JP2020116714A - Grinder and operation method for probing device thereof - Google Patents

Grinder and operation method for probing device thereof Download PDF

Info

Publication number
JP2020116714A
JP2020116714A JP2019011763A JP2019011763A JP2020116714A JP 2020116714 A JP2020116714 A JP 2020116714A JP 2019011763 A JP2019011763 A JP 2019011763A JP 2019011763 A JP2019011763 A JP 2019011763A JP 2020116714 A JP2020116714 A JP 2020116714A
Authority
JP
Japan
Prior art keywords
probing
probing device
vibration
signal
grinding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019011763A
Other languages
Japanese (ja)
Other versions
JP7168469B2 (en
Inventor
岳見 浅井
Takemi Asai
岳見 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2019011763A priority Critical patent/JP7168469B2/en
Publication of JP2020116714A publication Critical patent/JP2020116714A/en
Application granted granted Critical
Publication of JP7168469B2 publication Critical patent/JP7168469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

To provide an operation method for a proving device which enables high speed and high accuracy measurement without occurrence of increase in a cost of the whole grinder.SOLUTION: There is provided a grinder in which an automatic balancing device is mounted on at least any rotary shaft including a grinding wheel spindle and a probing device is mounted for measurement on a machine, and the probing device comprises a mechanism for digital conversion of a signal level which is not a binary value but a multilevel numerical value. In this grinder, when measuring, the rotary shaft is rotated, and the automatic balancing device is caused to terminate balancing so as to be intentionally left vibration, or to terminate balancing in a large vibration state. During probing of the probing device, rotation of the rotary shaft is continued to superimpose the vibration component on output of the probing device, a signal after digital conversion is filtered with a lowpass filter or a bandpass filter, whereby quantization noise of desired signal frequency component is reduced.SELECTED DRAWING: Figure 5

Description

本発明は、研削盤及びそのプロービング装置の運用方法に関し、特に、自動釣り合わせ装置とプロービング装置を搭載した研削盤及びそのプロービング装置の運用方法に関する。 The present invention relates to a grinding machine and a method of operating a probing apparatus thereof, and more particularly to a grinding machine equipped with an automatic balancing apparatus and a probing apparatus and a method of operating a probing apparatus thereof.

従来、工作機械にプロービング等の測定装置を搭載し、その測定装置を運用して加工した形状の寸法・軸送り精度等を機上測定するようにしている。例えば、特許文献1に記載のアナログ測定用プローブは、工作機械と共に用いられ、被加工物の表面に接触するためのスタイラスを備え、このスタイラスは、プローブ本体部から突出し、プローブ本体部に移動可能に接続される。測定用プローブは、プローブ本体部に対するスタイラスの移動を測定するためのセンサを更に備える。アナログ測定用プローブのスタイラスは、物体の形状をもしくは位置に関する情報を取得され得るように、物体に接触させ得る。アナログプローブでは、スタイラスが被加工物の表面にそって移動されるとき、スタイラスの振れの大きさ(および、随意に方向)が、連続的に検知され、振れデータをプローブの位置を表すデータと組み合わせて被加工物の詳細な測定結果を取得できる。 Conventionally, a measuring device such as probing is mounted on a machine tool, and the measuring device is operated to measure the dimension of a machined shape, the axial feed accuracy, etc. on the machine. For example, the analog measurement probe described in Patent Document 1 is used with a machine tool and includes a stylus for contacting the surface of a workpiece, and the stylus projects from the probe main body and is movable to the probe main body. Connected to. The measuring probe further includes a sensor for measuring the movement of the stylus with respect to the probe body. The stylus of the analog measurement probe may contact the object so that information about the shape or position of the object may be obtained. With an analog probe, as the stylus is moved along the surface of the work piece, the amount of stylus deflection (and optionally direction) is continuously detected, and the deflection data is used as data representing the position of the probe. In combination, detailed measurement results of the work piece can be obtained.

近年、研削盤の高速・高精度化に対応して、そのプロービング等の測定装置に対しても高速且つ高精度な測定を可能とすることが求められており、そのための様々な提案もなされている。例えば、特許文献2記載の従来例では、加工されたワークの所定位置の座標と基準座標との差、または工作機械の所定位置の座標と基準座標との差を、あらかじめ決められたタイミングでタッチプローブにより測定した値を順次メモリに記憶し、このメモリに記憶された測定値の履歴を基準座標および許容値とともに表示するようにし、この履歴により、工作機械の熱変形による加工誤差の状況を把握する。このようなシステムにおいて扱う値は高分解能化が要求されつつある。しかしながら、高分解能な測定を実現するためには、測定装置の運用のための複雑な制御が必要となったり、精密且つ高価な測定機器を別途製作したりしなければならず、研削盤全体のコストの増加を招いてしまう。 In recent years, in response to higher speed and higher accuracy of grinding machines, it has been required to enable high-speed and high-accuracy measurement even for measuring devices such as probing, and various proposals have been made for that purpose. There is. For example, in the conventional example described in Patent Document 2, the difference between the coordinates of the predetermined position of the machined workpiece and the reference coordinates or the difference between the coordinates of the predetermined position of the machine tool and the reference coordinates is touched at a predetermined timing. The values measured by the probe are sequentially stored in the memory, and the history of the measured values stored in this memory is displayed together with the reference coordinates and the allowable values.The history allows the status of machining error due to thermal deformation of the machine tool to be grasped. To do. Higher resolution is being demanded for values handled in such systems. However, in order to realize high-resolution measurement, complicated control for operating the measuring device is required, and a precise and expensive measuring device must be separately manufactured. This causes an increase in cost.

