JP2020118049A - 内燃機関の触媒暖機制御装置 - Google Patents
内燃機関の触媒暖機制御装置 Download PDFInfo
- Publication number
- JP2020118049A JP2020118049A JP2019007540A JP2019007540A JP2020118049A JP 2020118049 A JP2020118049 A JP 2020118049A JP 2019007540 A JP2019007540 A JP 2019007540A JP 2019007540 A JP2019007540 A JP 2019007540A JP 2020118049 A JP2020118049 A JP 2020118049A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- catalyst
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Hybrid Electric Vehicles (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】本発明の少なくとも一つの実施形態は、内燃機関と回転電機とを備え、回転電機によって内燃機関を駆動可能な車両において、回転電機をモータリングして内燃機関を始動する際に、排ガス性能の悪化や内燃機関が失火状態に至ることを回避しつつ、触媒を早期に活性可能な内燃機関の触媒暖機制御装置を提供することを目的とする。【解決手段】触媒を所定の制御開始条件が成立したときに昇温すべく、内燃機関を回転電機によって所定回転数に維持し点火時期のリタード化及び空燃比のリーン化を実施する触媒昇温制御部と、触媒昇温制御部による触媒昇温制御中に、空燃比が所定空燃比領域から外れているかを判定する空燃比判定部と、空燃比が所定空燃比領域から外れていると判定したとき、触媒昇温制御部のリーン化の制御を終了し、予め設定された目標空燃比に空燃比をフィードバック制御する空燃比フィードバック制御部と、を備えたこと。【選択図】図1
Description
本開示は、内燃機関の触媒暖機制御装置に関し、特に、内燃機関が失火状態に至ることを回避しつつ触媒の暖機を行う内燃機関の触媒暖機制御装置に関する。
内燃機関の排気通路に設けられた触媒をエンジンの冷態始動時に昇温する触媒暖機制御として、例えば、点火時期のリタード及び空燃比(A/F)のリーン化によって早期活性化を図ることが知られている(特許文献1(段落0004等))。
しかし、リーン側へのA/F制御において、A/Fセンサや燃料噴射弁のハード的な製品誤差等によって生じる性能緒元のずれを補正するためにA/F学習値が学習されるが、このA/F学習値がリーン側に誤学習された場合には、触媒暖機制御のリーン化においてリーンになりすぎて失火状態に至る場合がある。さらに、失火状態になると大量のHCが触媒に流れ、触媒温度が上昇して触媒溶損に至るおそれもある。
従って、触媒暖機制御中において失火状態に至る可能性を的確に判定して回避することが必要である。この失火状態の判定としては、一般的に各気筒の燃焼サイクルでの回転数変動量に基づいて検出することが知られている(特許文献1、特許文献2)。
前述のように特許文献1、特許文献2には、内燃機関の失火状態の判定として各気筒の燃焼サイクルでの回転数変動量に基づいて検出することが示されている。しかし、内燃機関と回転電機(モータジェネレータ)とを備え、回転電機によって内燃機関を駆動可能なハイブリッド車両(HV車両)等の車両では、内燃機関を所定の回転数となるように回転電機でモータリングして、所定の回転数に達すると燃料を噴射して内燃機関を始動し、触媒暖機を実行するような場合では、内燃機関の冷態始動時の触媒暖機中における失火判定を、内燃機関(気筒)の回転数変動を基に検出することが難しくなる。
そのため、内燃機関の回転数変動を基に触媒暖機中の失火状態を検出することが困難な場合であっても、失火状態に至る可能性を的確に判定して失火状態に至ることを回避しつつ、触媒を早期活性可能な触媒暖機制御装置が望まれている。
そこで、上記の課題に鑑み、本発明の少なくとも一つの実施形態は、内燃機関と回転電機(モータジェネレータ)とを備え、回転電機によって内燃機関を駆動可能な車両において、回転電機をモータリングして内燃機関を始動する際に、排ガス性能の悪化や内燃機関が失火状態に至ることを回避しつつ、触媒を早期に活性可能な内燃機関の触媒暖機制御装置を提供することを目的とする。
(1)前述した目的を達成するために発明されたものであり、本発明の少なくとも一実施形態は、内燃機関により駆動されて発電可能である一方で車両に搭載されたバッテリから供給された電力で前記内燃機関を駆動可能な回転電機を備えた車両の前記内燃機関の触媒暖機制御装置であって、前記回転電機をモータリングして前記内燃機関を始動する際に、前記内燃機関の排気通路に設けられた触媒を、所定の制御開始条件が成立したときに昇温すべく、前記内燃機関の回転数を前記回転電機によって所定回転数に維持し、前記内燃機関の点火時期のリタード化及び空燃比のリーン化を実施する触媒昇温制御部と、前記触媒昇温制御部による触媒昇温制御中に、空燃比検出手段によって検出された空燃比が所定空燃比領域から外れているかを判定する空燃比判定部と、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域から外れていると判定したとき、前記触媒昇温制御部のリーン化の制御を終了し、予め設定された目標空燃比になるように空燃比をフィードバック制御する空燃比フィードバック制御部と、を備えたことを特徴とする。
