JP2020117684A - Method for producing soil conditioner containing woody material as raw material and soil conditioning method - Google Patents

Method for producing soil conditioner containing woody material as raw material and soil conditioning method Download PDF

Info

Publication number
JP2020117684A
JP2020117684A JP2019200002A JP2019200002A JP2020117684A JP 2020117684 A JP2020117684 A JP 2020117684A JP 2019200002 A JP2019200002 A JP 2019200002A JP 2019200002 A JP2019200002 A JP 2019200002A JP 2020117684 A JP2020117684 A JP 2020117684A
Authority
JP
Japan
Prior art keywords
soil
raw material
temperature
water
steamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200002A
Other languages
Japanese (ja)
Other versions
JP6995386B2 (en
Inventor
山口 秀樹
Hideki Yamaguchi
秀樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAZAKI MIDORI SEIYAKU KK
Original Assignee
MIYAZAKI MIDORI SEIYAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAZAKI MIDORI SEIYAKU KK filed Critical MIYAZAKI MIDORI SEIYAKU KK
Publication of JP2020117684A publication Critical patent/JP2020117684A/en
Application granted granted Critical
Publication of JP6995386B2 publication Critical patent/JP6995386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for producing a soil conditioner that can improve the water holding and draining capacity of the soil, and increase the soil temperature in a cold season and hold the growth environment of soil microorganisms.MEANS FOR SOLVING THE PROBLEM: A method for producing a soil conditioner includes steaming a chip raw material obtained from a woody material under a pressure of 3-6 atmospheres and a temperature of 120-160°C for 60-120 minutes, and then grinding down the obtained steamed product and making it fibrous.SELECTED DRAWING: Figure 9

Description

本発明は、土壌の保水性、排水性等を改善するとともに、地温の安定性等を向上して土壌微生物の安定的な生存を可能とし土壌呼吸を促進する土壌改良材の製造法及びこれを使用した土壌改良方法に関する。 The present invention, while improving the water retention, drainage, etc. of the soil, to improve the stability of soil temperature, etc. to enable stable survival of soil microorganisms and to promote soil respiration and a method for producing the soil improving material. The soil improvement method used.

作物の生育に適さない土壌を改良し、生産性を向上させるため、従来から土壌改良材が使用されてきた。このような土壌改良材としては、例えば、木炭、バーミキュライト、泥炭、パーライトなどが挙げられ、これらを土壌に施用することによって保水性や透水性の改善が図られている。 Soil conditioners have heretofore been used to improve soil which is not suitable for growing crops and improve productivity. Examples of such soil improvers include charcoal, vermiculite, peat, and perlite, and application of these to soil has been attempted to improve water retention and water permeability.

その他にも様々な検討がなされており、例えば、特許文献1には、杉又は檜の皮を繊維状、チップ状等にして発酵させることで、土壌のpHを調整できる土壌改良材が開示されている。また特許文献2には、微細化したモンモリロナイトをココナッツピートなどの植物性担体に担持させた土壌改良材が記載されている。 In addition, various studies have been made, for example, Patent Document 1 discloses a soil improving material capable of adjusting the pH of soil by fermenting cedar or cypress skin into a fiber shape, a chip shape, or the like. ing. Further, Patent Document 2 describes a soil improving material in which finely divided montmorillonite is supported on a plant carrier such as coconut peat.

特開2016−44235号公報JP, 2016-44235, A 特開2015−229709号公報JP, 2015-229709, A

本発明は、土壌の保水性、排水性等を向上させるとともに、低温時期の地温を上昇させ土壌微生物の生育環境を保持し得る土壌改良材の製造方法を提供することを課題とする。 It is an object of the present invention to provide a method for producing a soil improving material that can improve soil water retention, drainage property, and the like, as well as increase soil temperature in a low temperature period and maintain a growth environment of soil microorganisms.

本発明者は、上記課題を解決すべく鋭意研究を行った結果、木質系素材のチップ原料を特定の条件下で蒸煮処理し繊維状にした繊維状物を土壌に加えることで、地温が安定的に維持されるため、土壌微生物の生育が促進され、かつ、土壌の排水性、保水性及び保肥性等が改善されることを見出し、本発明を完成させるに至った。 The present inventor, as a result of earnest research to solve the above problems, by adding a fibrous material, which is a fibrous material obtained by steaming a wood raw material chip raw material under specific conditions, to a stable ground temperature. Therefore, it was found that the growth of soil microorganisms is promoted and the drainage property, water retention property and fertilization property of soil are improved, and the present invention has been completed.

すなわち本発明は、木質系素材より得られるチップ原料を圧力3〜6気圧、温度120〜160℃で60〜120分間蒸煮し、次いで得られた蒸煮物を擂り潰し、繊維状とすることを特徴とする土壌改良材の製造方法である。 That is, the present invention is characterized in that a chip raw material obtained from a wood-based material is steamed at a pressure of 3 to 6 atm and a temperature of 120 to 160° C. for 60 to 120 minutes, and then the steamed product obtained is crushed to be fibrous. Is a method for producing a soil improving material.

