JP2020128580A - Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining - Google Patents

Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining Download PDF

Info

Publication number
JP2020128580A
JP2020128580A JP2019021889A JP2019021889A JP2020128580A JP 2020128580 A JP2020128580 A JP 2020128580A JP 2019021889 A JP2019021889 A JP 2019021889A JP 2019021889 A JP2019021889 A JP 2019021889A JP 2020128580 A JP2020128580 A JP 2020128580A
Authority
JP
Japan
Prior art keywords
liquid supply
liquid
electrolytic
electrolysis tank
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019021889A
Other languages
Japanese (ja)
Other versions
JP7309123B2 (en
Inventor
智暁 米山
Tomoaki Yoneyama
智暁 米山
洋平 山口
Yohei Yamaguchi
洋平 山口
和己 竹中
Kazumi Takenaka
和己 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019021889A priority Critical patent/JP7309123B2/en
Publication of JP2020128580A publication Critical patent/JP2020128580A/en
Application granted granted Critical
Publication of JP7309123B2 publication Critical patent/JP7309123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a liquid feeding method of feeding a liquid into an electrolysis tank, which method improves the quality of electrolytic copper and decreases lifting of slime caused by feeding a liquid into an electrolysis tank when liquid circulation is carried out in the electrolysis tank, without requiring a large-scale plant modification.SOLUTION: The liquid feeding method of feeding an electrolytic solution into an electrolysis tank for electrorefining nonferrous metal by arranging a plurality of electrodes parallel to each other in an electrolysis tank for electrorefining, and installing a liquid feed pipe comprising at least two liquid feed ports or openings in the normal direction relative to the surfaces of the electrodes, is characterized in that at least two liquid feed ports include a liquid feed port or an opening disposed at the front end of the liquid feed pipe installed along the bottom of the electrolysis tank from one of the electrolysis tank walls disposed in the normal direction relative to the surfaces of the electrodes to the lower part of the other of the electrolysis tank walls and a liquid feed port or an opening disposed at the front end of a liquid feed pipe branched from the middle part of the liquid feed pipe and installed parallel to the liquid feed pipe.SELECTED DRAWING: Figure 1

Description

本発明は、非鉄金属を電解精製もしくは電解採取する工程において、不純物の混入を低減する電解液の給液方法に関する。 The present invention relates to a method of supplying an electrolytic solution for reducing contamination of impurities in a step of electrolytically refining or electrolytically extracting a non-ferrous metal.

銅などの金属の電解精製では、電解槽に陰極板(以下、カソードと称す)と、陽極板(以下、アノードと称す)の各極板を交互に配置し、電解槽内に装入し、所定量の電解液で槽内を満たして通電する。この際に用いられる電解槽は、特許文献1及び特許文献2に記載されたような、電極表面に対し直交方向の電解槽側壁の一方に給液する方法が一般的である。また、アノードの表面近傍の電解液は、通電により銅濃度が高くなり、したがって比重が大きくなり、アノードの表面近傍から電解液の下降流が発生する。これに伴い、電解槽底部には高銅濃度の電解液が蓄積しやすく正常な通電を妨げる。そこで、電解液成分を均一化するために、特許文献1〜3に記載の方法のように効率的に液循環する方法が開発されてきた。 In electrolytic refining of metals such as copper, a cathode plate (hereinafter, referred to as a cathode) and an anode plate (hereinafter, referred to as an anode) are alternately arranged in an electrolyzer, and placed in the electrolyzer. The inside of the tank is filled with a predetermined amount of electrolytic solution to conduct electricity. As the electrolytic bath used at this time, a method of supplying liquid to one of the side walls of the electrolytic bath in a direction orthogonal to the electrode surface is generally used as described in Patent Document 1 and Patent Document 2. Further, the electrolytic solution near the surface of the anode has a high copper concentration due to energization, and therefore has a large specific gravity, and a downward flow of the electrolytic solution is generated from near the surface of the anode. Along with this, an electrolytic solution having a high copper concentration easily accumulates at the bottom of the electrolytic cell, which prevents normal energization. Therefore, in order to homogenize the components of the electrolytic solution, a method for efficiently circulating the liquid has been developed as in the methods described in Patent Documents 1 to 3.