このような構成によれば、内燃機関により駆動されて発電可能である一方で車両に搭載されたバッテリから供給された電力で内燃機関を駆動可能な回転電機を備えた車両において、回転電機をモータリングして内燃機関を始動する際に、触媒を所定の制御開始条件が成立したときに昇温すべく、内燃機関の回転数を回転電機によって所定回転数に維持し、内燃機関の点火時期のリタード化及び空燃比のリーン化によって触媒暖機制御の実施中に、所定空燃比領域から外れる空燃比の検出によって失火状態に至る可能性が高いことを判定することができる。
また、失火状態に至る可能性が高いと判定した場合には、空燃比フィードバック制御部によって、触媒昇温のための空燃比リーン化制御を終了し、予め設定された目標空燃比になるように空燃比をフィードバック制御するので、失火に至る空燃比の状況を確実に解消することができる。
従って、回転数変動を基に触媒昇温制御中の失火状態を検出することが困難な場合であっても、失火状態に至る可能性を的確に判定して失火状態に至ることを回避しつつ、触媒を早期に活性化することができる。
(2)幾つかの実施形態では、前記空燃比フィードバック制御部は、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリーン側の境界値よりリーン側にずれていると判定したとき、前記目標空燃比を前記触媒昇温制御部による昇温リーン空燃比領域よりリッチ側の空燃比に設定してフィードバック制御をすることを特徴とする。
このような構成によれば、空燃比検出手段で検出された空燃比が所定空燃比領域のリーン側の境界値よりリーン側にずれていると、リーン失火を起こす可能性が非常に高いので、空燃比フィードバック制御部では、リーン側にずれていることをいち早く回避するために、昇温リーン空燃比領域よりリッチ側の空燃比を目標空燃比に設定して、フィードバック制御を実施することでリーン失火を起こす状況をいち早く解消させると共に触媒過昇温による触媒溶損を防止することができる。
(3)幾つかの実施形態では、前記空燃比フィードバック制御部は、前記目標空燃比を理論空燃比に設定してフィードバック制御をすることを特徴とする。
このような構成によれば、目標空燃比を理論空燃比に設定してフィードバック制御をするので、早期の空燃比リーン失火解消と触媒過昇温による触媒溶損を防止でき、触媒の早期昇温及び最適な排ガス浄化性能を得ることが可能になる。
(4)幾つかの実施形態では、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリーン側の境界値よりリーン側にずれていると判定したとき、前記触媒昇温制御部によるリタード化の制御を終了し、基本点火時期に戻すことを特徴とする。
このような構成によれば、触媒昇温制御部による点火時期のリタード化の制御を終了して基本点火時期に戻すので、失火状態の不安定燃焼に対して安定燃焼が図れ、さらに触媒の過剰な昇温が回避されて触媒の溶損を抑制することができる。
(5)幾つかの実施形態では、前記空燃比フィードバック制御部は、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリッチ側の境界値よりリッチ側にずれていると判定したとき、前記目標空燃比を前記触媒昇温制御部による昇温リーン空燃比領域の内側の空燃比に設定してフィードバック制御をすることを特徴とする。
このような構成によれば、空燃比検出手段で検出された空燃比が所定空燃比領域よりリッチ側にずれている場合には触媒の活性化が進んでいない状態で多量のHCが排出される可能性が高く排ガス性能においても悪化する可能性が高いとともに、リッチ側に極度にずれてしまう場合にはリッチ失火を生じる可能性があるため、リッチ側にずれていることをいち早く回避するために、昇温リーン空燃比領域の内側の空燃比を目標空燃比に設定して、フィードバック制御を実施することで排ガス性能の悪化やリッチ失火を起こす可能性をいち早く解消させることができる。
(6)幾つかの実施形態では、前記空燃比フィードバック制御部は、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリッチ側の境界値よりリッチ側にずれていると判定したとき、前記触媒昇温制御部のリタード化の制御を維持することを特徴とする。
このような構成によれば、空燃比フィードバック制御部は、触媒昇温制御部による点火時期のリタード化の制御を維持するので、触媒の昇温がいち早く完了するようにできる。触媒の暖機が完了していない状態で空燃比がリッチ状態になると、触媒の浄化機能が発揮されないので排ガス特性上好ましくない。そのため、触媒の暖機にはリタード化が有効なためリタード化を維持して、触媒の暖機をいち早く完了させるようにしている。
(7)幾つかの実施形態では、前記触媒昇温制御部による空燃比のリーン化は昇温リーン空燃比領域の内となるように実施され、前記所定空燃比領域は、前記昇温リーン空燃比領域より外側に設定されることを特徴とする。
