給し、噴射口14から誘導加熱された被処理物1の外面に向けて焼入剤4を内側に噴射することで、被処理物1を焼入れすることができる。焼入剤4は、例えば水、エマルジョン水、又は油であるが、その他の液体であってもよい。
Further, a plurality of injection ports 14 are provided on the inner surface 10 a of the coil portion 10.
Further, the quenching agent supply port 13 and the injection port 14 communicate with each other inside the coil portion 10 and are separated from the refrigerant 3 by a partition wall (not shown).
With this configuration, the quenching agent 4 is supplied from the quenching agent supply port 13 and the quenching agent 4 is injected inward from the injection port 14 toward the outer surface of the object 1 to be treated, which is induction-heated. Item 1 can be quenched. The quenching agent 4 is, for example, water, emulsion water, or oil, but may be another liquid.

図3は、図2のC−C断面図(A)とD−O−D断面図(B)である。
この図において、コイル部10は、冷媒流路20、焼入剤流路22、及び複数の噴射流路24を有する。
FIG. 3 is a sectional view (A) and a sectional view (B) taken along line CC of FIG.
In this figure, the coil portion 10 has a coolant channel 20, a quenching agent channel 22, and a plurality of injection channels 24.

冷媒流路20は、環状(この例では円環状)であり、コイル部10の半径方向内側に配置され、被処理物1を囲んで冷媒3を流すようになっている。
この例で冷媒流路20の円環は、スリット溝11の部分で周方向に分離されており、分離された周方向端部は、電力導入部12の内部に設けられた1対の端部流路21を介して冷媒流入口12a及び冷媒流出口12bと連通している。
この構成により、冷媒流入口12aから冷媒3を供給し、電力導入部12及びコイル部10を冷却して加熱された冷媒3を、冷媒流出口12bから外部に排出することができる。
The coolant flow path 20 is annular (annular in this example), is arranged inside the coil portion 10 in the radial direction, and surrounds the object to be processed 1 to flow the coolant 3.
In this example, the ring of the refrigerant flow path 20 is circumferentially separated at the slit groove 11, and the separated circumferential ends are a pair of ends provided inside the power introduction unit 12. It communicates with the refrigerant inflow port 12a and the refrigerant outflow port 12b via the flow path 21.
With this configuration, it is possible to supply the refrigerant 3 from the refrigerant inlet 12a, cool the power introduction unit 12 and the coil unit 10 and heat the heated refrigerant 3 to the outside from the refrigerant outlet 12b.

また、冷媒流路20及び端部流路21の断面形状は、それぞれ実質的に単一の矩形であり、流路抵抗を小さくするように大きく設定されている。この構成により、冷媒流路20の流路抵抗を大幅に低減できる。 The cross-sectional shapes of the refrigerant flow path 20 and the end flow path 21 are substantially single rectangles, and are set large so as to reduce the flow path resistance. With this configuration, the flow passage resistance of the coolant flow passage 20 can be significantly reduced.

焼入剤流路22は、環状(この例では円環状)であり、コイル部内の半径方向外側に配置され、冷媒流路20を囲んで焼入剤4を流すようになっている。
この例で焼入剤流路22の円環は、スリット溝11の部分で周方向に分離されている。また焼入剤流路22は、複数(この例で1対)の焼入剤供給口13と連通している。
この構成により、スリット溝11の部分を除く冷媒流路20の半径方向外側の全体を焼入剤流路22が実質的に均等に囲んでおり、かつ焼入剤流路22の全体に実質的に動圧の焼入剤4を供給することができる。
The quenching agent flow path 22 has an annular shape (annular shape in this example), is arranged radially outside in the coil portion, and surrounds the refrigerant flow path 20 to flow the quenching agent 4.
In this example, the ring of the quenching agent channel 22 is circumferentially separated at the slit groove 11. Further, the quenching agent flow passage 22 communicates with a plurality (one pair in this example) of quenching agent supply ports 13.
With this configuration, the quenching agent passage 22 substantially evenly surrounds the entire outer side in the radial direction of the refrigerant passage 20 except the slit groove 11, and the quenching agent passage 22 is substantially covered with the quenching agent passage 22. It is possible to supply the quenching agent 4 having a dynamic pressure.