このような液循環に伴う負の効果は、スライムなどの固形物の巻き込みが電解精製中に発生しがちなことである。特許文献1及び特許文献2に記載されるように、一カ所から大量の電解液を流すと、給液口付近からカソード付近までスライムを巻き上げてカソード(電気銅など)に不純物として取り込ませる恐れ(巻き込みリスク)が増大する。一方、特許文献3にように、複数個所から給液を行うと、一カ所当たりの流量が小さくなりスライム巻き込みリスクは低減するが、給液口の小経化により配管が閉塞する恐れが高まることから、スライムの巻き上げを抑制しながらも、液循環を維持する手法が求められていた。 The negative effect of such liquid circulation is that entrainment of solids such as slime is likely to occur during electrolytic refining. As described in Patent Documents 1 and 2, when a large amount of electrolytic solution is flown from one place, slime may be rolled up from the vicinity of the liquid supply port to the vicinity of the cathode and taken into the cathode (electrolytic copper or the like) as an impurity ( Risk of involvement) increases. On the other hand, when the liquid is supplied from a plurality of locations as in Patent Document 3, the flow rate per location is reduced and the risk of entraining slime is reduced, but the risk of clogging of the pipe increases due to the smaller diameter of the liquid supply port. Therefore, there has been a demand for a method of maintaining the liquid circulation while suppressing the winding of slime.

特開平10−183389号公報JP, 10-183389, A 特許6065706号公報Japanese Patent No. 6065706 特開2017−057508号公報JP, 2017-0557508, A

本発明は上記の問題点を鑑み、大掛かりな設備改造を必要とせずに、液循環を実施した場合でも、電解槽への給液による固形物の巻き上げを低減する給液方法を提供することを目的とする。 In view of the above problems, the present invention provides a liquid supply method that reduces the hoisting of solids due to the liquid supply to the electrolytic cell, even when liquid circulation is performed without requiring major facility modification. To aim.

上記目的を達成するため、本発明の第1の発明は非鉄金属の電解精製用電解槽への電解液の給液方法であって、前記電解精製用電解槽内に、複数の電極を平行に配置し、前記電極の表面における法線方向に敷設された給液配管に、少なくとも2口の開口部である給液口を有することを特徴とする電解精製用電解槽への電解液の給液方法である。 In order to achieve the above object, the first invention of the present invention is a method for supplying an electrolytic solution to an electrolytic cell for electrolytic purification of non-ferrous metal, wherein a plurality of electrodes are arranged in parallel in the electrolytic cell for electrolytic purification. A liquid supply pipe that is disposed and has a liquid supply port that is at least two openings in a liquid supply pipe that is laid in a direction normal to the surface of the electrode. Is the way.

本発明の第2の発明は、第1の発明における前記少なくとも2口の給液口が、前記電極の表面における法線方向にある電解槽壁の一方側から前記電解槽壁から電解槽底に沿って他方の電解槽壁の下部まで敷設された給液配管の先端部に設けられた開口部である給液口と、前記給液配管の中間部から分岐し、前記給液配管と平行に敷設された給液配管の先端部に設けられた開口部である給液口を含むことを特徴とする電解精製用電解槽への電解液の給液方法である。 2nd invention of this invention WHEREIN: The said at least 2 liquid supply ports in 1st invention are from the one side of the electrolytic cell wall in the normal direction in the surface of the said electrode to the electrolytic cell bottom from the said electrolytic cell wall. A supply port that is an opening provided at the tip of the liquid supply pipe laid down to the lower part of the other electrolytic cell wall along the side, and branched from the middle part of the liquid supply pipe, in parallel with the liquid supply pipe. A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining, comprising a solution supply port which is an opening provided at a tip of a laid solution supply pipe.

本発明の第3の発明は、第1及び第2の発明における全ての給液口が、前記電解液を同じ方向に給液するように設けられた開口部であることを特徴とする電解槽への給液方法である。 A third invention of the present invention is an electrolytic cell, wherein all the liquid supply ports in the first and second inventions are openings provided so as to supply the electrolytic solution in the same direction. Is a liquid supply method to.

本発明によれば、銅の電解精製を行う際に、液循環を実施した場合でも電解槽への給液による固形物の巻き上げを低減することを可能とする。 According to the present invention, when electrolytically refining copper, even when liquid circulation is performed, it is possible to reduce winding up of solid matter due to liquid supply to the electrolytic cell.