このような構成によれば、触媒昇温制御部によるリーン化の制御に影響されることなく、空燃比を基に失火状態に至る可能性を的確に判定することができる。
本発明の少なくとも一つの実施形態によれば、内燃機関により駆動されて発電可能である一方で車両に搭載されたバッテリから供給された電力で前記内燃機関を駆動可能な回転電機を備えた車両において、回転電機をモータリングして内燃機関を始動する際に、排ガス性能の悪化や内燃機関が失火状態に至ることを回避しつつ、触媒を早期に活性化できる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。ただし、実施形態として記載されている、または図面に示されている構成部品の相対的配置等は、本発明の範囲をこれらに限定する趣旨ではなく、単なる説明例にすぎない。
本発明の一実施形態に係る内燃機関の触媒暖機制御装置について、図1〜3を参照して説明する。図1には、エンジン(内燃機関)1の触媒暖機制御装置3が搭載される車両5の全体概略構成図を示す。
車両5は、一例としてプラグインハイブリッド車両を示す。プラグインハイブリッド車両の概要をまず説明する。エンジン1の出力によって前輪7を駆動して走行可能であるとともに、前輪7を駆動する電動のフロントモータ9を備える。
エンジン1は、トランスアクスル11を介して前輪7を駆動可能であるとともに、トランスアクスル11を介してモータジェネレータ(回転電機)13を駆動して発電させることが可能となっている。
フロントモータ9は、フロントモータ・モータジェネレータコントロールユニット15を介して、車両5に搭載された駆動用バッテリ17及びモータジェネレータ13から高電圧の電力を供給されて駆動し、トランスアクスル11を介して前輪7を駆動する。
モータジェネレータ13によって発電された電力は、フロントモータ・モータジェネレータコントロールユニット15を介して駆動用バッテリ17を充電可能であるとともに、フロントモータ9に電力を供給可能である。
また、車両5には、駆動用バッテリ17を外部電源によって充電する充電機19が備えられている。
また、車両5には、駆動用バッテリ17を外部電源によって充電する充電機19が備えられている。
なお、車両5として、プラグインハイブリッド車両を例として説明したが、これに限るものではなく、エンジンの運転状態に応じて回生駆動(発電)又は力行駆動が可能なモータジェネレータ(回転電機)が搭載されている車両であればよい。例えば、エンジンのクランクプーリにベルトを介してベルトスタータジェネレータ(所謂BSG:Belt Starter Generator)が接続されて、エンジンのトルクアシストする車両であってもよい。
また車両5には、エンジン1の運転制御及びモータジェネレータ13の運転制御を行って、触媒の昇温制御を実施する触媒暖機制御装置3が設けられており、モータジェネレータ13の運転制御は、フロントモータ・モータジェネレータコントロールユニット15を介して制御するようになっている。
図2に、触媒暖機制御装置3が適用されるエンジン1及びエンジン1の周辺構造を概略的に示す。エンジン1は、筒内噴射型直列4気筒ガソリンエンジンを対象として構成される。また、エンジン1には、DOHC4弁式の動弁機構が採用されており、クランク軸21によりシリンダヘッド23上に設けられた吸気カムシャフト25及び排気カムシャフト27が回転駆動され、これらのカムシャフト25、27により吸気弁29及び排気弁31が所定のタイミングで開閉される。また、モータジェネレータ13の出力軸は、クランク軸21と連結可能になっている。
シリンダヘッド23には気筒毎に点火プラグ33と共に電磁式の燃料噴射弁35が取り付けられ、高圧燃料が燃料噴射弁35の開閉に応じて燃焼室37内に直接噴射される。シリンダヘッド23には両カムシャフト25、27間に略直立方向に吸気ポート39が形成され、吸気弁29の開弁に伴って吸入空気がエアクリーナ41からスロットル弁43、サージタンク45、吸気マニホールド47、吸気ポート39を経て燃焼室37に導入される。燃焼後の排ガスは排気弁31の開弁に伴って燃焼室37から排気ポート49に排出され、更に排気通路51及び排気通路51に設けられた触媒53を経て大気中に排出される。
また、図2に示すように、排気通路51には、燃焼室37から排出された排ガス中の空燃比(A/F)を検出する空燃比センサ(空燃比検出手段)55が設置されている。例えば、リニアA/Fセンサが設置されている。
エンジン1のクランクケースにはクランク軸21の回転角度を検出するクランク角センサ57が設置され、回転角度からエンジン1の回転数も算出されるようになっている。また、シリンダブロックには冷却水温度を検出する冷却水温度センサ59が設置される。エアクリーナ41とスロットル弁43との間には、吸入空気量を検出するエアフローセンサ61が設置され、触媒53の上流側に排ガス温度を検出する排ガス温度センサ63が設置されている。
触媒暖機制御装置3は、図2に示すように、触媒昇温制御部65、空燃比判定部67、空燃比フィードバック制御部69を有して構成されている。また、図示しない信号入力部、信号出力部、記憶部、演算部等を有している。