本発明の土壌改良材を土壌に加えることで、地温の変動が抑制され、安定的に維持されるため、土壌微生物の生育が促進され、望ましい土壌微生物叢が形成され得る。また土壌の排水性、保水性及び保肥性等を向上することが可能である。 By adding the soil improving material of the present invention to soil, fluctuations in soil temperature are suppressed and stably maintained, so that growth of soil microorganisms is promoted and a desirable soil microflora can be formed. In addition, it is possible to improve the drainage property, water retention property, and fertilization property of the soil.

本発明の製造方法で使用する製造プラントを模式的に示す図面である。It is drawing which shows typically the manufacturing plant used with the manufacturing method of this invention. 製造プラントで用いる蒸煮缶の正面図である。It is a front view of a steaming can used in a manufacturing plant. 蒸煮缶の右側面図である。It is a right view of a steaming can. 試験例1における各試料の吸水量を示すグラフである。7 is a graph showing the amount of water absorption of each sample in Test Example 1. 試験例1における各試料の水分の排出量を示すグラフである。5 is a graph showing the amount of water discharged from each sample in Test Example 1. 試験例2における水分添加後の質量の経時変化を示すグラフである。9 is a graph showing a change with time in mass after addition of water in Test Example 2. 実施例2における午前8時の地温の変化を示すグラフである。5 is a graph showing a change in ground temperature at 8:00 am in Example 2. 実施例2における午後5時の地温の変化を示すグラフである。5 is a graph showing a change in ground temperature at 5 pm in Example 2. 実施例4におけるpF値の変化を示すグラフである。9 is a graph showing changes in pF value in Example 4.

本発明の土壌改良材は、木質系素材からのチップ原料を蒸煮し、この蒸煮物を擂り潰し、繊維状としたものである。 The soil improving material of the present invention is obtained by steaming a chip raw material made of a wood-based material and crushing the steamed product to form a fibrous material.

原料となるチップは、チッパー等の装置を用い、木質系素材を、6から16cm2程度の大きさ、2から3mm程度の厚みとしたものである。チップを得るための木質系素材としては、特に制約はないが、古材でなく、生の木質系素材を利用することが好ましい。木質系原料の樹種は特に限定されるものではなく、例えば、杉、檜、松等の針葉樹類や樫、桐、楠等の広葉樹類等が挙げられるが、土壌の排水性や保水性の改善効果等の点で杉が好適である。 The chips used as a raw material are made of a wood-based material having a size of about 6 to 16 cm 2 and a thickness of about 2 to 3 mm by using a device such as a chipper. The wood-based material for obtaining chips is not particularly limited, but it is preferable to use raw wood-based material instead of old wood. The wood-based raw material tree species is not particularly limited, and examples thereof include conifers such as cedar, cypress, and pine, and hardwoods such as oak, paulownia, and kusu. Cedar is preferable in terms of effects and the like.

このチップ原料の蒸煮は、3〜6気圧、好ましくは、4〜5気圧程度の圧力下、120〜160℃、好ましくは130〜160℃、より好ましくは150〜160℃程度の温度で、60〜180分間、好ましくは60〜120分間、より好ましくは90〜120分間程度行われる。 The steaming of the chip raw material is carried out under a pressure of about 3 to 6 atm, preferably about 4 to 5 atm, at a temperature of 120 to 160° C., preferably 130 to 160° C., more preferably about 150 to 160° C., and a temperature of 60 to 60° C. It is performed for 180 minutes, preferably 60 to 120 minutes, more preferably 90 to 120 minutes.

このように蒸煮されたチップ原料(以下、「蒸煮チップ」という)は、次に擂り潰し、繊維状とされる。 The chips raw material thus steamed (hereinafter referred to as "steamed chips") are then crushed into a fibrous form.

この擂り潰しは、例えば、リファイナー(解繊機)の固定刃と回転刃の刃間を2mm程度として擂り潰すことにより行われる(刃先が磨り減った場合は0.85mm程度まで許容される)。 This crushing is performed, for example, by crushing with a fixed blade and a rotary blade of the refiner (defibrator) having a distance between the blades of about 2 mm (up to about 0.85 mm when the cutting edge is worn).

この擂り潰しにより、繊維状物が得られ、放冷されて土壌改良材として使用できる。 By this crushing, a fibrous material is obtained, which can be left to cool and used as a soil improving material.

本発明においては、上記のように、例えば6気圧以下の圧力、150℃程度の温度で蒸煮されるため、木材が柔軟化するとともに、木材中のセルロースや、ヘミセルロースが軟化し、腐朽、食害への抵抗性を有し、白色腐朽菌にしか分解できないリグニンの結合を壊す。そして、リファイナー等の作用により繊維状に解繊される。この資材は、有害物質のフルフラールをほとんど含んでおらず(多くとも2ppm以下)、安全性の高いものである。 In the present invention, as described above, for example, the pressure of 6 atm or less and the temperature of about 150° C. are steamed, so that the wood is softened, and the cellulose and hemicellulose in the wood are softened, causing decay and feeding damage. It has a resistance to and breaks the lignin bond that can be decomposed only by white-rot fungi. Then, it is fibrillated by the action of a refiner or the like. This material contains almost no harmful substance furfural (up to 2 ppm at most) and is highly safe.

次に、本発明の土壌改良材を製造するために用いる製造プラントの一例について説明する。 Next, an example of a manufacturing plant used for manufacturing the soil improving material of the present invention will be described.