電解槽給液箇所を示す模式図で、(a)は上面図、(b)は図1(a)の「a−a´線」における断面図である。It is a schematic diagram which shows the electrolytic cell liquid supply location, (a) is a top view, (b) is sectional drawing in the "a' line" of FIG. 1(a). 給液部Pの実施態様の一つを示す外観図である。It is an external view which shows one of the aspects of the liquid supply part P. 同一方向に給液を行なう給液部Pの実施態様を示す外観図で、(a)は給液配管の敷設方向に対して直角な方向に給液を行なう例で、(b)は給液配管の敷設方向に給液を行なう例である。FIG. 2 is an external view showing an embodiment of a liquid supply part P that supplies liquid in the same direction, (a) is an example in which liquid supply is performed in a direction perpendicular to the installation direction of the liquid supply pipe, and (b) is liquid supply. This is an example of supplying liquid in the laying direction of piping. 実施例と比較例での分岐給液口10B付近における電解槽中のSS濃度の測定結果である。It is a measurement result of SS concentration in the electrolytic cell in the vicinity of the branch supply port 10B in the example and the comparative example. 実施例と比較例での給液口10A付近における電解槽中のSS濃度の測定結果である。It is a measurement result of SS concentration in the electrolytic cell in the vicinity of the liquid supply port 10A in the example and the comparative example.

本実施の形態の実施例に係る電解槽は、電解槽内に複数の電極を平行に配置し、その電極の表面における法線方向へと敷設された給液配管が、開口部として少なくとも2口の給液口を有することを特徴とする。 In the electrolytic cell according to the example of the present embodiment, a plurality of electrodes are arranged in parallel in the electrolytic cell, and the liquid supply pipe laid in the normal direction on the surface of the electrode has at least two ports as openings. It is characterized by having a liquid supply port of.

図1に本実施例に係る電解精製中における電解槽1の模式図を示す。(a)は上面図で、(b)は図1(a)の「a−a´線」における断面図である。1は本実施例に係る電解槽、3はアノード、4はカソード、5はカソードとアノードで構成される電極で、右側がカソード表面、左側がアノード表面とする配置の電極、及び右側がアノード表面、左側がカソード表面とする配置の電極で構成され、10Aは給液口、10Bは分岐給液口、10aは給液配管、10bは給液配管10aから分岐し、給液配管10aと並列になるように設置された分岐給液配管、11は上部排液口、15は分岐部、w、wは電解槽壁(電極面の法線方向の槽壁)である。 FIG. 1 shows a schematic view of an electrolytic cell 1 during electrolytic refining according to this example. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the “a′′ line” in FIG. 1 is an electrolytic cell according to this embodiment, 3 is an anode, 4 is a cathode, 5 is an electrode composed of a cathode and an anode, the right side is a cathode surface, the left side is an electrode arranged as an anode surface, and the right side is an anode surface , 10A is a liquid supply port, 10B is a branch liquid supply port, 10a is a liquid supply pipe, 10b is a branch from the liquid supply pipe 10a, and is parallel to the liquid supply pipe 10a. The reference numeral 11 is an upper drain port, 15 is a branch portion, and w 1 and w 2 are electrolytic cell walls (cell walls in the direction normal to the electrode surface).

図1において、給液部を構成する給液配管10aは、電極の表面における法線方向の電解槽壁の一方側wの槽内側に、電解液の液面より上方から電解槽壁wに沿って電解液に浸漬、電解槽底部Bo、若しくはその近傍で、電解槽底部Boに沿って他方側の電解槽壁wに向かって敷設されている。さらに、給液配管10aが電解槽底部Boに沿っている途中で(図では電解槽の中央部付近で)、その給液配管10aから分岐、好ましくは、給液配管と分岐した給液配管とが同じ高さになるように敷設された分岐給液配管10bを有し、その先端部に給液配管10aの開口部である給液口10Aと同一方向、若しくは槽底に平行な方向に設けられる分岐給液口10B、さらに、給液口10Aや分岐給液口10Bは槽底に降り積もってくるスライムによる配管詰まりの防止策を施した上で、電解液液面方向に開口していても良い。 In FIG. 1, the liquid supply pipe 10a constituting the liquid supply unit is located inside the electrolytic cell wall w 1 on the one side w 1 of the surface of the electrode in the direction normal to the electrolytic cell wall w 1 from above the liquid surface of the electrolytic solution. Is soaked in an electrolytic solution along the bottom of the electrolytic bath, and is laid at or near the bottom portion Bo of the electrolytic bath toward the wall w 2 of the electrolytic bath on the other side along the bottom portion Bo of the electrolytic bath. Further, while the liquid supply pipe 10a is along the electrolytic bath bottom portion Bo (in the vicinity of the center of the electrolytic bath in the figure), the liquid supply pipe 10a is branched, and preferably, the liquid supply pipe branched from the liquid supply pipe 10a. Have a branch liquid supply pipe 10b laid so as to have the same height, and are provided at the tip thereof in the same direction as the liquid supply port 10A which is the opening of the liquid supply pipe 10a, or in the direction parallel to the tank bottom. The branched liquid supply port 10B, and further the liquid supply port 10A and the branched liquid supply port 10B are provided with a measure for preventing clogging of the pipe due to slime accumulated on the bottom of the tank, and then opened in the electrolyte liquid surface direction. good.

給液口が一カ所のみであると、電解液の電解槽への供給時の生産性を考慮する場合、その吐出流量を大きくせざるを得ず、そのため、それまでの電解精製により発生(アノードから剥離あるいは電解液中で析出したもの)し、電解槽底に泥状に貯まっていたスライムの巻き上がりを助長する結果となり、電着時にスライムが電気銅中に巻き込まれ、電気銅の純度が低下するリスクがある。 If there is only one liquid supply port, the discharge flow rate must be increased when considering the productivity when supplying the electrolytic solution to the electrolytic cell. The result is that the slime that has accumulated in the mud at the bottom of the electrolytic cell is rolled up, and the slime is caught in the electrolytic copper during electrodeposition, and the purity of electrolytic copper is improved. There is a risk of decline.

そこで、本実施例では電解槽への電解液の供給は、電極表面の法線方向の電解槽壁付近で電解槽底部付近に設けた給液口10Aと、その給液口10Aを備える給液配管10aから分岐し、給液配管10aの途中(たとえば分岐1ヶ所の場合は、電解槽中央付近)から並列に分岐させた給液配管10bとその端部の開口部である分岐給液口10Bの2口の給液口、即ち、同一配管から分岐させた給液口を設置する事で、大きな設備改造なく一カ所当たりの給液口の流量を低減できる。 Therefore, in the present embodiment, the electrolytic solution is supplied to the electrolytic cell by supplying the liquid supply port 10A provided near the electrolytic cell bottom near the electrolytic cell wall in the normal direction of the electrode surface and the liquid supply port including the liquid supply port 10A. A liquid supply pipe 10b branched from the pipe 10a and branched in parallel from the middle of the liquid supply pipe 10a (for example, in the case of one branch, near the center of the electrolytic cell) and a branch liquid supply port 10B which is an opening at the end thereof. By installing the two liquid supply ports, that is, the liquid supply ports branched from the same pipe, the flow rate of the liquid supply port per one place can be reduced without major facility modification.

本実施例で設けた2口の給液口は、図1(a)で見られるように同一方向への給液を行なうものであるが、その際に電解槽内の液流れが不均一に陥らないように給液流量が適時調整可能なような流量調節機構(例えば、電磁弁などの制御可能なもの)を備えることが望ましい。 The two liquid supply ports provided in this embodiment are for supplying liquid in the same direction as seen in FIG. 1(a), but at that time, the liquid flow in the electrolytic cell becomes uneven. It is desirable to provide a flow rate adjusting mechanism (for example, a controllable one such as a solenoid valve) so that the supply flow rate can be adjusted in a timely manner so as not to fall.