一方、研削盤においては、砥石フランジに設けた修正面に錘を取り付けることで、砥石の回転の不釣り合い(アンバランス)を修正することが行われており、そのための自動釣り合わせ装置も開発されている(例えば、特許文献3参照)。 On the other hand, in grinders, a weight is attached to the correction surface provided on the grindstone flange to correct the unbalance of the rotation of the grindstone, and an automatic balancing device for that purpose has also been developed. (See, for example, Patent Document 3).

特表2014−517252号公報Japanese Patent Publication No. 2014-517252 特開2007−007822号公報JP, 2007-007822, A 特開平8−219927号公報Japanese Unexamined Patent Application Publication No. 8-219927

上述したように、研削盤及びそのプロービング装置の運用方法に関し、研削盤全体のコストの増加を招くこと無く、研削盤の高速・高精度化に対応した高分解能な測定を可能とするプロービング装置の開発が望まれている。 As described above, regarding the operation method of the grinder and its probing device, the probing device that enables high-resolution measurement corresponding to high speed and high accuracy of the grinder without incurring an increase in the cost of the entire grinder. Development is desired.

本発明は上述のような事情から為されたものであり、その目的は、研削盤全体のコストの増加を招くこと無く、研削盤の高速・高精度化に対応した高分解能な測定を可能とするプロービング装置の運用方法を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to enable high-resolution measurement corresponding to high-speed and high-accuracy grinding machine without increasing the cost of the entire grinding machine. It is to provide a method of operating a probing device to perform.

本発明者は、上述した研削盤全体のコストの増加を招くこと無く高分解能な測定を可能とするプロービング装置の運用方法について、様々な観点からアプローチを試み、鋭意研究した結果、そのような研削盤の構成と、そのプロービング装置の運用方法に関する新規且つ有用な着想を得るに至った。 The present inventor has attempted approaches from various points of view, and as a result of diligent research, has attempted approaches from a variety of viewpoints regarding an operating method of a probing device that enables high-resolution measurement without inviting an increase in the cost of the entire grinding machine described above. We have gained new and useful ideas regarding the construction of the board and the method of operating the probing device.

即ち、本発明の研削盤におけるプロービング装置の運用方法では、砥石軸を含む少なくともいずれかの回転軸に自動釣り合わせ装置を搭載すると共に、機上での測定用にプロービング装置を搭載した研削盤であって、且つ前記プロービング装置が信号のレベルをデジタル変換により2値ではなく多段階に数値変換する機構を備えた研削盤において、 測定の際に、前記回転軸を回転させ、 前記自動釣り合わせ装置を意図的に振動を残して釣り合わせを終了させ、もしくは振動を大きめの状態で釣り合わせを終了させ、前記プロービング装置のプロービング中に、前記回転軸の回転を持続させて該プロービング装置の出力に前記振動の成分を重畳させ、デジタル変換された後の信号をローパスフィルタまたはバンドパスフィルタで濾波することにより、得たい信号周波数成分の量子化雑音を低減させることを特徴とする。 That is, in the operating method of the probing device in the grinding machine of the present invention, the automatic balancing device is mounted on at least one of the rotating shafts including the grindstone shaft, and the grinding machine is mounted with the probing device for on-machine measurement. In the grinding machine having a mechanism in which the probing device digitally converts the signal level in multiple stages instead of two values, the rotating shaft is rotated during measurement, and the automatic balancing device is used. To intentionally leave the vibration to end the balance, or to end the balance with a large amount of vibration, and continue the rotation of the rotating shaft during probing of the probing device to output the probing device. It is characterized in that quantization noise of a desired signal frequency component is reduced by superposing the vibration component and filtering the digitally converted signal with a low-pass filter or a band-pass filter.

本発明によれば、研削盤全体のコストの増加を招くこと無く、研削盤の高速・高精度化に対応した高分解能な測定を可能とするプロービング装置の運用方法を提供することが可能である。 According to the present invention, it is possible to provide a method of operating a probing device that enables high-resolution measurement corresponding to high-speed and high-accuracy grinding machines without increasing the cost of the entire grinding machine. ..

