JP2020128580A - Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining - Google Patents
Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining Download PDFInfo
- Publication number
- JP2020128580A JP2020128580A JP2019021889A JP2019021889A JP2020128580A JP 2020128580 A JP2020128580 A JP 2020128580A JP 2019021889 A JP2019021889 A JP 2019021889A JP 2019021889 A JP2019021889 A JP 2019021889A JP 2020128580 A JP2020128580 A JP 2020128580A
- Authority
- JP
- Japan
- Prior art keywords
- liquid supply
- liquid
- electrolytic
- electrolysis tank
- electrolytic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 135
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000005868 electrolysis reaction Methods 0.000 title abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 37
- 210000002421 cell wall Anatomy 0.000 claims description 16
- 238000007670 refining Methods 0.000 claims description 11
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052802 copper Inorganic materials 0.000 abstract description 9
- 239000010949 copper Substances 0.000 abstract description 9
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- -1 copper Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本発明は、非鉄金属を電解精製もしくは電解採取する工程において、不純物の混入を低減する電解液の給液方法に関する。 The present invention relates to a method of supplying an electrolytic solution for reducing contamination of impurities in a step of electrolytically refining or electrolytically extracting a non-ferrous metal.
銅などの金属の電解精製では、電解槽に陰極板(以下、カソードと称す)と、陽極板(以下、アノードと称す)の各極板を交互に配置し、電解槽内に装入し、所定量の電解液で槽内を満たして通電する。この際に用いられる電解槽は、特許文献1及び特許文献2に記載されたような、電極表面に対し直交方向の電解槽側壁の一方に給液する方法が一般的である。また、アノードの表面近傍の電解液は、通電により銅濃度が高くなり、したがって比重が大きくなり、アノードの表面近傍から電解液の下降流が発生する。これに伴い、電解槽底部には高銅濃度の電解液が蓄積しやすく正常な通電を妨げる。そこで、電解液成分を均一化するために、特許文献1〜3に記載の方法のように効率的に液循環する方法が開発されてきた。
In electrolytic refining of metals such as copper, a cathode plate (hereinafter, referred to as a cathode) and an anode plate (hereinafter, referred to as an anode) are alternately arranged in an electrolyzer, and placed in the electrolyzer. The inside of the tank is filled with a predetermined amount of electrolytic solution to conduct electricity. As the electrolytic bath used at this time, a method of supplying liquid to one of the side walls of the electrolytic bath in a direction orthogonal to the electrode surface is generally used as described in
このような液循環に伴う負の効果は、スライムなどの固形物の巻き込みが電解精製中に発生しがちなことである。特許文献1及び特許文献2に記載されるように、一カ所から大量の電解液を流すと、給液口付近からカソード付近までスライムを巻き上げてカソード(電気銅など)に不純物として取り込ませる恐れ(巻き込みリスク)が増大する。一方、特許文献3にように、複数個所から給液を行うと、一カ所当たりの流量が小さくなりスライム巻き込みリスクは低減するが、給液口の小経化により配管が閉塞する恐れが高まることから、スライムの巻き上げを抑制しながらも、液循環を維持する手法が求められていた。
The negative effect of such liquid circulation is that entrainment of solids such as slime is likely to occur during electrolytic refining. As described in
本発明は上記の問題点を鑑み、大掛かりな設備改造を必要とせずに、液循環を実施した場合でも、電解槽への給液による固形物の巻き上げを低減する給液方法を提供することを目的とする。 In view of the above problems, the present invention provides a liquid supply method that reduces the hoisting of solids due to the liquid supply to the electrolytic cell, even when liquid circulation is performed without requiring major facility modification. To aim.
上記目的を達成するため、本発明の第1の発明は非鉄金属の電解精製用電解槽への電解液の給液方法であって、前記電解精製用電解槽内に、複数の電極を平行に配置し、前記電極の表面における法線方向に敷設された給液配管に、少なくとも2口の開口部である給液口を有することを特徴とする電解精製用電解槽への電解液の給液方法である。 In order to achieve the above object, the first invention of the present invention is a method for supplying an electrolytic solution to an electrolytic cell for electrolytic purification of non-ferrous metal, wherein a plurality of electrodes are arranged in parallel in the electrolytic cell for electrolytic purification. A liquid supply pipe that is disposed and has a liquid supply port that is at least two openings in a liquid supply pipe that is laid in a direction normal to the surface of the electrode. Is the way.