複数の噴射流路24は、冷媒流路20を半径方向に貫通し、焼入剤流路22とコイル部10の内面10aとの間を連通する。噴射口14は、噴射流路24の内面10aにおける開口である。
この例で複数の噴射口14が、コイル部10の内面10aに実質的に均等に配置されている。
上述した構成により、焼入剤供給口13から焼入剤4を供給し、誘導加熱された被処理物1の外面に向けて噴射流路24の内端(すなわち噴射口14)から焼入剤4を内側に噴射することができる。
The plurality of injection flow paths 24 penetrate the refrigerant flow path 20 in the radial direction, and connect the quenching agent flow path 22 and the inner surface 10 a of the coil portion 10 to each other. The injection port 14 is an opening in the inner surface 10a of the injection flow path 24.
In this example, the plurality of injection ports 14 are substantially evenly arranged on the inner surface 10 a of the coil portion 10.
With the configuration described above, the quenching agent 4 is supplied from the quenching agent supply port 13, and the quenching agent is supplied from the inner end of the injection flow path 24 (that is, the injection port 14) toward the outer surface of the induction-heated object 1. 4 can be injected inward.

図3において、コイル部10は、内部構造部30、外周部材32、1対の側板34からなる。 In FIG. 3, the coil portion 10 includes an internal structure portion 30, an outer peripheral member 32, and a pair of side plates 34.

内部構造部30は、中空筒形(この例では中空円筒形)であり、冷媒流路20と噴射流路24を有する。内部構造部30の詳細は後述する。 The internal structure 30 has a hollow cylindrical shape (hollow cylindrical shape in this example), and has a refrigerant flow path 20 and an injection flow path 24. Details of the internal structure unit 30 will be described later.

外周部材32は、中空筒形(この例では中空円筒形)であり、内部構造部30の外周面に接合され、内部構造部30との間に焼入剤流路22を形成する。
1対の側板34は、内部構造部30に接合され、その間に冷媒流路20を形成する。
外周部材32と内部構造部30との接合、及び側板34と内部構造部30との接合は、好ましくはロウ付けによるのがよい。またこの場合、ロウ付け材は、好ましくは50℃以上、さらに好ましくは100℃以上の耐熱性能を有するものを使用する。
The outer peripheral member 32 has a hollow cylindrical shape (hollow cylindrical shape in this example), is joined to the outer peripheral surface of the internal structure portion 30, and forms the quenching agent flow path 22 with the internal structure portion 30.
The pair of side plates 34 are joined to the internal structure portion 30 and form the refrigerant flow path 20 therebetween.
The outer peripheral member 32 and the internal structure portion 30 and the side plate 34 and the internal structure portion 30 are preferably joined by brazing. In this case, the brazing material has a heat resistance of preferably 50°C or higher, more preferably 100°C or higher.

この例で、内部構造部30は、内側リング部30a、外側リング部30b、及び複数のスポーク部30cを有する。
内側リング部30aは中空筒状(この例では中空円筒状)であり、その内面が被処理物1に対向してこれを囲む。
外側リング部30bは中空筒状(この例では中空円筒状)であり、その外周面が外周部材32の内面に接合され、外周部材32との間に焼入剤流路22を形成する。
複数のスポーク部30cは、内側リング部30aと外側リング部30bを周方向に間隔を隔てて連結し、その内側に噴射流路24を有する。スポーク部30cは、冷媒流路20の冷媒内を半径方向に貫通する。
In this example, the internal structure portion 30 has an inner ring portion 30a, an outer ring portion 30b, and a plurality of spoke portions 30c.
The inner ring portion 30a has a hollow cylindrical shape (hollow cylindrical shape in this example), and its inner surface faces the object to be processed 1 and surrounds it.
The outer ring portion 30b has a hollow cylindrical shape (hollow cylindrical shape in this example), and its outer peripheral surface is joined to the inner surface of the outer peripheral member 32 to form the quenching agent flow channel 22 with the outer peripheral member 32.
The plurality of spoke portions 30c connect the inner ring portion 30a and the outer ring portion 30b at a circumferential interval with each other, and have the injection channel 24 inside thereof. The spokes 30c penetrate the inside of the coolant in the coolant flow path 20 in the radial direction.