本発明の実施形態に係る研削盤の機能ブロック図である。It is a functional block diagram of the grinder which concerns on embodiment of this invention. 本発明の実施形態に係る研削盤の要部の基本構成を示す図であり、砥石によるワークの研削を行うために、プロービング装置が後退した状態を示す。It is a figure which shows the basic composition of the principal part of the grinder which concerns on embodiment of this invention, and shows the state which the probing apparatus retracted in order to grind|grind the workpiece|work with a grindstone. 本発明の実施形態に係る研削盤の要部の基本構成を示す図であり、機上測定を行うために、プロービング装置がセットされ、スタイラスがワークに接触した状態を示す。It is a figure which shows the basic composition of the principal part of the grinding machine which concerns on embodiment of this invention, and shows the state in which the probing apparatus was set and the stylus was contacting the workpiece|work in order to perform on-machine measurement. 本発明の研削盤における自動釣り合わせ装置(オートバランサ)と加速度センサの取付(搭載)構成の一例を示す図である。It is a figure which shows an example of the attachment (mounting) structure of the automatic balancing device (auto balancer) and the acceleration sensor in the grinding machine of this invention. 本発明の研削盤におけるプロービング装置の運用方法を説明するためのフローチャートである。It is a flow chart for explaining the operating method of the probing device in the grinding machine of the present invention. 本発明の研削盤における自動釣り合わせ装置(オートバランサ)で意図的に残す振動を表す波形図として、振動を大きめの状態で釣り合わせを終了させた波形図であり、(A)は、釣り合わせる前の振動を表す波形、(B)は、振動を大きめで残して釣り合わせを終了させた波形である。As a waveform diagram showing vibration intentionally left by the automatic balancing device (auto balancer) in the grinding machine of the present invention, it is a waveform diagram in which balancing is finished in a state where the vibration is large, and (A) is a balance The waveform representing the previous vibration, (B) is the waveform in which the balance is terminated with the vibration left large. 本発明の研削盤における自動釣り合わせ装置(オートバランサ)で限界まで釣り合わせを行った上で、錘を移動させることにより不釣り合いを創出した波形図であり、(A)は、釣り合わせる前の振動を表す波形、(B)は、装置(オートバランサ)の限界まで釣り合わせた(小さな振動が残っただけの)波形、(C)は、そこから錘を移動させることにより不釣り合いを創出した波形図である。It is a waveform diagram in which an imbalance is created by moving the weight after performing the balancing to the limit with an automatic balancing device (auto balancer) in the grinding machine of the present invention. Waveform showing vibration, (B) waveform that balances to the limit of the device (auto balancer) (only small vibration remains), (C) creates disproportion by moving weight from there It is a waveform diagram. 本発明の比較例として、ステップ測定時の(アナログ信号)の例を1μmで量子化できるAD変換機でデジタル変換された後の信号をローパスフィルタで濾波した波形図であり、(A)は、ステップ測定時の(アナログ信号)の例、(B)は、1μmで量子化できるAD変換機でデジタル変換された後の信号の例、(C)は、それをローパスフィルタで濾波した信号の例である。As a comparative example of the present invention, it is a waveform diagram obtained by filtering a signal after being digitally converted by an AD converter capable of quantizing an example of (analog signal) at the time of step measurement with 1 μm with a low-pass filter, and (A) is An example of (analog signal) at the time of step measurement, (B) is an example of a signal after being digitally converted by an AD converter that can be quantized at 1 μm, and (C) is an example of a signal that is filtered by a low-pass filter. Is. 本発明の研削盤におけるプロービング装置の運用方法の一例として、重畳波形のシミュレーションを示す図であり、ステップ測定時の(アナログ信号)の例を1μmで量子化できるAD変換機でデジタル変換された後の信号をローパスフィルタで濾波した波形図あり、(A)は、意図的に振動を重畳させたアナログ信号の例、(B)は、1μmで量子化できるAD変換機でデジタル変換された後の信号の例、(C)は、それをローパスフィルタで濾波した信号の例である。It is a figure which shows the simulation of a superposition waveform as an example of the operating method of the probing device in the grinding machine of this invention, after the digital conversion by the AD converter which can quantize the example of (analog signal) at the time of step measurement by 1 micrometer. Is a waveform diagram in which the signal of is filtered by a low-pass filter, (A) is an example of an analog signal with vibration intentionally superimposed, and (B) is a digital signal converted by an AD converter that can be quantized at 1 μm. An example of a signal, (C) is an example of a signal obtained by filtering it with a low-pass filter.

まず、図1乃至図3を参照して、本発明の実施形態に係る研削盤について説明する。図1は、本実施形態に係る研削盤の機能ブロック図である。図1に示すように、本実施形態に係る研削盤は、制御装置100を有し、この制御装置100は、軸制御器100aと、プログラマブルコントローラ100bを含んでいる。尚、制御装置100の中は、軸制御器100a、プログラマブルコントローラ100bに分かれていなくても良い。また、軸制御器100a、プログラマブルコントローラ100b等がソフトウエアとして実装されていても良い。また、本実施形態に係る研削盤は、制御装置100のプログラマブルコントローラ100bとの間で信号を送受信する入出力器102を有し、入出力器102には、ドライバ(アンプ)104aを介するアクチュエータ104bと、本発明の要部であるオートバランサ制御器106が接続されている。更に、制御装置100の軸制御器100aには、ドライバ(アンプ)108a、108b、・・・、108c等を介して、それぞれサーボモータ(1)110a、サーボモータ(2)110b、・・・、砥石(回転)モータ110cが接続されている。尚、ドライバとアクチュエータやモータは、外見上一体になっている場合もある。 First, a grinding machine according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a functional block diagram of the grinding machine according to the present embodiment. As shown in FIG. 1, the grinding machine according to the present embodiment has a control device 100, and the control device 100 includes an axis controller 100a and a programmable controller 100b. The control device 100 may not be divided into the axis controller 100a and the programmable controller 100b. Moreover, the axis controller 100a, the programmable controller 100b, etc. may be mounted as software. Further, the grinding machine according to the present embodiment has an input/output device 102 that transmits/receives a signal to/from the programmable controller 100b of the control device 100, and the input/output device 102 includes an actuator 104b via a driver (amplifier) 104a. And an auto balancer controller 106, which is a main part of the present invention, are connected. Further, in the axis controller 100a of the control device 100, via the drivers (amplifiers) 108a, 108b,..., 108c, etc., the servo motor (1) 110a, the servo motor (2) 110b,. A grindstone (rotation) motor 110c is connected. In some cases, the driver, the actuator, and the motor are externally integrated.