本発明の第2の発明は、第1の発明における前記少なくとも2口の給液口が、前記電極の表面における法線方向にある電解槽壁の一方側から前記電解槽壁から電解槽底に沿って他方の電解槽壁の下部まで敷設された給液配管の先端部に設けられた開口部である給液口と、前記給液配管の中間部から分岐し、前記給液配管と平行に敷設された給液配管の先端部に設けられた開口部である給液口を含むことを特徴とする電解精製用電解槽への電解液の給液方法である。 2nd invention of this invention WHEREIN: The said at least 2 liquid supply ports in 1st invention are from the one side of the electrolytic cell wall in the normal direction in the surface of the said electrode to the electrolytic cell bottom from the said electrolytic cell wall. A supply port that is an opening provided at the tip of the liquid supply pipe laid down to the lower part of the other electrolytic cell wall along the side, and branched from the middle part of the liquid supply pipe, in parallel with the liquid supply pipe. A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining, comprising a solution supply port which is an opening provided at a tip of a laid solution supply pipe.
本発明の第3の発明は、第1及び第2の発明における全ての給液口が、前記電解液を同じ方向に給液するように設けられた開口部であることを特徴とする電解槽への給液方法である。 A third invention of the present invention is an electrolytic cell, wherein all the liquid supply ports in the first and second inventions are openings provided so as to supply the electrolytic solution in the same direction. Is a liquid supply method to.
本発明によれば、銅の電解精製を行う際に、液循環を実施した場合でも電解槽への給液による固形物の巻き上げを低減することを可能とする。 According to the present invention, when electrolytically refining copper, even when liquid circulation is performed, it is possible to reduce winding up of solid matter due to liquid supply to the electrolytic cell.
本実施の形態の実施例に係る電解槽は、電解槽内に複数の電極を平行に配置し、その電極の表面における法線方向へと敷設された給液配管が、開口部として少なくとも2口の給液口を有することを特徴とする。 In the electrolytic cell according to the example of the present embodiment, a plurality of electrodes are arranged in parallel in the electrolytic cell, and the liquid supply pipe laid in the normal direction on the surface of the electrode has at least two ports as openings. It is characterized by having a liquid supply port of.
図1に本実施例に係る電解精製中における電解槽1の模式図を示す。(a)は上面図で、(b)は図1(a)の「a−a´線」における断面図である。1は本実施例に係る電解槽、3はアノード、4はカソード、5はカソードとアノードで構成される電極で、右側がカソード表面、左側がアノード表面とする配置の電極、及び右側がアノード表面、左側がカソード表面とする配置の電極で構成され、10Aは給液口、10Bは分岐給液口、10aは給液配管、10bは給液配管10aから分岐し、給液配管10aと並列になるように設置された分岐給液配管、11は上部排液口、15は分岐部、w1、w2は電解槽壁(電極面の法線方向の槽壁)である。
FIG. 1 shows a schematic view of an
図1において、給液部を構成する給液配管10aは、電極の表面における法線方向の電解槽壁の一方側w1の槽内側に、電解液の液面より上方から電解槽壁w1に沿って電解液に浸漬、電解槽底部Bo、若しくはその近傍で、電解槽底部Boに沿って他方側の電解槽壁w2に向かって敷設されている。さらに、給液配管10aが電解槽底部Boに沿っている途中で(図では電解槽の中央部付近で)、その給液配管10aから分岐、好ましくは、給液配管と分岐した給液配管とが同じ高さになるように敷設された分岐給液配管10bを有し、その先端部に給液配管10aの開口部である給液口10Aと同一方向、若しくは槽底に平行な方向に設けられる分岐給液口10B、さらに、給液口10Aや分岐給液口10Bは槽底に降り積もってくるスライムによる配管詰まりの防止策を施した上で、電解液液面方向に開口していても良い。
In FIG. 1, the
給液口が一カ所のみであると、電解液の電解槽への供給時の生産性を考慮する場合、その吐出流量を大きくせざるを得ず、そのため、それまでの電解精製により発生(アノードから剥離あるいは電解液中で析出したもの)し、電解槽底に泥状に貯まっていたスライムの巻き上がりを助長する結果となり、電着時にスライムが電気銅中に巻き込まれ、電気銅の純度が低下するリスクがある。 If there is only one liquid supply port, the discharge flow rate must be increased when considering the productivity when supplying the electrolytic solution to the electrolytic cell. The result is that the slime that has accumulated in the mud at the bottom of the electrolytic cell is rolled up, and the slime is caught in the electrolytic copper during electrodeposition, and the purity of electrolytic copper is improved. There is a risk of decline.