信号入力部には、既に説明した空燃比センサ55、クランク角センサ57、冷却水温度センサ59、排ガス温度センサ63、エアフローセンサ61からの各信号が入力される。信号出力部からは、点火プラグ33、燃料噴射弁35、スロットル弁43等へ点火時期や燃料噴射量や吸気空気量等の制御信号が出力される。また、モータジェネレータ13へは、触媒昇温時のエンジン1の回転数を制御する制御信号が出力される。
触媒暖機制御装置3を構成する触媒昇温制御部65では、所定の制御開始条件が成立したときに排気通路51に設けられた触媒53を、昇温(触媒昇温制御)すべく、エンジン1の回転数をモータジェネレータ13によって所定回転数に上昇して維持し、さらに、エンジン1の点火時期のリタード化及び空燃比のリーン化を実施する。
触媒昇温制御の所定の制御開始条件は、冷却水温度が所定温度以上、例えば−40℃以上であり、且つ触媒推定温度が所定温度以下、例えば300℃以下であり、且つエンジン回転数が所定範囲内、例えば530〜1200rpm内の条件を満たす場合である。冷却水温度は冷却水温度センサ59の検出値に基づき算出され、触媒推定温度は排ガス温度センサ63の検出値に基づいて推定されるか、またはエンジン回転数等のエンジン運転状態を基に演算によって推定される。エンジン回転数はクランク角センサ57の検出値に基づき算出される。なお、制御開始条件の冷却水温度、触媒推定温度、エンジン回転数の値はこれらに限らず適宜設定されるものである。
触媒昇温制御部65での実施項目の「エンジン1の回転数をモータジェネレータ13によって所定回転数に上昇して維持する」については、通常のアイドリング状態の回転数よりも上昇した回転数にモータジェネレータ13のモータリングで上昇させてその回転数を維持するようにエンジン1を作動させることである。例えば、エンジン回転数が1500rpmに維持するように制御される。
すなわち、エンジン回転数は、モータジェネレータ13によって制御され、モータジェネレータ13のトルクフィードバック(F/B)で目標回転数が維持されるようになっている。エンジン1が狙い通り燃焼できているときは、モータジェネレータ13のトルクはマイナスとなり回生(発電)となり、回生することでエンジン回転数の上昇を抑える。逆に、エンジン1が狙い通りに燃焼できていないときは、モータジェネレータ13のトルクはプラスとなり消費(モータリング)となる。モータリングすることで、エンジン回転数の低下が防がれる。
このようにアイドル回転数を通常より高回転に維持することによって、排ガス流量を増やして、触媒温度上昇が促進される。
また、触媒昇温制御部65での実施項目の「点火時期のリタード化」については、基本点火時期をリタード(遅角)させることである。点火時期マップを用いて制御される。基本点火時期マップとリタードさせる場合のリタード点火時期マップとを有し、触媒昇温制御が実施される場合には、リタード点火時期マップを用いて制御される。
基本点火時期マップ及びリタード点火時期マップは、例えば、図6に示すように、クランク角センサ57から算出されるエンジン回転数(rpm)を横軸に示し、エアフローセンサ61から検出される吸入空気量を基に算出される吸気充填効率(%)を縦軸に示し、これらエンジン回転数と吸気充填効率をパラメータとして基本点火時期、又はリタード点火時期が予め設定されている。図6に示す一例の数値は、上死点前のクランク角度を示している。
このように点火時期のリタード化によって、燃焼室37内における燃焼を緩慢にすることで、排ガス排気行程まで排ガス温度が下がりにくくなり、触媒に到達する排ガス温度を上昇させることができ、触媒昇温を促進させる。
また、触媒昇温制御部65での実施項目の「空燃比のリーン化」については、エンジン1の燃焼の空燃比を、理論空燃比(A/F=14.7)に対してリーン側に設定することである。この空燃比のリーン化は所定の昇温リーン空燃比領域X(A/F=15.0〜15.5)を有している(図5参照)。
この空燃比のリーン化の制御は、目標空燃比に対するフィードバック制御ではなく、エンジン1の要求運転状態(要求出力)に対して予め設定された燃料噴射量と空気量のマップ値によって制御されるオープン制御(オープンループ制御)である。昇温制御時のエンジン回転数(例えば1500rpm)の要求出力において昇温リーン空燃比領域X(A/F=15.0〜15.5)に入るように燃料噴射量と空気量とをマップ値から求めてエンジン1が運転される。オープン制御であるので、空燃比のリーン化が迅速に行われる。
このように空燃比のリーン化によって、HC濃度を下げるとともに、触媒温度が低く触媒活性化があまり進んでいないときの触媒酸化反応を最適化し、触媒温度上昇に寄与させることができる。また、触媒で酸化反応しきれない量のHC通過は触媒温度低下につながるため、この点においても有効である。
以上の触媒昇温制御部65における昇温制御による触媒温度上昇の概念図を図7に示す。図7は、横軸に時間経過を示し、縦軸に(a)吸気量(エンジン回転数)、(b)空燃比(A/F)、(c)点火時期、(d)排気温度、(e)触媒温度をそれぞれ示す。エンジン回転数の上昇と、空燃比のリーン化と、点火時期のリタード化とによって、排気温度及び触媒温度が上昇し、触媒の活性温度(例えば350℃)以上に、このように昇温制御を行わない場合に比べて早期に到達することが示されている。