図2は、本実施形態に係る研削盤の要部の基本構成を示す図であり、砥石によるワークの研削を行うために、プロービング装置が後退した状態を示す。図3は、本実施形態に係る研削盤の要部において、機上測定を行うために、プロービング装置がセットされ、スタイラスがワークに接触した状態を示す。ここで、本発明に係る研削盤の特徴的な構成は、砥石軸を含む少なくともいずれかの回転軸に自動釣り合わせ装置(オートバランサ)を搭載すると共に、機上での測定用にプロービング装置を搭載した研削盤である点にある。即ち、本実施形態に係る研削盤では、図2及び図3に示すように、コラム200上に、砥石台202と、この砥石台202に保持された砥石回転モータ204と、砥石回転モータ204の回転軸に取り付けられた砥石206と、例えば、砥石回転モータ204の筐体後部に回動可能なへ字状部材208aを介して取り付けられたプロービング装置208を有し、このプロービング装置208は、接触子であるスタイラス208bを備えている。また、本実施形態に係る研削盤は、ワーク台210を有し、図示X方向にコラム200が移動することにより、ワーク台210上に載置されたワーク212を、回転する砥石206によりX方向に切り込むと共に、ワーク台210が図示Y方向に移動することでワーク212を研削するようになっている。また、本実施形態に係る研削盤では、図2に示すように、へ字状部材208aが回動することで砥石206によるワーク212の研削を行うために、プロービング装置208が後退した状態とすることが可能である。一方、図3に示すように、へ字状部材208aが反対方向に回動することで、機上測定を行うために、プロービング装置208がセットされ、スタイラス208bがワーク212に接触した状態とすることも可能である。 FIG. 2 is a diagram showing a basic configuration of a main part of the grinding machine according to the present embodiment, and shows a state in which the probing device is retracted in order to grind a work with a grindstone. FIG. 3 shows a state where a probing device is set and a stylus is in contact with a work for performing on-machine measurement in a main part of the grinding machine according to the present embodiment. Here, the characteristic configuration of the grinding machine according to the present invention is that the automatic balancing device (auto balancer) is mounted on at least one of the rotating shafts including the grindstone shaft, and a probing device is used for on-machine measurement. The point is that it is a grinder equipped. That is, in the grinding machine according to the present embodiment, as shown in FIGS. 2 and 3, the grindstone base 202, the grindstone rotating motor 204 held by the grindstone mounting 202, and the grindstone rotating motor 204 are provided on the column 200. For example, a grindstone 206 attached to a rotary shaft and a probing device 208 attached to a rear part of a casing of a grindstone rotation motor 204 via a rotatable V-shaped member 208a are provided. It has a stylus 208b as a child. Further, the grinding machine according to the present embodiment has the work table 210, and the column 200 moves in the X direction in the drawing, so that the work 212 placed on the work table 210 is moved in the X direction by the rotating grindstone 206. When the work table 210 is moved to the Y direction in the drawing, the work 212 is ground. Further, in the grinder according to the present embodiment, as shown in FIG. 2, the probing device 208 is in a retracted state in order to grind the work 212 by the grindstone 206 by rotating the V-shaped member 208a. It is possible. On the other hand, as shown in FIG. 3, when the V-shaped member 208a rotates in the opposite direction, the probing device 208 is set to perform on-machine measurement, and the stylus 208b is in contact with the work 212. It is also possible.

次に、図4を参照して、本実施形態に係る研削盤における自動釣り合わせ装置(オートバランサ)と加速度センサの取付(搭載)構成について説明する。図4は、本実施形態に係る研削盤における自動釣り合わせ装置(オートバランサ)と加速度センサの取付(搭載)構成の一例を示す図である。上述したように、本発明に係る研削盤の特徴的な構成は、砥石軸を含む少なくともいずれかの回転軸に自動釣り合わせ装置(オートバランサ)を搭載する点にもある。即ち、本実施形態に係る研削盤では、図4に示すように、砥石軸である回転軸402(の回転軸筒402A)に自動釣り合わせ装置(オートバランサ)404を搭載している。また、本実施形態に係る研削盤では、図4に示すように、砥石206の径方向と同方向に感度を有する加速度センサ406が設置されている。オートバランサ404、加速度センサ406は、それぞれ上述したオートバランサ制御器106に接続されており、加速度センサ406の検出値の信号等やオートバランサ制御器106の状態信号等がオートバランサ制御器106に送出される。 Next, with reference to FIG. 4, a mounting (mounting) configuration of the automatic balancing device (auto balancer) and the acceleration sensor in the grinding machine according to the present embodiment will be described. FIG. 4 is a diagram showing an example of a mounting (mounting) configuration of an automatic balancing device (auto balancer) and an acceleration sensor in the grinding machine according to the present embodiment. As described above, the characteristic configuration of the grinding machine according to the present invention is that the automatic balancing device (auto balancer) is mounted on at least one of the rotating shafts including the grindstone shaft. That is, in the grinding machine according to the present embodiment, as shown in FIG. 4, the automatic balancing device (auto balancer) 404 is mounted on (the rotating shaft cylinder 402A of) the rotating shaft 402 which is the grindstone shaft. Further, in the grinding machine according to the present embodiment, as shown in FIG. 4, an acceleration sensor 406 having sensitivity in the radial direction of the grindstone 206 is installed. The auto balancer 404 and the acceleration sensor 406 are respectively connected to the above-mentioned auto balancer controller 106, and signals such as the detection value signal of the acceleration sensor 406 and the status signal of the auto balancer controller 106 are sent to the auto balancer controller 106. To be done.

