JP2018161716A - Machine tool, tool slewing gear thereof and method for correction of spindle thermal displacement - Google Patents

Machine tool, tool slewing gear thereof and method for correction of spindle thermal displacement Download PDF

Info

Publication number
JP2018161716A
JP2018161716A JP2017060251A JP2017060251A JP2018161716A JP 2018161716 A JP2018161716 A JP 2018161716A JP 2017060251 A JP2017060251 A JP 2017060251A JP 2017060251 A JP2017060251 A JP 2017060251A JP 2018161716 A JP2018161716 A JP 2018161716A
Authority
JP
Japan
Prior art keywords
tool
machine tool
displacement
displacement meter
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017060251A
Other languages
Japanese (ja)
Other versions
JP6951039B2 (en
Inventor
岳見 浅井
Takemi Asai
岳見 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Seiki Kogyo Co Ltd
Original Assignee
Mitsui Seiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Seiki Kogyo Co Ltd filed Critical Mitsui Seiki Kogyo Co Ltd
Priority to JP2017060251A priority Critical patent/JP6951039B2/en
Publication of JP2018161716A publication Critical patent/JP2018161716A/en
Application granted granted Critical
Publication of JP6951039B2 publication Critical patent/JP6951039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for effectively preventing that an oscillation component due to oscillation which is intentionally provided in a machine tool or a tool slewing gear thereof even if a tool rotation becomes a slow speed.SOLUTION: A machine tool comprises: a tool slewing gear having a rotary shaft, and a tool which is fitted to the rotary shaft and is rotated by the rotary shaft; and a displacement meter which detects an axial displacement of the rotary shaft in the tool slewing gear in a non-contact manner. The machine tool is so configured as to estimate displacement due to the tool slewing gear by combination of a prescribed primary delay element with respect to an output of the displacement meter, and has: a target part which is provided with a hole which is easy to be intentionally oscillated and to which a probe of the displacement meter is opposite; an analog-digital converter which converts the output of the displacement meter; and a digital low-pass filter. In the tool machine, a cut-off frequency of a low-pass filter on a side of reading a value of a sensor is changed according to a cut-off frequency.SELECTED DRAWING: Figure 8

Description

本発明は、工作機械、その工具回転装置及び主軸熱変位補正方法に関し、特に、回転工具を使用する切削及び研削・研磨を行う工作機械において工具回転軸の回転軸方向の熱変位を補正する装置及び方法に関する。尚、回転軸方向もしくは旋回軸方向とは、ある直線軸回りに、物体が回転する場合にその軸を回転軸方向と呼ぶように定義する。   The present invention relates to a machine tool, a tool rotation device thereof, and a spindle thermal displacement correction method, and more particularly, to an apparatus for correcting thermal displacement in the rotation axis direction of a tool rotation shaft in a machine tool that performs cutting, grinding, and polishing using a rotary tool. And a method. The rotation axis direction or the turning axis direction is defined so as to call the axis as the rotation axis direction when the object rotates around a certain linear axis.

一般に、回転工具を使用する切削等を行う工作機械においては、工具の回転速度など運転状態を変化させると回転モータや回転体を回転自由に支持する軸受の発熱状態及び軸受の接触角などが変化し、工具の刃先位置が変位してしまう。このうち、特に、発熱状態の変化については、変化からの整定時間が数十分からときに数時間と長くなりがちであるため、一般には、工具回転状態の変化から加工開始までの時間をとる、いわゆる暖機運転を行う、または、粗加工と仕上げ加工の回転数などを近いものにし、仕上げ加工には変位の影響が小さくなるような工夫をする等の対策が取られている。   In general, in a machine tool that performs cutting using a rotating tool, when the operating state such as the rotation speed of the tool is changed, the heat generation state of the rotary motor and the bearing that freely supports the rotating body and the contact angle of the bearing change. Then, the cutting edge position of the tool is displaced. Of these, especially for changes in the heat generation state, since the settling time from the change tends to be as long as several hours to several hours, generally, it takes time from the change of the tool rotation state to the start of machining. Measures are taken such as performing a so-called warm-up operation, or making the rotational speeds of roughing and finishing close to each other so that the influence of displacement is reduced in the finishing.