この例で、内部構造部30は、金属積層造形法を用いて一体成形されている。 In this example, the internal structure portion 30 is integrally molded using a metal additive manufacturing method.

また、内部構造部30、外周部材32、及び側板34は、それぞれ一体成形された純銅又は銅合金からなる。
この構成により、コイル部全体の電気抵抗を低減することができる。
Moreover, the internal structure part 30, the outer peripheral member 32, and the side plate 34 are made of pure copper or a copper alloy integrally molded.
With this configuration, the electric resistance of the entire coil portion can be reduced.

図3(B)において、スポーク部30cは、その内側に噴射流路24を有する限りで、その周囲を冷媒3が低抵抗で流れるように、断面積が小さく設定されている。
なお、スポーク部30cは、この例ではそれぞれ単一の噴射流路24を有する円管である。しかし、単一のスポーク部30cが複数の噴射流路24を有してもよい。
In FIG. 3B, the spoke portion 30c is set to have a small cross-sectional area so that the refrigerant 3 flows with low resistance around the spoke passage 30c as long as it has the injection passage 24 inside.
The spokes 30c are circular tubes each having a single injection flow path 24 in this example. However, the single spoke portion 30c may have a plurality of injection flow paths 24.

図4は、図3(B)の別の実施形態を示す図である。
図3の例では、噴射流路24は半径方向に延びる直線流路であるが、図4(A)に示すように、スポーク部30cの内部で分岐してもよい。
例えば、1本の噴射流路24を内部で2本に分岐し、焼入剤流路22に1本の噴射流路24が連通し、コイル部10の内面10aに2本の噴射流路24が連通するようにしてもよい。
さらに、例えば、2本の噴射流路24を内部で3本に分岐し、焼入剤流路22に2本の噴射流路24が連通し、コイル部10の内面10aに3本の噴射流路24が連通するようにしてもよい。
FIG. 4 is a diagram showing another embodiment of FIG. 3(B).
In the example of FIG. 3, the injection flow path 24 is a linear flow path that extends in the radial direction, but as shown in FIG. 4A, it may be branched inside the spoke portion 30c.
For example, one injection flow path 24 is internally divided into two, one injection flow path 24 communicates with the quenching agent flow path 22, and two injection flow paths 24 are provided on the inner surface 10 a of the coil part 10. May communicate with each other.
Furthermore, for example, the two injection flow paths 24 are internally branched into three, the two injection flow paths 24 communicate with the quenching agent flow path 22, and the three injection flows are provided on the inner surface 10a of the coil portion 10. The passage 24 may communicate with each other.

また、図4(B)に示すように、内側リング部30aの内部に中空チャンバ35を有し、内側リング部30aの内面10aに噴射流路24より小径の多数の噴射口14を均等に設けてもよい。この場合、スポーク部30cの噴射流路24の断面積を相対的に大きく設定して必要数を減らし、内面10aの噴射口14の断面積は均等に噴射するように相対的に小さく設定するのがよい。 Further, as shown in FIG. 4B, a hollow chamber 35 is provided inside the inner ring portion 30a, and a large number of injection ports 14 having a diameter smaller than that of the injection flow passage 24 are evenly provided on the inner surface 10a of the inner ring portion 30a. May be. In this case, the cross-sectional area of the jet flow path 24 of the spoke portion 30c is set relatively large to reduce the required number, and the cross-sectional area of the jet port 14 of the inner surface 10a is set relatively small so as to uniformly jet. Is good.

本発明による誘導加熱コイル100の製造方法は、S1〜S3のステップ(工程)からなる。 The method for manufacturing the induction heating coil 100 according to the present invention includes steps (processes) S1 to S3.

ステップS1では、冷媒流路20と噴射流路24を有する中空筒形の内部構造部30を、金属積層造形法を用いて一体成形する。内部構造部30の素材には、純銅又は銅合金を用いる。
並行して、外周部材32と側板34を、純銅又は銅合金を用いて一体成形する。外周部材32と側板34の製造は、金属積層造形法に限定されず、その他の加工方法(例えば機械加工)であってもよい。
In step S1, the hollow cylindrical internal structure portion 30 having the refrigerant flow path 20 and the injection flow path 24 is integrally molded by using the metal additive manufacturing method. Pure copper or a copper alloy is used as the material of the internal structure portion 30.
In parallel, the outer peripheral member 32 and the side plate 34 are integrally molded using pure copper or a copper alloy. The manufacturing of the outer peripheral member 32 and the side plate 34 is not limited to the metal additive manufacturing method, and may be another processing method (for example, machining).