尚、図4の詳細な構成について説明すれば、砥石(回転)モータ110cの回転軸(砥石軸)402に砥石206が取り付けられており、この回転軸(砥石軸)402(の回転軸筒402A)が砥石軸モータ(ステータ)408、砥石軸モータ(ロータ)410、軸受412a、412b、スリップリング414を介して高速回転される。また、オートバランサ404は、回転軸(砥石軸)402の回転軸筒402A内に、それぞれ錘1モータ416、錘2モータ418により駆動されることで図4(B)に示す矢印方向に可動する錘1と錘2を有している。錘1モータ416、錘2モータ418は、それぞれオートバランサ制御器106により駆動制御される。 To describe the detailed configuration of FIG. 4, a grindstone 206 is attached to a rotary shaft (grindstone shaft) 402 of a grindstone (rotation) motor 110c, and this rotary shaft (grindstone shaft) 402 (rotary shaft cylinder 402A). ) Is rotated at high speed via a grindstone shaft motor (stator) 408, a grindstone shaft motor (rotor) 410, bearings 412 a and 412 b, and a slip ring 414. Further, the auto balancer 404 moves in the direction of the arrow shown in FIG. 4B by being driven by the weight 1 motor 416 and the weight 2 motor 418 inside the rotary shaft cylinder 402A of the rotary shaft (grinding stone shaft) 402, respectively. It has a weight 1 and a weight 2. The weight 1 motor 416 and the weight 2 motor 418 are drive-controlled by the auto balancer controller 106, respectively.

次に、
図5乃至図9を参照して、本実施形態に係る研削盤におけるプロービング装置の運用方法を説明する。図5は、本実施形態に係る研削盤におけるプロービング装置の運用方法を説明するためのフローチャートである。図5に示すのは、フィルタリングがリアルタイムでない場合である。本実施形態に係る研削盤におけるプロービング装置の運用方法が開始されると(S501)、まず、砥石回転し、プローブが応答する回転数を選定する(S502)。そして、自動釣り合わせが行われる(S503)。次に、錘1と錘2の位置が修正され(意図的にずらす)(S504)た上で、プロービング装置208による測定が行われる(重畳信号が取得される)(S505)。得られた信号波形をフィルタリングし(S506)し、測定結果を取得・評価する(S507)ことで、フローが終了する(S508)。尚、フィルタリングは測定結果の取得の前に入れば良いので、リアルタイムでなくても良い。
next,
A method of operating the probing device in the grinding machine according to the present embodiment will be described with reference to FIGS. 5 to 9. FIG. 5 is a flowchart for explaining a method of operating the probing device in the grinding machine according to this embodiment. Shown in FIG. 5 is when the filtering is not real-time. When the operating method of the probing device in the grinding machine according to the present embodiment is started (S501), first, the number of rotations at which the grindstone rotates and the probe responds is selected (S502). Then, automatic balancing is performed (S503). Next, the positions of the weights 1 and 2 are corrected (shifted intentionally) (S504), and then the measurement by the probing device 208 is performed (superimposed signal is acquired) (S505). The flow ends by filtering the obtained signal waveform (S506) and acquiring/evaluating the measurement result (S507) (S508). Note that the filtering need not be performed in real time, as it may be performed before the acquisition of the measurement result.

図6は、本発明の研削盤における自動釣り合わせ装置(オートバランサ)404で意図的に残す振動を表す波形図として、振動を大きめの状態で釣り合わせを終了させた波形図であり、(A)は、釣り合わせる前の振動を表す波形、(B)は、振動を大きめで残して釣り合わせを終了させた波形である。即ち、本実施形態に係る研削盤におけるプロービング装置の運用方法では、図6(A)に示すように、釣り合わせる前の振動を表す波形が得られると、図6(B) に示すように、振動を大きめで残して釣り合わせを終了させた波形を得るようにする。 FIG. 6 is a waveform diagram showing the vibration intentionally left by the automatic balancing device (auto balancer) 404 in the grinding machine of the present invention, which is a waveform diagram in which the balancing is finished in a large vibration state, ) Is a waveform representing the vibration before the balance, and (B) is a waveform in which the balance is finished with the vibration left large. That is, in the method for operating the probing device in the grinding machine according to the present embodiment, when the waveform representing the vibration before the balance is obtained as shown in FIG. 6(A), as shown in FIG. 6(B), Leave a large vibration to obtain a waveform that has completed the balancing.