図1は、発明の土壌改良材を製造するために用いる製造プラントを模式的に示した図面であり、図2は、この製造プラントで用いる蒸煮缶の正面図、図3は、その右側面図である。図中、1は蒸煮缶、2は台車レール、3はホイストコンベア、4はホイストクレーン、5は収納網篭、6はレシプロサイロを示す。また、7はスクリューコンベア、8は搬送コンベア、9はリファイナー入口、10はリファイナー、11はスロートスクリュー、12は回転刃物・固定刃物部、13はリファイナー出口である。 FIG. 1 is a drawing schematically showing a production plant used for producing the soil conditioner of the invention, FIG. 2 is a front view of a steaming can used in this production plant, and FIG. 3 is a right side view thereof. Is. In the figure, 1 is a steaming can, 2 is a truck rail, 3 is a hoist conveyor, 4 is a hoist crane, 5 is a storage basket, and 6 is a reciprocal silo. Further, 7 is a screw conveyor, 8 is a conveyer, 9 is a refiner inlet, 10 is a refiner, 11 is a throat screw, 12 is a rotary blade/fixed blade portion, and 13 is a refiner outlet.

このプラントで用いる蒸煮缶1の中に収納網篭5が3個収納される。この蒸煮缶1は、正面から見ると図2に示すように開閉扉が取り付けられた状態になっている。この蒸煮缶1の側面には、図3に示すように圧力計19、温度計20を供え、圧力・温度を一定に保つ機能を供えている。また、ボイラーからの蒸気を導入するための蒸気入口18も設けられている。 Three storage baskets 5 are stored in the steaming can 1 used in this plant. When viewed from the front, the steaming can 1 has an opening/closing door attached as shown in FIG. As shown in FIG. 3, a pressure gauge 19 and a thermometer 20 are provided on the side surface of the steaming can 1 to keep the pressure and temperature constant. A steam inlet 18 for introducing steam from the boiler is also provided.

また、収納網篭5の出し入れは、着脱可能な台車レール2上を電動式で行なわれ、ホイストクレーン4で収納網篭5を吊り上げ、ホイストコンベア3でレシプロサイロ6まで搬送する。 Further, the storage mesh basket 5 is put in and taken out electrically on the removable carriage rail 2, the storage mesh basket 5 is hoisted by the hoist crane 4, and is conveyed to the reciprocating silo 6 by the hoist conveyor 3.

このレシプロサイロ6は、蒸煮チップを受納して、センサーにより自動的に作動する内蔵のレーキで蒸煮チップをスクリューコンベア7に送り、スクリューコンベア7は蒸煮チップを定時定量で搬送コンベア8に送る自動式操作サイロである。 The reciprocal silo 6 receives the steamed chips and sends the steamed chips to the screw conveyor 7 with a built-in rake that is automatically operated by a sensor. The screw conveyor 7 automatically sends the steamed chips to the conveyor 8 at a fixed time. It is a type operation silo.

更に搬送コンベア8はチップを定時定量でリファイナー10に搬送する設備である。 Further, the transport conveyor 8 is a facility for transporting chips to the refiner 10 at a fixed time.

リファイナー10は、その入口9より蒸煮チップを受け入れ、スロートスクリュー11により蒸煮チップを擂り潰す回転刃物・固定刃物部12に送り、ここで擂り潰され、出口13より繊維状の資材として排出される。排出された資材は空送ファン14で風送管15を通り、サイクロン16を介して集積室17にいたる。 The refiner 10 receives the steamed chips from its inlet 9, sends them to the rotary knife/fixed blade section 12 for crushing the steamed chips by the throat screw 11, crushes them there, and discharges them from the outlet 13 as fibrous material. The discharged material passes through the air duct 15 by the air delivery fan 14 and reaches the collection chamber 17 via the cyclone 16.

図1に示す製造プラントで資材を調製するには、次のようにすればよい。すなわち、まず、蒸煮缶1の開閉扉を開け、中に収納されている収納網篭5を台車レール2の上を転がし外に出す。フォークリフトで収納網篭5を持ち上げ、チップサイロでチップを受け、台車レール2に乗せ、再度蒸煮缶1の中に収用する。耐圧性の扉を閉めて、ボイラーからの蒸気を蒸気入口18より取り入れ蒸気加圧する。この工程は、チップのセルロース、ヘミセルロースを軟化し木質の柔軟化を図るためのものである。 To prepare materials in the manufacturing plant shown in FIG. 1, the following may be done. That is, first, the opening/closing door of the steaming can 1 is opened, and the storage basket 5 stored therein is rolled on the trolley rail 2 to be taken out. The storage basket 5 is lifted by a forklift, chips are received by the chip silo, placed on the truck rail 2, and again stored in the steaming can 1. The pressure resistant door is closed, and steam from the boiler is taken in through the steam inlet 18 and pressurized with steam. This step is for softening the cellulose and hemicellulose of the chips to soften the wood.

この様にして蒸煮の工程が終了したら、次に蒸煮缶1の扉を開け、収納網篭5を、台車レール2を使って取り出し、ホイストクレーン4で吊り上げ、ホイストコンベア3を移動してレシプロサイロ6に投入する。その場合、収納網篭5をレシプロサイロ6の上部に到着すると自動的に収納網篭5の底板が開き、蒸煮チップがレシプロサイロ6に投入される。 When the steaming process is completed in this way, then the door of the steaming can 1 is opened, the storage basket 5 is taken out using the truck rail 2, lifted by the hoist crane 4, and the hoist conveyor 3 is moved to move the reciprocating silo. Put in 6. In this case, when the storage mesh basket 5 reaches the upper part of the reciprocal silo 6, the bottom plate of the storage mesh basket 5 is automatically opened and the steamed chips are put into the reciprocal silo 6.