ステップS2では、中空筒形の外周部材32を内部構造部30の外周面に接合して、その間に焼入剤流路22を形成する。
ステップS3では、側板34を内部構造部30に接合して、その間に冷媒流路20を形成する。
In step S2, the hollow cylindrical outer peripheral member 32 is joined to the outer peripheral surface of the internal structure portion 30, and the quenching agent flow path 22 is formed therebetween.
In step S3, the side plate 34 is joined to the internal structure portion 30 and the coolant flow path 20 is formed therebetween.

ステップS2,S3における接合は、好ましくはロウ付けによるのがよい。またこの場合、ロウ付け材は、好ましくは50℃以上、さらに好ましくは100℃以上の耐熱性能を有するものを使用する。
なおステップS2,S3の順序は逆でもよい。
また内部構造部30、外周部材32、及び側板34を金属積層造形法を用いて一体で加工してもよい。
The joining in steps S2 and S3 is preferably performed by brazing. In this case, the brazing material has a heat resistance of preferably 50°C or higher, more preferably 100°C or higher.
The order of steps S2 and S3 may be reversed.
Further, the internal structure portion 30, the outer peripheral member 32, and the side plate 34 may be integrally processed using a metal additive manufacturing method.

上述した誘導加熱コイルについて、シミュレーションを実施した。
(シミュレーション条件)
コイル部10の寸法:内径34mm、外形76mm、厚さ16mm
材質:純銅
被処理物1の放射率0.2、周囲温度950℃
コイル部外面の熱伝達率20W/mK、周囲温度30℃
コイル部内部の熱伝達率300W/mK、
The simulation was performed about the induction heating coil mentioned above.
(Simulation conditions)
Dimensions of coil part 10: inner diameter 34 mm, outer diameter 76 mm, thickness 16 mm
Material: Pure copper Emissivity of the object to be treated 0.2, ambient temperature 950°C
Heat transfer coefficient of the outer surface of the coil is 20 W/m 2 K, ambient temperature is 30℃
Heat transfer coefficient inside the coil part 300 W/m 2 K,

(シミュレーション結果)
特許文献1の誘導加熱コイルの場合、同一条件において、コイル部表面の最高温度71.7℃、最低温度71.1℃であった。
また、本発明の誘導加熱コイル100の場合、同一条件において、コイル部表面の最高温度36.5℃、最低温度35.7℃であった。
(simulation result)
In the case of the induction heating coil of Patent Document 1, the maximum temperature of the coil portion surface was 71.7°C and the minimum temperature was 71.1°C under the same conditions.
In the case of the induction heating coil 100 of the present invention, the maximum temperature of the coil surface was 36.5°C and the minimum temperature was 35.7°C under the same conditions.

特許文献1の誘導加熱コイルは、コイル部に形成された冷媒流路の起伏部がコイル部の周方向に沿って厚み方向に起伏するように延びているため、起伏部の断面積が小さく、冷媒流路の流路抵抗が大きく、冷媒流量が不足する。
そのため、コイル部の冷却が不足してコイル部が例えば70℃以上に過熱されたと判断することができる。
In the induction heating coil of Patent Document 1, since the undulating portion of the refrigerant flow path formed in the coil portion extends so as to undulate in the thickness direction along the circumferential direction of the coil portion, the cross-sectional area of the undulating portion is small, The flow passage resistance of the coolant flow passage is large, and the flow rate of the coolant is insufficient.
Therefore, it can be determined that the coil portion is insufficiently cooled and the coil portion is overheated to, for example, 70° C. or more.

これに対し、本発明の誘導加熱コイル100は、コイル部10の半径方向内側に配置され、被処理物1を囲んで冷媒3を流す環状の冷媒流路20を備える。従って、冷媒流路20の断面積を大きく設定して冷媒流路20の流路抵抗を大幅に低減できるので、冷媒流量を増大させ、コイル全体を従来よりも低温(例えば50℃以下)に冷却できたと判断することができる。 On the other hand, the induction heating coil 100 of the present invention is provided inside the coil portion 10 in the radial direction, and is provided with the annular refrigerant flow passage 20 that surrounds the object to be processed 1 and causes the refrigerant 3 to flow. Therefore, since the cross-sectional area of the refrigerant flow path 20 can be set to be large and the flow path resistance of the refrigerant flow path 20 can be significantly reduced, the refrigerant flow rate can be increased and the entire coil can be cooled to a temperature lower than the conventional temperature (for example, 50° C. or less). It can be judged that it was possible.