図7は、本発明の研削盤における自動釣り合わせ装置(オートバランサ)404で限界まで釣り合わせを行った上で、錘1及び/又は錘2を移動させることにより不釣り合いを創出した波形図であり、(A)は、釣り合わせる前の振動を表す波形、(B)は、装置(オートバランサ)404の限界まで釣り合わせた(小さな振動が残っただけの)波形、(C)は、そこから錘1及び/又は錘2を移動させることにより不釣り合いを創出した波形図である。即ち、本実施形態に係る研削盤におけるプロービング装置の運用方法では、図7(A)に示すように、釣り合わせる前の振動を表す波形が得られると、図7(B) に示すように、装置(オートバランサ)404の限界まで釣り合わせ、小さな振動が残っただけの波形を得ても良い。そして、この後、そこから錘1及び/又は錘2を移動させることにより不釣り合いを創出し、図7(C) に示すように、釣り合わせを終了させた波形を得るようにすることもできる FIG. 7 is a waveform diagram in which an unbalance is created by moving the weight 1 and/or the weight 2 after performing the balancing to the limit with the automatic balancing device (auto balancer) 404 in the grinding machine of the present invention. Yes, (A) is a waveform representing vibration before balancing, (B) is a waveform that is balanced to the limit of the device (auto balancer) 404 (only small vibration remains), and (C) is there. It is a waveform diagram which created imbalance by moving the weight 1 and/or the weight 2 from. That is, in the method of operating the probing device in the grinding machine according to the present embodiment, when the waveform representing the vibration before the balance is obtained as shown in FIG. 7(A), as shown in FIG. 7(B), It is also possible to balance up to the limit of the device (auto balancer) 404 and obtain a waveform in which only a small vibration remains. Then, after that, the weight 1 and/or the weight 2 is moved from there to create an imbalance, and as shown in FIG. 7(C), it is also possible to obtain a waveform in which the balancing is completed.

図8は、本発明の比較例として、ステップ測定時の(アナログ信号)の例を1μmで量子化できるAD変換機でデジタル変換された後の信号をローパスフィルタで濾波した波形図であり、(A)は、ステップ測定時の(アナログ信号)の例、(B)は、1μmで量子化できるAD変換機でデジタル変換された後の信号の例、(C)は、それをローパスフィルタで濾波した信号の例である。即ち、例えば、従来のる研削盤におけるプロービング装置の運用方法では、ステップ測定時の(アナログ信号)の例では、図8(A)に示すように、釣り合わせる前の振動を表す信号が得られると、図8(B) に示すように、例えば、1μmで量子化できるAD変換機を用いてデジタル変換された後の信号は、波形変化の無い信号になってしまい、図8(C) に示すように、それをローパスフィルタで濾波した信号も、波形変化の無い信号になってしまい、意味をなさなくなる。 As a comparative example of the present invention, FIG. 8 is a waveform diagram in which a signal after being digitally converted by an AD converter capable of quantizing an (analog signal) at the time of step measurement by 1 μm is filtered by a low-pass filter, (A) is an example of (analog signal) at the time of step measurement, (B) is an example of the signal after being digitally converted by an AD converter that can be quantized at 1 μm, and (C) is filtered by a low-pass filter. It is an example of the signal which was done. That is, for example, in the conventional method of operating a probing device in a grinding machine, in the example of (analog signal) at the time of step measurement, as shown in FIG. 8(A), a signal representing vibration before balancing is obtained. Then, as shown in FIG. 8(B), for example, the signal after being digitally converted by using an AD converter capable of quantizing at 1 μm becomes a signal with no waveform change. As shown, the signal filtered by the low-pass filter also becomes a signal with no waveform change, which is meaningless.

これに対して、本発明の研削盤におけるプロービング装置の運用方法では、以下のような作用効果が得られる。図9は、本発明の研削盤におけるプロービング装置の運用方法の一例として、重畳波形のシミュレーションを示す図であり、ステップ測定時の(アナログ信号)の例を1μmで量子化できるAD変換機でデジタル変換された後の信号をローパスフィルタで濾波した波形図あり、(A)は、意図的に振動を重畳させたアナログ信号の例、(B)は、1μmで量子化できるAD変換機でデジタル変換された後の信号の例、(C)は、それをローパスフィルタで濾波した信号の例である。即ち、本実施形態に係る研削盤におけるプロービング装置の運用方法では、自動釣り合わせ装置(オートバランサ)404を却って不釣り合いを残す形で駆動(バランス)制御することで、図9(A)に示すように、釣り合わせる前の振動に不釣り合いにより創出された信号が(回転により周期的に)重畳される。これを、図9(B) に示すように、例えば、1μmで量子化できるAD変換機を用いてデジタル変換しても、変換後の信号は、明確な波形変化のある信号になるので、図9(C) に示すように、それをローパスフィルタで濾波した信号も、波形変化のある信号になる。但し、この変化は、AD変換機の量子化精度である1μm未満の変化となる。尚、図9の実施形態では、ローパスフィルタで濾波したが、砥石の回転により周期的な振動が得られるので、バンドパスフィルタを用いることもできる。 On the other hand, in the method for operating the probing device in the grinding machine of the present invention, the following operational effects can be obtained. FIG. 9 is a diagram showing a simulation of a superimposed waveform as an example of the operation method of the probing device in the grinding machine of the present invention, and an example of (analog signal) at the time of step measurement is quantized by 1 μm and is digitalized by an AD converter. The converted signal is filtered by a low-pass filter, (A) is an example of an analog signal with vibration intentionally superimposed, (B) is a digital conversion by an AD converter that can quantize at 1 μm. An example of the signal after being filtered, (C) is an example of a signal obtained by filtering the signal with a low-pass filter. That is, in the operating method of the probing device in the grinding machine according to the present embodiment, the automatic balancer (auto balancer) 404 is driven (balanced) so as to leave an unbalanced state, and thus shown in FIG. 9(A). Thus, the unbalanced signal is superposed (periodically by rotation) on the unbalanced vibration. As shown in Fig. 9(B), even if this signal is digitally converted using an AD converter that can quantize at 1 µm, the converted signal will become a signal with a clear waveform change. As shown in 9(C), the signal filtered by a low-pass filter also becomes a signal with a waveform change. However, this change is less than 1 μm, which is the quantization accuracy of the AD converter. In the embodiment shown in FIG. 9, a low-pass filter is used for filtering. However, since a periodic vibration is obtained by the rotation of the grindstone, a band-pass filter can be used.