このレシプロサイロ6は、蒸煮チップを受納して、センサーにより自動的に作動する内蔵のレーキで蒸煮チップをスクリューコンベア7に送り、スクリューコンベア7は蒸煮チップを定時定量で搬送コンベア8に送り、搬送コンベア8は蒸煮チップを定時定量でリファイナー10に搬送する。 The reciprocating silo 6 receives the steamed chips and sends the steamed chips to the screw conveyor 7 with a built-in rake that is automatically operated by a sensor. The screw conveyor 7 sends the steamed chips to the transport conveyor 8 at a fixed time fixed amount, The conveyor 8 conveys the steamed chips to the refiner 10 at a fixed time.

このリファイナー10では、その入口9で受けた蒸煮チップがスロートスクリュー11により回転刃物・固定刃物部12まで送られ、擂り潰され、資材として出口13から排出される。この排出された資材は、風送ファン14により風送管15を通り、サイクロン16で空気と資材に分離され集積室17に集積される。 In this refiner 10, the steamed chips received at the inlet 9 are sent to the rotary blade/fixed blade portion 12 by the throat screw 11, crushed, and discharged from the outlet 13 as a material. The discharged material passes through the air blowing pipe 15 by the air blowing fan 14, is separated into air and material by the cyclone 16, and is accumulated in the accumulating chamber 17.

このようにして得られた土壌改良材を土壌に散布、添加、混合するなどして施用することにより、保水性、排水性の改善効果等が得られる。施用量は特に制限されない。 By applying the soil improving material thus obtained to the soil by spraying, adding, mixing, or the like, the effects of improving water retention, drainage, and the like can be obtained. The application rate is not particularly limited.

以下、実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実 施 例 1
土壌改良材の製造:
国産杉材を、チッパーを用い、厚さ約3mm程度のチップとした。この原料チップ2,000kgを、図1で示した装置の蒸煮缶(直径2m、長さ4.5m)の中の収納網篭に入れ、4気圧、150℃で180分間、1時間当たり1,690kgの水蒸気を用いて蒸煮した。次にこの蒸煮チップ1,000kgをリファイナーにより、3,300V、132kWの力で60分間かけて擂り潰し、繊維状物を得た。外観は茶褐色であり、握るとフンワリとした繊維状を呈し、かすかに芳香性を有するものであった。また、下記条件により製品5点についてフルフラールを分析したところ、フルフラールの含量は最大2μg/g(ppm)、最小は検出限界(1μg/g)以下であり、試料中3点が検出限界以下であった。
Example 1
Manufacture of soil conditioner:
Using a chipper, Japanese cedar wood was made into chips with a thickness of about 3 mm. 2,000 kg of this raw material chip was placed in a storage basket in the steaming can (diameter 2 m, length 4.5 m) of the apparatus shown in FIG. Steamed with 690 kg of steam. Next, 1,000 kg of the steamed chips were crushed with a refiner at a power of 132 kW at 3,300 V for 60 minutes to obtain a fibrous material. The appearance was dark brown, and when it was grasped, it had a fluffy fibrous shape and had a faint aromaticity. Further, when furfural was analyzed for 5 products under the following conditions, the maximum content of furfural was 2 μg/g (ppm), the minimum was less than the detection limit (1 μg/g), and 3 of the samples were below the detection limit. It was

(フルフラール分析条件)
試薬及び装置:
フルフラール(2-furaldehyde):和光純薬工業(株)製
その他の試薬はすべて和光純薬工業(株)製残留農薬試験用を用いた。
バキュームコントローラー:EYELA社製 NVC−1100型
ガスクロマトグラフ:ヒューレットパッカード社製HP5890 SERIES II
データ処理装置:同上 HP3396A
(Furfural analysis conditions)
Reagents and equipment:
Furfural (2-furaldehyde): manufactured by Wako Pure Chemical Industries, Ltd. All other reagents used were those for residual pesticide test manufactured by Wako Pure Chemical Industries, Ltd.
Vacuum controller: EYELA NVC-1100 type gas chromatograph: Hewlett Packard HP5890 SERIES II
Data processing device: same as above HP3396A

ガスクロマトグラフ操作条件:
検出器:水素炎イオン化検出器(DID)
分離カラム:J&W Scientific社製 DB−210
(0.25mm I.D.×30m、膜厚 0.25μm)
キャリアガス:ヘリウム
メイクアップガス:ヘリウム
水素ガス:1.2kg/cm2
乾燥空気:3.2kg/cm2
カラムオーブン温度:60℃(1分)〜昇温5℃/分〜160℃(1分)〜昇温30℃/分〜250℃(5分)
注入口温度:250℃
検出器温度:260℃
注入量:2μL
試料導入方法:スプリットレス
Gas chromatograph operating conditions:
Detector: Hydrogen flame ionization detector (DID)
Separation column: DB&210 manufactured by J&W Scientific
(0.25 mm ID×30 m, film thickness 0.25 μm)
Carrier gas: Helium Make-up gas: Helium Hydrogen gas: 1.2 kg/cm 2
Dry air: 3.2kg/cm 2
Column oven temperature: 60°C (1 minute)-heating 5°C/minute-160°C (1 minute)-heating 30°C/minute-250°C (5 minutes)
Inlet temperature: 250℃
Detector temperature: 260℃
Injection volume: 2 μL
Sample introduction method: Splitless

試 験 例 1
水分の吸収効果:
実施例1の土壌改良材について水分の吸排出効果を確認した。実施例1の土壌改良材を105℃に設定した乾燥恒温器内で40時間乾燥させ、10.0gずつをポリエステルのネットに入れ、24時間水道水に浸した。吸水スピードを見るために、30分後、60分後、180分後、360分後に取り出し、5分間放置(金網の上)後の質量を測定し、土壌改良材1g当たりの吸水量(g)を算出した。製造過程における原料チップ、蒸煮チップについても同様にして試料の乾燥質量1g当たりの吸水量(g)を求めた。結果を下記表1及び図4に示す。
Trial example 1
Moisture absorption effect:
The water absorbing and discharging effect of the soil conditioner of Example 1 was confirmed. The soil conditioner of Example 1 was dried in a drying incubator set to 105° C. for 40 hours, 10.0 g of each was put into a polyester net, and immersed in tap water for 24 hours. In order to check the water absorption speed, the mass after 30 minutes, 60 minutes, 180 minutes, 360 minutes, and after taking out for 5 minutes (on the wire mesh) was measured, and the water absorption amount per 1 g of the soil improvement material (g) Was calculated. The water absorption amount (g) per 1 g of the dry mass of the sample was similarly determined for the raw material chips and the steamed chips in the manufacturing process. The results are shown in Table 1 below and FIG.

水分の保持効果:
実施例1の土壌改良材を24時間水道水に浸漬した後、湿度75%の環境下に置き、所定時間経過後に質量を測定して、乾燥質量1g当たりの水分の保持量の経時的な変化を調べた。原料チップ、蒸煮チップも同様にして求めた。結果を表2に示す。
Moisture retention effect:
The soil conditioner of Example 1 was immersed in tap water for 24 hours, then placed in an environment with a humidity of 75%, the mass was measured after a lapse of a predetermined time, and the change in the retained amount of water per 1 g of dry mass with time. I checked. Raw material chips and steamed chips were also obtained in the same manner. The results are shown in Table 2.

水分の排出効果:
試験例2において湿度75%下で168時間経過後の各試料を取りだし、湿度25%の環境下に置き、所定時間経過後に質量を測定して、乾燥質量1g当たりの水分の排出量を求めた。結果を表3及び図5に示す。
Water drainage effect:
In Test Example 2, each sample was taken out after 168 hours at a humidity of 75%, placed in an environment of a humidity of 25%, and the mass was measured after a lapse of a predetermined time to obtain the amount of discharged water per 1 g of dry mass. .. The results are shown in Table 3 and FIG.

以上より、実施例1の土壌改良材は、原料チップ及び蒸煮チップと比較して、多量の水分を環境に応じて吸収、保持、排出することができ、優れた水分の吸排出能を有することが示された。 As described above, the soil conditioner of Example 1 can absorb, retain, and discharge a large amount of water according to the environment as compared with the raw material chips and the steamed chips, and has an excellent water absorption/discharge capacity. It has been shown.

試 験 例 2
海砂に対する保水性向上効果:
実施例1の土壌改良材を十分に風乾させた後、105℃に設定した乾燥恒温器内で2時間乾燥した。また海砂を十分に風乾させた後、2mmメッシュの網で振るい、105℃に設定した乾燥恒温器内で2時間乾燥した。実施例1の土壌改良材と海砂を質量比0:100(試験区I)、1:99(試験区II)又は5:95(試験区III)で全体が100gとなるように混合し試料とした。各試料をポリエステルのネットに入れ、水分が抜けるように穴をあけた容器に設置し、各30gの水道水を加えた。10分後、1、12、24、48、120時間後に各試料の質量を測定した。結果を表4及び図6に示す。
Test example 2
Water retention improvement effect against sea sand:
The soil conditioner of Example 1 was sufficiently air-dried and then dried in a drying incubator set to 105° C. for 2 hours. Further, the sea sand was sufficiently air-dried, then shaken with a mesh of 2 mm mesh, and dried for 2 hours in a drying incubator set to 105°C. Samples were prepared by mixing the soil conditioner of Example 1 and sea sand at a mass ratio of 0:100 (test group I), 1:99 (test group II) or 5:95 (test group III) so that the total amount was 100 g. And Each sample was put in a polyester net, placed in a container with holes so that water could escape, and 30 g of tap water was added. After 10 minutes, 1, 12, 24, 48, and 120 hours later, the mass of each sample was measured. The results are shown in Table 4 and FIG.

水分添加直後より実施例1の土壌改良材を混合した試験区では吸水力が高くなる傾向がみられた。吸水・保水力の少ない海砂のような粒子の大きい土壌において、本発明の土壌改良材を混合することにより、雨や潅水による水分を無駄なく土壌中に保つ効果が生まれるものと推察される。 Immediately after the addition of water, the water absorption capacity tended to be higher in the test section in which the soil improving material of Example 1 was mixed. It is presumed that, by mixing the soil improving material of the present invention in a soil having large particles such as sea sand, which has a low water absorption/retention capacity, an effect of keeping moisture due to rain or irrigation in the soil without waste is produced.