さらに、本実施例における給液部の代表例を図2と図3に示す。図2は給液部Pにおける2口の給液口10Aと分岐給液口10Bが、異なる方向に電解液を給液する形式のものであり、分岐部15において、内部に流量弁を設け、給液口10Aへの流量と分岐給液口10Bへの流量を各々制御可能にしても良い。
又、図3には、同一方向に給液する形式の給液部Pを示している。(a)は分岐部15において分岐給液配管を設置せずに、分岐部15が分岐給液配管を兼ねて分岐部側方に分岐給液口10Bを備えることで、給液配管10aの先端部側方に開口された給液口10Aと同一方向への給液を可能としている。
Further, a representative example of the liquid supply unit in this embodiment is shown in FIGS. 2 and 3. FIG. 2 shows a type in which the two liquid supply ports 10A and the branch liquid supply ports 10B in the liquid supply part P supply the electrolytic solution in different directions. In the branch part 15, a flow valve is provided inside. The flow rate to the liquid supply port 10A and the flow rate to the branch liquid supply port 10B may be controllable.
Further, FIG. 3 shows a liquid supply portion P of a type that supplies liquid in the same direction. (A) does not install a branch liquid supply pipe in the branch part 15, but the branch part 15 doubles as a branch liquid supply pipe and is provided with a branch liquid supply port 10B on the side of the branch part. It is possible to supply the liquid in the same direction as the liquid supply port 10A opened on the side of the part.

一方、図3(b)に示す給液部Pは、分岐部15で分岐した分岐給液配管10bが給液配管10aと並列になるように設置され、給液口10Aと同一方向に給液する分岐給液口10Bを先端に備える形式となっている。 On the other hand, the liquid supply part P shown in FIG. 3B is installed such that the branched liquid supply pipe 10b branched at the branch part 15 is parallel to the liquid supply pipe 10a, and the liquid supply part 10A is supplied in the same direction as the liquid supply port 10A. The branch supply port 10B is provided at the tip.

本実施態様において用いる電解槽及び給液部について、図1で示す給液部Pは、単一の給液配管を用いた例を挙げて説明してきたが、電解槽の大きさによっては、2箇所以上の給液部を備えることが可能である。その場合、個々の給液部を流れる電解液の流量を、個々に又は併せて調節、制御して給液する。 Regarding the electrolytic cell and the liquid supply section used in the present embodiment, the liquid supply section P shown in FIG. 1 has been described with reference to an example using a single liquid supply pipe. However, depending on the size of the electrolytic cell, 2 It is possible to provide the liquid supply part in more than one place. In that case, the flow rate of the electrolytic solution flowing through each of the liquid supply units is adjusted or controlled individually or in combination to supply the liquid.

以下、実施例により本実施の形態をさらに説明する。 The present embodiment will be further described below with reference to examples.

長さ5600mm×幅1260mm×深さ1530mmの図1に示す電解槽1を用い、図3(b)に示す給液部Pを、その電解槽1の電解槽壁wの幅方向中央に電解槽1の上方から槽底Bo方向に向かって電解槽壁wの内側に沿って、先端に給液口10Aが位置するL字型の給液配管10aを設置した。その給液配管10aの中間部に設けた分岐部15に分岐給液配管10bを、分岐給液口10Bが給液配管10aと並列になるように設置し、給液口一カ所当たりの給液量を小さく、かつ同一流量となるよう設置した。 Using the electrolytic cell 1 shown in FIG. 1 having a length of 5600 mm×a width of 1260 mm×a depth of 1530 mm, the liquid supply part P shown in FIG. 3( b) is electrolyzed at the center of the electrolytic cell wall w 1 of the electrolytic cell 1 in the width direction. An L-shaped liquid supply pipe 10a having a liquid supply port 10A at the tip was installed along the inner side of the electrolytic cell wall w 1 from above the tank 1 toward the tank bottom Bo. The branch liquid supply pipe 10b is installed in the branch portion 15 provided in the middle of the liquid supply pipe 10a so that the branch liquid supply port 10B is in parallel with the liquid supply pipe 10a. The volume was small and the flow rate was the same.

電解槽1に精製アノード56枚とステンレスカソード55枚を、交互に表面の電極面が向かい合うように電極を構成して装入した。その電極が装入、設置された電解槽1に、電解液を満たし、さらに電解液を給液しながら通電した。なお、電解液の組成は銅45〜50g/L、硫酸180〜190g/L、液温60〜65℃とし、給液量は30L/分とした。
通電開始7日後に、2カ所の給液口付近(図1(b)の破線丸で示すサンプリング位置X、M)の電解槽液面からの高さ500mm、900mmから電解液をサンプリングし、SS濃度(採取した体積に占める浮遊固形物の質量)を測定した。
図4、図5にその測定結果を示し、各測定点とも3回ずつの測定値の平均を示した。
56 pieces of refined anodes and 55 pieces of stainless steel cathodes were placed in the electrolytic cell 1 with the electrodes arranged so that the surfaces of the electrodes alternately face each other. The electrolytic cell 1 in which the electrode was installed and installed was filled with an electrolytic solution, and then the electrolytic solution was supplied with electricity to supply electricity. The composition of the electrolytic solution was 45 to 50 g/L of copper, 180 to 190 g/L of sulfuric acid, the liquid temperature was 60 to 65° C., and the liquid supply amount was 30 L/min.
Seven days after the start of energization, the electrolytic solution was sampled from the heights of 500 mm and 900 mm above the liquid surface of the electrolytic cell near the two liquid supply ports (sampling positions X and M indicated by the dashed circles in Fig. 1(b)), and SS The concentration (mass of suspended solids in the collected volume) was measured.
The measurement results are shown in FIG. 4 and FIG. 5, and the average of the measurement values of three times at each measurement point is shown.

(比較例)
図1と同じ大きさの電解槽において、給液部が電解槽壁wの一カ所のみに給液口10Aを備えたこと以外は、実施例1と同じ条件で電解を行った。
その結果を図4、図5に示す。
(Comparative example)
In the electrolytic cell having the same size as in FIG. 1, electrolysis was performed under the same conditions as in Example 1 except that the liquid supply section was provided with the liquid supply port 10A only at one location in the electrolytic cell wall w 2 .
The results are shown in FIGS. 4 and 5.

図5の結果から判るように、分岐給液配管10bと分岐給液口10Bを設置した場合は、設置していない比較例と比較して給液口10A付近の電解槽壁側のSS濃度が大きく低減していることが判る。
一方、図4の結果から判るように、分岐給液口10Bが設置されたサンプリング位置M(位置は図1(b)参照)付近のSS濃度に大きな変化はなく、分岐配管設置からの悪影響は見られなかった。
以上の結果から、本実施例を用いることで、槽底に積もったスライムを巻き上げずに、電解槽への電解液の供給が可能である。
As can be seen from the results of FIG. 5, when the branch liquid supply pipe 10b and the branch liquid supply port 10B were installed, the SS concentration on the electrolytic cell wall side near the liquid supply port 10A was higher than that in the comparative example in which they were not installed. It can be seen that it is greatly reduced.
On the other hand, as can be seen from the results of FIG. 4, there is no large change in the SS concentration near the sampling position M (the position is shown in FIG. 1B) where the branch liquid supply port 10B is installed, and there is no adverse effect from the installation of the branch pipe. I couldn't see it.
From the above results, by using this example, it is possible to supply the electrolytic solution to the electrolytic cell without winding up the slime accumulated on the cell bottom.

1 電解槽
2 電解液
2a 電解液液面
3 アノード
4 カソード
5 電極
10A 給液口
10B 分岐給液口
10a 給液配管
10b 分岐給液配管
11 上部排液口
15 分岐部
Bo 電解槽底部
P 給液部
、w 電解槽壁(電極面の法線方向の槽壁)
1 Electrolyzer 2 Electrolyte 2a Electrolyte Liquid Level 3 Anode 4 Cathode 5 Electrode 10A Liquid Supply Port 10B Branch Liquid Supply Port 10a Liquid Supply Pipe 10b Branch Liquid Supply Pipe 11 Upper Discharge Port 15 Branch Port Bo Electrolytic Tank Bottom P Liquid Supply Parts w 1 and w 2 electrolytic cell wall (cell wall in the direction normal to the electrode surface)

Claims (3)

非鉄金属の電解精製用電解槽への電解液の給液方法であって、
前記電解精製用電解槽内に、複数の電極を平行に配置し、
前記電極の表面における法線方向へ敷設された給液配管が、開口部として少なくとも2口の給液口を有することを特徴とする電解精製用電解槽への電解液の給液方法。
A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining of non-ferrous metal,
In the electrolytic cell for electrolytic refining, a plurality of electrodes are arranged in parallel,
A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining, characterized in that the solution supply pipe laid in the normal direction on the surface of the electrode has at least two solution supply ports as openings.
前記少なくとも2口の給液口が、前記電極の表面における法線方向にある電解槽壁の一方側から他方の電解槽壁の下部まで電解槽底に沿って敷設された給液配管の先端部に設けられた開口部である給液口と、
前記給液配管の中間部から分岐し、前記給液配管と平行に敷設された給液配管の先端部に設けられた開口部である給液口を含むことを特徴とする請求項1に記載の電解精製用電解槽への電解液の給液方法。
The at least two liquid supply ports are laid along the electrolytic cell bottom from one side of the electrolytic cell wall in the direction normal to the surface of the electrode to the lower part of the other electrolytic cell wall, and the tip of the liquid supply pipe. And a liquid supply port which is an opening provided in
The liquid supply port, which is an opening provided at a front end of the liquid supply pipe, which is branched from an intermediate portion of the liquid supply pipe and laid parallel to the liquid supply pipe, is included. Method of supplying electrolytic solution to the electrolytic cell for electrolytic refining of.
全ての給液口が、前記電解液を同じ方向に給液するように設けられた開口部であることを特徴とする請求項1又は2に記載の電解精製用電解槽への電解液の給液方法。 3. All the liquid supply ports are openings provided so as to supply the electrolytic solution in the same direction, and supply of the electrolytic solution to the electrolytic cell for electrolytic refining according to claim 1 or 2. Liquid method.
JP2019021889A 2019-02-08 2019-02-08 Method for supplying electrolyte to electrolytic cell for electrorefining Active JP7309123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019021889A JP7309123B2 (en) 2019-02-08 2019-02-08 Method for supplying electrolyte to electrolytic cell for electrorefining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021889A JP7309123B2 (en) 2019-02-08 2019-02-08 Method for supplying electrolyte to electrolytic cell for electrorefining

Publications (2)

Publication Number Publication Date
JP2020128580A true JP2020128580A (en) 2020-08-27
JP7309123B2 JP7309123B2 (en) 2023-07-18

Family

ID=72175301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021889A Active JP7309123B2 (en) 2019-02-08 2019-02-08 Method for supplying electrolyte to electrolytic cell for electrorefining

Country Status (1)

Country Link
JP (1) JP7309123B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112201A (en) * 1977-02-21 1978-09-30 Sumitomo Metal Mining Co Electrolytic tank
US5492608A (en) * 1994-03-14 1996-02-20 The United States Of America As Represented By The Secretary Of The Interior Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction
US5855756A (en) * 1995-11-28 1999-01-05 Bhp Copper Inc. Methods and apparatus for enhancing electrorefining intensity and efficiency
US20120055785A1 (en) * 2009-05-11 2012-03-08 New Tech Copper S.A. Equipment for Stirring the Electrolyte in Electrolytic Production Cells
CN203174211U (en) * 2013-03-18 2013-09-04 紫金矿业集团股份有限公司 Ore pulp electro-deposition tank
CN203807570U (en) * 2014-04-24 2014-09-03 重庆科技学院 Electrolytic bath
CN104032332A (en) * 2014-06-04 2014-09-10 杭州三耐环保科技有限公司 High-current density metal electrolytic deposition device with bottom inlet liquid circulation and realization method thereof
JP2014189851A (en) * 2013-03-27 2014-10-06 Mitsubishi Materials Corp Electrolytic refining method, electrolytic refining apparatus of metal, and cathode
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
CN104831319A (en) * 2015-05-28 2015-08-12 杭州三耐环保科技股份有限公司 Top-feeding bidirectional parallel flowing type electrolyzer and application method thereof
CN105040035A (en) * 2015-09-17 2015-11-11 阳谷祥光铜业有限公司 Parallel jetting electrolysis technology and device
CN204982087U (en) * 2015-09-02 2016-01-20 云南锡业股份有限公司铜业分公司 Copper electrolyte circulating device
CN105297079A (en) * 2015-11-15 2016-02-03 杨伟燕 Ultra-high current density parallel flow electrolytic cell and liquid outflow device thereof
CN106757152A (en) * 2017-01-18 2017-05-31 浙江科菲科技股份有限公司 A kind of composition brass positive plate electrolysis high and the device of low copper solution electrodeposition and electrolysis or electrodeposition method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112201A (en) * 1977-02-21 1978-09-30 Sumitomo Metal Mining Co Electrolytic tank
US5492608A (en) * 1994-03-14 1996-02-20 The United States Of America As Represented By The Secretary Of The Interior Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction
US5855756A (en) * 1995-11-28 1999-01-05 Bhp Copper Inc. Methods and apparatus for enhancing electrorefining intensity and efficiency
US20120055785A1 (en) * 2009-05-11 2012-03-08 New Tech Copper S.A. Equipment for Stirring the Electrolyte in Electrolytic Production Cells
CN203174211U (en) * 2013-03-18 2013-09-04 紫金矿业集团股份有限公司 Ore pulp electro-deposition tank
JP2014189851A (en) * 2013-03-27 2014-10-06 Mitsubishi Materials Corp Electrolytic refining method, electrolytic refining apparatus of metal, and cathode
JP2015040327A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Electrolytic smelting installation and method of feeding electrolytic solution
CN203807570U (en) * 2014-04-24 2014-09-03 重庆科技学院 Electrolytic bath
CN104032332A (en) * 2014-06-04 2014-09-10 杭州三耐环保科技有限公司 High-current density metal electrolytic deposition device with bottom inlet liquid circulation and realization method thereof
CN104831319A (en) * 2015-05-28 2015-08-12 杭州三耐环保科技股份有限公司 Top-feeding bidirectional parallel flowing type electrolyzer and application method thereof
CN204982087U (en) * 2015-09-02 2016-01-20 云南锡业股份有限公司铜业分公司 Copper electrolyte circulating device
CN105040035A (en) * 2015-09-17 2015-11-11 阳谷祥光铜业有限公司 Parallel jetting electrolysis technology and device
US20170081771A1 (en) * 2015-09-17 2017-03-23 Yanggu Xiangguang Copper CO., Ltd Parallel Jet Electrolytic Process and Device
CN105297079A (en) * 2015-11-15 2016-02-03 杨伟燕 Ultra-high current density parallel flow electrolytic cell and liquid outflow device thereof
CN106757152A (en) * 2017-01-18 2017-05-31 浙江科菲科技股份有限公司 A kind of composition brass positive plate electrolysis high and the device of low copper solution electrodeposition and electrolysis or electrodeposition method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. KAWAI, T. MIYAZAWA: "CFD SIMULATION OF COPPER ELECTROREFINING PROCESS AND ANALYSIS FOR THE TANKHOUSE OPERATION AT NAOSHIM", COPPER2013 DECEMBER 1-4, 2013 - SANTIAGO, CHILE. COPPER INTERNATIONAL CONFERENCE, vol. Vol.V, JPN6022040792, 2013, pages 541 - 552, ISSN: 0005010036 *

Also Published As

Publication number Publication date
JP7309123B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
AU2008291662B2 (en) Method for operating copper electrolysis cells
JP2017057508A (en) Electrolytic refining method of metal, electrolytic refining apparatus
CN105506670A (en) Device for copper electrolysis or copper electrodeposition, and running method
JP6065706B2 (en) Electrolytic purification method of metal, electrolytic purification equipment
JP2021120477A (en) Electrolysis device and electrolysis method
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
JP5085474B2 (en) Method for electrolytic purification of copper
JP2020128580A (en) Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining
NO337558B1 (en) Cell and method of electroplating aluminum.
WO2017144912A1 (en) Equipment for a metal electrowinning or liberator process and way of operating the process
JP2013107042A (en) Operation method of electric evaporation tank
FI125808B (en) Anode and method for using an electrolytic cell
JP7146174B2 (en) Electrolyte drainage method in electrorefining
EP3452640A1 (en) Equipment for decopperising an electrorefining process and way of operating the process
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell
CN102345139A (en) Cathode graphite electrolytic cell for producing ammonium persulfate by electrolyzing ammonium sulfate
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
US3118827A (en) Fused salt electrolysis cell
JP7002494B2 (en) Electrolyzer and electrolysis method
JP6929320B2 (en) Electrolyzer and electrolysis method
JP7188239B2 (en) Method for producing electrolytic cell and acid solution
JP7186950B2 (en) Electrolyte supply/drainage method
JP2001081590A (en) High current density electrolysis method for copper
JP2839401B2 (en) Supply / drainage method in an electrolytic cell for metal electrolytic refining
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230618

R150 Certificate of patent or registration of utility model

Ref document number: 7309123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150