以上に述べたように、本発明では、砥石軸を含む少なくともいずれかの回転軸に自動釣り合わせ装置を搭載すると共に、機上での測定用にプロービング装置を搭載した研削盤であって、且つ前記プロービング装置が信号のレベルをデジタル変換により2値ではなく多段階に数値変換する機構を備えた研削盤において、測定の際に、前記回転軸を回転させ、前記自動釣り合わせ装置を意図的に振動を残して釣り合わせを終了させ、もしくは振動を大きめの状態で釣り合わせを終了させ、前記プロービング装置のプロービング中に、前記回転軸の回転を持続させて該プロービング装置の出力に前記振動の成分を重畳させ、デジタル変換された後の信号をローパスフィルタまたはバンドパスフィルタで濾波することにより、得たい信号周波数成分の量子化雑音を低減させる。 As described above, the present invention is a grinder equipped with an automatic balancing device mounted on at least one of the rotary shafts including the grindstone shaft, and a probing device mounted for on-machine measurement, and In a grinding machine equipped with a mechanism in which the probing device digitally converts the signal level in multiple stages instead of two values, in the measurement, the rotary shaft is rotated to intentionally operate the automatic balancing device. The balance is ended by leaving the vibration, or the balance is ended in a state where the vibration is large, and while the probing of the probing device is continued, the rotation of the rotary shaft is continued to output the vibration component to the output of the probing device. , And the digital-converted signal is filtered by a low-pass filter or a band-pass filter to reduce the quantization noise of the desired signal frequency component.

以上に述べた実施形態では、本発明のプロービング装置の運用方法を研削盤に適用したが、工具を交換可能な(従って、工具毎にバランス調整の可能且つ必要な)工作機械であって、オートバランサを使用するものであれば、他の工作機械に適用できるのは、勿論である。 In the embodiment described above, the operating method of the probing device of the present invention is applied to the grinder, but it is a machine tool in which the tools can be replaced (hence, it is possible and necessary to adjust the balance for each tool). Of course, if it uses a balancer, it can be applied to other machine tools.

本発明は、いずれかの回転軸に自動釣り合わせ装置を搭載すると共に、機上での測定用にプロービング装置を搭載した工作機械であって、且つ前記プロービング装置が信号のレベルをデジタル変換により2値ではなく多段階に数値変換する機構を備えた工作機械に広く適用することができる。 The present invention is a machine tool in which an automatic balancing device is mounted on any of the rotary shafts and a probing device is mounted for on-machine measurement, and the probing device converts the signal level by digital conversion. It can be widely applied to machine tools provided with a mechanism for converting numerical values in multiple steps rather than values.

100 制御装置、100a 軸制御器、100b プログラマブルコントローラ、102 入出力器、104a ドライバ(アンプ)、 104b アクチュエータ、106 オートバランサ制御器、108a、108b、108c ドライバ(アンプ)、110a サーボモータ(1)、110b サーボモータ(2)、110c 砥石(回転)モータ、200 コラム、202 砥石台、204 砥石回転モータ、206 砥石、208a へ字状部材、208 プロービング装置、208b スタイラス、210 ワーク台、212 ワーク、 X 方向、 Y 方向 100 control device, 100a axis controller, 100b programmable controller, 102 input/output device, 104a driver (amplifier), 104b actuator, 106 auto balancer controller, 108a, 108b, 108c driver (amplifier), 110a servo motor (1), 110b Servomotor (2), 110c Grindstone (rotation) motor, 200 Column, 202 Grindstone base, 204 Grindstone rotation motor, 206 Grindstone, 208a V-shaped member, 208 Probing device, 208b stylus, 210 Work stand, 212 Work, X Direction, Y direction

Claims (1)

砥石軸を含む少なくともいずれかの回転軸に自動釣り合わせ装置を搭載すると共に、機上での測定用にプロービング装置を搭載した研削盤であって、且つ前記プロービング装置が信号のレベルをデジタル変換により2値ではなく多段階に数値変換する機構を備えた研削盤において、 測定の際に、前記回転軸を回転させ、 前記自動釣り合わせ装置を意図的に振動を残して釣り合わせを終了させ、もしくは振動を大きめの状態で釣り合わせを終了させ、前記プロービング装置のプロービング中に、前記回転軸の回転を持続させて該プロービング装置の出力に前記振動の成分を重畳させ、デジタル変換された後の信号をローパスフィルタまたはバンドパスフィルタで濾波することにより、得たい信号周波数成分の量子化雑音を低減させることを特徴とする研削盤におけるプロービング装置の運用方法。 A grinder equipped with an automatic balancing device on at least one of the rotating shafts including a grindstone shaft and a probing device for on-machine measurement, and the probing device digitally converts the signal level. In a grinding machine equipped with a multi-stage numerical value conversion mechanism instead of binary value, during measurement, the rotary shaft is rotated and the automatic balancer intentionally leaves vibration to end the balance, or Compensation is terminated in a state where the vibration is large, and during probing of the probing device, rotation of the rotating shaft is continued to superimpose the component of the vibration on the output of the probing device, and the signal after digital conversion is performed. Is reduced by a low-pass filter or a band-pass filter to reduce quantization noise of a desired signal frequency component, and a method of operating a probing device in a grinding machine.
JP2019011763A 2019-01-27 2019-01-27 Grinding machine and its probing equipment operation method Active JP7168469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011763A JP7168469B2 (en) 2019-01-27 2019-01-27 Grinding machine and its probing equipment operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011763A JP7168469B2 (en) 2019-01-27 2019-01-27 Grinding machine and its probing equipment operation method

Publications (2)

Publication Number Publication Date
JP2020116714A true JP2020116714A (en) 2020-08-06
JP7168469B2 JP7168469B2 (en) 2022-11-09

Family

ID=71889702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011763A Active JP7168469B2 (en) 2019-01-27 2019-01-27 Grinding machine and its probing equipment operation method

Country Status (1)

Country Link
JP (1) JP7168469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434054B2 (en) 2020-05-18 2024-02-20 三井精機工業株式会社 How to operate probing equipment in machine tools

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219927A (en) * 1995-02-20 1996-08-30 Tekuraru Japan:Kk Automatic balance corrector
JP2001170863A (en) * 1999-12-20 2001-06-26 Okamoto Machine Tool Works Ltd Grinding device
JP2004181537A (en) * 2002-11-29 2004-07-02 Toyoda Mach Works Ltd Run-out removing method of long cylindrical workpiece in numerical control machine tool
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method
JP2018161716A (en) * 2017-03-26 2018-10-18 三井精機工業株式会社 Machine tool, tool slewing gear thereof and method for correction of spindle thermal displacement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219927A (en) * 1995-02-20 1996-08-30 Tekuraru Japan:Kk Automatic balance corrector
JP2001170863A (en) * 1999-12-20 2001-06-26 Okamoto Machine Tool Works Ltd Grinding device
JP2004181537A (en) * 2002-11-29 2004-07-02 Toyoda Mach Works Ltd Run-out removing method of long cylindrical workpiece in numerical control machine tool
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method
JP2018161716A (en) * 2017-03-26 2018-10-18 三井精機工業株式会社 Machine tool, tool slewing gear thereof and method for correction of spindle thermal displacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434054B2 (en) 2020-05-18 2024-02-20 三井精機工業株式会社 How to operate probing equipment in machine tools

Also Published As

Publication number Publication date
JP7168469B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
CN1208474A (en) Determination and optimization of the operating accuracy of a machine tool, robot or the like
CN102128587A (en) Jump detector for grinding wheel circle
CN110686641B (en) Measuring device for a spindle or a turntable
KR102224333B1 (en) An inspection system of spindle run-out in cnc machines and a method thereof
US20010020387A1 (en) Method and apparatus for measuring dynamic balance
US20170146422A1 (en) Angle-measuring device and method for operating an angle-measuring device
JP2020116714A (en) Grinder and operation method for probing device thereof
US11874107B2 (en) Device and method for processing rotation-dependent measured values
CN1225345C (en) Method for simultaneous processing and measuring paramenter for processed surface
CN112720068B (en) Dynamic balance measuring method for main shaft of ultra-precision machine tool
CN103335833A (en) Device for online measuring dynamic performance of ultra-precision hydrostatic spindle and method for measuring dynamic performance of hydrostatic spindle by using same
US3818334A (en) Determining cutting tool force by measuring electrical resistance of a bearing
JP6553906B2 (en) Machine tool and its tool rotating device
JP6951039B2 (en) Machine tool, its tool rotating device and spindle thermal displacement compensation method
JP4940904B2 (en) Bulk quantity measuring device
CN113798919B (en) Cutting force measuring method and device, electronic equipment and storage medium
CN118003074B (en) Centering assembly device and method for turbine and dynamic traction cylinder and application
CN110095283A (en) A kind of nonlinear dynamic behavior test device considering the excitation of bearing time-varying
CN113518689B (en) Industrial machine, dimension estimation device, and dimension estimation method
US11300471B2 (en) Balancing device for rotating body
CN109176153A (en) A kind of mechanical rotating error of axis active compensation device based on piezoelectric actuator
CN103335783A (en) Super-precision directly driving static pressure main shaft dynamic balance method
JP2634854B2 (en) Dynamic balancing method of grinding wheel
CN216410096U (en) Multi-angle sensor verification tool
KR100415832B1 (en) An error measurement and compensation equipment for a high speed machine by an indirect measurement and the method of that

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7168469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150