そこで、本実施例では電解槽への電解液の供給は、電極表面の法線方向の電解槽壁付近で電解槽底部付近に設けた給液口10Aと、その給液口10Aを備える給液配管10aから分岐し、給液配管10aの途中(たとえば分岐1ヶ所の場合は、電解槽中央付近)から並列に分岐させた給液配管10bとその端部の開口部である分岐給液口10Bの2口の給液口、即ち、同一配管から分岐させた給液口を設置する事で、大きな設備改造なく一カ所当たりの給液口の流量を低減できる。
Therefore, in the present embodiment, the electrolytic solution is supplied to the electrolytic cell by supplying the
本実施例で設けた2口の給液口は、図1(a)で見られるように同一方向への給液を行なうものであるが、その際に電解槽内の液流れが不均一に陥らないように給液流量が適時調整可能なような流量調節機構(例えば、電磁弁などの制御可能なもの)を備えることが望ましい。 The two liquid supply ports provided in this embodiment are for supplying liquid in the same direction as seen in FIG. 1(a), but at that time, the liquid flow in the electrolytic cell becomes uneven. It is desirable to provide a flow rate adjusting mechanism (for example, a controllable one such as a solenoid valve) so that the supply flow rate can be adjusted in a timely manner so as not to fall.
さらに、本実施例における給液部の代表例を図2と図3に示す。図2は給液部Pにおける2口の給液口10Aと分岐給液口10Bが、異なる方向に電解液を給液する形式のものであり、分岐部15において、内部に流量弁を設け、給液口10Aへの流量と分岐給液口10Bへの流量を各々制御可能にしても良い。
又、図3には、同一方向に給液する形式の給液部Pを示している。(a)は分岐部15において分岐給液配管を設置せずに、分岐部15が分岐給液配管を兼ねて分岐部側方に分岐給液口10Bを備えることで、給液配管10aの先端部側方に開口された給液口10Aと同一方向への給液を可能としている。
Further, a representative example of the liquid supply unit in this embodiment is shown in FIGS. 2 and 3. FIG. 2 shows a type in which the two
Further, FIG. 3 shows a liquid supply portion P of a type that supplies liquid in the same direction. (A) does not install a branch liquid supply pipe in the
一方、図3(b)に示す給液部Pは、分岐部15で分岐した分岐給液配管10bが給液配管10aと並列になるように設置され、給液口10Aと同一方向に給液する分岐給液口10Bを先端に備える形式となっている。
On the other hand, the liquid supply part P shown in FIG. 3B is installed such that the branched
本実施態様において用いる電解槽及び給液部について、図1で示す給液部Pは、単一の給液配管を用いた例を挙げて説明してきたが、電解槽の大きさによっては、2箇所以上の給液部を備えることが可能である。その場合、個々の給液部を流れる電解液の流量を、個々に又は併せて調節、制御して給液する。 Regarding the electrolytic cell and the liquid supply section used in the present embodiment, the liquid supply section P shown in FIG. 1 has been described with reference to an example using a single liquid supply pipe. However, depending on the size of the electrolytic cell, 2 It is possible to provide the liquid supply part in more than one place. In that case, the flow rate of the electrolytic solution flowing through each of the liquid supply units is adjusted or controlled individually or in combination to supply the liquid.
以下、実施例により本実施の形態をさらに説明する。 The present embodiment will be further described below with reference to examples.