上述した本発明の実施形態によれば、コイル部10の半径方向内側に配置され、冷媒3を被処理物1を囲んで流す環状の冷媒流路20を備えるので、冷媒流路20の断面積を大きく設定して冷媒流路20の流路抵抗を大幅に低減できる。 According to the above-described embodiment of the present invention, since the annular coolant passage 20 is disposed inside the coil portion 10 in the radial direction and the coolant 3 flows around the object 1, the cross-sectional area of the coolant passage 20 is provided. Can be set to a large value to significantly reduce the flow path resistance of the coolant flow path 20.

また、複数の噴射流路24が、環状の冷媒流路20を半径方向に貫通し、半径方向外側に配置された焼入剤流路22とコイル部10の内面10aとの間を連通するので、冷媒流路内の冷媒3により噴射流路24を常に冷媒3に近い温度まで冷却することができる。 In addition, since the plurality of injection flow paths 24 penetrate the annular coolant flow path 20 in the radial direction and communicate between the quenching agent flow path 22 arranged on the outer side in the radial direction and the inner surface 10 a of the coil part 10. The injection channel 24 can be always cooled to a temperature close to that of the refrigerant 3 by the refrigerant 3 in the refrigerant channel.

従って、本発明の構成により、冷媒流量を増大させ、コイル全体を従来よりも低温(例えば50℃以下)に冷却でき、これにより、熱疲労の蓄積、ロウ付け部の溶融、及び電気抵抗の上昇を効果的に低減することができる。 Therefore, according to the configuration of the present invention, the refrigerant flow rate can be increased and the entire coil can be cooled to a temperature lower than the conventional one (for example, 50° C. or less), whereby thermal fatigue is accumulated, the brazing part is melted, and the electric resistance is increased. Can be effectively reduced.

なお本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。 The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

1 被処理物、2 連結部、3 冷媒、4 焼入剤、10 コイル部、
10a 内面、10b 外面、10c,10d 側面、11 スリット溝、
12 電力導入部、12a 冷媒流入口、12b 冷媒流出口、
13 焼入剤供給口、14 噴射口、20 冷媒流路、21 端部流路、
22 焼入剤流路、24 噴射流路、30 内部構造部、
30a 内側リング部、30b 外側リング部、30c スポーク部、
32 外周部材、34 側板、35 中空チャンバ、
50 電力供給部、51 ボルト穴、100 誘導加熱コイル
1 to-be-processed object, 2 connection part, 3 refrigerant, 4 quenching agent, 10 coil part,
10a inner surface, 10b outer surface, 10c, 10d side surface, 11 slit groove,
12 power inlet, 12a refrigerant inlet, 12b refrigerant outlet,
13 quenching agent supply port, 14 injection port, 20 refrigerant channel, 21 end channel,
22 quenching agent flow path, 24 injection flow path, 30 internal structure part,
30a inner ring portion, 30b outer ring portion, 30c spoke portion,
32 outer peripheral member, 34 side plate, 35 hollow chamber,
50 power supply section, 51 bolt hole, 100 induction heating coil

Claims (7)

被処理物を誘導加熱するためのコイル部と、
前記コイル部に電力を供給するための電力供給部と、を備え、
前記コイル部は、その半径方向内側に配置され、前記被処理物を囲んで冷媒を流す環状の冷媒流路と、
前記コイル部内の半径方向外側に配置され、前記冷媒流路を囲んで焼入剤を流す環状の焼入剤流路と、
前記冷媒流路を半径方向に貫通し、前記焼入剤流路と前記コイル部の内面との間を連通する複数の噴射流路と、を有する、誘導加熱コイル。
A coil portion for inductively heating the object to be processed,
A power supply unit for supplying power to the coil unit,
The coil portion is arranged on the inner side in the radial direction thereof, and has an annular refrigerant flow path that surrounds the object to be treated and causes a refrigerant to flow.
A ring-shaped quenching agent flow path that is arranged radially outside in the coil portion and that flows the quenching agent around the refrigerant flow path,
An induction heating coil, comprising: a plurality of injection channels that penetrate the coolant channel in a radial direction and communicate between the quenching agent channel and the inner surface of the coil portion.
前記コイル部は、前記冷媒流路と前記噴射流路を有する中空筒形の内部構造部と、
前記内部構造部の外周面に接合され、その間に前記焼入剤流路を形成する中空筒形の外周部材と、
前記内部構造部に接合され、その間に前記冷媒流路を形成する側板と、を有する、請求項1に記載の誘導加熱コイル。
The coil portion is a hollow cylindrical internal structure portion having the refrigerant flow passage and the injection flow passage,
A hollow cylindrical outer peripheral member that is joined to the outer peripheral surface of the internal structure portion and forms the quenching agent flow path therebetween.
The side wall plate joined to the said internal structure part and forming the said refrigerant flow path between them, The induction heating coil of Claim 1.
前記内部構造部は、前記被処理物に対向してこれを囲む中空筒状の内側リング部と、
前記外周部材の内面に接合される中空筒状の外側リング部と、
前記内側リング部と前記外側リング部を周方向に間隔を隔てて連結し、その内側に前記噴射流路を有する複数のスポーク部と、を有し、
前記スポーク部は、前記冷媒流路の冷媒内を半径方向に貫通する、請求項2に記載の誘導加熱コイル。
The internal structure portion is a hollow cylindrical inner ring portion that faces the object to be processed and surrounds the object.
A hollow cylindrical outer ring portion joined to the inner surface of the outer peripheral member,
The inner ring portion and the outer ring portion are connected to each other at intervals in the circumferential direction, and a plurality of spoke portions having the injection channel inside thereof are provided,
The induction heating coil according to claim 2, wherein the spoke portion radially penetrates through the coolant in the coolant flow path.
前記内部構造部、前記外周部材、及び前記側板は、それぞれ一体成形された純銅又は銅合金からなる、請求項2に記載の誘導加熱コイル。 The induction heating coil according to claim 2, wherein the inner structure portion, the outer peripheral member, and the side plate are made of pure copper or a copper alloy integrally molded. 前記噴射流路が前記スポーク部の内部で分岐する、請求項3に記載の誘導加熱コイル。 The induction heating coil according to claim 3, wherein the injection flow path branches inside the spoke portion. 前記内側リング部の内部に中空チャンバを有し、前記内側リング部の内面に前記噴射流路より小径の噴射口を有する、請求項3に記載の誘導加熱コイル。 The induction heating coil according to claim 3, wherein a hollow chamber is provided inside the inner ring portion, and an injection port having a diameter smaller than that of the injection passage is provided on an inner surface of the inner ring portion. 請求項1に記載の誘導加熱コイルの製造方法であって、
前記冷媒流路と前記噴射流路を有する中空筒形の内部構造部を、金属積層造形法を用いて一体成形し、
中空筒形の外周部材を前記内部構造部の外周面に接合して、その間に前記焼入剤流路を形成し、
側板を前記内部構造部に接合して、その間に前記冷媒流路を形成する、誘導加熱コイルの製造方法。


A method of manufacturing an induction heating coil according to claim 1, wherein
A hollow cylindrical internal structure portion having the refrigerant flow path and the injection flow path, integrally molded using a metal additive manufacturing method,
A hollow cylindrical outer peripheral member is joined to the outer peripheral surface of the internal structure portion to form the quenching agent flow path therebetween,
A method for manufacturing an induction heating coil, comprising joining a side plate to the internal structure portion and forming the refrigerant flow path therebetween.