一方、暖機運転などの時間を許容できない場合には、変位分を補正により抑制する方法が採用され、例えば、工作機械の複数部位の温度と工作物の加工寸法を測定し、測定した複数部位の温度の変化と工作物の加工寸法の変化の相関関係を重回帰分析により求め、この重回帰分析により得られた相関関係値が所定値より高い工作機械の部位を選択し、選択された工作機械の部位の温度の変化と工作物の加工寸法の変化の関係式を重回帰分析から求め、この関係式から工作物の加工寸法を予測し、予測された工作物の加工寸法に基づいて工作機械の送り量を補正するようにしているが、現実には熱以外の要素でも変位することがありその変位成分については対処されない問題がある。また、工具軸に内蔵し回転体の変位を測定する非接触変位計も市販されており、工作機械によってはその様な変位計の出力をもとに自動で変位分をオフセットして補償する機能を有するものもある。しかしながら、例えば、変位計を内蔵した工具軸回転装置においても、変位を内蔵する位置によっては、例えば、ヘッドの位置を基準にした回転体の変位を把握し処理することができるに過ぎず、そのようなヘッドを支える機構にも変位を生じる場合には、工作機械主軸回りの変位の正確な把握とその補正処理は困難であった。そこで、本発明者は、工作機械主軸回りの変位の正確な把握とその補正処理も可能にする、より高性能な変位補償機能を奏するものとして、特許文献1記載の技術を提案している。この特許文献1記載の工作機械では、回転軸と、該回転軸に取り付けられ該回転軸により回転される工具とを有する工具回転装置と、該工具回転装置における前記回転軸の軸方向変位を非接触で検出する変位計を備え、該変位計の出力に対し、所定の1次遅れ要素の組み合わせにより、前記工具回転装置に起因する変位を推定するように構成されており(特許文献1の請求項1)、変位計の測定対象であるターゲットにおける当該変位計のプローブが対向する部分に、意図的に振れや穴を設け、ターゲット部と変位計の出力を変換するアナログデジタル変換機と、デジタルローパスフィルタを追加したことを特徴とする(特許文献1の請求項2)。   On the other hand, when time such as warm-up operation cannot be allowed, a method of suppressing displacement by correction is adopted. For example, the temperature of a plurality of parts of a machine tool and the machining dimensions of a workpiece are measured, and the measured parts The correlation between the change in the temperature of the workpiece and the change in the machining dimension of the workpiece is obtained by multiple regression analysis, the part of the machine tool whose correlation value obtained by this multiple regression analysis is higher than the predetermined value is selected, and the selected machine tool is selected. A relational expression between the change in the temperature of the machine part and the change in the machining dimension of the workpiece is obtained from the multiple regression analysis, and the machining dimension of the workpiece is predicted from this relational expression, and the machining is performed based on the predicted machining dimension of the workpiece. Although the feed amount of the machine is corrected, there is a problem that in reality, there is a case where elements other than heat may be displaced and the displacement components are not dealt with. In addition, non-contact displacement meters built into the tool shaft and measuring the displacement of the rotating body are also available on the market, and depending on the machine tool, the function of automatically offset and compensate the displacement based on the output of such a displacement meter. Some have However, for example, even in a tool axis rotating device with a built-in displacement meter, depending on the position in which the displacement is built-in, for example, the displacement of the rotating body based on the position of the head can only be grasped and processed. When a displacement is also generated in such a mechanism that supports the head, it is difficult to accurately grasp the displacement around the spindle of the machine tool and correct the correction. In view of this, the present inventor has proposed the technique described in Patent Document 1 as having a higher performance displacement compensation function that enables accurate grasping and correction processing of the displacement around the machine tool spindle. In the machine tool described in Patent Document 1, a tool rotating device having a rotating shaft and a tool attached to the rotating shaft and rotated by the rotating shaft, and non-axial displacement of the rotating shaft in the tool rotating device are not detected. A displacement meter that detects by contact is provided, and the displacement caused by the tool rotating device is estimated with respect to the output of the displacement meter by a combination of predetermined first-order lag elements (Patent Document 1 claim) Item 1), an analog-to-digital converter for intentionally providing a deflection or a hole in the portion of the target that is the measurement target of the displacement meter, where the probe of the displacement meter is opposed, A low-pass filter is added (claim 2 of Patent Document 1).

特開2016−175167号公報Japanese Patent Laid-Open No. 2006-175167

しかしながら、例えば、上述した特許文献1の請求項2のような工作機械において,工具回転が低速になると意図的に設けた振れでも、振れ成分が補正指令に重畳されてしまうという課題がある。また、より高精度を狙う工作機械においては、ノイズ等の成分の重畳を可及的に抑制したいという要望がある。そこで、工具回転が低速になっても、意図的に設けた振れによる振れ成分が補正指令に重畳されるのを有効に防止する技術の開発が切望された。   However, for example, in a machine tool such as that described in claim 2 of Patent Document 1 described above, there is a problem in that a shake component is superimposed on a correction command even when the tool rotation is intentionally performed when the tool rotation speed is low. In addition, in machine tools that aim for higher accuracy, there is a desire to suppress the superimposition of components such as noise as much as possible. Thus, there has been a strong demand for the development of a technique for effectively preventing the shake component due to the intentionally provided runout from being superimposed on the correction command even when the tool rotation is slow.