長さ5600mm×幅1260mm×深さ1530mmの図1に示す電解槽1を用い、図3(b)に示す給液部Pを、その電解槽1の電解槽壁w1の幅方向中央に電解槽1の上方から槽底Bo方向に向かって電解槽壁w1の内側に沿って、先端に給液口10Aが位置するL字型の給液配管10aを設置した。その給液配管10aの中間部に設けた分岐部15に分岐給液配管10bを、分岐給液口10Bが給液配管10aと並列になるように設置し、給液口一カ所当たりの給液量を小さく、かつ同一流量となるよう設置した。
Using the
電解槽1に精製アノード56枚とステンレスカソード55枚を、交互に表面の電極面が向かい合うように電極を構成して装入した。その電極が装入、設置された電解槽1に、電解液を満たし、さらに電解液を給液しながら通電した。なお、電解液の組成は銅45〜50g/L、硫酸180〜190g/L、液温60〜65℃とし、給液量は30L/分とした。
通電開始7日後に、2カ所の給液口付近(図1(b)の破線丸で示すサンプリング位置X、M)の電解槽液面からの高さ500mm、900mmから電解液をサンプリングし、SS濃度(採取した体積に占める浮遊固形物の質量)を測定した。
図4、図5にその測定結果を示し、各測定点とも3回ずつの測定値の平均を示した。
56 pieces of refined anodes and 55 pieces of stainless steel cathodes were placed in the
Seven days after the start of energization, the electrolytic solution was sampled from the heights of 500 mm and 900 mm above the liquid surface of the electrolytic cell near the two liquid supply ports (sampling positions X and M indicated by the dashed circles in Fig. 1(b)), and SS The concentration (mass of suspended solids in the collected volume) was measured.
The measurement results are shown in FIG. 4 and FIG. 5, and the average of the measurement values of three times at each measurement point is shown.
(比較例)
図1と同じ大きさの電解槽において、給液部が電解槽壁w2の一カ所のみに給液口10Aを備えたこと以外は、実施例1と同じ条件で電解を行った。
その結果を図4、図5に示す。
(Comparative example)
In the electrolytic cell having the same size as in FIG. 1, electrolysis was performed under the same conditions as in Example 1 except that the liquid supply section was provided with the
The results are shown in FIGS. 4 and 5.
図5の結果から判るように、分岐給液配管10bと分岐給液口10Bを設置した場合は、設置していない比較例と比較して給液口10A付近の電解槽壁側のSS濃度が大きく低減していることが判る。
一方、図4の結果から判るように、分岐給液口10Bが設置されたサンプリング位置M(位置は図1(b)参照)付近のSS濃度に大きな変化はなく、分岐配管設置からの悪影響は見られなかった。
以上の結果から、本実施例を用いることで、槽底に積もったスライムを巻き上げずに、電解槽への電解液の供給が可能である。
As can be seen from the results of FIG. 5, when the branch
On the other hand, as can be seen from the results of FIG. 4, there is no large change in the SS concentration near the sampling position M (the position is shown in FIG. 1B) where the branch
From the above results, by using this example, it is possible to supply the electrolytic solution to the electrolytic cell without winding up the slime accumulated on the cell bottom.
1 電解槽
2 電解液
2a 電解液液面
3 アノード
4 カソード
5 電極
10A 給液口
10B 分岐給液口
10a 給液配管
10b 分岐給液配管
11 上部排液口
15 分岐部
Bo 電解槽底部
P 給液部
w1、w2 電解槽壁(電極面の法線方向の槽壁)
1 Electrolyzer 2 Electrolyte 2a
Claims (3)
前記電解精製用電解槽内に、複数の電極を平行に配置し、
前記電極の表面における法線方向へ敷設された給液配管が、開口部として少なくとも2口の給液口を有することを特徴とする電解精製用電解槽への電解液の給液方法。 A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining of non-ferrous metal,
In the electrolytic cell for electrolytic refining, a plurality of electrodes are arranged in parallel,
A method for supplying an electrolytic solution to an electrolytic cell for electrolytic refining, characterized in that the solution supply pipe laid in the normal direction on the surface of the electrode has at least two solution supply ports as openings.