実 施 例 2
土壌に、実施例1で得られた土壌改良材を2,857kg/10aの施用量で堆肥散布機を用い均等に散布した後、トラクターで攪拌した(試験区)。何も加えていない土壌を対照区とした。それぞれの地表から15cmの深さの地温を午前8時及び午後5時に測定した。測定は1か月間にわたって毎日行った。その結果を図7及び8に示す。
Example 2
The soil conditioner obtained in Example 1 was evenly sprayed on the soil at an application rate of 2,857 kg/10a using a compost spreader, and then stirred by a tractor (test section). The soil to which nothing was added was used as a control. The soil temperature at a depth of 15 cm from each surface was measured at 8 am and 5 pm. The measurements were taken daily for one month. The results are shown in FIGS. 7 and 8.

対照区と比べ、試験区の方が午前8時で平均約1℃、午後5時で平均約0.6℃地温が高かった。試験区では、寒さの厳しい時期における地温の急激な低下を防ぐ傾向が認められた。 Compared with the control section, the test section had an average soil temperature of about 1°C at 8:00 am and an average of about 0.6°C at 5 pm. In the test plot, there was a tendency to prevent a sudden decrease in soil temperature during the cold season.

実 施 例 3
試験管内に、圃場より採取した土10g及び実施例1の土壌改良材0.1gを加え、土壌試料を調製した。最初の2週間は20ml/日の水で洗浄し、電気伝導度を測定しながら塩基類の流出を確認した。その後16日間、土量に対し2質量%の水を1回/日及び液肥を数滴添加した。それから純水で軽く湿らせた待ち針を土壌に3回深さ2cmまで差し、差した部分を1mlの生理食塩水中に入れて撹拌した後、標準寒天培地で37℃、24時間培養し、デジタルカメラでコロニー数をカウントした(16日後の菌数)。土壌改良材無添加を対照とし、それぞれについて初日の菌数(0日の菌数)に対する増加率を下記式により求めた。結果を表5に示す。
[数1]
増加率(%)={(16日後の菌数)×100}/(0日の菌数)
Example 3
A soil sample was prepared by adding 10 g of soil collected from the field and 0.1 g of the soil improving material of Example 1 to the test tube. It was washed with 20 ml/day of water for the first two weeks, and the outflow of bases was confirmed while measuring the electric conductivity. For 16 days thereafter, 2% by mass of water was added once per day to the soil amount and a few drops of liquid fertilizer were added. Then insert the needle slightly moistened with pure water into the soil 3 times to a depth of 2 cm, put the inserted portion in 1 ml of physiological saline, stir, and incubate in standard agar medium at 37°C for 24 hours, then use a digital camera. The number of colonies was counted by (the number of bacteria after 16 days). The increase rate with respect to the number of bacteria on the first day (the number of bacteria on day 0) was calculated by the following formula for each without addition of the soil conditioner. The results are shown in Table 5.
[Equation 1]
Rate of increase (%) = {(number of bacteria after 16 days) x 100}/(number of bacteria on day 0)

表5に示すとおり、試験区では、対照区と比べて明らかな微生物の増加が認められた。なお、各区の培地よりコロニーを4つずつ採取し、飛行時間型質量分析計(MALDI−TOF−MS、BRUKER社製、microflex LT/SH (Bruker Daltonik GmbH))で測定後、MBT Compass 4.1により、ライブラリ(MBT Compass Library Ver.7.0.0.0(7311))で微生物同定を行ったところ、全てBacillus megaterium(バチルス・メガテリウム)であった。バチルス・メガテリウムは広く存在している好気性菌であり、この微生物が増加していたことから、好気性菌の生育に適した環境が形成されていたといえる。 As shown in Table 5, in the test plot, a clear increase in microorganisms was observed as compared with the control plot. In addition, four colonies were collected from the culture medium of each ward, and after measurement with a time-of-flight mass spectrometer (MALDI-TOF-MS, manufactured by BRUKER, microflex LT/SH (Bruker Daltonik GmbH)), by MBT Compass 4.1, Microorganism identification was performed using a library (MBT Compass Library Ver.7.0.0.0(7311)), and all were Bacillus megaterium. Bacillus megaterium is a widespread aerobic bacterium, and it can be said that an environment suitable for the growth of the aerobic bacterium was formed due to the increase of this bacterium.

さらに上記土壌試料を179日間、水と液肥を添加し続け、低温時(平均気温10℃)の菌数測定を行った。結果を表6に示す。
Further, the above soil sample was continuously added with water and liquid fertilizer for 179 days, and the number of bacteria was measured at low temperature (average temperature 10°C). The results are shown in Table 6.

同様の方法で微生物同定を行ったところ検出した菌はすべてBacillus megateriumであった。Bacillus megateriumは低温環境下では活性が弱まるが、試験区においては、対照区と比べて明らかに菌の活性が維持されていた。 When the microorganisms were identified by the same method, all the detected bacteria were Bacillus megaterium. The activity of Bacillus megaterium was weakened in the low temperature environment, but the activity of the fungus was clearly maintained in the test group as compared with the control group.

