JP2014037610A - High-frequency hardening apparatus - Google Patents

High-frequency hardening apparatus Download PDF

Info

Publication number
JP2014037610A
JP2014037610A JP2012181929A JP2012181929A JP2014037610A JP 2014037610 A JP2014037610 A JP 2014037610A JP 2012181929 A JP2012181929 A JP 2012181929A JP 2012181929 A JP2012181929 A JP 2012181929A JP 2014037610 A JP2014037610 A JP 2014037610A
Authority
JP
Japan
Prior art keywords
heating conductor
heated
wall
coolant
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012181929A
Other languages
Japanese (ja)
Inventor
Tetsumasa Watanabe
哲正 渡邊
Akira Udagawa
彰 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electronics Industry Co Ltd filed Critical Fuji Electronics Industry Co Ltd
Priority to JP2012181929A priority Critical patent/JP2014037610A/en
Publication of JP2014037610A publication Critical patent/JP2014037610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a high-frequency hardening apparatus which can quickly jet and supply a low-temperature cooling liquid in moving hardening after completion of induction heating.SOLUTION: A linear part 2a of a heating conductor 2 is provided with an opposite wall 12 and an inclined wall 13. The inclined wall 13 is continued to the opposite wall 12. The inclined wall 13 is inclined so as to make its upstream side in the relative movement direction A1 of the heating conductor 2 close to the opposite wall 12 and to be more separated from the opposite wall 12 toward its downstream side. A cooling liquid supply device 3 is arranged along the inclined wall 13. Nozzle holes 28 of the cooling liquid supply device 3 are arranged in close proximity to the opposite wall 12. Consequently, cooling liquid jetted from the nozzle holes 28 is jetted along the inclined wall 13 from positions close to the opposite wall 12.

Description

本発明は、被加熱物の広範な焼入れ対象部位を移動焼入れする高周波焼入装置に関するものである。   The present invention relates to an induction hardening apparatus that moves and quenches a wide range of parts to be quenched of an object to be heated.

高周波焼入れでは、被加熱物の焼入れ対象部位が、最初に高周波電流によって誘導加熱され、引き続き、冷却液が噴射供給されて急冷される。被加熱物の焼入れ対象部位が、誘導加熱導体よりも相当に大きい場合には、当該誘導加熱導体で焼入れ対象部位を一度に誘導加熱することができない。そのため、誘導加熱導体と被加熱物とを相対移動させ、焼入れ対象部位を小範囲ずつ順次誘導加熱する。そして、当該誘導加熱した部位に、冷却液を噴射供給して順次急冷する。従来、このような移動焼入れが、専ら採用されている。   In the induction hardening, a portion to be quenched of the object to be heated is first induction-heated by a high-frequency current, and subsequently, cooling liquid is jetted and supplied to be rapidly cooled. When the part to be quenched of the object to be heated is considerably larger than the induction heating conductor, the part to be quenched cannot be induction-heated at once with the induction heating conductor. For this reason, the induction heating conductor and the object to be heated are moved relative to each other, and the portions to be quenched are sequentially induction-heated little by little. Then, a cooling liquid is jetted and supplied to the induction-heated portion to quench it sequentially. Conventionally, such moving quenching has been employed exclusively.

移動焼入れを実施するためには、被加熱物を誘導加熱しながら、誘導加熱が完了した部位を冷却液で急冷しなければならない。そのため、図19(a)に示すように、高周波誘導電流が供給される加熱導体90と、冷却液噴射装置91とを、被加熱物95に対して相対移動させる。冷却液噴射装置91は、加熱導体90が加熱した箇所に冷却液92を噴射するので、加熱導体90よりも、移動方向の上流側に配置されている。ここで、噴射された冷却液92は、被加熱物95における、誘導加熱が完了した部位にのみ供給しなければならない。仮に、誘導加熱中の部位(加熱導体90が対向している部位)に冷却液92が飛散すると、誘導加熱中の部位の昇温を妨げてしまう。そのため、冷却液噴射装置91に設けたノズル孔91aは、矢印Aで示す加熱導体90及び冷却液噴射装置91の移動方向と逆方向に傾斜させている。図19(a)に示すように、冷却液噴射装置91を、加熱導体90に隣接し、且つ、被加熱物95に近接させて配置すると、冷却液92は、被加熱物95における誘導加熱が完了した部位を、直ちに急冷することができる。   In order to carry out the moving quenching, the part where induction heating is completed must be rapidly cooled with a cooling liquid while the object to be heated is induction heated. Therefore, as shown in FIG. 19A, the heating conductor 90 to which the high-frequency induction current is supplied and the coolant injection device 91 are moved relative to the object to be heated 95. Since the coolant injection device 91 sprays the coolant 92 to the location where the heating conductor 90 is heated, the coolant injection device 91 is disposed upstream of the heating conductor 90 in the moving direction. Here, the jetted coolant 92 must be supplied only to a portion of the article to be heated 95 where induction heating has been completed. If the coolant 92 scatters to the part being heated by induction (the part where the heating conductor 90 is opposed), the temperature rise of the part being induction heated is hindered. Therefore, the nozzle hole 91 a provided in the coolant injection device 91 is inclined in the direction opposite to the moving direction of the heating conductor 90 and the coolant injection device 91 indicated by the arrow A. As shown in FIG. 19A, when the coolant injection device 91 is disposed adjacent to the heating conductor 90 and close to the object to be heated 95, the cooling liquid 92 is subjected to induction heating in the object to be heated 95. The completed site can be immediately cooled immediately.

ところで、図19(a)に示すように冷却液噴射装置91を配置すると、冷却液噴射装置91は、被加熱物95に近接しているため、誘導加熱が完了した直後の被加熱物95から輻射熱を受け、劣化し易いという問題がある。そこで、図19(b)に示すように、冷却液噴射装置91を、加熱導体90の反対側へ配置することが考えられる。図19(b)に示すように、冷却液噴射装置91を配置すると、冷却液噴射装置91に及ぼされる輻射熱の影響は、ほとんど解消される。   By the way, when the coolant injection device 91 is arranged as shown in FIG. 19A, since the coolant injection device 91 is close to the object to be heated 95, from the object to be heated 95 immediately after the induction heating is completed. There is a problem that it is susceptible to deterioration due to radiant heat. Therefore, as shown in FIG. 19B, it is conceivable to arrange the coolant injection device 91 on the opposite side of the heating conductor 90. As shown in FIG. 19B, when the coolant injection device 91 is arranged, the influence of the radiant heat exerted on the coolant injection device 91 is almost eliminated.

しかし、図19(b)に示す冷却液噴射装置91から噴射される冷却液93も、やはり、矢印Aで示す加熱導体90の移動方向と逆方向に傾斜するように噴射しなければ、冷却液93の一部が、誘導加熱中の部位へ飛散してしまう。図19(b)において、冷却液噴射装置91から冷却液93を噴射すると、冷却液93は、被加熱物95における誘導加熱中の部位から距離L1だけ離間した部位Bに達する。すなわち、部位Bが誘導加熱されてから、冷却液93が噴射供給されるまで、加熱導体90が距離L1だけ移動するのに要する時間だけのギャップが生じてしまう。よって、冷却が遅れるという事態を招いてしまう。   However, if the coolant 93 sprayed from the coolant spraying device 91 shown in FIG. 19B is not sprayed so as to be inclined in the direction opposite to the moving direction of the heating conductor 90 indicated by the arrow A, the coolant A part of 93 is scattered to the site during induction heating. In FIG. 19B, when the coolant 93 is sprayed from the coolant spray device 91, the coolant 93 reaches the part B that is separated from the part being heated in the object to be heated 95 by a distance L <b> 1. That is, a gap corresponding to the time required for the heating conductor 90 to move by the distance L1 occurs after the portion B is induction-heated until the coolant 93 is jetted and supplied. This leads to a situation where cooling is delayed.

このような事態を解消する高周波焼入装置が、特許文献1に開示されている。
特許文献1に開示されている高周波焼入装置は、被加熱物であるシャフト状ワークに沿って高周波加熱コイルを移動させ、シャフト状ワークを移動焼入れするものである。また、中空の高周波加熱コイル内の、高周波加熱コイル自身を冷却する冷却液を、被加熱物に向けて噴射するものである。
An induction hardening apparatus that solves such a situation is disclosed in Patent Document 1.
The induction hardening apparatus disclosed in Patent Document 1 moves a high frequency heating coil along a shaft-like workpiece that is an object to be heated, and moves and quenches the shaft-like workpiece. Moreover, the cooling liquid which cools the high frequency heating coil itself in a hollow high frequency heating coil is injected toward a to-be-heated material.

すなわち、図20に示すように、被加熱物95に近接対向配置した中空の加熱導体98(高周波加熱コイル)を、矢印Aで示す方向に移動させ、被加熱物95の対向する部位を、順に誘導加熱する。また、加熱導体98に設けられたノズル孔98aから、加熱導体98内の冷却液99が噴射される。   That is, as shown in FIG. 20, the hollow heating conductor 98 (high-frequency heating coil) disposed close to and opposite to the object to be heated 95 is moved in the direction indicated by the arrow A, and the parts facing the object to be heated 95 are sequentially arranged. Induction heating. Further, the coolant 99 in the heating conductor 98 is ejected from the nozzle hole 98 a provided in the heating conductor 98.

冷却液99は、被加熱物95における誘導加熱中の部位へ飛散しないように、矢印Aで示す加熱導体98の移動方向とは反対側(移動方向の上流側)へ傾斜させて噴射され、被加熱物95における、誘導加熱が完了した部位Cが、順次冷却される。部位Cは、誘導加熱が完了してから、加熱導体98が距離L2を移動するのに要する時間が経過した後に冷却液99が供給されて冷却されるが、距離L2は、図19(b)に示す距離L1よりも短い。そのため、誘導加熱が完了してから冷却されるまでの時間は短縮され、上述の冷却の遅れは改善される。   The cooling liquid 99 is injected while being inclined to the opposite side (upstream side of the moving direction) of the heating conductor 98 indicated by the arrow A so as not to scatter to the part of the object to be heated 95 during induction heating. The part C where induction heating is completed in the heated object 95 is sequentially cooled. The portion C is cooled by supplying the cooling liquid 99 after the time required for the heating conductor 98 to move the distance L2 after the induction heating is completed. The distance L2 is shown in FIG. Is shorter than the distance L1 shown in FIG. Therefore, the time from the completion of induction heating to the cooling is shortened, and the above-described cooling delay is improved.

特開2001−64729号公報JP 2001-64729 A

ところで、特許文献1に開示されている高周波焼入装置では、高周波加熱コイル内の冷却液を、被加熱物に噴射供給する。そのため、高周波加熱コイルを冷却して、温度が上昇した冷却液を被加熱物に噴射供給するため、冷却効果が低い。   By the way, in the induction hardening apparatus currently disclosed by patent document 1, the cooling fluid in a high frequency heating coil is injected and supplied to a to-be-heated material. Therefore, the cooling effect is low because the high-frequency heating coil is cooled and the coolant whose temperature has been increased is sprayed and supplied to the object to be heated.