触媒暖機制御装置3の空燃比判定部67では、空燃比センサ55によって検出された空燃比が、昇温リーン空燃比領域Xの外側により広い領域に設定され触媒昇温制御の実施を許容することが可能な領域となる許容空燃比領域(所定空燃比領域)Y(A/F=14.5〜17.0)(図5参照)から外れているかを判定する。
すなわち、空燃比センサ55によって検出された空燃比が、許容空燃比領域Yのリーン側の境界値であるA/F=17.0以上のリーンである場合には、A/F学習値がリーン側に誤学習されている可能性がありエンジン1はリーン失火を生じる可能性が高いと判定する。
また、空燃比センサ55によって検出された空燃比が、許容空燃比領域Yのリッチ側の境界値であるA/F=14.5以下のリッチである場合には、A/F学習値がリッチ側に誤学習されている可能性があり、エンジン1は、触媒の活性化が進んでいない状態で多量のHCが排出される可能性が高く排ガス性能においても悪化する可能性が高いとともに、燃焼限界空燃比領域Zよりもリッチ側にずれた場合はリッチ失火を生じる可能性があると判定する。この燃焼限界空燃比領域Zは、A/F=10.0〜17.0であり(図5参照)この領域から外れた場合には、リーン失火、リッチ失火を生じ可能性が高くなる。
図5に示すように、触媒昇温制御部65による空燃比のリーン化は所定の昇温リーン空燃比領域Xを有し、許容空燃比領域Yは、昇温リーン空燃比領域より外側に設定された領域に設定されているので、触媒昇温制御部65によるリーン化の制御に影響されることなく、許容空燃比領域Yを基に空燃比の変化から失火状態に至る可能性を的確に判定することができる。
なお、昇温リーン空燃比領域X(A/F=15.0〜15.5)、許容空燃比領域Y(A/F=14.5〜17.0)、燃焼限界空燃比領域Z(A/F=10.0〜17.0)の数値範囲は、必ずしもこの値に限るものではなく、エンジン1の仕様や燃料の性状によって適宜設定される範囲である。
触媒暖機制御装置3の空燃比フィードバック制御部69では、空燃比判定部67によって、空燃比センサ55で検出された空燃比が許容空燃比領域Yより外れていると判定されたとき、触媒昇温制御部65によるオープン制御によって行われるリーン化の制御を終了し、予め設定された所定の目標空燃比になるように空燃比をフィードバック制御する。
すなわち、失火状態に至る可能性が高いと判定された場合には、空燃比フィードバック制御部69によって、触媒昇温制御部65によるオープン制御によるリーン化の制御を終了し、予め設定された目標空燃比になるように空燃比をフィードバック制御するので、失火に至る空燃比の状況を確実に解消することができる。
次に、図3に示す制御フローチャートを参照して、図2の触媒暖機制御装置3の触媒昇温制御の一実施形態について説明する。
まず、ステップS1で、エンジン1を始動する始動要求信号を取得する。その後、ステップS2では、モータジェネレータ13をスタータとして機能させて始動する。すなわち、モータジェネレータ13のモータリングを開始し、所定の回転数(例えば800rpm)のエンジン回転数で燃料噴射を開始して、モータジェネレータ13が所定トルク値に低下したらエンジン1が始動したと判定する。
その後、ステップS3では、エンジン1が燃料により自律回転したら、触媒昇温制御の所定の制御開始条件が成立するかを判定する。この所定の制御開始条件は、既に説明したように冷却水温度が所定値以上(−40℃以上)であり、且つ触媒推定温度が所定値以下(300℃以下)であり、且つエンジン回転数が所定値以内(530〜1200rpm以内)の条件を満たすかを判定する。
ステップS3の条件が成立しない場合には、NoとなってステップS7に進んで、空燃比センサ55の活性後に通常制御を実施する。すなわち、空燃比センサ55の活性後(例えば、エンジン始動後20〜30秒後)には、触媒昇温制御ではなくエンジンの運転状態に対応した空燃比にフィードバック(F/B)制御によって空燃比を制御する。
ステップS3の条件が成立する場合には、YesとなってステップS4に進んで触媒昇温制御を開始する。この触媒昇温制御は、既に説明したように、空燃比のリーン化補正、点火時期のリタード補正、モータジェネレータ13によるエンジン回転数の上昇と維持を実施する。
その後、ステップS5では、空燃比センサ55の活性後の検出空燃比が、許容空燃比領域Y(A/F=14.5〜17.0)の内に入っているかを判定する。領域内に入っていれば、YesとなってステップS8に進んで、所定の積算吸入空気量に達するまで、触媒昇温制御を継続し、所定の積算吸入空気量に達したら終了し、ステップS7と同様に通常制御に移行する。
ステップS5でNoの判定をした場合には、ステップS6に進んで、ステップS6では、触媒昇温制御のオープン制御によるリーン化を終了し、所定の目標空燃比へのフィートバック制御を開始する。
以上の一実施形態によれば、触媒昇温制御中に、空燃比センサ55によって検出された空燃比が昇温リーン空燃比領域Xより外側に設定された許容空燃比領域(所定空燃比領域)Yから外れているかを、空燃比判定部67によって判定するので、エンジン1が失火状態に至る可能性が高いことを判定することができる。
また、失火状態に至る可能性が高いと判定した場合には、空燃比フィードバック制御部69によって、触媒昇温制御部65によるオープン制御のリーン化を終了し、予め設定された目標空燃比になるように空燃比をフィードバック制御するので、失火に至る空燃比の状況を確実に解消することができる。