実 施 例 4
土壌改良材を施用した圃場におけるpF値の推移:
宮崎県串間市の甘藷圃場(23a)において実施例1の土壌改良材の施用による土壌水分の維持・安定化(透水性・保水性)効果を調べるためにpF値測定用のデータロガーを設置し、pF値について測定・記録をした。データロガーを対照区と試験区(実施例1の土壌改良材施用 1,500kg/10a)の東側から約5メートルの位置、畝の上部から15cm地点に設置し記録した。その結果を図9に示す。
Example 4
Changes in pF value in fields applied with soil conditioner:
A data logger for pF value measurement was installed in the sweet potato field (23a) in Kushima City, Miyazaki Prefecture in order to investigate the effect of maintaining and stabilizing the soil moisture (water permeability/water retention) by applying the soil conditioner of Example 1. , PF values were measured and recorded. A data logger was installed at a position of about 5 meters from the east side of the control section and the test section (application of soil improving material of Example 1, 1,500 kg/10a), and 15 cm from the upper part of the ridge and recorded. The result is shown in FIG.

植物の生育には排水性(透水性)が良く、保水性の高い土壌が求められる。土壌水分の状態を評価するための指標としてpF値がある。pF値は土壌中に保持された水を作物が利用するため、その土壌から水を引き離す力を表すものである。2019年6月14日未明から6月15日にかけては大雨であったため、pF値は急激に下がったが、試験区のpF値の下がり方は対照区よりも遅かった。さらに、その後のpF値回復を見た場合、対照区に比べ試験区の方が速やかに回復した。この結果は、本発明の土壌改良材を施用することにより、土壌の保水性を維持しながら排水性を高めたことを示しており、土壌水分の維持・安定化対策に本発明の土壌改良材が有用であることが明らかになった。 Soil with good drainage (water permeability) and high water retention is required for plant growth. There is a pF value as an index for evaluating the state of soil moisture. The pF value represents the force of separating water from the soil because the crop uses the water retained in the soil. Due to heavy rain from June 14th, 2019 to June 15, 2019, the pF value dropped sharply, but the pF value in the test section fell later than in the control section. Further, when observing the subsequent recovery of the pF value, the test group recovered more quickly than the control group. This result shows that by applying the soil improving material of the present invention, the drainage property was enhanced while maintaining the water retention of the soil, and the soil improving material of the present invention was used as a measure for maintaining and stabilizing soil moisture. Has proved to be useful.

本発明により得られる土壌改良材は、地温が安定的に維持されるため、土壌微生物の生育が促進されるとともに、土壌の排水性及び保水性を向上することが可能であるため、土壌の生産性向上に対して有効である。 Soil improving material obtained by the present invention, since the soil temperature is stably maintained, the growth of soil microorganisms is promoted, and it is possible to improve the drainage property and water retention property of the soil, so that the soil is produced. It is effective for improving the sex.

1……蒸煮缶
2……台車レール
3……ホイストコンベア
4……ホイストクレーン
5……収納網篭
6……レシプロサイロ
7……スクリューコンベア
8……搬送コンベア
9……リファイナー入口
10……リファイナー
11……スロートスクリュー
12……回転刃物・固定刃物部
13……リファイナー出口
14……風送ファン
15……風送管
16……サイクロン
17……集積室
18……蒸気入口
19……圧力計
20……温度計
1... Steaming can 2... Cart rail 3... Hoist conveyor 4... Hoist crane 5... Storage cage 6... Reciprocating silo 7... Screw conveyor 8... Conveyor 9... Refiner inlet 10... Refiner 11... Throat screw 12... Rotating blade/fixed blade 13... Refiner outlet 14... Air blower fan 15... Air blower pipe 16... Cyclone 17... Accumulation chamber 18... Steam inlet 19... Pressure gauge 20... thermometer

Claims (2)

木質系素材より得られるチップ原料を圧力3〜6気圧、温度120〜160℃で60〜120分間蒸煮し、次いで得られた蒸煮物を擂り潰し、繊維状とすることを特徴とする土壌改良材の製造方法。 A soil improving material characterized in that a chip raw material obtained from a wood-based material is steamed at a pressure of 3 to 6 atm and a temperature of 120 to 160° C. for 60 to 120 minutes, and then the steamed product obtained is crushed to be fibrous. Manufacturing method. 木質系素材より得られるチップ原料を圧力3〜6気圧、温度120〜160℃で60〜120分間蒸煮し、次いで得られた蒸煮物を擂り潰して得られる繊維状を土壌に添加することを特徴とする土壌改良方法。

It is characterized in that a chip raw material obtained from a wood-based material is steamed at a pressure of 3 to 6 atm and a temperature of 120 to 160° C. for 60 to 120 minutes, and then the steamed product obtained is crushed to add fibrous material to soil. And soil improvement method.