そこで本発明は、移動焼入れにおいて、誘導加熱が完了してから、低温の冷却液を速やかに噴射供給することができる高周波焼入装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide an induction hardening apparatus capable of promptly injecting and supplying a low-temperature cooling liquid after completion of induction heating in moving quenching.

上記課題を解決するための請求項1に記載の発明は、中空の誘導加熱導体と、冷却液噴射装置が、被加熱物に沿って相対移動しながら被加熱物を焼入れする高周波焼入装置であって、前記誘導加熱導体は、相対移動方向と直交する方向にのびると共に、被加熱物に沿って近接対向する対向壁と、当該対向壁と連続する傾斜壁とを有しており、前記傾斜壁は、誘導加熱導体の相対移動方向の上流側が対向壁に近接し、下流側へいくほど対向壁から離間するように傾斜しており、冷却液噴射装置は、冷却液を噴射するノズル部を有し、冷却液噴射装置は、前記傾斜壁に沿って配置されており、前記ノズル部が、前記対向壁に近接配置されたことを特徴とする高周波焼入装置である。   The invention according to claim 1 for solving the above problem is an induction hardening apparatus in which a hollow induction heating conductor and a coolant injection device quench a heated object while relatively moving along the heated object. The induction heating conductor extends in a direction orthogonal to the relative movement direction, has an opposing wall that is close to and opposed to the object to be heated, and an inclined wall that is continuous with the opposing wall, and the inclined heating conductor The wall is inclined so that the upstream side in the relative movement direction of the induction heating conductor is close to the opposing wall and is further away from the opposing wall toward the downstream side, and the coolant injection device includes a nozzle portion for injecting the coolant. And the coolant injection device is disposed along the inclined wall, and the nozzle portion is disposed close to the facing wall.

請求項1に記載の発明では、対向壁と連続する傾斜壁が、誘導加熱導体の相対移動方向の上流側が対向壁に近接し、下流側へいくほど対向壁から離間するように傾斜しているので、冷却液噴射装置を傾斜壁に沿って配置し、冷却液噴射装置のノズル部を、対向壁に近接配置することができる。そのため、被加熱物における誘導加熱が完了した部位に、速やかに冷却液を噴射供給することができる。
また、冷却液噴射装置は、加熱導体の傾斜壁に沿って配置されているので、被加熱物に対向しておらず、被加熱物から放射される輻射熱に晒されない。よって、冷却液噴射装置の劣化を阻止することができる。
In the first aspect of the present invention, the inclined wall that is continuous with the opposing wall is inclined so that the upstream side in the relative movement direction of the induction heating conductor is close to the opposing wall and is separated from the opposing wall toward the downstream side. Therefore, the coolant injection device can be disposed along the inclined wall, and the nozzle portion of the coolant injection device can be disposed close to the opposing wall. For this reason, the coolant can be quickly jetted and supplied to the portion of the object to be heated that has undergone induction heating.
In addition, since the coolant injection device is disposed along the inclined wall of the heating conductor, it does not face the object to be heated and is not exposed to the radiant heat radiated from the object to be heated. Therefore, deterioration of the coolant injection device can be prevented.

請求項2に記載の発明は、内部に冷却液が供給される中空の誘導加熱導体が、被加熱物に沿って相対移動しながら被加熱物を誘導加熱する高周波焼入装置であって、誘導加熱導体は、相対移動方向と直交する方向にのび、被加熱物に沿って近接対向する対向壁を有しており、誘導加熱導体の内部には、仕切部材が設けてあり、前記仕切部材は、誘導加熱導体の相対移動方向の上流側が対向壁に近接し、下流側へいくほど対向壁から離間するように傾斜して、誘導加熱導体の内部を2つの領域に仕切っており、各領域には冷却液が供給可能であり、誘導加熱導体における、対向壁と連続し、且つ、相対移動方向の上流側の壁面に、冷却液噴射孔が設けてあることを特徴とする高周波焼入装置である。   The invention according to claim 2 is an induction hardening apparatus in which a hollow induction heating conductor to which a cooling liquid is supplied is induction-heated to the object to be heated while moving relatively along the object to be heated. The heating conductor extends in a direction perpendicular to the relative movement direction and has a facing wall that is close to and opposed to the object to be heated.A partition member is provided inside the induction heating conductor. The induction heating conductor is inclined so that the upstream side in the relative movement direction of the induction heating conductor is close to the opposing wall and is further away from the opposing wall toward the downstream side, and the inside of the induction heating conductor is divided into two regions. Is an induction hardening apparatus characterized in that a cooling liquid can be supplied, and a cooling liquid injection hole is provided on the upstream wall surface in the relative movement direction of the induction heating conductor, which is continuous with the opposing wall. is there.

請求項2に記載の発明では、中空の誘導加熱導体の内部が、仕切部材で2つの領域に仕切られている。よって冷却液は、誘導加熱導体の内部で2つの領域に分かれて流れる。そして、対向壁と連続し、且つ相対移動方向の上流側の壁面には、冷却液噴射孔が設けてあるので、一方の領域を流れる冷却液が、冷却液噴射孔から被加熱物に向けて噴射供給される。また、他方の領域を流れる冷却液によって、誘導加熱導体自身が冷却される。この誘導加熱導体を冷却した他方の領域内の冷却液は、仕切部材によって、一方の領域へ移動するのが阻害される。よって、一方の領域内の冷却液は、比較的低温状態を保っており、低温の冷却液が、冷却液噴射孔から噴射される。そのため、被加熱物における誘導加熱が完了した部位に、低温の冷却液が噴射供給され、当該部位が良好に冷却される。
また、誘導加熱導体から冷却液を噴射供給するので、被加熱物の誘導加熱された部位に、速やかに冷却液を噴射供給することができ、冷却を極めて早期に開始することができる。
In the invention described in claim 2, the inside of the hollow induction heating conductor is partitioned into two regions by the partition member. Therefore, the coolant flows in two regions inside the induction heating conductor. And since the coolant injection hole is provided in the wall surface on the upstream side of the opposing wall and in the relative movement direction, the coolant flowing through one region is directed from the coolant injection hole toward the object to be heated. It is supplied by injection. In addition, the induction heating conductor itself is cooled by the coolant flowing through the other region. The coolant in the other region that has cooled the induction heating conductor is inhibited from moving to the one region by the partition member. Accordingly, the coolant in one region is kept at a relatively low temperature, and the low-temperature coolant is ejected from the coolant spray hole. Therefore, a low-temperature cooling liquid is jetted and supplied to the part of the object to be heated that has undergone induction heating, and the part is cooled well.
Further, since the cooling liquid is jetted and supplied from the induction heating conductor, the cooling liquid can be quickly jetted and supplied to the induction-heated portion of the object to be heated, and the cooling can be started very early.

請求項3に記載の発明は、各領域の間の、冷却液の流通が遮断されていることを特徴とする請求項2に記載の高周波焼入装置である。   The invention according to claim 3 is the induction hardening apparatus according to claim 2, wherein the flow of the coolant between the regions is blocked.

請求項3に記載の発明では、誘導加熱導体の内部の各領域の間の冷却液の流通が遮断されているので、対向壁に面した領域内を流れる高温の冷却液と、冷却液噴射孔から噴射される低温の冷却液とが混合することがない。よって、被加熱物における誘導加熱された部位に噴射供給される冷却液は、低温状態を維持し易い。よって、被加熱物の冷却が、良好に実施される。   In the invention according to claim 3, since the flow of the cooling liquid between the respective regions inside the induction heating conductor is blocked, the high-temperature cooling liquid flowing in the region facing the opposing wall, and the cooling liquid injection hole It does not mix with the low-temperature coolant injected from Therefore, the coolant supplied to the heated part of the object to be heated is easily maintained at a low temperature. Therefore, the object to be heated is cooled well.

本発明の高周波焼入装置では、被加熱物を移動焼入れする際に、被加熱物の誘導加熱が完了した部位に、早期に低温の冷却液を噴射供給することができる。よって、良好な焼入れを実施することができる。   In the induction hardening apparatus of the present invention, when moving and quenching the object to be heated, the low-temperature coolant can be jetted and supplied to the part where induction heating of the object to be heated has been completed at an early stage. Therefore, good quenching can be performed.

本発明の一実施形態に係る高周波焼入装置の系統図である。It is a systematic diagram of the induction hardening apparatus which concerns on one Embodiment of this invention. 高周波焼入装置の加熱導体と冷却液供給装置の斜視図である。It is a perspective view of the heating conductor of an induction hardening apparatus and a cooling fluid supply apparatus. 図2の加熱導体と冷却液供給装置を、異なる角度から見た斜視図である。It is the perspective view which looked at the heating conductor and cooling fluid supply apparatus of FIG. 2 from a different angle. 図2の加熱導体と冷却液供給装置とを分離し、さらに加熱導体を分解した斜視図である。It is the perspective view which isolate | separated the heating conductor of FIG. 2, and the cooling fluid supply apparatus, and also decomposed | disassembled the heating conductor. 図3の加熱導体と冷却液供給装置とを分離し、さらに加熱導体を分解した斜視図である。It is the perspective view which isolate | separated the heating conductor of FIG. 3, and the cooling fluid supply apparatus, and also decomposed | disassembled the heating conductor. 図2の加熱導体のVI−VI断面図である。It is VI-VI sectional drawing of the heating conductor of FIG. 図6において、加熱導体が、矢印A1で示す方向に移動した状態を示す断面図である。In FIG. 6, it is sectional drawing which shows the state which the heating conductor moved to the direction shown by arrow A1. 図2とは別の実施形態に係る加熱導体の斜視図である。It is a perspective view of the heating conductor which concerns on another embodiment different from FIG. 図8の加熱導体を異なる角度から見た斜視図である。It is the perspective view which looked at the heating conductor of FIG. 8 from a different angle. 図8の加熱導体の分解斜視図である。It is a disassembled perspective view of the heating conductor of FIG. 図10の加熱導体の、リード側から見た分解斜視図である。It is the disassembled perspective view seen from the lead side of the heating conductor of FIG. 図8の加熱導体の、一方の直線部材の分解斜視図である。It is a disassembled perspective view of one linear member of the heating conductor of FIG. 図10の加熱導体の、一方の直線部材をXIII−XIIIで示す断面で破断した断面斜視図である。It is the cross-sectional perspective view which fractured | ruptured one linear member of the heating conductor of FIG. 10 in the cross section shown by XIII-XIII. 図10のXIV−XIV断面図である。It is XIV-XIV sectional drawing of FIG. 図8の加熱導体を、鉛直姿勢の被加熱物に近接し、焼入れしている状態を示す断面図である。It is sectional drawing which shows the state which adjoins the to-be-heated object of a vertical attitude | position, and hardened the heating conductor of FIG. 図2、図8とはさらに別の加熱導体の、斜め下から見た斜視図である。FIG. 9 is a perspective view of another heating conductor different from that shown in FIGS. 図16に示す加熱導体で、棒状の被加熱物を焼入れしている状態を示す断面図である。It is sectional drawing which shows the state which is hardening the rod-shaped to-be-heated material with the heating conductor shown in FIG. (a)は、図6、図13に示す加熱導体とは異なる断面形状を有する加熱導体の断面図であり、(b)は、(a)の加熱導体が、段を有する被加熱物に近接対向している状態を示す断面図である。(A) is sectional drawing of the heating conductor which has a different cross-sectional shape from the heating conductor shown in FIG. 6, FIG. 13, (b) is a heating conductor of (a) adjoining to the to-be-heated object which has a step. It is sectional drawing which shows the state which has opposed. (a)は、従来の高周波焼入装置で、被加熱物を移動焼入れする際における、加熱導体と冷却液噴射装置の断面図であり、(b)は、(a)とは別の従来の高周波焼入装置で、被加熱物を移動焼入れする際における、加熱導体と冷却液噴射装置の断面図である。(A) is sectional drawing of a heating conductor and a cooling fluid injection device at the time of carrying out transfer hardening of the to-be-heated object with the conventional induction hardening apparatus, (b) is the conventional different from (a). It is sectional drawing of a heating conductor and a cooling fluid injection apparatus at the time of carrying out the moving quenching of the to-be-heated object with an induction hardening apparatus. 図19(a),(b)とは、さらに別の、従来の加熱導体で被加熱物を移動焼入れする際の断面図である。19 (a) and 19 (b) are cross-sectional views when moving and quenching an object to be heated with another conventional heating conductor.