従って、回転数変動を基に触媒昇温制御中の失火状態を検出することが困難な場合であっても、失火状態に至る可能性を的確に判定して失火状態に至ることを回避しつつ、触媒を早期に活性化することができる。
次に、図4に示す制御フローチャートを参照して、図2の触媒暖機制御装置3の触媒昇温制御の一実施形態について説明する。
図4のステップS11〜S15は、図3のフローチャートのステップS1〜S5と同様であり、ステップS18は、図3のステップS7と同様であり、ステップS20は、図3のステップS8と同様であるので、詳細な説明は省略する。
図4において、ステップS15でNoと判定された場合には、ステップS16に進み、ステップS16では、空燃比センサ55の検出値が許容空燃比領域Yよりリッチ側にずれているかを判定する。すなわち、許容空燃比領域Yのリッチ側の境界値(A/F=14.5)よりリッチ側にずれているかを判定する。Yesの場合にはステップS19に進む。Noの場合には、ステップS17に進む。
このステップS16の判定がNoの場合は、空燃比センサ55の検出値が許容空燃比領域Yのリーン側の境界値(A/F=17.0)よりリーン側にずれていることを意味する。なお、リッチ側にずれているか、又はリーン側にずれているかの判定は、リッチ側の境界値(A/F=14.5)以下のA/Fが所定時間以上(例えば5秒以上)検出されたか、又はリーン側境界値(A/F=17.0)以上のA/Fが所定時間以上(例えば5秒以上)検出されたかを基に判定する。
許容空燃比領域Yよりリーン側にずれていると判定してステップS17に進んだ場合には、ステップS17では、触媒昇温制御の終了条件が成立していると否とに関わらず、触媒昇温制御を終了し、空燃比を目標空燃比にフィードバック制御する。このステップS17における目標空燃比は、昇温リーン空燃比領域Xよりリッチ側の空燃比を目標空燃比に設定し、さらに好ましくは、目標空燃比を理論空燃比に設定してフィードバック制御をする。
なお、触媒昇温制御の終了条件は、吸入空気量の積算空気量が所定値に達した場合又は触媒の推定温度が所定温度に達した場合であるが、主に積算空気量が所定値に達したことによって終了の判定が行われる。
リッチ側にずれていると判定してステップS19に進んだ場合には、ステップS19では、触媒昇温制御の終了条件が成立するまで、触媒昇温制御を継続する。但し、空燃比については、目標空燃比を昇温リーン空燃比領域Xの内側の空燃比に設定してフィードバック制御をする。そして、次のステップS20では、所定の積算空気量に到達したら触媒昇温制御を終了し、通常制御に移行する。
以上の実施形態によれば、許容空燃比領域Yよりリーン側にずれていると、リーン失火を起こす可能性が非常に高いので、リーン側にずれていることをいち早く回避するために、昇温リーン空燃比領域Xよりリッチ側の空燃比を目標空燃比に設定して、フィードバック制御を実施することでリーン失火を起こす可能性をいち早く解消させることができる。
また、目標空燃比を理論空燃比に設定してフィードバック制御をするので、触媒の昇温を早期に達成する上でも好ましい。すなわち、理論空燃比よりもリッチ側に目標空燃比を設定した場合には活性していない触媒に対してはかえって触媒昇温し難くなるため、理論空燃比に設定することで、早期の失火解消と触媒の早期昇温との両立が可能になる。
また、許容空燃比領域Yよりリッチ側にずれている場合には触媒の活性化が進んでいない状態で多量のHCが排出される可能性が高く排ガス性能においても悪化する可能性が高いとともに、燃焼限界空燃比領域よりもリッチ側にずれた場合はリッチ失火を生じる可能性があるため、リッチ側にずれていることをいち早く回避するために、昇温リーン空燃比領域Xの内の空燃比を目標空燃比に設定して、フィードバック制御を実施することで排ガス性能の悪化やリッチ失火を起こす可能性をいち早く解消させることができる。
また、リッチ空燃比側にずれていることが原因で、触媒の暖機も十分にできていないので、目標空燃比を昇温リーン空燃比領域Xの内側のリーン空燃比に設定することで、空燃比のフィードバック制御中に触媒の暖機をいち早く行うこともできる。
また、幾つかの実施形態では、空燃比判定部67によって、空燃比センサ55で検出された空燃比が許容空燃比領域Yのリーン側の境界値よりリーン側にずれていると判定されたとき、触媒昇温制御部65によるリタード化の制御を終了し、基本点火時期に戻すことを特徴とする。このリタード化の制御を終了して基本点火時期に戻す制御は、前述した空燃比フィードバック制御部69における目標空燃比へのフィードバック制御と共に実施するのが好ましい。
すなわち、図4に示すフローチャートのステップS17に示すように、触媒昇温制御の終了は、リタード化の制御を終了して、基本点火時期に戻すことを意味している。
このような構成によれば、触媒昇温制御部65による点火時期のリタード化の制御を終了させて基本点火時期に戻すので、失火状態の不安定燃焼に対して安定燃焼が図れる。さらに、リタードが維持されることによる触媒の過剰な昇温が回避されて触媒の溶損を抑制することができる。