前記給液配管の中間部から分岐し、前記給液配管と平行に敷設された給液配管の先端部に設けられた開口部である給液口を含むことを特徴とする請求項1に記載の電解精製用電解槽への電解液の給液方法。 The at least two liquid supply ports are laid along the electrolytic cell bottom from one side of the electrolytic cell wall in the direction normal to the surface of the electrode to the lower part of the other electrolytic cell wall, and the tip of the liquid supply pipe. And a liquid supply port which is an opening provided in
The liquid supply port, which is an opening provided at a front end of the liquid supply pipe, which is branched from an intermediate portion of the liquid supply pipe and laid parallel to the liquid supply pipe, is included. Method of supplying electrolytic solution to the electrolytic cell for electrolytic refining of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021889A JP7309123B2 (en) | 2019-02-08 | 2019-02-08 | Method for supplying electrolyte to electrolytic cell for electrorefining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021889A JP7309123B2 (en) | 2019-02-08 | 2019-02-08 | Method for supplying electrolyte to electrolytic cell for electrorefining |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020128580A true JP2020128580A (en) | 2020-08-27 |
JP7309123B2 JP7309123B2 (en) | 2023-07-18 |
Family
ID=72175301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019021889A Active JP7309123B2 (en) | 2019-02-08 | 2019-02-08 | Method for supplying electrolyte to electrolytic cell for electrorefining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7309123B2 (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53112201A (en) * | 1977-02-21 | 1978-09-30 | Sumitomo Metal Mining Co | Electrolytic tank |
US5492608A (en) * | 1994-03-14 | 1996-02-20 | The United States Of America As Represented By The Secretary Of The Interior | Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction |
US5855756A (en) * | 1995-11-28 | 1999-01-05 | Bhp Copper Inc. | Methods and apparatus for enhancing electrorefining intensity and efficiency |
US20120055785A1 (en) * | 2009-05-11 | 2012-03-08 | New Tech Copper S.A. | Equipment for Stirring the Electrolyte in Electrolytic Production Cells |
CN203174211U (en) * | 2013-03-18 | 2013-09-04 | 紫金矿业集团股份有限公司 | Ore pulp electro-deposition tank |
CN203807570U (en) * | 2014-04-24 | 2014-09-03 | 重庆科技学院 | Electrolytic bath |
CN104032332A (en) * | 2014-06-04 | 2014-09-10 | 杭州三耐环保科技有限公司 | High-current density metal electrolytic deposition device with bottom inlet liquid circulation and realization method thereof |
JP2014189851A (en) * | 2013-03-27 | 2014-10-06 | Mitsubishi Materials Corp | Electrolytic refining method, electrolytic refining apparatus of metal, and cathode |
JP2015040327A (en) * | 2013-08-22 | 2015-03-02 | 住友金属鉱山株式会社 | Electrolytic smelting installation and method of feeding electrolytic solution |
CN104831319A (en) * | 2015-05-28 | 2015-08-12 | 杭州三耐环保科技股份有限公司 | Top-feeding bidirectional parallel flowing type electrolyzer and application method thereof |
CN105040035A (en) * | 2015-09-17 | 2015-11-11 | 阳谷祥光铜业有限公司 | Parallel jetting electrolysis technology and device |
CN204982087U (en) * | 2015-09-02 | 2016-01-20 | 云南锡业股份有限公司铜业分公司 | Copper electrolyte circulating device |
CN105297079A (en) * | 2015-11-15 | 2016-02-03 | 杨伟燕 | Ultra-high current density parallel flow electrolytic cell and liquid outflow device thereof |
CN106757152A (en) * | 2017-01-18 | 2017-05-31 | 浙江科菲科技股份有限公司 | A kind of composition brass positive plate electrolysis high and the device of low copper solution electrodeposition and electrolysis or electrodeposition method |
-
2019
- 2019-02-08 JP JP2019021889A patent/JP7309123B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53112201A (en) * | 1977-02-21 | 1978-09-30 | Sumitomo Metal Mining Co | Electrolytic tank |
US5492608A (en) * | 1994-03-14 | 1996-02-20 | The United States Of America As Represented By The Secretary Of The Interior | Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction |
US5855756A (en) * | 1995-11-28 | 1999-01-05 | Bhp Copper Inc. | Methods and apparatus for enhancing electrorefining intensity and efficiency |
US20120055785A1 (en) * | 2009-05-11 | 2012-03-08 | New Tech Copper S.A. | Equipment for Stirring the Electrolyte in Electrolytic Production Cells |