本発明は、以上のような事情から為されたものであり、その目的は、工作機械向けの工具回転装置において、工具回転が低速になっても、意図的に設けた振れによる振れ成分が補正指令に重畳されるのを有効に防止し得る技術を提供することにある。   The present invention has been made under the circumstances as described above, and its purpose is to correct a vibration component due to intentionally provided vibration even when the tool rotation speed is low in a tool rotation device for machine tools. An object of the present invention is to provide a technique capable of effectively preventing superposition on a command.

本発明者は、上述した目的を達成し得る技術の可能性について様々な観点から鋭意研究した結果、以下のような構成の工作機械により、工具回転が低速になっても、意図的に設けた振れによる振れ成分が補正指令に重畳されるのを有効に防止し得ることを見出した。   As a result of earnest research from various viewpoints about the possibility of the technology that can achieve the above-described object, the present inventor has intentionally provided a machine tool having the following configuration even when the tool rotation is slow. It has been found that the shake component due to shake can be effectively prevented from being superimposed on the correction command.

即ち、本発明では、回転軸と、該回転軸に取り付けられ該回転軸により回転される工具とを有する工具回転装置と、該工具回転装置における前記回転軸の軸方向変位を非接触で検出する変位計を備え、該変位計の出力に対し、所定の1次遅れ要素の組み合わせにより、前記工具回転装置に起因する変位を推定するように構成され、前記変位計のプローブが対向する意図的に振れ易い穴を設けたターゲット部と、前記変位計の出力を変換するアナログデジタル変換機と、デジタルローパスフィルタを有する工作機械において、センサの値の読み取り側のローパスフィルタのカットオフ周波数を回転数に応じて変化させる、即ち、ローパスフィルタの時定数を回転数に反比例させるように調整することを特徴とする工作機械が得られる。   That is, in the present invention, a tool rotating device having a rotating shaft and a tool attached to the rotating shaft and rotated by the rotating shaft, and axial displacement of the rotating shaft in the tool rotating device are detected without contact. A displacement meter, configured to estimate a displacement caused by the tool rotation device by a combination of predetermined first-order lag elements with respect to the output of the displacement meter, and the probe of the displacement meter is intentionally opposed In a machine tool having a target part provided with a hole that easily swings, an analog-digital converter that converts the output of the displacement meter, and a digital low-pass filter, the cut-off frequency of the low-pass filter on the sensor value reading side is set to the number of revolutions. Accordingly, a machine tool can be obtained which is changed in response, that is, adjusted so that the time constant of the low-pass filter is inversely proportional to the rotational speed.

上記のように、時定数を回転数に完全に比例させると完全に回転を停止させた時にセンサの出力を全く読み込まなくなるため、これを回避するため、微小な定数と回転数の和が時定数の逆数に比例させるように補正指令を処理することを特徴とする工作機械にしても良い。 As described above, if the time constant is completely proportional to the rotation speed, the sensor output will not be read at all when the rotation is completely stopped. To avoid this, the sum of a small constant and the rotation speed is the time constant. A machine tool characterized by processing the correction command so as to be proportional to the reciprocal of the above may be used.

上記のようにした場合,停止中もセンサの値を読み込むので,長期的には,上記の重畳された分のわずかな偏差が生じる。そこで,回転装置に回転体の現在の方向を読み取る装置を搭載し,回転体の方向と意図的に設けた振れの成分の補償情報のマップを数式ないし表の状態で保持し,完全に回転が停止した時に回転体の方向情報から,その振れ補償情報を読み出し,補正指令を補償するように構成された工作機械にしても良い。 In the case described above, since the sensor value is read even during stoppage, a slight deviation of the superimposed amount occurs in the long term. Therefore, a device that reads the current direction of the rotating body is installed in the rotating device, and a map of compensation information of the direction of the rotating body and the intentionally provided shake component is held in the form of a mathematical formula or table so that the rotation can be performed completely. The machine tool may be configured to read out the shake compensation information from the direction information of the rotating body when it stops and compensate the correction command.

上記のようにした場合について,デジタルフィルタを整数または固定小数点型を使用して構成した場合,時定数の逆数が最小表現単位未満になることができない。この場合にサンプリング間隔の切り替えによって時定数を上記の上限以上に伸ばす処理ができるように構成された工作機械とするのが好適である。   In the case described above, when the digital filter is configured using an integer or a fixed-point type, the reciprocal of the time constant cannot be less than the minimum representation unit. In this case, it is preferable that the machine tool is configured so that the processing can extend the time constant to the above upper limit or more by switching the sampling interval.

本発明によれば、工作機械の工具回転装置において、回転状態変化後の軸方向の変位をより高精度にもしくは低コストに補正することができる。また、変位計のターゲットとなる部品に意図的な振れ成分及び穴を設け、アナログデジタル変換器に入力後のデジタル出力信号に対しデジタルのローパスフィルタを設けることにより、前記アナログデジタル変換器の分解能が不足することによる変位補償への影響を低減することができる上に、工具回転が低速になっても、意図的に設けた振れによる振れ成分が補正指令に重畳されるのを有効に防止することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, in the tool rotation apparatus of a machine tool, the axial displacement after a rotation state change can be correct | amended more precisely or at low cost. Also, by providing an intentional vibration component and a hole in the target component of the displacement meter and providing a digital low-pass filter for the digital output signal after input to the analog-digital converter, the resolution of the analog-digital converter can be reduced. In addition to being able to reduce the impact on the displacement compensation due to the shortage, it is possible to effectively prevent the runout component due to the intentionally runout from being superimposed on the correction command even when the tool rotation is slow. Is possible.

本発明の実施形態と特許文献1記載の発明に共通する工作機械の機能ブロック図である。2 is a functional block diagram of a machine tool common to an embodiment of the present invention and an invention described in Patent Document 1. FIG. 本発明の実施形態と特許文献1記載の発明に共通する工作機械の基本構成を示す図である。It is a figure which shows the basic composition of the machine tool common to embodiment of this invention, and invention of patent document 1. FIG. 本発明の実施形態と特許文献1記載の発明の一部が共通する変位計ターゲットの加工例と変位計設置の例である。It is the example of a processing of the displacement meter target and the example of displacement meter installation which the embodiment of this invention and a part of invention of patent document 1 have in common. 特許文献1記載の発明において、意図的に設ける振れ成分の例を示す図である。In the invention described in Patent Document 1, it is a diagram showing an example of a shake component intentionally provided. 特許文献1記載の発明において、重畳するがフィルタである程度除去される例を示す図である。In the invention described in Patent Document 1, it is a diagram illustrating an example in which the image is superposed but removed to some extent by a filter. 特許文献1記載の発明において、重畳する例を示す図である。In the invention of patent document 1, it is a figure which shows the example which overlaps. 特許文献1記載の発明において、重畳する第2の例として、手で回す場合を示す図である。In invention of patent document 1, it is a figure which shows the case where it rotates by hand as a 2nd example to overlap. 本発明の第1の実施形態に係る変位信号に施す信号処理を表すブロック線図であり、特許文献1記載の発明における同様の構成を改良した実施形態である。It is a block diagram showing the signal processing performed to the displacement signal which concerns on the 1st Embodiment of this invention, and is an embodiment which improved the same structure in the invention of patent document 1. FIG. 本発明の第1の実施形態に係る変位信号に施す信号処理を表すブロック線図であり、特許文献1記載の発明における同様の構成を改良した図8に示した実施形態の変形例として、入力側の1段目に以外に入れることもできる例を示す。It is a block diagram showing the signal processing performed to the displacement signal which concerns on the 1st Embodiment of this invention, and is input as a modification of embodiment shown in FIG. 8 which improved the same structure in invention of patent document 1 The example which can also be put in other than the 1st step | paragraph of the side is shown. 本発明の第3の実施形態に係る変位計ターゲットの加工例と変位計設置の例である。It is the example of a process of the displacement meter target which concerns on the 3rd Embodiment of this invention, and the example of displacement meter installation.

まず、図1乃至図3を参照して、本発明の実施形態について説明する。図1は、本発明の実施形態と特許文献1記載の発明に共通する工作機械の機能ブロック図、図2は、本発明の実施形態と特許文献1記載の発明に共通する工作機械の基本構成を示す図、図3は、本発明の実施形態と特許文献1記載の発明の一部が共通する変位計ターゲットの加工例と変位計設置の例である。本実施形態の工作機械100は、図1に示すように、各軸の駆動を司るモータドライバ101,102,103,104,105と、これらモータドライバ101,102,103,104,105のドライバをそれぞれ制御すると共に各軸の回転数、送り速度等を数値制御するCNC(コンピュータ数値制御)装置107を備えており、このCNC(コンピュータ数値制御)装置107には、その数値制御のためのデータ(加工物の諸元)を、例えば対話形式で入力することが可能な加工プログラムが内蔵されている。即ち、本実施形態の工作機械100は、図2に示すように、直動X−Y−Zの3軸方向と、回転A及びCの2(軸)方向(図示せず)から成る5軸の制御が可能であり、工具回転装置121を固定された軸頭122をX軸方向に駆動するモータドライバ101、Y軸方向に駆動するモータドライバ102,A軸方向に旋回駆動するモータドライバ102,ワークテーブル112をZ軸方向に駆動するモータドライバ103、A軸(X軸回り)に回転駆動するモータドライバ104、及びC軸(Z軸回り)に回転駆動するモータドライバ105と、CNC(コンピュータ数値制御)装置107を備えており、CNC(コンピュータ数値制御)装置107が、所定の加工プログラムに従って、モータドライバ101〜105を各軸方向に駆動制御すること等によって、ワークWが所望の形状に加工され得る。尚、CNC(コンピュータ数値制御)装置107は、工具の回転速度も制御可能であることは言うまでもない。   First, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a functional block diagram of a machine tool common to the embodiment of the present invention and the invention described in Patent Document 1. FIG. 2 is a basic configuration of a machine tool common to the embodiment of the present invention and the invention described in Patent Document 1. FIGS. 3A and 3B are a working example of a displacement meter target and an example of displacement meter installation in which the embodiment of the present invention and a part of the invention described in Patent Document 1 are common. As shown in FIG. 1, the machine tool 100 according to the present embodiment includes motor drivers 101, 102, 103, 104, and 105 that control driving of each axis, and drivers for these motor drivers 101, 102, 103, 104, and 105. A CNC (computer numerical control) device 107 is provided for controlling each of the axes and numerically controlling the rotational speed, feed rate, etc. of each axis. The CNC (computer numerical control) device 107 includes data for numerical control ( A machining program capable of inputting the specifications of the workpiece in, for example, an interactive format is incorporated. That is, as shown in FIG. 2, the machine tool 100 of the present embodiment has five axes composed of three axes of linear motion XYZ and two (axis) directions (not shown) of rotations A and C. A motor driver 101 that drives the head 122, to which the tool rotating device 121 is fixed, in the X-axis direction, a motor driver 102 that drives in the Y-axis direction, a motor driver 102 that rotates in the A-axis direction, A motor driver 103 that drives the work table 112 in the Z-axis direction, a motor driver 104 that rotates in the A-axis (around the X-axis), a motor driver 105 that rotates in the C-axis (around the Z-axis), and a CNC (computer numerical value) Control) device 107, and CNC (computer numerical control) device 107 controls driving of motor drivers 101-105 in each axial direction according to a predetermined machining program. By Rukoto like, the workpiece W can be processed into a desired shape. Needless to say, the CNC (computer numerical control) device 107 can also control the rotational speed of the tool.

この工作機械100は、例えば、図2のような構造を持ち工具回転軸201とZ軸方向202が平行になるように構成されている。各モータドライバはX軸モータ111,Y軸モータ112,Z軸モータ113,A軸モータ114,C軸モータ115に接続されている。各モータには回転を検出する検出器(図示せず)が設けられており、また必要な精度に応じて各軸に対し角度及び変位の検出器(図示せず)が設けられサーボ制御を行うことができるようになっている。以上の構成を備える工作機械100は、上述したように、更に、工具回転装置121について、工具回転軸201と、その回転軸方向の変位を非接触で検出することができるプローブ301(図3参照)を含む変位計を有し、変位計の出力に対し後述する図8及び図9に示す1次遅れ要素の組み合わせにより、工具回転装置121に起因する変位を推定することができる。尚、図2の例では、工具として砥石209を有している。図ではひとつのセンサを用いているが複数のセンサを使用し、それぞれに対して図8及び図9の処理ブロックを付けそれらの線形和を用いて推定する構成も可能なことはいうまでもない。 The machine tool 100 has a structure as shown in FIG. 2, for example, and is configured such that the tool rotation axis 201 and the Z-axis direction 202 are parallel to each other. Each motor driver is connected to an X-axis motor 111, a Y-axis motor 112, a Z-axis motor 113, an A-axis motor 114, and a C-axis motor 115. Each motor is provided with a detector (not shown) for detecting rotation, and an angle and displacement detector (not shown) is provided for each axis according to the required accuracy to perform servo control. Be able to. As described above, the machine tool 100 having the above configuration further includes the tool rotation shaft 201 and the probe 301 that can detect the displacement in the rotation axis direction in a non-contact manner with respect to the tool rotation device 121 (see FIG. 3). The displacement caused by the tool rotating device 121 can be estimated by a combination of first-order lag elements shown in FIGS. 8 and 9 to be described later with respect to the output of the displacement meter. In the example of FIG. 2, a grindstone 209 is provided as a tool. Although a single sensor is used in the figure, it goes without saying that a configuration in which a plurality of sensors are used, the processing blocks shown in FIGS. .

工具回転装置121には、図3に示す変位測定用の装置(変位計)のプローブ301を内蔵し、その信号はプローブの検出する信号を電圧として出力するコントローラ302(図3参照)で電圧に変換した後、アナログ入力モジュール303によってデジタル信号に変換する。デジタル信号はプログラマブルコントローラ304のプログラムでデジタルフィルタと信号処理とを行う。そして、プログラマブルコントローラ304で信号処理までされた値をCNC107に転送し、作業者(図示せず)に通知もしくは通知せずに自動で図2に示すZ軸方向にオフセットを与える。これにより、Z軸方向の変位分の補正が完了する。プログラマブルコントローラ304は便宜上CNC107と別のブロックとして描いているが、CNC107にプログラマブルコントローラ304で行われる機能がソフトウェアプログラムとして内蔵されている構成も可能であることはいうまでもない。   The tool rotating device 121 incorporates a probe 301 of a displacement measuring device (displacement meter) shown in FIG. 3, and the signal is converted to a voltage by a controller 302 (see FIG. 3) that outputs a signal detected by the probe as a voltage. After the conversion, the analog input module 303 converts it into a digital signal. The digital signal is subjected to a digital filter and signal processing by a program of the programmable controller 304. Then, the value up to the signal processing by the programmable controller 304 is transferred to the CNC 107, and an offset is automatically given in the Z-axis direction shown in FIG. 2 without notifying or notifying the operator (not shown). Thereby, the correction for the displacement in the Z-axis direction is completed. Although the programmable controller 304 is drawn as a separate block from the CNC 107 for convenience, it is needless to say that the CNC 107 can be configured so that functions performed by the programmable controller 304 are built in as a software program.

次に、本発明の実施形態について説明する。本発明の実施形態も、以上に述べた構成、即ち、上述した特許文献1の請求項2の工作機械と同様の構成を有している。しかしながら、かかる構成だけでは、工具(砥石)209の回転が低速になると意図的に設けた振れでも振れ成分が補正指令に重畳されてしまうという不具合を生じる場合がある。そこで、まず、図4乃至図7を参照して、特許文献1の請求項2の工作機械において、このような不具合が生じる機序について説明する。図4は、特許文献1の請求項2の工作機械と同様の構成において、意図的に設ける振れ成分の例を示す図(グラフ)であり、グラフの横軸が、図2で示した工作機械のスピンドル(工具回転軸201)の回転位置、縦軸が、振れ成分を表している。図5は、特許文献1の請求項2の工作機械と同様の構成において、工具(砥石)209の回転が低速になっていないため、意図的に設けた振れ成分が補正指令に重畳するも、上述した特許文献1のフィルタ処理である程度除去される例を示す図であり、(a)は、縦軸が図2で示した工作機械のスピンドル(工具回転軸201)の回転位置を0〜360°の範囲内で示し、横軸が経過時間(秒)を示す。(b)は、縦軸が、図2で示した工作機械の変位測定用の装置(変位計)のセンサ信号(変位信号)をコントローラ302(図3参照)で電圧に変換した信号(以下、センサ信号と略記する)、そのセンサ信号をアナログ入力モジュール303によってデジタル信号に変換した信号(以下、A/D変換後と略記する)、そのデジタル信号(A/D変換後)がプログラマブルコントローラ304のプログラムでデジタルフィルタと信号処理された信号(以下、フィルタ通過後と略記する)、それぞれの出力(μm)であり、横軸が経過時間(秒)を示す。上述した特許文献1の請求項2の工作機械では、図4に示すような振れ成分を意図的に設け、それを加えた場合でも、図5(a)に示すように、工具(砥石)209の回転が一定の速度で繰り返され、しかも低速ではない場合には、図5(b)に示すように、意図的に設けた振れ成分が補正指令に重畳するも、上述した特許文献1のフィルタ処理である程度除去されるので、問題は少ない。図6は、特許文献1の請求項2の工作機械と同様の構成において、工具(砥石)209の回転が低速になったため、意図的に設けた振れ成分が補正指令に重畳する例を示す図であり、(a)は、縦軸が上記と同様にスピンドル(工具回転軸201)の回転位置を0〜360°の範囲内で示し、横軸が経過時間(秒)を示す。(b)は、縦軸が、上記と同様に、センサ信号、A/D変換後、フィルタ通過後、それぞれの出力(μm)であり、横軸が経過時間(秒)を示す。図6(a)に示すように、工具(砥石)209の回転が低速になると、図6(b)に示すように、意図的に設けた振れ成分が補正指令に重畳してしまうという問題が生じる。図7は、特許文献1の請求項2の工作機械と同様の構成において、他の重畳する例として、工具を手で回す場合を示す図であり、(a)は、縦軸が上記と同様にスピンドル(工具回転軸201)の回転位置を0〜360°の範囲内で示し、横軸が経過時間(秒)を示す。(b)は、縦軸が、上記と同様に、センサ信号、A/D変換後、フィルタ通過後、それぞれの出力(μm)であり、横軸が経過時間(秒)を示す。図7(a)に示す例では、工具(砥石)209を手でゆっくりと2秒弱まで回した後、2回転まですばやく回し、その後停止した場合を示している(尚、図2には図示しないが、このように工具(スピンドル)を手動回転させる機構も備えているものとする)。このような場合も、図7(b)に示すように、意図的に設けた振れ成分が補正指令に重畳してしまうという問題が生じるのは同様である   Next, an embodiment of the present invention will be described. The embodiment of the present invention also has the configuration described above, that is, the same configuration as the machine tool according to claim 2 of Patent Document 1 described above. However, with such a configuration alone, when the rotation of the tool (grinding stone) 209 becomes low speed, there may be a problem that a shake component is superimposed on the correction command even if the shake is intentionally provided. Therefore, first, with reference to FIG. 4 to FIG. 7, a mechanism in which such a defect occurs in the machine tool according to claim 2 of Patent Document 1 will be described. FIG. 4 is a diagram (graph) showing an example of the intentionally provided runout component in the same configuration as the machine tool of claim 2 of Patent Document 1, and the horizontal axis of the graph is the machine tool shown in FIG. The rotational position of the spindle (tool rotation axis 201) and the vertical axis represent the deflection component. FIG. 5 shows a configuration similar to that of the machine tool of claim 2 of Patent Document 1, since the rotation of the tool (grinding stone) 209 is not slow, the intentionally provided runout component is superimposed on the correction command. It is a figure which shows the example removed to some extent by the filter process of the patent document 1 mentioned above, (a) is 0-360 the vertical position shows the rotational position of the spindle (tool rotating shaft 201) of the machine tool shown in FIG. It shows within the range of °, and the horizontal axis shows the elapsed time (second). (b) is a signal in which the vertical axis is a signal obtained by converting the sensor signal (displacement signal) of the machine tool displacement measuring device (displacement meter) shown in FIG. (Abbreviated as sensor signal), a signal obtained by converting the sensor signal into a digital signal by the analog input module 303 (hereinafter abbreviated as A / D conversion), and the digital signal (after A / D conversion) The digital filter and the signal processed by the program (hereinafter abbreviated as “after passing through the filter”), the respective outputs (μm), and the horizontal axis indicates the elapsed time (seconds). In the machine tool according to claim 2 of Patent Document 1 described above, even when a runout component as shown in FIG. 4 is intentionally added and added, a tool (grinding stone) 209 as shown in FIG. 5 is repeated at a constant speed and not at a low speed, as shown in FIG. 5B, although the intentionally provided shake component is superimposed on the correction command, the above-described filter of Patent Document 1 is used. Since it is removed to some extent by processing, there are few problems. FIG. 6 is a diagram showing an example in which the intentionally provided runout component is superimposed on the correction command because the rotation of the tool (grinding stone) 209 has become slow in the same configuration as the machine tool of claim 2 of Patent Document 1. In (a), the vertical axis indicates the rotation position of the spindle (tool rotation axis 201) in the range of 0 to 360 °, and the horizontal axis indicates the elapsed time (seconds) in the same manner as described above. In (b), the vertical axis indicates the output (μm) after the sensor signal, A / D conversion and after passing through the filter in the same manner as described above, and the horizontal axis indicates the elapsed time (seconds). As shown in FIG. 6 (a), when the rotation of the tool (grinding stone) 209 becomes low speed, as shown in FIG. 6 (b), there is a problem that the intentionally provided shake component is superimposed on the correction command. Arise. FIG. 7 is a diagram showing a case where a tool is turned by hand as another example of superposition in the same configuration as the machine tool of claim 2 of Patent Document 1, and (a) is similar to the above in the vertical axis. The rotation position of the spindle (tool rotation shaft 201) is shown in the range of 0 to 360 °, and the horizontal axis shows the elapsed time (seconds). In (b), the vertical axis indicates the output (μm) after the sensor signal, A / D conversion and after passing through the filter in the same manner as described above, and the horizontal axis indicates the elapsed time (seconds). In the example shown in FIG. 7A, the tool (grinding stone) 209 is slowly turned to a little less than 2 seconds by hand, then quickly turned to 2 turns, and then stopped (illustrated in FIG. 2). However, it is also assumed that a mechanism for manually rotating the tool (spindle) is also provided. Even in such a case, as shown in FIG. 7B, the problem that the intentionally provided shake component is superimposed on the correction command is the same.