JP2019020477A 2019-02-07 2019-02-07 Induction heating coil and its manufacturing method Active JP7106467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019020477A JP7106467B2 (en) 2019-02-07 2019-02-07 Induction heating coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019020477A JP7106467B2 (en) 2019-02-07 2019-02-07 Induction heating coil and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020129443A true JP2020129443A (en) 2020-08-27
JP7106467B2 JP7106467B2 (en) 2022-07-26

Family

ID=72174696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020477A Active JP7106467B2 (en) 2019-02-07 2019-02-07 Induction heating coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7106467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239477A (en) * 2021-04-01 2021-08-10 四川大学 Application of cyclic hardening model based on welding line dislocation entanglement in fatigue life prediction of welding joint

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176893A (en) * 1982-04-09 1983-10-17 高周波熱錬株式会社 Method and device for energizing and feeding water to heating coil
JPH06122926A (en) * 1991-04-23 1994-05-06 Denki Kogyo Co Ltd Quenching method of gear
JP2000188176A (en) * 1998-12-24 2000-07-04 High Frequency Heattreat Co Ltd Induction heating quenching coil and induction heating quenching device
JP2002003935A (en) * 2000-06-26 2002-01-09 Fuji Electronics Industry Co Ltd Hardening coil body
JP2005307308A (en) * 2004-04-23 2005-11-04 Ntn Corp High frequency heat-treatment method for annular product and apparatus therefor
JP2006219228A (en) * 2005-02-09 2006-08-24 Kyocera Mita Corp Paper storage device
JP2014037610A (en) * 2012-08-20 2014-02-27 Fuji Electronics Industry Co Ltd High-frequency hardening apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219228B2 (en) 2014-05-12 2017-10-25 光洋サーモシステム株式会社 Induction heating coil and method of manufacturing induction heating coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176893A (en) * 1982-04-09 1983-10-17 高周波熱錬株式会社 Method and device for energizing and feeding water to heating coil
JPH06122926A (en) * 1991-04-23 1994-05-06 Denki Kogyo Co Ltd Quenching method of gear
JP2000188176A (en) * 1998-12-24 2000-07-04 High Frequency Heattreat Co Ltd Induction heating quenching coil and induction heating quenching device
JP2002003935A (en) * 2000-06-26 2002-01-09 Fuji Electronics Industry Co Ltd Hardening coil body
JP2005307308A (en) * 2004-04-23 2005-11-04 Ntn Corp High frequency heat-treatment method for annular product and apparatus therefor
JP2006219228A (en) * 2005-02-09 2006-08-24 Kyocera Mita Corp Paper storage device
JP2014037610A (en) * 2012-08-20 2014-02-27 Fuji Electronics Industry Co Ltd High-frequency hardening apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239477A (en) * 2021-04-01 2021-08-10 四川大学 Application of cyclic hardening model based on welding line dislocation entanglement in fatigue life prediction of welding joint

Also Published As

Publication number Publication date
JP7106467B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
US20170089643A1 (en) Heat Exchanger
JP5342232B2 (en) Induction heating device and method of making a part using the same
EP1524887A2 (en) Nozzle for plasma torch
JP2011508436A5 (en)
JP2009218176A (en) Coil head
JP2011047037A (en) Induction heating coil, heat treatment device, and heat treatment method
JP2020129443A (en) Induction heating coil and method of manufacturing the same
JP2005508254A (en) Internally cooled tool pack
JP2017089633A (en) Article, component, and method of cooling component
AU2002350080A1 (en) Internally cooled tool pack
US6449844B2 (en) Heat exchanger apparatus for a semiconductor wafer support and method of fabricating same
JP2007262549A (en) Coil for induction-heating drive plate, quenching holder and quenching method
JP6282294B2 (en) Inductors for single-shot induction heating of composite workpieces
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
CN105238909A (en) Heating quenching inductor with different heat distributions
US11846001B2 (en) Split multiple coil electric induction heat treatment systems for simultaneous heating of multiple features of a bearing component
JP5378000B2 (en) Induction heating coil manufacturing method for induction hardening of engine crankshaft and induction heating coil
JP2007327110A (en) Method for manufacturing bearing ring of rolling bearing
JP5446002B2 (en) Induction hardening equipment
JPH11170162A (en) Surface polishing surface plate
CN102952925B (en) Heating and quenching sensor for cams
JP2018019000A (en) Power semiconductor module
SU1072954A1 (en) Inductor for magnetic pulse expansion of tubular parts
JP5886992B2 (en) Induction heating quenching apparatus and induction heating quenching method
JP3059165B1 (en) Heating coil for induction hardening of a cylindrical body having an opening on the outer peripheral surface and quenching and cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R150 Certificate of patent or registration of utility model

Ref document number: 7106467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150