また、幾つかの実施形態では、空燃比判定部67によって、空燃比センサ55で検出された空燃比が許容空燃比領域Yのリッチ側の境界値よりリッチ側にずれていると判定したとき、触媒昇温制御部65によるリタード化の制御を維持することを特徴とする。このリタード化の制御の維持の制御は、前述した空燃比フィードバック制御部69における目標空燃比へのフィードバック制御と共に実施するのが好ましい。
すなわち、図4に示すフローチャートのステップS19に示す触媒昇温制御の維持、但しA/Fを目標空燃比にF/B制御は、リタード化の制御を維持することを意味している。
このような構成によれば、触媒昇温制御部65による点火時期のリタード化の制御を維持するので、触媒の昇温がいち早く完了するようにできる。触媒の暖機が完了していない状態で空燃比がリッチ状態になると、触媒の浄化機能が発揮されないので排ガス特性上好ましくない。そのため、触媒の昇温に有効なリタード化を維持して、触媒の昇温をいち早く完了させるようにしている。
以上説明した図3、図4の実施形態では、許容空燃比領域Yの外側にずれた際に、すなわち、境界線よりもリーン側、若しくはリッチ側にずれた際に、フィードバック制御を行うことを説明したが、昇温リーン空燃比領域Xよりも外側にずれた場合にフィードバック制御を行うようにしてもよい。
また、図4の実施形態では、許容空燃比領域Yの境界線よりもリーン側、若しくはリッチ側にずれた際に、フィードバック制御を行うが、すなわち何れの側にずれた場合でも対応できる制御であるが、リーン側、若しくはリッチ側の何れか一方側にだけに対応できる制御として触媒昇温制御の簡素化を図ってもよい。
本発明の少なくとも一つの実施形態によれば、エンジンにより駆動されて発電可能である一方で車両に搭載されたバッテリから供給された電力でエンジンを駆動可能なモータジェネレータを備えた車両において、回転電機をモータリングして内燃機関を始動する際に、排ガス性能の悪化やエンジンが失火状態に至ることを回避しつつ、触媒を早期に活性化できるので、内燃機関の触媒暖機制御装置への利用に適している。
1 エンジン(内燃機関)
3 触媒暖機制御装置
5 車両
13 モータジェネレータ(回転電機)
17 駆動用バッテリ(バッテリ)
33 点火プラグ
35 燃料噴射弁
37 燃焼室
53 触媒
55 空燃比センサ(空燃比検出手段)
57 クランク角センサ
59 冷却水温度センサ
61 エアフローセンサ
63 排ガス温度センサ
65 触媒昇温制御部
67 空燃比判定部
69 空燃比フィードバック制御部
X 昇温リーン空燃比領域
Y 許容空燃比領域(所定空燃比領域)
Z 燃焼限界空燃比領域
3 触媒暖機制御装置
5 車両
13 モータジェネレータ(回転電機)
17 駆動用バッテリ(バッテリ)
33 点火プラグ
35 燃料噴射弁
37 燃焼室
53 触媒
55 空燃比センサ(空燃比検出手段)
57 クランク角センサ
59 冷却水温度センサ
61 エアフローセンサ
63 排ガス温度センサ
65 触媒昇温制御部
67 空燃比判定部
69 空燃比フィードバック制御部
X 昇温リーン空燃比領域
Y 許容空燃比領域(所定空燃比領域)
Z 燃焼限界空燃比領域
Claims (7)
- 内燃機関により駆動されて発電可能である一方で車両に搭載されたバッテリから供給された電力で前記内燃機関を駆動可能な回転電機を備えた車両の前記内燃機関の触媒暖機制御装置であって、
前記回転電機をモータリングして前記内燃機関を始動する際に、前記内燃機関の排気通路に設けられた触媒を、所定の制御開始条件が成立したときに昇温すべく、前記内燃機関の回転数を前記回転電機によって所定回転数に維持し、前記内燃機関の点火時期のリタード化及び空燃比のリーン化を実施する触媒昇温制御部と、
前記触媒昇温制御部による触媒昇温制御中に、空燃比検出手段によって検出された空燃比が所定空燃比領域から外れているかを判定する空燃比判定部と、
前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域から外れていると判定したとき、前記触媒昇温制御部のリーン化の制御を終了し、予め設定された目標空燃比になるように空燃比をフィードバック制御する空燃比フィードバック制御部と、
を備えたことを特徴とする内燃機関の触媒暖機制御装置。 - 前記空燃比フィードバック制御部は、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリーン側の境界値よりリーン側にずれていると判定したとき、前記目標空燃比を前記触媒昇温制御部による昇温リーン空燃比領域よりリッチ側の空燃比に設定してフィードバック制御をすることを特徴とする請求項1に記載の内燃機関の触媒暖機制御装置。
- 前記空燃比フィードバック制御部は、前記目標空燃比を理論空燃比に設定してフィードバック制御をすることを特徴とする請求項2に記載の内燃機関の触媒暖機制御装置。
- 前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリーン側の境界値よりリーン側にずれていると判定したとき、前記触媒昇温制御部によるリタード化の制御を終了し、基本点火時期に戻すことを特徴とする請求項2または3に記載の内燃機関の触媒暖機制御装置。
- 前記空燃比フィードバック制御部は、前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリッチ側の境界値よりリッチ側にずれていると判定したとき、前記目標空燃比を前記触媒昇温制御部による昇温リーン空燃比領域の内側の空燃比に設定してフィードバック制御をすることを特徴とする請求項1から4の何れか1項に記載の内燃機関の触媒暖機制御装置。
- 前記空燃比判定部によって、前記空燃比検出手段で検出された空燃比が前記所定空燃比領域のリッチ側の境界値よりリッチ側にずれていると判定したとき、前記触媒昇温制御部のリタード化の制御を維持することを特徴とする請求項5に記載の内燃機関の触媒暖機制御装置。
- 前記触媒昇温制御部による空燃比のリーン化は昇温リーン空燃比領域の内となるように実施され、
前記所定空燃比領域は、前記昇温リーン空燃比領域より外側に設定されることを特徴とする請求項1から6の何れか1項に記載の内燃機関の触媒暖機制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019007540A JP2020118049A (ja) | 2019-01-21 | 2019-01-21 | 内燃機関の触媒暖機制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019007540A JP2020118049A (ja) | 2019-01-21 | 2019-01-21 | 内燃機関の触媒暖機制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020118049A true JP2020118049A (ja) | 2020-08-06 |
Family
ID=71890311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019007540A Pending JP2020118049A (ja) | 2019-01-21 | 2019-01-21 | 内燃機関の触媒暖機制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020118049A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022076700A (ja) * | 2020-11-10 | 2022-05-20 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
-
2019
- 2019-01-21 JP JP2019007540A patent/JP2020118049A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022076700A (ja) * | 2020-11-10 | 2022-05-20 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP7314919B2 (ja) | 2020-11-10 | 2023-07-26 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4321497B2 (ja) | 内燃機関の始動装置 | |
JP4424153B2 (ja) | 内燃機関装置および内燃機関の停止位置推定方法並びに内燃機関の制御方法 | |
JP3699654B2 (ja) | 内燃機関のバルブタイミング制御装置 | |
JP2006348863A (ja) | 内燃機関の始動装置 | |
US7831377B2 (en) | Ignition timing control system and method for internal combustion engine and engine control unit | |
JP5155974B2 (ja) | 内燃機関の制御装置 | |
JP5742682B2 (ja) | 内燃機関の始動制御装置 | |
JP2009057900A (ja) | 内燃機関の運転制御装置 | |
JP2020118049A (ja) | 内燃機関の触媒暖機制御装置 | |
JP5821749B2 (ja) | 内燃機関の始動制御装置 | |
JP4992757B2 (ja) | 内燃機関の制御方法 | |
JP5593132B2 (ja) | 内燃機関の制御装置 | |
JP5514623B2 (ja) | ハイブリッド車両の制御装置 | |
JP4228823B2 (ja) | 筒内噴射火花着火式内燃機関の燃料噴射制御装置 | |
JP4329589B2 (ja) | エンジンの始動装置 | |
JP5821748B2 (ja) | 内燃機関の始動制御装置 | |
JPH1113493A (ja) | エンジンの吸気制御装置 | |
WO2023242979A1 (ja) | エンジン制御装置及びエンジン制御方法 | |
JP2013204520A (ja) | 内燃機関の始動制御装置 | |
JP5482515B2 (ja) | 多気筒内燃機関の制御装置 | |
JP4231975B2 (ja) | 内燃機関の制御装置 | |
JP2018053732A (ja) | エンジン制御装置 | |
JP2020147150A (ja) | 車両の制御装置 | |
JP2006009746A (ja) | エンジンの制御装置 | |
JP2022129779A (ja) | 内燃機関の制御装置 |