以下、図面を参照しながら説明する。
図1に示すように、本発明の実施形態に係る高周波焼入装置1は、加熱導体2、冷却液供給装置3、高周波電源4、駆動装置5、制御装置6を備えている。
Hereinafter, description will be given with reference to the drawings.
As shown in FIG. 1, an induction hardening apparatus 1 according to an embodiment of the present invention includes a heating conductor 2, a coolant supply apparatus 3, a high frequency power supply 4, a drive apparatus 5, and a control apparatus 6.

高周波電源4は、商用電源を高周波化する高周波発信器(図示せず)を有しており、交流を高周波化して変圧器(図示せず)へ出力する。変圧器の一次側には高周波電源から高周波電流が供給され、二次側に変圧された高周波電流を出力する。変圧器の二次側には、図示しない入出力端子を介して、リード7,8(図2)が接続されている。リード7の一端は、変圧器の二次側に接続されており、他端は、後述の加熱導体2の一端に接続されている。同様に、リード8の一端は、変圧器の二次側に接続されており、他端は、加熱導体2の他端に接続されている。   The high-frequency power source 4 has a high-frequency transmitter (not shown) that increases the frequency of the commercial power source, and converts the alternating current into a high frequency and outputs it to a transformer (not shown). A high frequency current is supplied from a high frequency power source to the primary side of the transformer, and the transformed high frequency current is output to the secondary side. Leads 7 and 8 (FIG. 2) are connected to the secondary side of the transformer via input / output terminals (not shown). One end of the lead 7 is connected to the secondary side of the transformer, and the other end is connected to one end of the heating conductor 2 described later. Similarly, one end of the lead 8 is connected to the secondary side of the transformer, and the other end is connected to the other end of the heating conductor 2.

図2〜図6に示すように、加熱導体2は、中空の銅合金等の良導体で構成された管状の部材である。加熱導体2は、上述のように高周波電源4から高周波電流が供給されると共に、図示しない冷却液の供給源から冷却液が供給され、内部には冷却液が常時流通している。   As shown in FIGS. 2 to 6, the heating conductor 2 is a tubular member made of a good conductor such as a hollow copper alloy. The heating conductor 2 is supplied with a high-frequency current from the high-frequency power source 4 as described above, and is also supplied with a cooling liquid from a cooling liquid supply source (not shown), and the cooling liquid is constantly flowing inside.

図4,図5に示すように、加熱導体2は、直線部材2a,2bと、湾曲部材2cとが接続されて、U字形状を呈する。
直線部材2aは、対向壁12,傾斜壁13,垂直壁14を有している。対向壁12と垂直壁14は直交しており、傾斜壁13は、対向壁12に対して傾斜している。よって、直線部材2aの横断面は、直角三角形の形状を呈している。直線部材2aの一端部11aは閉塞されており、他端部11bは開口している。また、傾斜壁13における一端部11a側の端部には、開口13aが設けられている。
As shown in FIGS. 4 and 5, the heating conductor 2 is formed in a U shape by connecting the linear members 2 a and 2 b and the bending member 2 c.
The straight member 2 a has an opposing wall 12, an inclined wall 13, and a vertical wall 14. The opposing wall 12 and the vertical wall 14 are orthogonal to each other, and the inclined wall 13 is inclined with respect to the opposing wall 12. Therefore, the cross section of the linear member 2a has a right triangle shape. One end portion 11a of the linear member 2a is closed, and the other end portion 11b is opened. An opening 13a is provided at the end of the inclined wall 13 on the one end 11a side.

直線部材2bの横断面は、四角形形状を呈しており、直線部材2bは、対向壁20,側壁21,22,上壁23を有している。直線部材2bの一端部17a,他端部17bは、開口している。他端部17bは、対向壁20側から上壁23側へいくほど、一端部17a側に近付くように傾斜している。   The cross section of the straight member 2b has a quadrangular shape, and the straight member 2b has an opposing wall 20, side walls 21, 22 and an upper wall 23. One end 17a and the other end 17b of the linear member 2b are open. The other end portion 17b is inclined so as to approach the one end portion 17a side as it goes from the facing wall 20 side to the upper wall 23 side.

湾曲部材2cは、Uの字の折返し部分を構成し、一端部18aと他端部18bとを有している。湾曲部材2cは、断面四角形形状の管状部材が湾曲して形成されたものであるが、図4に示すように、一端部18aの開口部分の略半分が、三角形の板状の閉塞部材9で閉塞されている。閉塞部材9は、一端部18aにろう付けされている。   The bending member 2c constitutes a U-shaped folded portion and has one end 18a and the other end 18b. The curved member 2c is formed by bending a tubular member having a quadrangular cross section. As shown in FIG. 4, approximately half of the opening portion of the one end portion 18a is a triangular plate-shaped blocking member 9. It is blocked. The closing member 9 is brazed to the one end 18a.

湾曲部材2cの一端部18aの三角形の開口部分には、直線部材2aの他端部11bがろう付けされて、湾曲部材2cと直線部材2aとが一体固着されている。また、湾曲部材2cの他端部18bには、直線部材2bの一端部17aがろう付けされて、湾曲部材2cと直線部材2bとが一体固着されている。
以上のように、2つの直線部材2a,2bと、湾曲部材2cとが一体化されて、U字形状の加熱導体2が構成されている。
The other end portion 11b of the linear member 2a is brazed to the triangular opening of the one end portion 18a of the bending member 2c, and the bending member 2c and the linear member 2a are integrally fixed. Also, one end portion 17a of the linear member 2b is brazed to the other end portion 18b of the bending member 2c, and the bending member 2c and the linear member 2b are integrally fixed.
As described above, the U-shaped heating conductor 2 is configured by integrating the two linear members 2a and 2b and the bending member 2c.

直線部材2aの一端部11aには、リード7の端部7aがろう付けされている。そのため、直線部材2aの開口13aと、リード7の開口15が接続されている。同様に、直線部材2bの他端部17bと、リード8の端部8aとがろう付けされ、直線部材2bの開口19と、リード8の開口16とが接続されている。そして、リード7,加熱導体2(直線部材2a,湾曲部材2c,直線部材2b),リード8の各々の内部が連結され、一連の冷却液通路が形成されている。リード7,8には、図示しない冷却液供給源に接続された配管が接続されており、これらの配管を介して、加熱導体2内に低温の冷却液が供給されると共に、加熱導体2内で昇温した冷却液が排出される。   The end 7a of the lead 7 is brazed to one end 11a of the linear member 2a. Therefore, the opening 13a of the linear member 2a and the opening 15 of the lead 7 are connected. Similarly, the other end 17b of the linear member 2b and the end 8a of the lead 8 are brazed, and the opening 19 of the linear member 2b and the opening 16 of the lead 8 are connected. The lead 7, the heating conductor 2 (the straight member 2a, the bending member 2c, the straight member 2b), and the lead 8 are connected to each other to form a series of coolant passages. Pipes connected to a coolant supply source (not shown) are connected to the leads 7 and 8, and a low-temperature coolant is supplied into the heating conductor 2 through these pipes, and the inside of the heating conductor 2. The coolant whose temperature has been raised at is discharged.

冷却液供給装置3は、冷却液供給管24と本体25とを有する。
本体25は、上壁29,側壁30〜32,傾斜壁26,27で構成された、中空の箱状の部材である。上壁29は、長方形形状を呈しており、長手方向の両端には側壁30,31が連続している。側壁30,31は、不等辺四角形形状を呈している。上壁29の長手方向にのびる一辺には、側壁32が連続している。さらに、上壁29の長手方向にのびる他辺には、傾斜壁26が連続している。側壁30〜32は、各々上壁29に対して直交するように垂下しており、傾斜壁26は、上壁29に対して側壁32側へ傾斜している。隣接する各側壁同士、及び側壁30,31と傾斜壁26は連続している。また、各側壁30〜32と、傾斜壁26は、傾斜壁27で接続されている。傾斜壁27には、複数のノズル孔28(ノズル部)が一列に設けられている。
The coolant supply apparatus 3 includes a coolant supply pipe 24 and a main body 25.
The main body 25 is a hollow box-shaped member composed of an upper wall 29, side walls 30 to 32, and inclined walls 26 and 27. The upper wall 29 has a rectangular shape, and side walls 30 and 31 are continuous at both ends in the longitudinal direction. The side walls 30 and 31 have an unequal square shape. A side wall 32 is continuous with one side extending in the longitudinal direction of the upper wall 29. Further, the inclined wall 26 is continuous with the other side extending in the longitudinal direction of the upper wall 29. The side walls 30 to 32 are respectively suspended so as to be orthogonal to the upper wall 29, and the inclined wall 26 is inclined toward the side wall 32 with respect to the upper wall 29. The adjacent side walls and the side walls 30, 31 and the inclined wall 26 are continuous. Further, the side walls 30 to 32 and the inclined wall 26 are connected by an inclined wall 27. The inclined wall 27 is provided with a plurality of nozzle holes 28 (nozzle portions) in a row.

本体25は、加熱導体2に装着されている。すなわち、本体25の側壁30が、リード7に当接し、本体25の側壁31が、加熱導体2の湾曲部材2cの一端部18a(閉塞部材9)に当接することにより、本体25は湾曲部材2cとリード7に挟持される。よって、本体25は、加熱導体2と一体に移動可能であり、さらに本体25の長手方向への移動が阻止されている。   The main body 25 is attached to the heating conductor 2. That is, the side wall 30 of the main body 25 abuts on the lead 7, and the side wall 31 of the main body 25 abuts on one end portion 18 a (the closing member 9) of the bending member 2 c of the heating conductor 2, whereby the main body 25 is bent. And is held between the leads 7. Therefore, the main body 25 can move integrally with the heating conductor 2, and the movement of the main body 25 in the longitudinal direction is prevented.

図6に示すように、冷却液供給装置3(本体25)の傾斜壁26は、加熱導体2の傾斜壁13に近接(又は当接)配置される。その結果、冷却液供給装置3(本体25)の傾斜壁27は、加熱導体2の直線部材2aの対向壁12に近接する。すなわち、傾斜壁27に設けられた各ノズル孔28(ノズル部)が、対向壁12に近接する。   As shown in FIG. 6, the inclined wall 26 of the coolant supply device 3 (main body 25) is disposed close to (or in contact with) the inclined wall 13 of the heating conductor 2. As a result, the inclined wall 27 of the coolant supply device 3 (main body 25) is close to the opposing wall 12 of the linear member 2a of the heating conductor 2. That is, each nozzle hole 28 (nozzle part) provided in the inclined wall 27 is close to the opposing wall 12.

冷却液供給管24は、本体25の上壁29に接続されており、図示しない冷却液供給源から冷却液を本体25内に供給する可撓性を有する配管である。   The coolant supply pipe 24 is connected to an upper wall 29 of the main body 25 and is a flexible pipe that supplies the coolant into the main body 25 from a coolant supply source (not shown).

駆動装置5(図1)は、加熱導体2及び冷却液供給装置3を、被加熱物10に沿って移動させる機能を有する。被加熱物10を焼入れする際には、駆動装置5は、加熱導体2及び冷却液供給装置3を一体に、一定速度で移動させることができる。   The driving device 5 (FIG. 1) has a function of moving the heating conductor 2 and the coolant supply device 3 along the object to be heated 10. When quenching the article to be heated 10, the driving device 5 can move the heating conductor 2 and the coolant supply device 3 together at a constant speed.

制御装置6(図1)は、冷却液供給装置3,高周波電源4,駆動装置5の動作を司る機能を有する。制御装置6は、冷却液供給管24に設けられた図示しない制御弁を開閉し、冷却液供給装置3(本体25)へ加圧された冷却液を供給する。また、制御装置6が、高周波電源4へ指令信号を送ることにより、高周波電源4から加熱導体2へ高周波電流が供給される。さらに制御装置6は、駆動装置5の動作を制御する。すなわち、被加熱物10の焼入れ開始位置までは、加熱導体2及び冷却液供給装置3を速やかに移動させ、焼入れ時には、所定の一定速度で、被加熱物10に沿って加熱導体2及び冷却液供給装置3を移動させる。   The control device 6 (FIG. 1) has a function of controlling the operation of the coolant supply device 3, the high frequency power supply 4, and the drive device 5. The control device 6 opens and closes a control valve (not shown) provided in the coolant supply pipe 24 to supply pressurized coolant to the coolant supply device 3 (main body 25). Further, the control device 6 sends a command signal to the high frequency power source 4, whereby a high frequency current is supplied from the high frequency power source 4 to the heating conductor 2. Further, the control device 6 controls the operation of the drive device 5. That is, the heating conductor 2 and the coolant supply device 3 are quickly moved to the quenching start position of the object to be heated 10, and at the time of quenching, the heating conductor 2 and the cooling liquid are moved along the object to be heated 10 at a predetermined constant speed. The supply device 3 is moved.

以上説明したように構成された高周波焼入装置1は、以下のように被加熱物10を焼入れする。
加熱導体2の直線部材2aの対向壁12と、直線部材2bの対向壁20が、被加熱物10の焼入れ対象部位に対向し、湾曲部材2cは、被加熱物10に対向せず、被加熱物10の誘導加熱には寄与しない。
The induction hardening apparatus 1 configured as described above quenches the article to be heated 10 as follows.
The opposing wall 12 of the linear member 2a of the heating conductor 2 and the opposing wall 20 of the linear member 2b are opposed to the part to be quenched of the object to be heated 10, and the bending member 2c is not opposed to the object to be heated 10 and is heated. It does not contribute to induction heating of the object 10.

図6に示すように、被加熱物10の焼入れ対象部位の端部10aに、加熱導体2の対向壁20を近接対向させる。すなわち、制御装置6(図1)によって制御された駆動装置5(図1)が、加熱導体2を被加熱物10に対向配置させる。そして、制御装置6は、高周波電源4に指令信号を送り、高周波電流を加熱導体2に供給する。   As shown in FIG. 6, the facing wall 20 of the heating conductor 2 is brought close to and opposed to the end 10 a of the part to be quenched of the article to be heated 10. That is, the driving device 5 (FIG. 1) controlled by the control device 6 (FIG. 1) places the heating conductor 2 opposite the object to be heated 10. Then, the control device 6 sends a command signal to the high frequency power supply 4 and supplies a high frequency current to the heating conductor 2.

被加熱物10における、加熱導体2(対向壁20)が対向している部位が、誘導加熱されて昇温する。すなわち、図6において、被加熱物10における右上から左下へ傾斜するハッチングで示す部位が、直線部材2bの対向壁20と対向しており、この部位が誘導加熱されて昇温する。駆動装置5(図1)が、加熱導体2及び冷却液供給装置3を、所定の一定速度で、矢印A1で示す方向(相対移動方向)に移動させる。対向壁20が、矢印A1方向に移動すると、被加熱物10における、対向壁20に対向する部位が、順に誘導加熱される。すなわち、被加熱物10の誘導加熱部位(右上から左下へ傾斜するハッチングで示す部位)が拡がる。   The part of the article 10 to be heated facing the heating conductor 2 (opposing wall 20) is heated by induction heating. That is, in FIG. 6, the part shown by the hatching inclined from the upper right to the lower left in the article to be heated 10 faces the opposing wall 20 of the linear member 2b, and this part is heated by induction heating. The driving device 5 (FIG. 1) moves the heating conductor 2 and the coolant supply device 3 in a direction (relative movement direction) indicated by an arrow A1 at a predetermined constant speed. When the opposing wall 20 moves in the direction of the arrow A1, the part of the article to be heated 10 that opposes the opposing wall 20 is sequentially heated by induction. That is, the induction heating part (part shown by hatching inclined from the upper right to the lower left) of the article to be heated 10 expands.

そして、図7に示すように、やがて対向壁12が被加熱物10に対向し、被加熱物10における、対向壁12と対向する部位も誘導加熱される。対向壁12が被加熱物10の端部10aに達すると、制御装置6は、図示しない制御弁を開き、冷却液供給装置3に冷却液を供給する。その結果、ノズル孔28から冷却液33が噴射される。   Then, as shown in FIG. 7, the opposing wall 12 eventually opposes the object to be heated 10, and the part of the object to be heated 10 that opposes the opposing wall 12 is also induction-heated. When the facing wall 12 reaches the end 10 a of the article to be heated 10, the control device 6 opens a control valve (not shown) and supplies the coolant to the coolant supply device 3. As a result, the coolant 33 is ejected from the nozzle hole 28.

図7に示すように、冷却液33は、被加熱物10における、対向壁12による誘導加熱が完了した位置から距離LAだけ離れた位置Eに噴射供給される。すなわち、加熱導体2(対向壁12)が、距離LAを移動する時間が経過した後に、誘導加熱が完了した部位Eに、冷却液33が噴射供給される。   As shown in FIG. 7, the coolant 33 is jetted and supplied to a position E of the article to be heated 10 that is a distance LA away from a position where induction heating by the facing wall 12 is completed. That is, the cooling liquid 33 is jetted and supplied to the portion E where induction heating is completed after the time for the heating conductor 2 (opposing wall 12) to move the distance LA has elapsed.

加熱導体2の直線部材2aの傾斜壁13は、矢印A1で示す方向(加熱導体2の移動方向)の上流側が対向壁12に近接しており、下流側へいくほど対向壁12から離間するように傾斜している。すなわち、傾斜壁13は、加熱導体2の直線部材2aにおける、移動方向の前側へいくほど、対向壁12から離間するように傾斜している。そのため、冷却液33は、加熱導体2の矢印A1で示す移動方向とは逆方向に傾斜して被加熱物10に噴射供給されている。よって、被加熱物10における誘導加熱中の部位には、冷却液は飛散せず、被加熱物10における、誘導加熱中の部位は良好に昇温する。   The inclined wall 13 of the linear member 2a of the heating conductor 2 is close to the opposing wall 12 in the direction indicated by the arrow A1 (movement direction of the heating conductor 2), and is separated from the opposing wall 12 toward the downstream side. It is inclined to. That is, the inclined wall 13 is inclined so as to be separated from the opposing wall 12 as it goes to the front side in the moving direction in the linear member 2a of the heating conductor 2. Therefore, the coolant 33 is sprayed and supplied to the object to be heated 10 while being inclined in the direction opposite to the moving direction indicated by the arrow A <b> 1 of the heating conductor 2. Therefore, the coolant does not scatter in the part of the object to be heated 10 that is being induction-heated, and the part of the object to be heated 10 that is being induction-heated is well heated.

図7に示すように、冷却液33は、矢印A1で示す移動方向と逆方向(上流側)に、被加熱物10に対して斜め45度の角度で噴射されており、その結果、被加熱物10の位置Eに達している。この45度という角度は、変更可能である。すなわち、被加熱物10に対する冷却液33の噴射角度は、対向壁12や、被加熱物10における誘導加熱中の部位に飛散しない範囲(例えば、70度以下)に設定することができる。また、直線部材2aは、傾斜壁13を有していれば、断面形状は直角三角形の代わりに四角形以上の多角形であってもよい。   As shown in FIG. 7, the coolant 33 is injected at an angle of 45 degrees with respect to the object to be heated 10 in the direction opposite to the moving direction indicated by the arrow A1 (upstream side). The position E of the object 10 has been reached. This angle of 45 degrees can be changed. That is, the spray angle of the coolant 33 with respect to the object to be heated 10 can be set to a range (for example, 70 degrees or less) that does not scatter to the facing wall 12 or the part of the object to be heated 10 that is undergoing induction heating. Moreover, as long as the linear member 2a has the inclined wall 13, the cross-sectional shape may be a polygon more than a quadrangle instead of a right triangle.

ノズル孔28は、対向壁12に近接している。すなわち、図7に示す例では、ノズル孔28は、冷却液供給装置3の本体25における、最下端部付近に設けられている。そのため、距離LAは、図20に示す距離L2と同等の長さである。よって、部位Eは、誘導加熱が完了してから、ほとんど時間差なく冷却液33が噴射供給され、急冷される。その結果、被加熱物10は、良好に焼入れされる。冷却液33の噴射角度を45度よりも大きくすると、距離LAは、さらに短くなり、冷却の開始時期が早まる。   The nozzle hole 28 is close to the facing wall 12. That is, in the example shown in FIG. 7, the nozzle hole 28 is provided in the vicinity of the lowermost end portion of the main body 25 of the coolant supply device 3. Therefore, the distance LA is the same length as the distance L2 shown in FIG. Therefore, after the induction heating is completed, the portion E is jetted and supplied with the cooling liquid 33 with almost no time difference, and is rapidly cooled. As a result, the article to be heated 10 is quenched well. When the spray angle of the coolant 33 is larger than 45 degrees, the distance LA is further shortened, and the cooling start time is advanced.

また、冷却液供給装置3は、被加熱物10に対してほとんど対向しておらず、間に加熱導体2の直線部材2aが配置されている。そのため、冷却液供給装置3は、被加熱物10から放射される輻射熱にさらされずに済み、昇温しにくい。よって、冷却液供給装置3は、低温の冷却液を噴射供給することができる。   Further, the coolant supply device 3 hardly faces the object to be heated 10, and the linear member 2a of the heating conductor 2 is disposed therebetween. Therefore, the coolant supply device 3 does not need to be exposed to the radiant heat radiated from the article to be heated 10, and the temperature rise is difficult. Therefore, the coolant supply device 3 can inject and supply a low-temperature coolant.

次に、図8〜図14を参照しながら、別の実施形態を説明する。
図8〜図14に示す加熱導体35は、直線部材35a,35bと、湾曲部材35cとを有している。
Next, another embodiment will be described with reference to FIGS.
The heating conductor 35 shown in FIGS. 8 to 14 includes linear members 35a and 35b and a bending member 35c.

直線部材35aは、図12に示すように、上半割部材37,下半割部材38,仕切部材39の3つの部材で構成されている。
上半割部材37は、板状の上部壁52と、垂下壁53とが直交して連続し、断面がL字形状を呈する部材である。上部壁52は、上側縁46aを有している。上側縁46aは、傾斜面を構成している。垂下壁53は、下側縁46bを有している。下側縁46bは、傾斜面を構成している。上側縁46aと、下側縁46bは、同一平面上に形成された傾斜面である。また、下側縁46bには、複数の溝40が所定間隔をおいて設けられている。図13に示すように、溝40は、下側縁46bの傾斜面に沿ってのびている。
As shown in FIG. 12, the linear member 35 a is composed of three members: an upper half member 37, a lower half member 38, and a partition member 39.
The upper half member 37 is a member in which a plate-like upper wall 52 and a hanging wall 53 are orthogonally continuous and a cross section has an L shape. The upper wall 52 has an upper edge 46a. The upper edge 46a constitutes an inclined surface. The hanging wall 53 has a lower edge 46b. The lower edge 46b constitutes an inclined surface. The upper edge 46a and the lower edge 46b are inclined surfaces formed on the same plane. A plurality of grooves 40 are provided at predetermined intervals on the lower edge 46b. As shown in FIG. 13, the groove 40 extends along the inclined surface of the lower edge 46b.

そして、断面がL字形状の上半割部材37の一端37aは、上側から下側へいくほど先端(図11に示すリード7側)に突出するように傾斜している。すなわち、垂下壁53の下側縁46bが、最もリード7側へ突出し、上部壁52に近付くほど他端37bに近付くように傾斜している。   Then, one end 37a of the upper half member 37 having an L-shaped cross section is inclined so as to protrude toward the tip (the lead 7 side shown in FIG. 11) as it goes from the upper side to the lower side. That is, the lower edge 46 b of the hanging wall 53 protrudes most toward the lead 7, and is inclined so as to approach the other end 37 b as it approaches the upper wall 52.

図12に示すように、下半割部材38は、板状の対向壁50と、起立壁51とが直交して連続し、断面がL字形状を呈する部材である。対向壁50は、下側縁47bを有している。下側縁47bは、傾斜面を構成している。起立壁51は、上側縁47aを有している。上側縁47aは、傾斜面を構成している。下側縁47bと、上側縁47aは、同一平面上に形成された傾斜面である。断面がL字形状の下半割部材38の一端38aは、対向壁50がリード7側へ突出し、起立壁51が、対向壁50から遠ざかるほど他端38bに近付くように傾斜している。   As shown in FIG. 12, the lower half member 38 is a member in which a plate-like opposing wall 50 and an upright wall 51 are orthogonally continuous and have an L-shaped cross section. The facing wall 50 has a lower edge 47b. The lower edge 47b constitutes an inclined surface. The standing wall 51 has an upper edge 47a. The upper edge 47a forms an inclined surface. The lower edge 47b and the upper edge 47a are inclined surfaces formed on the same plane. One end 38 a of the lower half member 38 having an L-shaped cross section is inclined so that the opposing wall 50 protrudes toward the lead 7, and the standing wall 51 approaches the other end 38 b as the distance from the opposing wall 50 increases.

仕切部材39は、細長く薄い板状の部材である。仕切部材39の一端39aは、傾斜している。そのため、仕切部材39は、長手方向にのびる比較的短い短辺56と、比較的長い長辺57とを有している。図12に示すように、短辺56の一方の面には、下面側上部縁41aが、他方の面には上面側上部縁41bが設けられている。長辺57の一方の面には、下面側下部縁42aが、他方の面には上面側下部縁42bが設けられている。   The partition member 39 is a thin and thin plate-like member. One end 39a of the partition member 39 is inclined. Therefore, the partition member 39 has a relatively short short side 56 extending in the longitudinal direction and a relatively long long side 57. As shown in FIG. 12, a lower surface side upper edge 41a is provided on one surface of the short side 56, and an upper surface side upper edge 41b is provided on the other surface. A lower surface side lower edge 42a is provided on one surface of the long side 57, and an upper surface side lower edge 42b is provided on the other surface.

仕切部材39の下面側上部縁41aと、下面側下部縁42aには、下半割部材38の上側縁47aと、下側縁47bが、各々ろう付けによって一体化されている。すなわち、上側縁47aと、下側縁47bは、同一平面上に形成された傾斜面であるので、仕切部材39に対して、同時に面接触することができる。   On the lower surface side upper edge 41a and the lower surface side lower edge 42a of the partition member 39, the upper edge 47a and the lower edge 47b of the lower half member 38 are respectively integrated by brazing. That is, since the upper edge 47a and the lower edge 47b are inclined surfaces formed on the same plane, they can simultaneously come into surface contact with the partition member 39.

同様に、仕切部材39の上面側下部縁42bと、上面側上部縁41bには、上半割部材37の下側縁46bと、上側縁46aが、各々ろう付けによって一体化されている。下側縁46bと上側縁46aも、同一平面上に形成された傾斜面であるので、同時に仕切部材39に面接触することができる。   Similarly, a lower edge 46b and an upper edge 46a of the upper half member 37 are integrated with the upper lower edge 42b and the upper upper edge 41b of the partition member 39 by brazing. Since the lower edge 46b and the upper edge 46a are also inclined surfaces formed on the same plane, they can simultaneously come into surface contact with the partition member 39.

以上のように、上半割部材37と下半割部材38の間に、仕切部材39が配置されている。そして、上半割部材37と仕切部材39によって、断面が三角形の流路44が形成されている。流路44は、直線部材35a(図10,図11)の長手方向にのびている。また、上半割部材37と仕切部材39が一体化されていることによって、上半割部材37の溝40と、仕切部材39とで、冷却液噴射部45(ノズル孔)が形成されている。冷却液噴射部45は、流路44と連通している。   As described above, the partition member 39 is disposed between the upper half member 37 and the lower half member 38. The upper half member 37 and the partition member 39 form a channel 44 having a triangular cross section. The flow path 44 extends in the longitudinal direction of the linear member 35a (FIGS. 10 and 11). Further, since the upper half member 37 and the partition member 39 are integrated, the coolant injection section 45 (nozzle hole) is formed by the groove 40 of the upper half member 37 and the partition member 39. . The coolant injection unit 45 communicates with the flow path 44.

同様に、下半割部材38と仕切部材39によって、断面が三角形の流路43が形成されている。流路43も、流路44と同様に、直線部材35aの長手方向にのびている。流路44と流路43とは、仕切部材39によって仕切られている。そして、冷却液は、流路43と流路44の間を移動することができない。   Similarly, a channel 43 having a triangular cross section is formed by the lower half member 38 and the partition member 39. Similarly to the flow path 44, the flow path 43 extends in the longitudinal direction of the linear member 35a. The flow path 44 and the flow path 43 are partitioned by a partition member 39. Further, the cooling liquid cannot move between the flow path 43 and the flow path 44.

直線部材35bは、図2等に示す加熱導体2の直線部材2bと同様の構成を有している。図11に示すように、直線部材35bは、断面が四角形の管部材であり、内部に流路49を有している。また、直線部材35bは、被加熱物10と対向する対向壁54(図9)を有している。   The linear member 35b has the same configuration as the linear member 2b of the heating conductor 2 shown in FIG. As shown in FIG. 11, the straight member 35 b is a tube member having a rectangular cross section, and has a flow path 49 inside. Further, the linear member 35 b has an opposing wall 54 (FIG. 9) that faces the object to be heated 10.

湾曲部材35cも、図2等に示す加熱導体2の湾曲部材2cと同様の構成を有している。図11に示すように、湾曲部材35cは、断面が四角形の管部材が湾曲して、U字の折返し部分を構成し、内部に流路48を有している。また、湾曲部材35cは、一端55aと他端55bとを有している。   The bending member 35c has the same configuration as the bending member 2c of the heating conductor 2 shown in FIG. As shown in FIG. 11, the bending member 35c has a U-shaped folded portion by bending a tubular member having a square cross section, and has a flow channel 48 inside. The bending member 35c has one end 55a and the other end 55b.

湾曲部材35cの一端55aには、直線部材35aの他端36bが、ろう付けされて一体化されている。同様に、湾曲部材35cの他端55bには、直線部材35bの一端58aがろう付けされて一体化されている。よって、加熱導体35内では、直線部材35a内の流路43,44と、湾曲部材35c内の流路48と、直線部材35b内の流路49とが連通している。   The other end 36b of the linear member 35a is brazed and integrated with one end 55a of the bending member 35c. Similarly, one end 58a of the linear member 35b is brazed and integrated with the other end 55b of the bending member 35c. Therefore, in the heating conductor 35, the flow paths 43 and 44 in the straight member 35a, the flow path 48 in the bending member 35c, and the flow path 49 in the straight member 35b communicate with each other.

加熱導体35の直線部材35aには、リード7が接続されている。
直線部材35aの、上半割部材37,下半割部材38,仕切部材39の各々の一端37a,38a,39a(図12)が傾斜しており、直線部材35aの一端36a(図11)は、リード7の傾斜した端部7a(下端)と交差(直交)して接続されている。リード7と直線部材35aはろう付けされて導通が可能であり、また、リード7の開口15と、直線部材35aの流路43,44とが連通している。
A lead 7 is connected to the linear member 35 a of the heating conductor 35.
One end 37a, 38a, 39a (FIG. 12) of each of the upper half member 37, the lower half member 38, and the partition member 39 of the linear member 35a is inclined, and one end 36a (FIG. 11) of the linear member 35a is inclined. The lead 7 is connected so as to intersect (orthogonally) the inclined end portion 7a (lower end). The lead 7 and the linear member 35a are brazed so as to be conductive, and the opening 15 of the lead 7 and the flow paths 43 and 44 of the linear member 35a communicate with each other.

同様に、加熱導体35の直線部材35bと、リード8は、ろう付けによって一体固着されている。直線部材35b内の流路49と、リード8の開口16は連通している。   Similarly, the linear member 35b of the heating conductor 35 and the lead 8 are integrally fixed by brazing. The flow path 49 in the linear member 35b and the opening 16 of the lead 8 communicate with each other.

以上説明した加熱導体35を使用すると、図14に示すように被加熱物10を焼入れすることができる。すなわち、高周波電流が供給されている加熱導体35が、駆動装置5(図1)によって、矢印A2で示す方向へ移動し、先行して直線部材35bの対向壁54が、被加熱物10に対向し、被加熱物10を誘導加熱する。そして、やがて直線部材35aの対向壁50も、被加熱物10と対向し、被加熱物10を誘導加熱する。加熱導体35内には、低温の冷却液が供給されており、加熱導体35自身は良好に冷却されている。   When the heating conductor 35 described above is used, the article to be heated 10 can be quenched as shown in FIG. That is, the heating conductor 35 to which the high-frequency current is supplied is moved in the direction indicated by the arrow A2 by the driving device 5 (FIG. 1), and the opposing wall 54 of the linear member 35b is opposed to the object to be heated 10 in advance. Then, the object to be heated 10 is induction-heated. Eventually, the opposing wall 50 of the linear member 35a also opposes the object to be heated 10, and induction-heats the object to be heated 10. A low-temperature coolant is supplied into the heating conductor 35, and the heating conductor 35 itself is cooled well.

リード7を介して供給されている冷却液は、加熱導体35内に流入する。すなわち、冷却液は、図11に示す直線部材35a内の流路43と流路44に別れて加熱導体35内に流入する。流路43内の冷却液は、最も昇温する対向壁50(直線部材35a)を冷却する。直線部材35aの流路43内における、昇温した冷却液は、仕切部材39によって、流路44側への移動が阻止されている。   The coolant supplied via the lead 7 flows into the heating conductor 35. That is, the coolant flows into the heating conductor 35 separately from the flow path 43 and the flow path 44 in the linear member 35a shown in FIG. The cooling liquid in the flow path 43 cools the opposing wall 50 (the straight member 35a) that is heated most. The coolant whose temperature has risen in the flow path 43 of the linear member 35 a is prevented from moving toward the flow path 44 by the partition member 39.

一方、流路44内に流入した冷却液は、流路44内を流れると共に、一部が複数の冷却液噴射部45から噴射される。図14に示すように、直線部材35aの対向壁50による誘導加熱が完了した部位と、冷却液59が噴射供給される部位は、距離LBだけ離れている。すなわち、誘導加熱が完了してから、加熱導体35が矢印A2方向へ距離LBを移動する時間が経過した後に、冷却液59が噴射供給される。冷却液59は、加熱導体35の矢印A2で示す移動方向とは逆方向に傾斜して被加熱物10に噴射供給されている。よって、被加熱物10における誘導加熱中の部位には、冷却液は飛散せず、被加熱物10における、誘導加熱中の部位は良好に昇温する。   On the other hand, the coolant that has flowed into the flow path 44 flows through the flow path 44 and a part thereof is ejected from the plurality of coolant spray sections 45. As shown in FIG. 14, the site where induction heating by the facing wall 50 of the linear member 35a is completed and the site where the cooling liquid 59 is supplied by injection are separated by a distance LB. That is, after the induction heating is completed, the cooling liquid 59 is jetted and supplied after the time for the heating conductor 35 to move the distance LB in the arrow A2 direction has elapsed. The cooling liquid 59 is jetted and supplied to the object to be heated 10 while being inclined in the direction opposite to the moving direction indicated by the arrow A <b> 2 of the heating conductor 35. Therefore, the coolant does not scatter in the part of the object to be heated 10 that is being induction-heated, and the part of the object to be heated 10 that is being induction-heated is well heated.

加熱導体35を使用する場合には、図1に示す冷却液供給装置3は不要である。すなわち、加熱導体35内には、冷却液が常時供給されており、この冷却液の一部が、焼入れ液(焼入れ水)として被加熱物10の誘導加熱が完了した部位へ噴射供給される。   When the heating conductor 35 is used, the coolant supply device 3 shown in FIG. 1 is not necessary. That is, a cooling liquid is constantly supplied into the heating conductor 35, and a part of this cooling liquid is jetted and supplied as a quenching liquid (quenching water) to a portion where induction heating of the article to be heated 10 is completed.

図14に示す例でも、図7に示す例と同様に、被加熱物10に対する冷却液59の噴射角度は、45度程度である。また、冷却液噴射部45は、流路44(領域)の垂下壁53の最下端部に設けられている。そのため、冷却液噴射部45は、対向壁50に近接している。冷却液噴射部45を設ける位置は、垂下壁53の最下端部に近いほど好ましい。   Also in the example shown in FIG. 14, the injection angle of the cooling liquid 59 with respect to the article to be heated 10 is about 45 degrees as in the example shown in FIG. 7. Further, the coolant injection section 45 is provided at the lowermost end portion of the hanging wall 53 of the flow path 44 (region). Therefore, the coolant injection part 45 is close to the facing wall 50. The position where the coolant injection part 45 is provided is preferably closer to the lowermost end of the hanging wall 53.

図14に示すように、冷却液噴射部45は、対向壁50と近接している。そのため、距離LBは、図20に示す距離L2と、ほとんど差がない。よって、被加熱物10は、誘導加熱が完了してから速やかに冷却液59が噴射供給されて急冷される。この冷却液59は、流路44内を流通しており、流路44は、温度上昇し易い対向壁50に面していないので昇温しにくく、流路43内の冷却液よりも低温である。そのため、冷却液噴射部45から噴射された冷却液59の温度は低く、冷却効果が高い。   As shown in FIG. 14, the coolant injection unit 45 is close to the facing wall 50. Therefore, the distance LB is hardly different from the distance L2 shown in FIG. Therefore, the object to be heated 10 is rapidly cooled by being supplied with the cooling liquid 59 after the induction heating is completed. This cooling liquid 59 circulates in the flow path 44, and the flow path 44 does not face the opposing wall 50, which is likely to rise in temperature, so it is difficult to raise the temperature, and the temperature is lower than the cooling liquid in the flow path 43. is there. Therefore, the temperature of the coolant 59 ejected from the coolant ejecting unit 45 is low and the cooling effect is high.

また、流路44は、被加熱物10に対して対向しておらず、間に仕切部材39と流路43が配置されている。そのため、流路44内の冷却液は、被加熱物10から放射される輻射熱にさらされずに済み、昇温しにくい。よって、流路44から、低温の冷却液を噴射供給することができる。   Moreover, the flow path 44 does not oppose the to-be-heated material 10, and the partition member 39 and the flow path 43 are arrange | positioned among them. Therefore, the cooling liquid in the flow path 44 does not need to be exposed to the radiant heat radiated from the article to be heated 10, and it is difficult to raise the temperature. Therefore, a low-temperature coolant can be jetted and supplied from the flow path 44.

流路44内を流れ、冷却液噴射部45から噴射されなかった冷却液は、流路43内を流通する冷却液と合流し、湾曲部材35c内の流路48(図11),直線部材35b内の流路49(図11)を通過する。すなわち、合流した冷却液は、湾曲部材35cと直線部材35bを冷却しながら、リード8から外部に排出される。   The coolant that has flowed through the flow path 44 and has not been ejected from the coolant spray section 45 merges with the coolant flowing through the flow path 43, and the flow path 48 (FIG. 11) and the linear member 35b in the curved member 35c. It passes through the inner flow path 49 (FIG. 11). That is, the combined coolant is discharged from the lead 8 to the outside while cooling the bending member 35c and the linear member 35b.

図15に示すように、加熱導体35は、垂直姿勢の被加熱物10を焼入れする際にも使用することができる。この場合においても、図14と同様に、誘導加熱後、速やかに冷却液59が噴射供給される。冷却液59は、斜め下方に噴射され、上方の誘導加熱中の部位へは飛散しない。よって、被加熱物10における、誘導加熱中の部位は良好に昇温し、その後、急冷される。   As shown in FIG. 15, the heating conductor 35 can also be used when quenching the object to be heated 10 in a vertical posture. Also in this case, as in FIG. 14, the cooling liquid 59 is jetted and supplied promptly after induction heating. The cooling liquid 59 is jetted obliquely downward and does not scatter to the upper part being induction heated. Therefore, the site | part in the to-be-heated material 10 in induction heating heats up favorably, and is rapidly cooled after that.

図15に示すように、垂直姿勢の被加熱物10を焼入れする場合には、噴射された冷却液59は、重力を受けて上方(誘導加熱中の部位)へ飛散しにくいので、被加熱物10に対する噴射角度は、図7,図14の場合よりも直角に近づけ易い。そのため、距離LBをより短くすることができる。
加熱導体35は、矢印A2で示すように上方へ移動しながら垂直姿勢の被加熱物10を焼入れする。図15において、加熱導体35の移動方向の上流側とは、下方を指し、下流側とは上方(未焼入れ領域側)を指す。
As shown in FIG. 15, when quenching the object to be heated 10 in a vertical posture, the injected cooling liquid 59 is not easily scattered upward due to gravity, and thus the object to be heated is not heated. The injection angle with respect to 10 is closer to a right angle than in the case of FIGS. Therefore, the distance LB can be further shortened.
The heating conductor 35 quenches the object to be heated 10 in a vertical posture while moving upward as indicated by an arrow A2. In FIG. 15, the upstream side in the moving direction of the heating conductor 35 refers to the lower side, and the downstream side refers to the upper side (the unquenched region side).

上述の実施形態では、U字形状の加熱導体2,35を使用しているが、加熱導体は、直線状であっても差し支えない。但し、加熱導体2のようにU字形状を採用すると、被加熱物10が直線部材2b(35b)の対向壁20(54)が対向するときと、直線部材2a(35a)の対向壁12(50)が対向するときの、誘導加熱される機会が2度あるので、被加熱物10を昇温させ易いという利点がある。   In the above-described embodiment, the U-shaped heating conductors 2 and 35 are used. However, the heating conductors may be linear. However, if a U-shape is adopted like the heating conductor 2, the object to be heated 10 faces the opposing wall 20 (54) of the linear member 2 b (35 b), and the opposing wall 12 ( 50) is opposite, there is an opportunity for induction heating twice, so there is an advantage that it is easy to raise the temperature of the article 10 to be heated.

被加熱物10の焼入れ対象部位は平面であったが、焼入れ対象が棒状(例えば円柱状)の被加熱物の周面の場合には、図16に示す加熱導体60を使用することにより、良好に焼入れすることができる。図16に示す様に加熱導体60は、図11に示す加熱導体35の直線部材35aを略C字形状に湾曲させた様な構造を呈しており、上半割部材61、下半割部材62、仕切部材63を有している。   The part to be quenched of the object to be heated 10 was a flat surface, but when the object to be quenched was a rod-shaped (for example, columnar) peripheral surface of the object to be heated, the heating conductor 60 shown in FIG. Can be quenched. As shown in FIG. 16, the heating conductor 60 has a structure in which the linear member 35 a of the heating conductor 35 shown in FIG. 11 is curved in a substantially C shape, and includes an upper half member 61 and a lower half member 62. The partition member 63 is provided.

上半割部材61は、上壁67と対向壁68が直交して構成されている。上壁67は、同一平面内で略C字形状を呈するように湾曲している。対向壁68は、上壁67の内周側と連続している。すなわち、上半割部材61は、横断面がL字形状を呈しながら略C字形状を呈するように湾曲している。   The upper half member 61 is configured such that the upper wall 67 and the opposing wall 68 are orthogonal to each other. The upper wall 67 is curved so as to exhibit a substantially C shape within the same plane. The facing wall 68 is continuous with the inner peripheral side of the upper wall 67. That is, the upper half member 61 is curved so as to exhibit a substantially C-shape while the cross-section exhibits an L-shape.

下半割部材62は、下壁69と垂直壁70とが直交して構成されている。下壁69は、上半割部材61の上壁67と同様に湾曲している。垂直壁70は、下壁69の外周側と連続している。そして、下半割部材62は、横断面がL字形状を呈しながら略C字形状を呈するように湾曲している。下壁69の端部(縁)には、図12、図13の上半割部材37の溝40の様な溝73が、等間隔で設けられている。   The lower half member 62 is configured such that the lower wall 69 and the vertical wall 70 are orthogonal to each other. The lower wall 69 is curved similarly to the upper wall 67 of the upper half member 61. The vertical wall 70 is continuous with the outer peripheral side of the lower wall 69. And the lower half member 62 is curving so that a cross section may exhibit a substantially C shape while exhibiting an L shape. Grooves 73 such as the groove 40 of the upper half member 37 in FIGS. 12 and 13 are provided at equal intervals on the end (edge) of the lower wall 69.

仕切部材63は、すり鉢状に湾曲する板部材である。図示していないが、仕切部材63の両端部は、図12に示す仕切部材39の一端39aの様に傾斜している。   The partition member 63 is a plate member that curves in a mortar shape. Although not shown, both end portions of the partition member 63 are inclined like one end 39a of the partition member 39 shown in FIG.

加熱導体60は、次の様に構成されている。
仕切部材63の内周側が下に、外周側が上になるように配置されている。そして、仕切部材63の上側には上半割部材61がろう付け固定されており、仕切部材63の下側には下半割部材62がろう付け固定されている。加熱導体60を断面視すると、仕切部材63は、加熱導体60の外周側上方から内周側下方へすり鉢状に傾斜している。すなわち、仕切部材63は、傾斜壁を構成している。下半割部材62の下壁69の複数の溝73と、仕切部材63とで、複数の噴射孔74が形成されている。噴射孔74は、等間隔に配列されている。
The heating conductor 60 is configured as follows.
The partition member 63 is arranged so that the inner peripheral side is on the lower side and the outer peripheral side is on the upper side. An upper half member 61 is brazed and fixed on the upper side of the partition member 63, and a lower half member 62 is brazed and fixed on the lower side of the partition member 63. When the heating conductor 60 is viewed in cross-section, the partition member 63 is inclined in a mortar shape from the upper outer peripheral side of the heating conductor 60 to the lower inner peripheral side. That is, the partition member 63 forms an inclined wall. A plurality of injection holes 74 are formed by the plurality of grooves 73 in the lower wall 69 of the lower half member 62 and the partition member 63. The injection holes 74 are arranged at equal intervals.

加熱導体60内には、流路71と流路72が形成されている。流路71は、上半割部材61と仕切部材63によって構成されており、流路72は、下半割部材62と仕切部材63によって構成されている。流路71と流路72は、仕切部材63によって遮断されている。前述の噴射孔74は、流路72内と外部とを連通させる孔である。   A channel 71 and a channel 72 are formed in the heating conductor 60. The flow path 71 is composed of an upper half member 61 and a partition member 63, and the flow path 72 is composed of a lower half member 62 and a partition member 63. The flow channel 71 and the flow channel 72 are blocked by the partition member 63. The above-described injection hole 74 is a hole that allows the inside of the flow path 72 to communicate with the outside.

C字形状の加熱導体60の一端には中空のリード64が接続されており、他端には中空のリード65が接続されている。よって、中空のリード64内及びリード65内と、加熱導体60の流路71及び流路72とが連通する。前述のように、仕切部材63の両端部は、図12に示す仕切部材39の一端39aの様に傾斜している。そのため、流路72のみならず、流路71もリード64内及びリード65内と連通している。加熱導体60の両端は近接しており、ほぼ環状である。そして加熱導体60の内側には環状内部75が形成されている。   A hollow lead 64 is connected to one end of the C-shaped heating conductor 60, and a hollow lead 65 is connected to the other end. Therefore, the hollow lead 64 and the lead 65 communicate with the flow channel 71 and the flow channel 72 of the heating conductor 60. As described above, both ends of the partition member 63 are inclined like the one end 39a of the partition member 39 shown in FIG. Therefore, not only the flow path 72 but also the flow path 71 communicates with the inside of the lead 64 and the inside of the lead 65. Both ends of the heating conductor 60 are close to each other and are substantially annular. An annular interior 75 is formed inside the heating conductor 60.

そして加熱導体60には、高周波電源4(図1)からリード64、65を介して高周波電流が供給される。また、加熱導体60には、リード64、65側から冷却液が循環供給される。リード64又はリード65から供給された冷却液は、流路71と流路72内に流入する。流路71と流路72は、仕切部材63によって遮断されているため、流路71内に流入した冷却液は、流路72内に移動することはできない。流路72に流入した冷却液の一部は、噴射孔74から噴射される。   The heating conductor 60 is supplied with a high-frequency current from the high-frequency power source 4 (FIG. 1) via the leads 64 and 65. Further, the coolant is circulated and supplied to the heating conductor 60 from the leads 64 and 65 side. The coolant supplied from the lead 64 or the lead 65 flows into the flow path 71 and the flow path 72. Since the flow path 71 and the flow path 72 are blocked by the partition member 63, the coolant that has flowed into the flow path 71 cannot move into the flow path 72. A part of the coolant flowing into the flow path 72 is ejected from the ejection hole 74.

加熱導体60は、円柱状(棒状)の被加熱物76の周面を誘導加熱することができる。すなわち、加熱導体60の環状内部75内に棒状の被加熱物76を配置し、駆動装置5(図1)によって、加熱導体60を上方へ移動させる。または、図示しない駆動装置で被加熱物76を下方へ移動させる。   The heating conductor 60 can induction-heat the peripheral surface of the columnar (rod-shaped) object to be heated 76. That is, a rod-shaped object to be heated 76 is disposed in the annular interior 75 of the heating conductor 60, and the heating conductor 60 is moved upward by the driving device 5 (FIG. 1). Alternatively, the object to be heated 76 is moved downward by a driving device (not shown).

被加熱物76の周面76aは、加熱導体60の対向壁68に対向すると、誘導加熱されて焼入れ温度まで昇温する。図17において、周面76aにおける右上から左下へ傾斜するハッチングで示す部位が、誘導加熱されて昇温した部位である。被加熱物76は、加熱導体60に対して下方へ相対移動するので、昇温した周面76aは、加熱導体60の下方へ移動する。そして、昇温した周面76aは、加熱導体60の噴射孔74から噴射された冷却液77によって急冷される。   When the peripheral surface 76a of the object to be heated 76 is opposed to the opposing wall 68 of the heating conductor 60, the peripheral surface 76a is heated by induction to the quenching temperature. In FIG. 17, a portion indicated by hatching inclined from the upper right to the lower left on the peripheral surface 76a is a portion heated by induction heating. Since the object to be heated 76 moves downward relative to the heating conductor 60, the peripheral surface 76 a whose temperature has been increased moves below the heating conductor 60. The heated peripheral surface 76 a is rapidly cooled by the coolant 77 ejected from the ejection holes 74 of the heating conductor 60.

ところで、流路71内を流れる冷却液は、比較的高温状態となり、流路72内を流れる冷却液は、比較的低温状態が維持されている。その理由は以下の通りである。   By the way, the coolant flowing in the flow path 71 is in a relatively high temperature state, and the coolant flowing in the flow path 72 is maintained in a relatively low temperature state. The reason is as follows.

高周波電流は、加熱導体60内における最短経路である対向壁68部分に集中して流れる。そのため、対向壁68は昇温し易い。また、対向壁68は、被加熱物76と対向しており、誘導加熱されて昇温した被加熱物76からの輻射熱に晒される。この対向壁68は、流路71内を流れる冷却液によって冷却される。そのため、流路71内の冷却液は昇温し、比較的高温状態になる。   The high-frequency current flows in a concentrated manner on the facing wall 68 which is the shortest path in the heating conductor 60. Therefore, the temperature of the opposing wall 68 is easy to increase. Further, the facing wall 68 faces the object to be heated 76 and is exposed to radiant heat from the object to be heated 76 that has been heated by induction heating. The facing wall 68 is cooled by the coolant flowing in the flow path 71. Therefore, the temperature of the coolant in the channel 71 rises and becomes relatively high.

流路71内の高温の冷却液は、仕切部材63に遮られて流路72内へ移動することができない。また、流路72を仕切る下壁69と垂直壁70は、被加熱物76の輻射熱に晒されていない。そのため、流路72内の冷却液は、比較的低温である。この流路72内の低温の冷却液が、符号77で示す様に、昇温した被加熱物76の周面76aに噴射供給されるので、昇温した周面76aは、良好に冷却される。   The high-temperature coolant in the flow path 71 is blocked by the partition member 63 and cannot move into the flow path 72. Further, the lower wall 69 and the vertical wall 70 that partition the flow path 72 are not exposed to the radiant heat of the object to be heated 76. Therefore, the cooling liquid in the flow path 72 is relatively low temperature. Since the low-temperature coolant in the flow path 72 is sprayed and supplied to the peripheral surface 76a of the heated object 76 as indicated by reference numeral 77, the peripheral surface 76a whose temperature has been increased is cooled well. .

以上説明した各加熱導体に加え、図18(a)に示す加熱導体80のような形態も採用することができる。加熱導体80は、冷却液を流通させる流路81と流路82とを有する。流路81と流路82は遮断されており、両流路間で冷却液の流通はない。また、流路81を仕切る1つの壁面が、被加熱物79に近接対向する対向壁84を構成し、他の1つの壁面が傾斜壁85を構成している。流路82は、複数の噴射孔83(図18(a)では断面視しているため、1つだけを示している。)を有している。複数の噴射孔83は、図18の紙面に直交する方向にのびる傾斜壁85に沿って配置されている。また、各噴射孔83は、冷却液86が傾斜壁85の傾きに沿って噴射されるように形成されている。流路82内の冷却液が噴射孔83から噴射されると、噴射された冷却液86は傾斜壁85に沿って進み、被加熱物79の誘導加熱されて昇温した部位に供給される。   In addition to the heating conductors described above, a form such as the heating conductor 80 shown in FIG. The heating conductor 80 has a flow path 81 and a flow path 82 through which the coolant flows. The flow path 81 and the flow path 82 are blocked, and there is no coolant flow between the flow paths. Further, one wall surface that partitions the flow path 81 constitutes an opposing wall 84 that faces and opposes the object to be heated 79, and the other one wall surface constitutes an inclined wall 85. The flow path 82 has a plurality of injection holes 83 (only one is shown in FIG. 18A because it is viewed in cross section). The plurality of injection holes 83 are arranged along an inclined wall 85 extending in a direction orthogonal to the paper surface of FIG. Each injection hole 83 is formed such that the coolant 86 is injected along the inclination of the inclined wall 85. When the cooling liquid in the flow path 82 is injected from the injection hole 83, the injected cooling liquid 86 travels along the inclined wall 85 and is supplied to the heated portion of the heated object 79 by induction heating.

加熱導体80では、傾斜壁85の一部が外部に露出しているため、流路81と流路82とが隣接する部位が、図17に示す形態の加熱導体60よりも少ない。そのため、比較的高温になり易い流路81内の冷却液と、比較的低温の流路82内の冷却液の間で熱移動が行われにくい。よって、流路82内の冷却液(噴射された冷却液86)は、低温状態を維持し易く、被加熱物79の冷却効果が高い。   In the heating conductor 80, since a part of the inclined wall 85 is exposed to the outside, the number of portions where the flow path 81 and the flow path 82 are adjacent to each other is smaller than that of the heating conductor 60 of the form shown in FIG. Therefore, heat transfer is unlikely to occur between the coolant in the channel 81 that tends to be relatively hot and the coolant in the channel 82 that is relatively cool. Therefore, the cooling liquid in the flow channel 82 (the injected cooling liquid 86) is easy to maintain a low temperature state, and the cooling effect of the heated object 79 is high.

また、図18(b)に示す様に、加熱導体80は対向壁84aを有する。対向壁84aは、対向壁84と直交し、さらに傾斜壁85と連続している。図18(b)に示す様に、焼入れ対象が、長手方向にのびる壁面88aと段部88bを有する被加熱物88である場合、加熱導体80の対向壁84aを段部88bに近接対向させ、且つ、対向壁84を壁面88aに近接対向させる。そして、加熱導体80を停止させた状態で高周波電流を通電し、段部88bと段部88bに近接する壁面88aとを同時に誘導加熱する。その後、矢印A4で示す方向に加熱導体80を移動させながら噴射孔83から冷却液を噴射する。噴射孔83から噴射された冷却液は、段部88b及び段部88bと連続する壁面88aを冷却し、さらに、加熱導体80の矢印A4方向への移動に伴って、昇温した壁面88aを順次冷却する。その結果、段部88bから壁面88aに至る連続した焼入れパターン89(編み目のハッチング部分)を得ることができる。   Further, as shown in FIG. 18B, the heating conductor 80 has an opposing wall 84a. The opposing wall 84 a is orthogonal to the opposing wall 84 and is further continuous with the inclined wall 85. As shown in FIG. 18B, when the object to be quenched is a heated object 88 having a wall surface 88a and a stepped portion 88b extending in the longitudinal direction, the facing wall 84a of the heating conductor 80 is made to face the stepped portion 88b close to each other, And the opposing wall 84 is made to oppose and approach the wall surface 88a. Then, a high-frequency current is applied with the heating conductor 80 stopped, and the stepped portion 88b and the wall surface 88a adjacent to the stepped portion 88b are simultaneously induction-heated. Thereafter, the coolant is ejected from the ejection hole 83 while moving the heating conductor 80 in the direction indicated by the arrow A4. The coolant sprayed from the injection hole 83 cools the stepped portion 88b and the wall surface 88a continuous with the stepped portion 88b, and further sequentially moves the wall surface 88a that has been heated as the heating conductor 80 moves in the arrow A4 direction. Cooling. As a result, a continuous quenching pattern 89 (knitted hatched portion) from the stepped portion 88b to the wall surface 88a can be obtained.

1 高周波焼入装置
2 加熱導体(誘導加熱導体)
3 冷却液供給装置
10 被加熱物
12 対向壁
13 傾斜壁
28 ノズル部
35 加熱導体(誘導加熱導体)
39 仕切部材
43,44 流路(加熱導体の内部の領域)
45 冷却液噴射部(冷却液噴射孔)
A1、A2 移動方向(相対移動方向)
1 Induction hardening equipment 2 Heating conductor (induction heating conductor)
3 Coolant Supply Device 10 Heated Object 12 Opposed Wall 13 Inclined Wall 28 Nozzle Part 35 Heating Conductor (Induction Heating Conductor)
39 Partition members 43, 44 Flow path (region inside heating conductor)
45 Coolant injection part (coolant injection hole)
A1, A2 Movement direction (relative movement direction)

Claims (3)

中空の誘導加熱導体と、冷却液噴射装置が、被加熱物に沿って相対移動しながら被加熱物を焼入れする高周波焼入装置であって、
前記誘導加熱導体は、被加熱物に沿って近接対向する対向壁と、当該対向壁と連続する傾斜壁とを有しており、
前記傾斜壁は、誘導加熱導体の相対移動方向の上流側が対向壁に近接し、下流側へいくほど対向壁から離間するように傾斜しており、
冷却液噴射装置は、冷却液を噴射するノズル部を有し、
冷却液噴射装置は、前記傾斜壁に沿って配置されており、
前記ノズル部が、前記対向壁に近接配置されたことを特徴とする高周波焼入装置。
A hollow induction heating conductor and a coolant injection device are induction hardening devices that quench the heated object while relatively moving along the heated object,
The induction heating conductor has a facing wall that is closely opposed to the object to be heated, and an inclined wall that is continuous with the facing wall.
The inclined wall is inclined so that the upstream side in the relative movement direction of the induction heating conductor is close to the opposing wall and is separated from the opposing wall toward the downstream side,
The coolant injection device has a nozzle portion for injecting coolant,
The coolant injection device is disposed along the inclined wall,
An induction hardening apparatus, wherein the nozzle portion is disposed close to the facing wall.
内部に冷却液が供給される中空の誘導加熱導体が、被加熱物に沿って相対移動しながら被加熱物を誘導加熱する高周波焼入装置であって、
前記誘導加熱導体は、被加熱物に沿って近接対向する対向壁を有しており、
誘導加熱導体の内部には、仕切部材が設けてあり、
前記仕切部材は、誘導加熱導体の相対移動方向の上流側が対向壁に近接し、下流側へいくほど対向壁から離間するように傾斜して、誘導加熱導体の内部を2つの領域に仕切っており、
各領域には冷却液が供給可能であり、
誘導加熱導体における、対向壁と連続し、且つ、相対移動方向の上流側の壁面に、冷却液噴射孔が設けてあることを特徴とする高周波焼入装置。
A hollow induction heating conductor to which a cooling liquid is supplied is an induction hardening apparatus that induction-heats the object to be heated while relatively moving along the object to be heated,
The induction heating conductor has a facing wall that is closely opposed along the object to be heated;
A partition member is provided inside the induction heating conductor,
The partition member is inclined so that the upstream side in the relative movement direction of the induction heating conductor is close to the opposing wall and is further away from the opposing wall toward the downstream side, thereby dividing the inside of the induction heating conductor into two regions. ,
Each area can be supplied with coolant,
An induction hardening apparatus, characterized in that a cooling liquid injection hole is provided on a wall surface of the induction heating conductor that is continuous with the opposing wall and upstream in the relative movement direction.
各領域の間の、冷却液の流通が遮断されていることを特徴とする請求項2に記載の高周波焼入装置。   The induction hardening apparatus according to claim 2, wherein the flow of the coolant between the regions is blocked.
JP2012181929A 2012-08-20 2012-08-20 High-frequency hardening apparatus Pending JP2014037610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181929A JP2014037610A (en) 2012-08-20 2012-08-20 High-frequency hardening apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181929A JP2014037610A (en) 2012-08-20 2012-08-20 High-frequency hardening apparatus

Publications (1)

Publication Number Publication Date
JP2014037610A true JP2014037610A (en) 2014-02-27

Family

ID=50285965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181929A Pending JP2014037610A (en) 2012-08-20 2012-08-20 High-frequency hardening apparatus

Country Status (1)

Country Link
JP (1) JP2014037610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206737A (en) * 2016-05-18 2017-11-24 高周波熱錬株式会社 Heating coil and production method of heating coil as well as heat treatment device
JP2020129443A (en) * 2019-02-07 2020-08-27 日本電子工業株式会社 Induction heating coil and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891633A (en) * 1972-03-06 1973-11-28
JPS4919357U (en) * 1972-05-18 1974-02-19
JPH05148531A (en) * 1991-11-25 1993-06-15 Toyota Motor Corp Induction hardening device for work provided with flange

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891633A (en) * 1972-03-06 1973-11-28
JPS4919357U (en) * 1972-05-18 1974-02-19
JPH05148531A (en) * 1991-11-25 1993-06-15 Toyota Motor Corp Induction hardening device for work provided with flange

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206737A (en) * 2016-05-18 2017-11-24 高周波熱錬株式会社 Heating coil and production method of heating coil as well as heat treatment device
JP2020129443A (en) * 2019-02-07 2020-08-27 日本電子工業株式会社 Induction heating coil and method of manufacturing the same
JP7106467B2 (en) 2019-02-07 2022-07-26 日本電子工業株式会社 Induction heating coil and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5588661B2 (en) Mist cooling device and heat treatment device
CA2679695A1 (en) Device and method for cooling hot strip
JP6427391B2 (en) Hardening device and hardening method
JP2014037610A (en) High-frequency hardening apparatus
JP2006344421A (en) High frequency induction heating device
JP6108612B2 (en) Moving quenching device for long workpiece and moving quenching method
KR101625810B1 (en) Nozzle header, cooling device, device for producing hot-rolled steel sheet, and method for producing hot-rolled steel sheet
JP2002142749A (en) Temperature controller of fluid
KR101485657B1 (en) Apparatus for annealing coils
EP2820161B1 (en) Heating coil, heat treatment apparatus, and heat treatment method for elongated workpiece
US10543519B2 (en) Manufacturing method for bent member and hot-bending apparatus for steel material
WO2018081772A1 (en) Glass manufacturing apparatus and methods of forming a glass ribbon
JP7141076B2 (en) Induction hardening equipment
KR102155361B1 (en) Isothermal Maintenance Apparatus For Forging Material
CN105018692A (en) High-performance quenching automation equipment
JP5246860B2 (en) Rapid heat treatment apparatus and nozzle for rapid heat treatment apparatus
US20240021492A1 (en) Arrangement for Cooling and Motor Module
JP6910710B2 (en) Electromagnetic accelerator
JP6686981B2 (en) Metal strip cooling system
KR20110102085A (en) A high frequency heat treatment device using robot
KR20200045640A (en) Appratus and method for annealing car shaft
JP6001421B2 (en) Induction heating coil body
KR101883564B1 (en) Gas Turbine Blade
JP6604143B2 (en) Gas quenching method
CN102242244B (en) Cooling plant of high-frequency heating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161006