JP2019200002A 2019-01-18 2019-11-01 Manufacturing method and soil improvement method for soil improvement materials made from wood-based materials Active JP6995386B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006511 2019-01-18
JP2019006511 2019-01-18

Publications (2)

Publication Number Publication Date
JP2020117684A true JP2020117684A (en) 2020-08-06
JP6995386B2 JP6995386B2 (en) 2022-01-14

Family

ID=71890076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200002A Active JP6995386B2 (en) 2019-01-18 2019-11-01 Manufacturing method and soil improvement method for soil improvement materials made from wood-based materials

Country Status (1)

Country Link
JP (1) JP6995386B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121118A (en) * 2002-10-03 2004-04-22 Kyushu Sangyo Kk Method for producing cattle roughage using woody material as raw material
JP2004216786A (en) * 2003-01-17 2004-08-05 Mie Prefecture Woody fibrillated product, its manufacturing method and microbial material
JP2004224893A (en) * 2003-01-22 2004-08-12 Maeda Seikan Kk Method for preparing soil material
JP2004305085A (en) * 2003-04-07 2004-11-04 Maeda Seikan Kk Artificial lightweight soil and method for producing the same
JP2005146024A (en) * 2003-11-11 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Method for producing soil application agent
JP2006142184A (en) * 2004-11-18 2006-06-08 Daito Plastic Kogyo Kk Recycle system for waste wood
JP2007002383A (en) * 2005-05-25 2007-01-11 Kri Inc Biodegradable sheet, and biodegradable container
JP2012115263A (en) * 2010-11-12 2012-06-21 Miyazaki Midori Seiyaku Kk Fermentation floor material for chicken dropping treatment, method for producing the same, and method for treating chicken dropping using the same
CN106604977A (en) * 2014-06-29 2017-04-26 普罗菲乐产品公司 Bark and wood fiber growing medium
US20170114276A1 (en) * 2014-06-29 2017-04-27 Profile Products L.L.C. Bark and wood fiber growing medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121118A (en) * 2002-10-03 2004-04-22 Kyushu Sangyo Kk Method for producing cattle roughage using woody material as raw material
JP2004216786A (en) * 2003-01-17 2004-08-05 Mie Prefecture Woody fibrillated product, its manufacturing method and microbial material
JP2004224893A (en) * 2003-01-22 2004-08-12 Maeda Seikan Kk Method for preparing soil material
JP2004305085A (en) * 2003-04-07 2004-11-04 Maeda Seikan Kk Artificial lightweight soil and method for producing the same
JP2005146024A (en) * 2003-11-11 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd Method for producing soil application agent
JP2006142184A (en) * 2004-11-18 2006-06-08 Daito Plastic Kogyo Kk Recycle system for waste wood
JP2007002383A (en) * 2005-05-25 2007-01-11 Kri Inc Biodegradable sheet, and biodegradable container
JP2012115263A (en) * 2010-11-12 2012-06-21 Miyazaki Midori Seiyaku Kk Fermentation floor material for chicken dropping treatment, method for producing the same, and method for treating chicken dropping using the same
CN106604977A (en) * 2014-06-29 2017-04-26 普罗菲乐产品公司 Bark and wood fiber growing medium
US20170114276A1 (en) * 2014-06-29 2017-04-27 Profile Products L.L.C. Bark and wood fiber growing medium

Also Published As

Publication number Publication date
JP6995386B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Jirjis Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis
Donnelly et al. Cellulose and lignin degradation in forest soils: response to moisture, temperature, and acidity
US5413618A (en) Method for the production of a peat substitute, installation for implementing said method, drying device, application of said method, and peat substitute produced according to said method
Johansson Decomposition rates of Scots pine needle litter related to site properties, litter quality, and climate
JP5947021B2 (en) Fermented bed material for chicken dung treatment, method for producing the same, and chicken dung treatment method using the same
Saravanakumar et al. Seasonal distribution of soil fungi and chemical properties of montane wet temperate forest types of Tamil Nadu
Suadicani et al. Fuel quality of whole-tree chips from freshly felled and summer dried Norway spruce on a poor sandy soil and a rich loamy soil
JP6995386B2 (en) Manufacturing method and soil improvement method for soil improvement materials made from wood-based materials
JP6469142B2 (en) Woody soil and its manufacturing method
JP6938047B2 (en) Soil pH regulator and soil pH regulator using it
Nasser et al. Mold invasion on the surface of wood/polypropylene composites produced from aqueous pretreated wood particles, Part 1: date palm midrib
Sharma et al. Comparative assessment of chelated spent mushroom substrates as casing material for the production of Agaricus bisporus
WO2018206414A1 (en) Method for stimulating plant disease suppressive activity in sphagnum moss, related products and uses
US3666620A (en) Treatment of bagasse with a nontoxic fungicidal acid to prevent mycelial deterioration
Berg FDA‐active fungal mycelium and lignin concentrations in some needle and leaf litter types
JP6506320B2 (en) Plant growth mat and method of manufacturing the same
Thomas Interrelationships of nitrogen, phosphorus, and seasonal precipitation in the production of bromegrass-crested wheatgrass hay
JP6469143B2 (en) Production method of woody soil
CA2523929A1 (en) Plant substrate, method of making same, and use thereof
Dahake et al. Production of particle boards from cotton stalks-an eco-friendly way of biomass utilization
KR20210014960A (en) Method for Cultivating Mushroom Using Vermiculite, Illite, Pegmatite as mediators that effectively leach harmful components of mushroom cultivation medium
CN109090142A (en) The method and system of natural and multi-functional plant growth regulator are prepared using lignite
JP3550568B2 (en) Culture medium for mushroom cultivation
Rediske et al. Loss of Douglas-fir seed viability during cone storage
KR102347987B1 (en) Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6995386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150