CN203174211U (en) * | 2013-03-18 | 2013-09-04 | 紫金矿业集团股份有限公司 | Ore pulp electro-deposition tank |
JP2014189851A (en) * | 2013-03-27 | 2014-10-06 | Mitsubishi Materials Corp | Electrolytic refining method, electrolytic refining apparatus of metal, and cathode |
JP2015040327A (en) * | 2013-08-22 | 2015-03-02 | 住友金属鉱山株式会社 | Electrolytic smelting installation and method of feeding electrolytic solution |
CN203807570U (en) * | 2014-04-24 | 2014-09-03 | 重庆科技学院 | Electrolytic bath |
CN104032332A (en) * | 2014-06-04 | 2014-09-10 | 杭州三耐环保科技有限公司 | High-current density metal electrolytic deposition device with bottom inlet liquid circulation and realization method thereof |
CN104831319A (en) * | 2015-05-28 | 2015-08-12 | 杭州三耐环保科技股份有限公司 | Top-feeding bidirectional parallel flowing type electrolyzer and application method thereof |
CN204982087U (en) * | 2015-09-02 | 2016-01-20 | 云南锡业股份有限公司铜业分公司 | Copper electrolyte circulating device |
CN105040035A (en) * | 2015-09-17 | 2015-11-11 | 阳谷祥光铜业有限公司 | Parallel jetting electrolysis technology and device |
US20170081771A1 (en) * | 2015-09-17 | 2017-03-23 | Yanggu Xiangguang Copper CO., Ltd | Parallel Jet Electrolytic Process and Device |
CN105297079A (en) * | 2015-11-15 | 2016-02-03 | 杨伟燕 | Ultra-high current density parallel flow electrolytic cell and liquid outflow device thereof |
CN106757152A (en) * | 2017-01-18 | 2017-05-31 | 浙江科菲科技股份有限公司 | A kind of composition brass positive plate electrolysis high and the device of low copper solution electrodeposition and electrolysis or electrodeposition method |
Non-Patent Citations (1)
Title |
---|
S. KAWAI, T. MIYAZAWA: "CFD SIMULATION OF COPPER ELECTROREFINING PROCESS AND ANALYSIS FOR THE TANKHOUSE OPERATION AT NAOSHIM", COPPER2013 DECEMBER 1-4, 2013 - SANTIAGO, CHILE. COPPER INTERNATIONAL CONFERENCE, vol. Vol.V, JPN6022040792, 2013, pages 541 - 552, ISSN: 0005010036 * |
Also Published As
Publication number | Publication date |
---|---|
JP7309123B2 (en) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008291662B2 (en) | Method for operating copper electrolysis cells | |
JP2017057508A (en) | Electrolytic refining method of metal, electrolytic refining apparatus | |
CN105506670A (en) | Device for copper electrolysis or copper electrodeposition, and running method | |
JP6065706B2 (en) | Electrolytic purification method of metal, electrolytic purification equipment | |
JP2021120477A (en) | Electrolysis device and electrolysis method | |
JP2002105684A (en) | Electrolytic method, and electrolytic tank used therefor | |
JP5085474B2 (en) | Method for electrolytic purification of copper | |
JP2020128580A (en) | Liquid feeding method of feeding electrolytic solution into electrolysis tank for electrorefining | |
NO337558B1 (en) | Cell and method of electroplating aluminum. | |
WO2017144912A1 (en) | Equipment for a metal electrowinning or liberator process and way of operating the process | |
JP2013107042A (en) | Operation method of electric evaporation tank | |
FI125808B (en) | Anode and method for using an electrolytic cell | |
JP7146174B2 (en) | Electrolyte drainage method in electrorefining | |
EP3452640A1 (en) | Equipment for decopperising an electrorefining process and way of operating the process | |
JP4342522B2 (en) | Method for homogenizing electrolyte concentration and electrolytic cell | |
CN102345139A (en) | Cathode graphite electrolytic cell for producing ammonium persulfate by electrolyzing ammonium sulfate | |
JP2012172194A (en) | Electrolytic apparatus and electrowinning method using the same | |
US3118827A (en) | Fused salt electrolysis cell | |
JP7002494B2 (en) | Electrolyzer and electrolysis method | |
JP6929320B2 (en) | Electrolyzer and electrolysis method | |
JP7188239B2 (en) | Method for producing electrolytic cell and acid solution | |
JP7186950B2 (en) | Electrolyte supply/drainage method | |
JP2001081590A (en) | High current density electrolysis method for copper | |
JP2839401B2 (en) | Supply / drainage method in an electrolytic cell for metal electrolytic refining | |
JP2018168406A (en) | Apparatus for electrolysis, and method for electrolysis using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7309123 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |