JP2011047037A - Induction heating coil, heat treatment device, and heat treatment method - Google Patents

Induction heating coil, heat treatment device, and heat treatment method Download PDF

Info

Publication number
JP2011047037A
JP2011047037A JP2010157556A JP2010157556A JP2011047037A JP 2011047037 A JP2011047037 A JP 2011047037A JP 2010157556 A JP2010157556 A JP 2010157556A JP 2010157556 A JP2010157556 A JP 2010157556A JP 2011047037 A JP2011047037 A JP 2011047037A
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
heat treatment
processed
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157556A
Other languages
Japanese (ja)
Other versions
JP5985141B2 (en
Inventor
Yoshimasa Tanaka
嘉昌 田中
Yoshitaka Misaka
佳孝 三阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010157556A priority Critical patent/JP5985141B2/en
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to PCT/JP2010/062847 priority patent/WO2011013774A1/en
Priority to EP10804520.4A priority patent/EP2461646B1/en
Priority to CN201510176797.5A priority patent/CN104762448B/en
Priority to CN201510175153.4A priority patent/CN104762447A/en
Priority to KR1020137012302A priority patent/KR101367271B1/en
Priority to IN835DEN2012 priority patent/IN2012DN00835A/en
Priority to RU2012107329/07A priority patent/RU2520569C2/en
Priority to CN201080033937.9A priority patent/CN102626001B/en
Priority to KR1020127002580A priority patent/KR101370568B1/en
Publication of JP2011047037A publication Critical patent/JP2011047037A/en
Priority to US13/360,274 priority patent/US9534267B2/en
Application granted granted Critical
Publication of JP5985141B2 publication Critical patent/JP5985141B2/en
Priority to US15/354,885 priority patent/US10648052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating coil which can improve treatment efficiency, and to provide a heat treatment device, and to provide a heat treatment method. <P>SOLUTION: The induction heating coil has a heating induction part 31 formed in zigzag pattern in which bend sections 34 which are open to one side in the first direction and bend sections 35 which are open to the other side in the first direction are continuously arranged in an alternating manner in the circumferential direction R so as to face each other. The configuration enables the induction heating and quenching device to easily perform the heat treatment of a desired heating region with high treatment efficiency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、誘導加熱コイル、誘導加熱装置、熱処理装置、及び熱処理方法に係り、例えば処理対象物と誘導加熱コイルを相対的に移動しながら処理するものに関する。   The present invention relates to an induction heating coil, an induction heating apparatus, a heat treatment apparatus, and a heat treatment method, and for example, relates to an object to be processed while moving a processing object and the induction heating coil relatively.

金属部材に高周波焼入れ等の熱処理を行う熱処理装置において、被処理部全域に対向する誘導加熱コイルを用いて処理を行う一発加熱方式の誘導加熱装置が知られている(例えば、特許文献1参照)。このような一発加熱方式の熱処理装置では、誘導加熱コイルは、被処理部全域に対応する形状に構成されている。例えば被処理部が円筒形状の場合には円環状の誘導加熱コイルを用いる。   In a heat treatment apparatus for performing heat treatment such as induction hardening on a metal member, an induction heating apparatus of a one-shot heating method is known in which treatment is performed using an induction heating coil opposed to the entire area to be treated (see, for example, Patent Document 1). ). In such a single-heating heat treatment apparatus, the induction heating coil is configured in a shape corresponding to the entire area to be processed. For example, when the part to be processed is cylindrical, an annular induction heating coil is used.

一方、被処理部の一部のみに対向する誘導加熱コイルと、この誘導加熱コイルに追従する冷却ジャケットとを、被処理部に対して相対的に移動させながら加熱処理及び冷却処理を順次行う移動式の熱処理方法が知られている(例えば、特許文献2参照)。このような移動式の熱処理方法において、誘導加熱コイルは、被処理部の一部に対応する形状に構成されている。   On the other hand, the heating process and the cooling process are sequentially performed while the induction heating coil facing only a part of the processing target part and the cooling jacket following the induction heating coil are moved relative to the processing target part. A heat treatment method of the formula is known (for example, see Patent Document 2). In such a mobile heat treatment method, the induction heating coil is configured in a shape corresponding to a part of the part to be processed.

特開2002−174251号公報JP 2002-174251 A 特開昭60−116724号公報JP 60-116724 A

しかしながら、上記技術には以下のような問題がある。すなわち、上述の一発加熱方式の熱処理装置では、処理対象物及び被処理部の形状及び大きさに対応する誘導加熱コイルを用いるため、処理対象物及び被処理部が大きい場合には、大型の誘導加熱コイルが必要となり、また高出力の電力を要する。また、処理対象物に誘導加熱時の熱膨張などによる変形が生じる場合には、誘導加熱コイルと処理対象物との間の寸法を適正に維持することが困難となる。このため、誘導加熱コイルを予め大きめに設定する必要があるので、加熱効率が悪くなるという問題を生じる。   However, the above technique has the following problems. That is, in the heat treatment apparatus of the one-shot heating method described above, an induction heating coil corresponding to the shape and size of the object to be processed and the part to be processed is used. An induction heating coil is required and high output power is required. In addition, when the processing object is deformed due to thermal expansion or the like during induction heating, it is difficult to properly maintain the dimension between the induction heating coil and the processing object. For this reason, since it is necessary to set the induction heating coil larger in advance, there arises a problem that the heating efficiency is deteriorated.

一方、上述の移動式の熱処理方法において、誘導加熱コイルが被処理部の一部に対応する形状に構成されている場合には、単位時間当たりの処理面積が小さく、処理時間が長くなり、処理効率が悪い。また、加熱処理及び冷却処理を連続的に行いながら移動する場合には、例えば環状の被処理部を対象とする際に、処理の開始部と終端部の境目において必要な硬さが得られないソフトゾーンが発生するという問題がある。   On the other hand, in the above-described mobile heat treatment method, when the induction heating coil is configured in a shape corresponding to a part of the processing target, the processing area per unit time is small, the processing time is long, ineffective. In addition, when moving while continuously performing the heat treatment and the cooling treatment, for example, when the annular treatment target portion is targeted, the necessary hardness cannot be obtained at the boundary between the start portion and the end portion of the treatment. There is a problem that a soft zone occurs.

本発明は、大型の処理対象物であっても誘導加熱する際の熱処理効率を向上することが可能な誘導加熱コイル、熱処理装置、及び熱処理方法を提供することを目的とする。   An object of the present invention is to provide an induction heating coil, a heat treatment apparatus, and a heat treatment method capable of improving the heat treatment efficiency in induction heating even for a large object to be treated.

本発明の一形態に係る誘導加熱コイルは、導体部材で形成され、第1方向の一方側に開口する曲部と、前記第1方向の他方側に開口する曲部とが、交互に、対向する向きで、前記第1方向に交差する第2方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することを特徴とする。   An induction heating coil according to an aspect of the present invention is formed of a conductor member, and a curved portion opened on one side in the first direction and a curved portion opened on the other side in the first direction are alternately opposed. And a heating conductor portion having a zigzag shape continuously arranged along a second direction intersecting the first direction.

本発明の一形態に係る熱処理装置は、前記誘導加熱コイルと、前記誘導加熱コイルに接続される高周波電源と、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる移動手段とを備えたことを特徴とする。   In a heat treatment apparatus according to an aspect of the present invention, the induction heating coil, a high-frequency power source connected to the induction heating coil, and the portion to be processed are relative to the induction heating coil along the second direction. And a moving means for moving to.

本発明の一形態に係る熱処理方法は、前記誘導加熱コイルを、前記第2方向に沿って連続する無端のループ状を成す被処理部のうち一部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる、移動加熱工程と、前記被処理部の前記第2方向における全行程に対する加熱処理の後に、前記被処理部を冷却する冷却工程とを備えたことを特徴とする。   In the heat treatment method according to an aspect of the present invention, the induction heating coil may be opposed to a part of the processing target having an endless loop shape continuous along the second direction by induction heating. A heating process for moving the process target part relative to the induction heating coil along the second direction, and a heating process for the entire process of the process target part in the second direction. And a cooling step for cooling the portion to be processed.

本発明によれば、大型の処理対象物であっても誘導加熱する際の熱処理効率を向上することができる。   According to the present invention, it is possible to improve the heat treatment efficiency during induction heating even for a large object to be treated.

本発明の第1実施形態に係る熱処理装置を示す説明図。Explanatory drawing which shows the heat processing apparatus which concerns on 1st Embodiment of this invention. 同実施形態に係る熱処理装置を示す平面図。The top view which shows the heat processing apparatus which concerns on the same embodiment. 同実施形態に係る熱処理装置を示す側面図。The side view which shows the heat processing apparatus which concerns on the same embodiment. 同実施形態に係る熱処理装置を示す正面図。The front view which shows the heat processing apparatus which concerns on the same embodiment. 同実施形態に係る加熱コイルの断面構造を示す説明図。Explanatory drawing which shows the cross-section of the heating coil which concerns on the same embodiment. 本発明の他の実施形態に係る熱処理装置の説明図。Explanatory drawing of the heat processing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る熱処理装置の説明図。Explanatory drawing of the heat processing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る熱処理装置の説明図。Explanatory drawing of the heat processing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る熱処理装置の説明図。Explanatory drawing of the heat processing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る熱処理装置の説明図。Explanatory drawing of the heat processing apparatus which concerns on other embodiment of this invention.

以下、本発明の一実施形態にかかる熱処理装置について、図1乃至図5を参照して説明する。図中矢印X,Y,Zはそれぞれ互いに直交する3方向を示す。また、各図において説明のため、適宜構成を拡大、縮小または省略して示している。   Hereinafter, a heat treatment apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. In the figure, arrows X, Y, and Z indicate three directions orthogonal to each other. In each drawing, the configuration is appropriately enlarged, reduced, or omitted for explanation.

図1は本実施形態に係る熱処理装置の全体構成を概略的に示す説明図である。図2乃至図4は、それぞれ、熱処理装置の平面図、側面図、正面図を示す。   FIG. 1 is an explanatory diagram schematically showing the overall configuration of a heat treatment apparatus according to the present embodiment. 2 to 4 show a plan view, a side view, and a front view of the heat treatment apparatus, respectively.

図1に示すように、熱処理装置10は、処理対象物であるワークP1を移動可能に支持する移動支持部11と、ワークP1の被処理部A1に対して相対的に移動しながら被処理部A1を誘導加熱する誘導加熱部12と、被処理部A1の加熱処理工程の後にワークP1を冷却する冷却部13(冷却手段)と、を備えて構成される。   As shown in FIG. 1, the heat treatment apparatus 10 includes a moving support unit 11 that movably supports a workpiece P1 that is a processing target, and a processing target while moving relative to the processing target A1 of the workpiece P1. An induction heating unit 12 that induction-heats A1 and a cooling unit 13 (cooling unit) that cools the workpiece P1 after the heat treatment process of the processing target A1 are configured.

図2乃至図5に示すように、誘導加熱部12は、電源供給手段としての高周波電源21と、高周波電源21に接続されるリード線22、23と、リード線22,23に接続される一対の導電板24,25を備えるスペーサ28と、両端が一対の導電板24,25にそれぞれ接続された誘導加熱コイル26と、誘導加熱コイル26の加熱導体部31の裏側に配置されるコア27(図2及び図5のみに図示)と、を備えて構成されている。   As shown in FIGS. 2 to 5, the induction heating unit 12 includes a high-frequency power source 21 as power supply means, lead wires 22 and 23 connected to the high-frequency power source 21, and a pair connected to the lead wires 22 and 23. Spacers 28 having conductive plates 24 and 25, an induction heating coil 26 having both ends connected to a pair of conductive plates 24 and 25, and a core 27 (behind the heating conductor portion 31 of the induction heating coil 26). 2 and FIG. 5 only).

図1に示す処理対象物の一例としてのワークP1は厚さ25mm以上の肉厚部品(厚肉部)であり、例えばここでは、軸心C1を中心として、外側半径r1=250mm、内側半径r2=200mm、肉厚寸法t1=50mm、軸方向(第1方向)長さl1=100mmの円筒状部材を用いる。ワークP1の被処理部A1における一部分に対向して、所定のギャップ寸法G1を確保して、加熱導体部31が配置される。   A workpiece P1 as an example of the object to be processed shown in FIG. 1 is a thick part (thick part) having a thickness of 25 mm or more. For example, an outer radius r1 = 250 mm and an inner radius r2 centered on the axis C1. = 200 mm, a wall thickness t 1 = 50 mm, and a cylindrical member having an axial direction (first direction) length l 1 = 100 mm is used. The heating conductor portion 31 is disposed so as to face a portion of the workpiece P1 in the processing target portion A1 and secure a predetermined gap dimension G1.

本実施形態においては、例えば、ワークP1の外周面の軸方向中央部分の円形の帯状の領域を被処理部A1とし、肉厚部であるこの被処理部A1を全周にわたって熱処理する場合を示す。この実施形態においては、ワークP1の軸方向であるZ方向が第1方向となり、軸心C1を中心としてワークP1の外周面に沿う周方向Rが第2方向となる。ここでは周方向Rの半径寸法はワーク外周面の半径寸法r1に、ギャップ寸法G1を足した値であって、r1+G1となる。   In the present embodiment, for example, a case where a circular band-like region in the central portion in the axial direction of the outer peripheral surface of the workpiece P1 is set as the processing target A1, and the processing target A1 that is a thick portion is heat treated over the entire circumference is shown. . In this embodiment, the Z direction that is the axial direction of the workpiece P1 is the first direction, and the circumferential direction R along the outer peripheral surface of the workpiece P1 with the axis C1 as the center is the second direction. Here, the radial dimension in the circumferential direction R is a value obtained by adding the gap dimension G1 to the radial dimension r1 of the outer peripheral surface of the workpiece, and is r1 + G1.

被処理部A1は、ワークP1の外周面において周方向に沿って連続する無端のループ状を成す。移動支持部11によって、ワークP1が軸心C1を中心に回転することにより、被処理部A1と加熱導体部31とが周方向Rに沿って相対移動することとなる。   The part A1 to be processed has an endless loop shape that is continuous along the circumferential direction on the outer peripheral surface of the workpiece P1. The workpiece P1 is rotated about the axis C1 by the movement support portion 11, so that the processing target portion A1 and the heating conductor portion 31 are relatively moved along the circumferential direction R.

図2乃至図4に示すように、誘導加熱コイル26は、ワークP1の被処理部A1に対向するジグザグ形状の加熱導体部31と、加熱導体部31の一端側31aに連続する第1の接続導体部32と、加熱導体部31の他端側31bに連続する第2の接続導体部33と、を連続して一体に備えている。   As shown in FIGS. 2 to 4, the induction heating coil 26 includes a zigzag-shaped heating conductor portion 31 facing the processing target A <b> 1 of the workpiece P <b> 1 and a first connection continuous to one end side 31 a of the heating conductor portion 31. The conductor part 32 and the 2nd connection conductor part 33 continuous with the other end side 31b of the heating conductor part 31 are provided continuously and integrally.

図4に示すように、加熱導体部31は、導体部材31wにより形成され、複数のコ字状の屈曲部34、35がZ方向における中央C2に向かって開口して、交互に対向する向きで、周方向Rに沿って複数連続して配置されるジグザグ形状を成す。屈曲部34は下向きに開口したコ字形状を成し、屈曲部35は上向きに開口したコ字形状を成す。   As shown in FIG. 4, the heating conductor portion 31 is formed of a conductor member 31w, and a plurality of U-shaped bent portions 34 and 35 open toward the center C2 in the Z direction and are alternately opposed to each other. A zigzag shape in which a plurality of pieces are continuously arranged along the circumferential direction R is formed. The bent portion 34 has a U-shape opened downward, and the bent portion 35 has a U-shape opened upward.

加熱導体部31の第2方向の全寸法R2は、加熱導体部31に対向する被処理部A1の第2方向の全周の寸法の1/10以上1/2以下である。被処理部A1に対する加熱導体部31の第2方向の寸法の割合であるカバー率は、ここでは1/10程度となるように設定している。   The total dimension R2 of the heating conductor 31 in the second direction is not less than 1/10 and not more than 1/2 of the dimension of the entire circumference in the second direction of the processing target A1 facing the heating conductor 31. The cover ratio, which is the ratio of the dimension in the second direction of the heating conductor portion 31 to the processed portion A1, is set to be about 1/10 here.

なお、隣り合う導体部材31wの間隔であるR5は導体部材31wの幅であるR4の寸法の1倍以上、かつ、2倍以下に設定する。隣り合う導体部材31wの間隔が導体部材31wの幅寸法の1倍以下だと隣同士の電流が逆方向のため磁束を打ち消し合ってしまい、2倍より大きいと離れすぎて加熱効率が悪くなるためである。本実施形態においては、図4中のR4=15mm、R5=20mmに寸法設定されている。   In addition, R5 which is the space | interval of the adjacent conductor member 31w is set to 1 time or more of the dimension of R4 which is the width | variety of the conductor member 31w, and 2 times or less. If the distance between the adjacent conductor members 31w is less than or equal to one time the width of the conductor member 31w, the adjacent currents are in opposite directions, so the magnetic fluxes cancel each other. It is. In the present embodiment, the dimensions are set to R4 = 15 mm and R5 = 20 mm in FIG.

第1の接続導体部32は、加熱導体部31の一端側31aの端部からY方向に延びる導体部32aと、導体部32aの端部から屈曲してX方向に沿って導電板24の幅方向中央側に向かって延びる導体部32bと、導電板24の中央で屈曲してY方向に向かって延びる導体部32cと、さらに屈曲してZ方向に延びる導体部32dと、を連続して一体に備えて構成されている。第1の接続導体部32の端部には冷却液用のホースなどの部品を接続するためのカップラ36が設けられている。   The first connection conductor portion 32 includes a conductor portion 32a extending in the Y direction from the end portion 31a of the heating conductor portion 31, and a width of the conductive plate 24 along the X direction by bending from the end portion of the conductor portion 32a. The conductor portion 32b extending toward the center in the direction, the conductor portion 32c bent toward the Y direction by bending at the center of the conductive plate 24, and the conductor portion 32d extending further in the Z direction continuously integrated. It is configured to prepare for. A coupler 36 for connecting components such as a coolant hose is provided at the end of the first connection conductor portion 32.

第2の接続導体部33は、加熱導体部31の他端側31bの端部からY方向に延びる導体部33aと、導体部33aの端部から屈曲してX方向に沿って導電板25の幅方向中央側に向かって延びる導体部33bと、導電板25の中央で屈曲してY方向に向かって延びる導体部33cと、さらに屈曲してZ方向に延びる導体部33dと、を連続して一体に備えて構成されている。第2の接続導体部33の端部には冷却液用のホースなどの部品を接続するためのカップラ37が設けられている。   The second connecting conductor portion 33 includes a conductor portion 33a extending in the Y direction from the end portion of the other end side 31b of the heating conductor portion 31, and a bent portion of the conductive plate 25 along the X direction by bending from the end portion of the conductor portion 33a. A conductor portion 33b extending toward the center in the width direction, a conductor portion 33c bent at the center of the conductive plate 25 and extending toward the Y direction, and a conductor portion 33d further bent and extending in the Z direction are continuously provided. It is configured to be integrated. A coupler 37 for connecting components such as a coolant hose is provided at the end of the second connection conductor portion 33.

第1の接続導体部32と第2の接続導体部33とは、スペーサ28を挟んで厚さ(Z軸)方向に離間して配置されている。スペーサ28は、それぞれ矩形の平板状を成す一対の導電板24,25と、これら一対の導電板24,25の間に挟まれる矩形の平板状の絶縁板38とがZ方向に重ねて配置されるとともに、これら導電板24,25及び絶縁板38が絶縁ブッシュ39を介してボルト41及びナット42により固定されて構成されている。各導電板24,25は、リード線22,23を介して高周波電源21に接続されている。   The first connection conductor portion 32 and the second connection conductor portion 33 are arranged to be separated from each other in the thickness (Z-axis) direction with the spacer 28 interposed therebetween. The spacer 28 includes a pair of conductive plates 24 and 25 each having a rectangular flat plate shape, and a rectangular flat plate-shaped insulating plate 38 sandwiched between the pair of conductive plates 24 and 25 so as to overlap each other in the Z direction. The conductive plates 24 and 25 and the insulating plate 38 are fixed by bolts 41 and nuts 42 through an insulating bush 39. Each of the conductive plates 24 and 25 is connected to the high frequency power source 21 via the lead wires 22 and 23.

図5に断面を示すように、誘導加熱コイル26は銅などの材質から例えば矩形の中空形状に形成されている。この中空部分26aは冷却液が流通する通路となる。誘導加熱コイル26の幅寸法W1=15mmとし、Y方向の厚み寸法T1=10mmとした。   As shown in a cross section in FIG. 5, the induction heating coil 26 is formed in a rectangular hollow shape from a material such as copper. The hollow portion 26a becomes a passage through which the coolant flows. The width dimension W1 of the induction heating coil 26 was set to 15 mm, and the thickness dimension T1 in the Y direction was set to 10 mm.

コア27は、ケイ素鋼板、ポリアイアンコア、フェロトン等の高透磁率を有する材料からなり、加熱導体部31の裏側に配置されている。コア27は、厚さT2=5mm程度を有し、加熱導体部31の両側部及び後方の壁部を一体に備える断面コ字形状に形成されている。   The core 27 is made of a material having a high magnetic permeability such as a silicon steel plate, a polyiron core, or ferroton, and is disposed on the back side of the heating conductor portion 31. The core 27 has a thickness T2 = about 5 mm, and is formed in a U-shaped cross section that integrally includes both side portions of the heating conductor portion 31 and a rear wall portion.

図1に示す移動支持部11は、ワークP1を、所定位置にセットした状態で、軸心C1を中心に回転移動させる。このとき、移動支持部11は、加熱導体部31とワークP1との間のギャップ寸法G1を所定値に維持するよう制御する。さらに、移動支持部11は、被処理部A1の全周(全行程)にわたって加熱処理が終了した後、ワークP1を軸方向に沿って下方の冷却部13に移動させる。   The movement support unit 11 shown in FIG. 1 rotates the workpiece P1 around the axis C1 with the workpiece P1 set at a predetermined position. At this time, the movement support part 11 controls the gap dimension G1 between the heating conductor part 31 and the workpiece P1 to be maintained at a predetermined value. Furthermore, the movement support unit 11 moves the workpiece P1 to the lower cooling unit 13 along the axial direction after the heat treatment is completed over the entire circumference (the entire stroke) of the processing target A1.

加熱コイル26の下方に設けられた冷却部13は、加熱処理後に下方に移動したワークP1の外側を囲むように筒状に構成され、内側の空間13aに配されたワークP1を冷却する。   The cooling unit 13 provided below the heating coil 26 is configured in a cylindrical shape so as to surround the outside of the work P1 moved downward after the heat treatment, and cools the work P1 arranged in the inner space 13a.

以下、本実施形態にかかる熱処理方法について説明する。本実施形態の熱処理方法は、被処理部A1を加熱しながら相対移動させる移動加熱工程と、移動加熱工程後に被処理部A1を冷却する冷却工程とで構成される。   Hereinafter, the heat treatment method according to the present embodiment will be described. The heat treatment method of the present embodiment includes a moving heating process in which the processing target A1 is relatively moved while heating, and a cooling process in which the processing target A1 is cooled after the moving heating process.

移動加熱工程において、図1乃至図4に示すように被処理部A1のうち一部に加熱導体部31を対向させた状態で、高周波電源21をON状態とすると、高周波電流が、リード線22、第1の導電板24、第1の接続導体部32、加熱導体部31、第2の接続導体部33、第2の導電板25、及びリード線23、を順に経て、高周波電源21に戻る。   In the moving heating process, when the high frequency power supply 21 is turned on with the heating conductor 31 facing a part of the processing target A1 as shown in FIGS. The first conductive plate 24, the first connection conductor portion 32, the heating conductor portion 31, the second connection conductor portion 33, the second conductive plate 25, and the lead wire 23 are sequentially passed back to the high-frequency power source 21. .

このとき、加熱導体部31において高周波電流は図2乃至図4中に矢印で示すように一端31a側から他端31b側へ向かって流れ、加熱導体部31の表面に誘導電流が発生し、対向配置される被処理部A1が加熱される。   At this time, the high-frequency current flows in the heating conductor portion 31 from the one end 31a side to the other end 31b side as shown by arrows in FIGS. The to-be-processed part A1 arrange | positioned is heated.

このとき、移動支持部11により、ワークP1の被処理部A1の表面と加熱導体部31の表面との間のギャップ寸法G1を所定値に維持した状態で、ワークP1を回転することにより、被処理部A1に対して加熱導体部31が第2方向に所定の速度で相対移動する。   At this time, the moving support unit 11 rotates the workpiece P1 while maintaining the gap dimension G1 between the surface of the processing target portion A1 of the workpiece P1 and the surface of the heating conductor portion 31 at a predetermined value. The heating conductor portion 31 moves relative to the processing portion A1 in the second direction at a predetermined speed.

例えばここでは、電力を100〜150kW、ギャップ寸法G1=2.5mmを維持しながら、200〜300mm/secの速度で相対移動させる。   For example, the relative movement is performed at a speed of 200 to 300 mm / sec while maintaining the power of 100 to 150 kW and the gap dimension G1 = 2.5 mm.

以上により、加熱導体部31に対向配置されるワークP1の外周面の帯状の領域である被処理部A1全域が均一に加熱される。   As described above, the entire area A1 to be processed, which is a band-like region on the outer peripheral surface of the work P1 disposed to face the heating conductor 31, is uniformly heated.

被処理部A1の全周にわたって加熱処理が終了した後、移動支持部11は、ワークP1を、Z方向に沿って下方の冷却部13に移動させる。冷却部13は冷却ジャケットに囲まれた冷却領域である空間13aに配置されたワークP1を冷却液で冷却する。   After the heat treatment is completed over the entire periphery of the processing target A1, the moving support unit 11 moves the workpiece P1 to the cooling unit 13 below along the Z direction. The cooling unit 13 cools the workpiece P1 arranged in the space 13a, which is a cooling region surrounded by the cooling jacket, with the coolant.

さらに、誘導加熱コイル26の内側の中空部分26aを通って、第1の接続導体部32、加熱導体部31、第2の接続導体部33、の中空部分26aを経由して冷却液が流れることにより、誘導加熱コイル26及び導電板24,25が冷却される。   Further, the coolant flows through the hollow portion 26 a inside the induction heating coil 26 and through the hollow portion 26 a of the first connection conductor portion 32, the heating conductor portion 31, and the second connection conductor portion 33. Thus, the induction heating coil 26 and the conductive plates 24 and 25 are cooled.

本実施形態にかかる誘導加熱コイル、熱処理装置及び熱処理方法によれば、以下のような効果が得られる。すなわち、加熱導体部31を、複数の曲部を連続して有するジグザグ形状としたことにより、強磁界を確保できるとともに、良好な温度パターンが得られる。このため、少ない電力で、高速かつ均一な熱処理が可能となる。   According to the induction heating coil, the heat treatment apparatus, and the heat treatment method according to the present embodiment, the following effects can be obtained. That is, by forming the heating conductor portion 31 in a zigzag shape having a plurality of curved portions continuously, a strong magnetic field can be secured and a good temperature pattern can be obtained. For this reason, high-speed and uniform heat treatment can be performed with less power.

例えばヘアピン状のコイルを用いた場合はコイル効率が30%程度であるのに対し、本実施形態のようなジグザグ形状とした場合には70%程度のコイル効率を確保することが出来る。   For example, when a hairpin coil is used, the coil efficiency is about 30%, whereas when the zigzag shape is used as in this embodiment, a coil efficiency of about 70% can be ensured.

さらに、隣り合う導体部材31wの間隔は、加熱導体部31の導体部材31wの幅寸法の1倍以上2倍以下に設定することで、磁束の打ち消しあいを防止でき、コイルの自己損失を低減することが可能である。   Further, by setting the interval between the adjacent conductor members 31w to be not less than 1 and not more than twice the width of the conductor member 31w of the heating conductor portion 31, magnetic flux cancellation can be prevented and coil self-loss can be reduced. It is possible.

本実施形態にかかるジグザグ形状の加熱導体部31を用いた場合には、電力100kWとして被処理部A1の表面の到達温度850度にする場合には200〜300mm/secの速度とし、加熱時間=300sで実現できる。すなわち、ジグザグ形状の加熱導体部31を有する誘導加熱コイル26を用いることで、例えば平板状の誘導加熱コイルでは実現できない移動式の部分加熱による大型ワークの熱処理が実現可能となる。   When the zigzag-shaped heating conductor 31 according to the present embodiment is used, when the power reaches 100 kW and the surface temperature of the processing target A1 is 850 degrees, the heating time is set to 200 to 300 mm / sec. It can be realized in 300 seconds. That is, by using the induction heating coil 26 having the zigzag-shaped heating conductor portion 31, for example, heat treatment of a large workpiece by moving partial heating that cannot be realized by a flat induction heating coil can be realized.

また、部分加熱であっても、被処理部A1がループ状の場合に処理開始端及び終了端においてソフトゾーンのない均一な熱処理が可能となる。   Even in the case of partial heating, when the part A1 to be processed has a loop shape, uniform heat treatment without a soft zone at the processing start end and end end is possible.

このため、例えば転がり軸受をワークとし、転動体が通過する軌道面を被処理部A1とした場合に、ソフトゾーンのない均一な硬化層を形成できるので、特に良好な特性を得ることができる。   For this reason, for example, when the rolling bearing is a workpiece and the raceway surface through which the rolling element passes is the treated portion A1, a uniform hardened layer without a soft zone can be formed, so that particularly good characteristics can be obtained.

被処理部A1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、被処理部A1及びワークP1が大型となる場合には複数配置することにより加熱導体部31のサイズを小さく抑えることができ、熱処理装置10を小型にすることができる。このため、必要な電力を低くするとともに製造コストを低く抑えることが可能となる。   Since the heat treatment is performed while relatively moving while facing only a part of the portion to be processed A1, when the portion to be processed A1 and the workpiece P1 are large, the size of the heating conductor portion 31 is increased by arranging a plurality of portions. The heat treatment apparatus 10 can be reduced in size. For this reason, it is possible to reduce the required power and the manufacturing cost.

また、被処理部A1の一部のみに対向させつつ相対移動させながら加熱処理を行うこととしたので、円形などの曲部を有する部材をワークとした場合に、誘導加熱時の熱膨張等の要因によりワークが変形しても、容易に、適正なギャップ寸法を維持することができる。例えば円形の被処理部に対応する円環状の誘導加熱コイルを用いて一発加熱方式で熱処理を行う場合には、熱膨張によりワークが変形するため、誘導加熱コイルを予め大きめに設定する必要があるので、加熱効率が悪くなるという問題があるが、本実施形態のようにカバー率が小さい場合には、ワークとの配置を調整するだけで適正なギャップを維持することが出来る。   In addition, since the heat treatment is performed while relatively moving while facing only a part of the portion to be treated A1, when a member having a curved portion such as a circle is used as a workpiece, the thermal expansion during induction heating, etc. Even if the workpiece is deformed due to a factor, an appropriate gap dimension can be easily maintained. For example, when heat treatment is performed by a single heating method using an annular induction heating coil corresponding to a circular target part, the workpiece is deformed due to thermal expansion. Therefore, there is a problem that the heating efficiency is deteriorated. However, when the cover ratio is small as in the present embodiment, it is possible to maintain an appropriate gap only by adjusting the arrangement with the workpiece.

なお、本発明は上記各実施形態に限られるものではなく、各構成は適宜変形実施可能である。また、前記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、処理条件や、各構成要素の形状、材料、材質、寸法などは上記実施形態で例示したものに限られず、適宜変更可能である。また、ワークの厚さ25mm以上の部位を肉厚部品(厚肉部)とする。   The present invention is not limited to the above-described embodiments, and each configuration can be modified as appropriate. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, the processing conditions and the shapes, materials, materials, dimensions, and the like of each component are not limited to those exemplified in the above embodiment, and can be changed as appropriate. Further, a part having a thickness of 25 mm or more is defined as a thick part (thick part).

例えば、上記実施形態においてはワークP1を回転させることにより相対移動をする例を挙げたが、これに限られるものではなく、誘導加熱部12側を第2方向に沿う所定の軌跡で移動させることにより相対移動させてもよい。屈曲部34,35をそれぞれ2つずつ配置したが、これに限られるものではなく、1つあるいは3つ以上であってもよいし、屈曲部34と屈曲部35の数が異なっていてもよい。   For example, in the above-described embodiment, an example of relative movement by rotating the workpiece P1 has been described. However, the present invention is not limited to this, and the induction heating unit 12 side is moved along a predetermined locus along the second direction. May be moved relative to each other. Although each of the two bent portions 34 and 35 is disposed, the present invention is not limited to this, and the number of the bent portions 34 and the number of the bent portions 35 may be different. .

上記実施形態においては、1つの被処理部A1に対して1つの誘導加熱部12を一箇所のみに配置した場合を例示したが、これに限られるものではなく、第2方向に沿って複数の誘導加熱部12を配置してもよい。例えば2つの誘導加熱部12を設置する場合には、図6に示すように互いに対向するように中心角が180度ずれた位置に2つの誘導加熱コイル26を配置し、3つの場合には中心角を120度とする。図10には4つの誘導加熱コイル26を中心角を90度ずつずらして配置した平面図を示す。このように複数の誘導加熱部12を用いると処理時間を短縮して加熱処理を早く完了することができるので、ワークのサイズが大きい場合に好適である。   In the said embodiment, although the case where the one induction heating part 12 was arrange | positioned only at one place with respect to one to-be-processed part A1, it is not restricted to this, A plurality of along the 2nd direction. An induction heating unit 12 may be disposed. For example, when two induction heating units 12 are installed, two induction heating coils 26 are arranged at positions where the central angles are shifted by 180 degrees so as to face each other as shown in FIG. The angle is 120 degrees. FIG. 10 shows a plan view in which four induction heating coils 26 are arranged with the central angle shifted by 90 degrees. As described above, when a plurality of induction heating units 12 are used, the heat treatment can be completed quickly by shortening the treatment time, which is preferable when the size of the workpiece is large.

上述の実施形態では、加熱導体部31は平面視において中央が両端よりも突出するように湾曲した構成としたが、これに限られるものではなく、ワークの形状に応じて適宜変更可能である。例えば図7に示すように、円形のワークP2の内周面を被処理部A2とする場合には、加熱導体部31は両端部分が中央側よりも突出するように上記とは逆方向に湾曲した構成とする。また、図8に示すようにワークP3の平面を被処理部A3とする場合には、加熱導体部31は平面視直線状となるように構成する。なお、この場合には直線状のX方向が第1方向となる。これらの場合にも上記実施形態と同様の効果が得られる。   In the above-described embodiment, the heating conductor portion 31 is configured to be curved so that the center protrudes from both ends in plan view, but is not limited to this, and can be appropriately changed according to the shape of the workpiece. For example, as shown in FIG. 7, when the inner peripheral surface of the circular workpiece P2 is the processing target A2, the heating conductor 31 is curved in the opposite direction so that both end portions protrude from the center side. The configuration is as follows. Also, as shown in FIG. 8, when the plane of the workpiece P3 is the processing target A3, the heating conductor portion 31 is configured to be linear in plan view. In this case, the linear X direction is the first direction. In these cases, the same effect as the above embodiment can be obtained.

上記実施形態では、曲部として、コ字状に矩形に屈曲した屈曲部34,35を例示したがこれに限られるものではない。例えば図9に示すように、半円周状に湾曲した形状の湾曲部134,135を有する構造としてもよい。この場合には、第1方向の中央C2に集中する温度パターンで加熱される。このため、例えば中央C2側の加熱温度を上げたい場合に好適となる。   In the above-described embodiment, the bent portions 34 and 35 that are bent in a rectangular shape in a U-shape are illustrated as the bent portion, but the present invention is not limited to this. For example, as shown in FIG. 9, it is good also as a structure which has the curved parts 134 and 135 of the shape curved in the semicircular shape. In this case, heating is performed with a temperature pattern concentrated at the center C2 in the first direction. For this reason, for example, it is suitable when it is desired to increase the heating temperature on the center C2 side.

上記実施形態では、厚みが均一な円弧状の面を被処理部A1とした場合を例示したが、これに限られるものではなく、被処理部の表面が傾斜していてもよいし、凹部などの段差部分を有するものであってもよい。   In the above embodiment, the case where the processing target A1 is an arc-shaped surface having a uniform thickness is exemplified, but the present invention is not limited to this, and the surface of the processing target may be inclined, a concave portion or the like. It may have a step portion.

上記実施形態では、ワークの半径が250mm程度でカバー率が1/10程度である場合について例示したが、これに限られるものではない。例えばカバー率の範囲はワークの径等の条件に応じて適宜変更可能であり、例えば1/10倍以上1/2倍以下、1/10〜1/3のカバー率が好ましい。1/10未満では十分な加熱ができない。1/2を超えると、加熱時のワーク膨張にコイルを追従させるのが難しい。また、設備コストも高くなる。   In the said embodiment, although illustrated about the case where the radius of a workpiece | work is about 250 mm and a coverage is about 1/10, it is not restricted to this. For example, the range of the coverage can be appropriately changed according to conditions such as the diameter of the workpiece. For example, a coverage of 1/10 times or more and 1/2 times or less and 1/10 to 1/3 is preferable. If it is less than 1/10, sufficient heating cannot be performed. If it exceeds 1/2, it is difficult for the coil to follow the workpiece expansion during heating. In addition, the equipment cost increases.

本発明の他の実施形態として、例えば被処理部A1の寸法を、ワークの外径r1=φ1000mm、高さl1=110mm、と設定した場合には、被処理部A1に対向して2箇所に加熱導体部31を設置し、2箇所の加熱導体部31の合計の周方向の寸法を600mmとし、カバー率を1/5程度とした。この場合には、熱処理条件は、電力140kW、加熱時間=310sで、被処理部A1の表面の到達温度を900度として熱処理が実現できた。   As another embodiment of the present invention, for example, when the dimension of the processed part A1 is set such that the outer diameter of the workpiece r1 = φ1000 mm and the height l1 = 110 mm, it is opposed to the processed part A1 at two locations. The heating conductor portion 31 was installed, the total circumferential dimension of the two heating conductor portions 31 was 600 mm, and the cover ratio was about 1/5. In this case, the heat treatment conditions were an electric power of 140 kW, a heating time = 310 s, and a heat treatment could be realized by setting the reached temperature of the surface of the treated portion A1 to 900 degrees.

さらに、本発明の他の実施形態として、例えば被処理部A1の寸法を、ワークの外径r1=φ3000mm、高さl1=135mm、とした場合には、被処理部A1に対向して4箇所に加熱導体部31を設置し、4箇所の加熱導体部31の合計の周方向の寸法を2400mmとし、カバー率を1/4程度とした。この場合には、熱処理条件は、電力185kW、加熱時間=280sで、被処理部A1の表面の到達温度を920度として熱処理が実現できた。   Furthermore, as another embodiment of the present invention, for example, when the dimension of the processed part A1 is set to the outer diameter r1 = φ3000 mm of the workpiece and the height l1 = 135 mm, the four parts are opposed to the processed part A1. The heating conductor part 31 was installed in this, and the total circumferential dimension of the four heating conductor parts 31 was 2400 mm, and the coverage was about 1/4. In this case, the heat treatment conditions were as follows: the power was 185 kW, the heating time was 280 s, and the temperature reached on the surface of the treated part A1 was 920 degrees.

図10には本発明の他の実施形態として、カバー率を1/3倍とし、第2方向に沿って4つの加熱導体部31を配置した場合を例示する。ここでは等間隔に配置される4つの加熱導体部31の合計のカバー率を1/3に設定した。このようにカバー率を設定することで、所望の処理時間及び処理効率を維持しつつ、誘導加熱装置の小型化が可能となる。   FIG. 10 illustrates, as another embodiment of the present invention, a case where the coverage is 1/3 times and four heating conductor portions 31 are arranged along the second direction. Here, the total coverage of the four heating conductor portions 31 arranged at equal intervals is set to 1/3. By setting the cover rate in this way, it is possible to reduce the size of the induction heating device while maintaining a desired processing time and processing efficiency.

また、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を組合せてもよい。   Moreover, you may delete some components from all the components shown by embodiment. Furthermore, the constituent elements over different embodiments may be combined.

P1〜P4…ワーク(処理対象物)、A1〜A4…被処理部、C1…軸心、R…周方向(第2方向)、C2…中央、10…熱処理装置、
11…移動支持部(移動手段)、12…誘導加熱部、13…冷却部、
21…高周波電源、26…誘導加熱コイル、26a…中空部分、27…コア、
31…加熱導体部、34,35…屈曲部(曲部)、134、135…湾曲部(曲部)。
P1 to P4 ... Workpiece (object to be treated), A1 to A4 ... Processed part, C1 ... Axle, R ... Circumferential direction (second direction), C2 ... Center, 10 ... Heat treatment device,
DESCRIPTION OF SYMBOLS 11 ... Movement support part (movement means), 12 ... Induction heating part, 13 ... Cooling part,
21 ... high frequency power source, 26 ... induction heating coil, 26a ... hollow portion, 27 ... core,
31 ... heating conductor part, 34, 35 ... bent part (curved part), 134, 135 ... curved part (curved part).

Claims (8)

導体部材で形成され、第1方向の一方側に開口する曲部と、前記第1方向の他方側に開口する曲部とが、交互に、対向する向きで、前記第1方向に交差する第2方向に沿って連続して配置されるジグザグ形状を成す加熱導体部を有することを特徴とする誘導加熱コイル。   A bent portion formed of a conductive member and opening on one side in the first direction and a bent portion opening on the other side in the first direction alternately intersect each other in the first direction. An induction heating coil comprising a heating conductor portion having a zigzag shape arranged continuously along two directions. 前記加熱導体部は、隣り合う曲部を形成する導体部材の間隔が、前記曲部を形成する導体部材の幅寸法の1倍以上、かつ、2倍以下であることを特徴とする請求項1記載の誘導加熱コイル。   2. The heating conductor portion is characterized in that an interval between conductor members forming adjacent curved portions is not less than 1 time and not more than 2 times a width dimension of a conductor member forming the curved portion. The induction heating coil as described. 前記加熱導体部の前記第2方向の寸法は、前記加熱導体部に対向する被処理部の前記第2方向の寸法の1/10以上1/2以下であることを特徴とする請求項1記載の誘導加熱コイル。   The dimension of the said 2nd direction of the said heating conductor part is 1/10 or more and 1/2 or less of the dimension of the said 2nd direction of the to-be-processed part which opposes the said heating conductor part. Induction heating coil. 前記各曲部はそれぞれコ字形状に屈曲して構成されたことを特徴とする請求項1乃至3のいずれか記載の誘導加熱コイル。   The induction heating coil according to any one of claims 1 to 3, wherein each of the curved portions is configured to be bent in a U-shape. 前記被処理部は厚肉部であることを特徴とする請求項1乃至4のいずれか記載の誘導加熱コイル。   The induction heating coil according to claim 1, wherein the portion to be processed is a thick portion. 請求項1乃至5のいずれかに記載の誘導加熱コイルと、
前記誘導加熱コイルに接続される高周波電源と、
前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる移動手段と、を備えたことを特徴とする熱処理装置。
An induction heating coil according to any one of claims 1 to 5,
A high frequency power source connected to the induction heating coil;
A heat treatment apparatus comprising: moving means for moving the processing target portion relative to the induction heating coil along the second direction.
前記被処理部は前記第2方向に沿って連続する無端のループ状を成し、
前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させながら前記被処理部の前記第2方向における全行程を加熱した後、前記被処理部の冷却処理を行う冷却部を備えたことを特徴とする請求項6記載の熱処理装置。
The processed portion has an endless loop shape continuous along the second direction,
After heating the entire process in the second direction of the processed part while moving the processed part relative to the induction heating coil along the second direction, the cooling process of the processed part is performed. The heat treatment apparatus according to claim 6, further comprising a cooling unit to perform.
請求項1乃至5のいずれかに記載の誘導加熱コイルを、前記第2方向に沿って連続する無端のループ状を成す被処理部のうち一部に対向させて誘導加熱により前記被処理部を加熱しながら、前記被処理部を前記誘導加熱コイルに対して前記第2方向に沿って相対的に移動させる、移動加熱工程と、
前記被処理部の前記第2方向における全行程に対する加熱処理の後に、前記被処理部を冷却する冷却工程と、を備えたことを特徴とする、熱処理方法。
The induction heating coil according to any one of claims 1 to 5 is opposed to a part of an endless loop-like processed part continuous along the second direction so that the processed part is induction-heated. A moving heating step of moving the portion to be treated relative to the induction heating coil along the second direction while heating;
And a cooling step of cooling the portion to be processed after the heat treatment for the entire process in the second direction of the portion to be processed.
JP2010157556A 2009-07-30 2010-07-12 Induction heating coil, heat treatment apparatus, and heat treatment method Active JP5985141B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2010157556A JP5985141B2 (en) 2009-07-30 2010-07-12 Induction heating coil, heat treatment apparatus, and heat treatment method
CN201080033937.9A CN102626001B (en) 2009-07-30 2010-07-29 Induction hardening equipment, induction hardening method, load coil, annealing device and heat treatment method
CN201510176797.5A CN104762448B (en) 2009-07-30 2010-07-29 Induction hardening equipment, induction hardening method, load coil, annealing device and heat treatment method
CN201510175153.4A CN104762447A (en) 2009-07-30 2010-07-29 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method
KR1020137012302A KR101367271B1 (en) 2009-07-30 2010-07-29 Induction heating coil, heat treatment device, and heat treatment method
IN835DEN2012 IN2012DN00835A (en) 2009-07-30 2010-07-29
PCT/JP2010/062847 WO2011013774A1 (en) 2009-07-30 2010-07-29 Induction heating and quenching device, induction heating and quenching method, induction heating coil, heat treatment device, and heat treatment method
EP10804520.4A EP2461646B1 (en) 2009-07-30 2010-07-29 Induction heating and quenching device, and induction heating and quenching method
KR1020127002580A KR101370568B1 (en) 2009-07-30 2010-07-29 Induction heating and quenching device, induction heating and quenching method, induction heating coil, heat treatment device, and heat treatment method
RU2012107329/07A RU2520569C2 (en) 2009-07-30 2010-07-29 Device for inductive tempering, inductive tempering process, inductor to this end, device for heat treatment and heat treatment process
US13/360,274 US9534267B2 (en) 2009-07-30 2012-01-27 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method
US15/354,885 US10648052B2 (en) 2009-07-30 2016-11-17 Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009178256 2009-07-30
JP2009178256 2009-07-30
JP2010157556A JP5985141B2 (en) 2009-07-30 2010-07-12 Induction heating coil, heat treatment apparatus, and heat treatment method

Publications (2)

Publication Number Publication Date
JP2011047037A true JP2011047037A (en) 2011-03-10
JP5985141B2 JP5985141B2 (en) 2016-09-06

Family

ID=43833654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157556A Active JP5985141B2 (en) 2009-07-30 2010-07-12 Induction heating coil, heat treatment apparatus, and heat treatment method

Country Status (1)

Country Link
JP (1) JP5985141B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098198A (en) * 2012-11-15 2014-05-29 Fuji Electronics Industry Co Ltd Inductive heating coil body
JP2016185665A (en) * 2015-03-27 2016-10-27 第一高周波工業株式会社 Heating method
JP2017212234A (en) * 2017-09-11 2017-11-30 光洋サーモシステム株式会社 Induction heating coil
JP2017212233A (en) * 2017-09-11 2017-11-30 光洋サーモシステム株式会社 Induction heating coil
JP2018006350A (en) * 2017-09-11 2018-01-11 光洋サーモシステム株式会社 Induction heating coil
JP2018010876A (en) * 2017-09-11 2018-01-18 光洋サーモシステム株式会社 Induction heating coil
JP2018041730A (en) * 2017-09-11 2018-03-15 光洋サーモシステム株式会社 Induction heating coil
US10376990B2 (en) 2014-05-12 2019-08-13 Koyo Thermo Systems Co., Ltd. Induction heating coil
US10462854B2 (en) 2014-04-14 2019-10-29 Neturen Co., Ltd. Apparatus and method for heating annular workpiece, and heating coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361509A (en) * 1976-11-16 1978-06-02 Toyota Motor Corp Hardening method by high frequency heating
JP2002235111A (en) * 2001-02-05 2002-08-23 Toyota Motor Corp Low strain hardening apparatus and hardening method
JP2004353035A (en) * 2003-05-29 2004-12-16 Dai Ichi High Frequency Co Ltd Induction heating apparatus and method for heating thin part
JP2008107063A (en) * 2006-10-27 2008-05-08 Shinko Sangyo Kk Fluid material heater using induction heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361509A (en) * 1976-11-16 1978-06-02 Toyota Motor Corp Hardening method by high frequency heating
JP2002235111A (en) * 2001-02-05 2002-08-23 Toyota Motor Corp Low strain hardening apparatus and hardening method
JP2004353035A (en) * 2003-05-29 2004-12-16 Dai Ichi High Frequency Co Ltd Induction heating apparatus and method for heating thin part
JP2008107063A (en) * 2006-10-27 2008-05-08 Shinko Sangyo Kk Fluid material heater using induction heating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098198A (en) * 2012-11-15 2014-05-29 Fuji Electronics Industry Co Ltd Inductive heating coil body
US10462854B2 (en) 2014-04-14 2019-10-29 Neturen Co., Ltd. Apparatus and method for heating annular workpiece, and heating coil
US10376990B2 (en) 2014-05-12 2019-08-13 Koyo Thermo Systems Co., Ltd. Induction heating coil
US10384310B2 (en) 2014-05-12 2019-08-20 Koyo Thermo Systems Co., Ltd. Induction heating coil
US10967461B2 (en) 2014-05-12 2021-04-06 Koyo Thermo Systems Co., Ltd. Induction heating coil
US11433481B2 (en) 2014-05-12 2022-09-06 Koyo Thermo Systems Co., Ltd. Induction heating coil and method for manufacturing induction heating coil
JP2016185665A (en) * 2015-03-27 2016-10-27 第一高周波工業株式会社 Heating method
JP2017212234A (en) * 2017-09-11 2017-11-30 光洋サーモシステム株式会社 Induction heating coil
JP2017212233A (en) * 2017-09-11 2017-11-30 光洋サーモシステム株式会社 Induction heating coil
JP2018006350A (en) * 2017-09-11 2018-01-11 光洋サーモシステム株式会社 Induction heating coil
JP2018010876A (en) * 2017-09-11 2018-01-18 光洋サーモシステム株式会社 Induction heating coil
JP2018041730A (en) * 2017-09-11 2018-03-15 光洋サーモシステム株式会社 Induction heating coil

Also Published As

Publication number Publication date
JP5985141B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5985141B2 (en) Induction heating coil, heat treatment apparatus, and heat treatment method
US10648052B2 (en) Induction hardening apparatus, induction hardening method, induction heating coil, heat treatment apparatus, and heat treatment method
KR101981407B1 (en) Induction heating device for metal strip
TWI743797B (en) Mobile quenching device and mobile quenching method
JP6282294B2 (en) Inductors for single-shot induction heating of composite workpieces
JP3810621B2 (en) Induction heating coil and heat treatment method for shaft member having multi-shaped heat treatment part
JP4023623B2 (en) Camshaft high frequency induction heating coil and camshaft high frequency induction heating method using the heating coil
JP2008150661A (en) Heating coil for tempering
JP5667786B2 (en) Induction heating apparatus and induction heating method
US11846001B2 (en) Split multiple coil electric induction heat treatment systems for simultaneous heating of multiple features of a bearing component
JP5886992B2 (en) Induction heating quenching apparatus and induction heating quenching method
JP2012012667A (en) Induction heating and quenching device, and induction heating and quenching method
JP5902379B2 (en) Induction heating coil, heat treatment apparatus and heat treatment method
JP5089109B2 (en) Induction tempering method of crankshaft and induction induction apparatus used in this method
JP4658027B2 (en) High frequency induction heating coil for heating shaft member
JP6445282B2 (en) Induction heating coil
JP2009174037A (en) High-frequency heating coil of induction heater
JP2023046920A (en) Heat treatment device and heat treatment method
JP7133361B2 (en) heating coil
JP6668181B2 (en) Apparatus and method for manufacturing quenched member
JP2002018524A (en) Deformation straightening apparatus of annular member
JP2004027311A (en) Method and apparatus of induction-heating and hardening for ring member
JP4933482B2 (en) High frequency induction heating device for heating shaft-shaped members
CN102626001B (en) Induction hardening equipment, induction hardening method, load coil, annealing device and heat treatment method
JP2004244700A (en) High-frequency induction-heating coil body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150401

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250