図8及び図9は、本発明の第1の実施形態に係る工作機械における変位信号に施す信号処理を表す各ブロック線図であり、特許文献1記載の発明における同様の構成を改良した実施形態である。即ち、本発明の第1の実施形態に係る工作機械は、本願では図示しない特許文献1の図1記載の信号処理の代わりに、図8及び図9に示す信号処理を行う。まず、本発明は、特許文献1記載の発明と同様に、変位のうち熱に関する部分が1次遅れ要素の直列結合のように作用することを利用するものであり、変位を計測した信号に対し、かかる1次遅れ要素の直列結合を用いた信号処理(特許文献1の図1のブロック線図、本願の図8及び図9に示す)を施すことにより、高性能な軸方向の変位補正を可能とすることを特徴とする。図8及び図9も、本発明の特徴である信号処理、即ち、変位を表す信号に対して行う1次遅れ要素の直列結合を用いた信号処理を示すブロック線図であるのは同様であり、本発明では、変位を表す信号ΔZsense(t)に対して、1次遅れ要素の直列結合を用いた信号処理を行うことにより、処理結果を表す出力信号ΔZest(t)を得る。尚、図8及び図9中の係数K1,K2,K3,K4 は、熱変位に対する補正係数であり、これらK1,K2,K3,K4の一部は0にすることも可能である。また、図8及び図9に示す例では、4段の信号処理システムを構成しているが、更に多段に構成しても良い。また補正係数は正の値である必要はない。まず、図8は、本発明の第1の実施形態に係る変位信号に施す信号処理を表すブロック線図であり、特許文献1記載の発明における同様の構成を改良した実施形態である。即ち、本発明の第1の実施形態に係る工作機械は、本願では図示しない特許文献1の図1記載の信号処理の代わりに、図8に示す信号処理を行う。即ち、図8に示すように、入力側の1段目に参照符号00のフィルタリングを入れることにより、センサの値の読み取り側のローパスフィルタのカットオフ周波数を回転数に応じて変化させる、即ち、ローパスフィルタの回転数に時定数を反比例させるように調整することを特徴とする。尚、図9に示すように、特許文献1記載の発明における同様の構成を改良した実施形態として、入力側の1段目に入れないこともできる。図9は、本発明の第1の実施形態の変形例に係る変位信号に施す信号処理を表すブロック線図であり、特許文献1記載の発明における同様の構成を改良した他の変形例であり、入力側の1段目以外に入れることもできる例を示す。即ち、図9に示すように、入力側の1段目に参照符号00のフィルタリングを入れているが、ここでは全ての信号成分をフィルタ処理しないで一部のみ処理するようにしても良い。図8及び図9に示すように、本発明の第1の実施形態に係る工作機械は、回転軸と、該回転軸に取り付けられ該回転軸により回転される工具とを有する工具回転装置と、該工具回転装置における前記回転軸の軸方向変位を非接触で検出する変位計を備え、該変位計の出力に対し、所定の1次遅れ要素の組み合わせにより、前記工具回転装置に起因する変位を推定するように構成され、前記変位計のプローブが対向する意図的に振れ易い穴を設けたターゲット部と、前記変位計の出力を変換するアナログデジタル変換機と、デジタルローパスフィルタを有する工作機械において、センサの値の読み取り側のローパスフィルタのカットオフ周波数を回転数に応じて変化させる、即ち、ローパスフィルタの回転数に時定数を反比例させるように調整することを特徴としている。   8 and 9 are each a block diagram showing signal processing applied to the displacement signal in the machine tool according to the first embodiment of the present invention, and an embodiment in which the same configuration in the invention described in Patent Document 1 is improved. It is. That is, the machine tool according to the first embodiment of the present invention performs the signal processing shown in FIGS. 8 and 9 instead of the signal processing described in FIG. First, as in the invention described in Patent Document 1, the present invention uses the fact that the portion of heat in the displacement acts like a serial combination of first-order lag elements. By performing signal processing using such serial coupling of first-order lag elements (shown in the block diagram of FIG. 1 of Patent Document 1 and shown in FIGS. 8 and 9 of the present application), high-performance axial displacement correction can be performed. It is possible to make it possible. 8 and 9 are also block diagrams showing signal processing that is a feature of the present invention, that is, signal processing using a serial combination of first-order lag elements performed on a signal representing displacement. In the present invention, the signal ΔZsense (t) representing the displacement is subjected to signal processing using a serial combination of first-order lag elements to obtain an output signal ΔZest (t) representing the processing result. The coefficients K1, K2, K3, and K4 in FIGS. 8 and 9 are correction coefficients for thermal displacement, and some of these K1, K2, K3, and K4 can be set to zero. Further, in the example shown in FIGS. 8 and 9, a four-stage signal processing system is configured, but it may be configured in more stages. Further, the correction coefficient need not be a positive value. First, FIG. 8 is a block diagram showing signal processing applied to the displacement signal according to the first embodiment of the present invention, which is an embodiment in which a similar configuration in the invention described in Patent Document 1 is improved. That is, the machine tool according to the first embodiment of the present invention performs the signal processing shown in FIG. 8 instead of the signal processing shown in FIG. That is, as shown in FIG. 8, by filtering the reference numeral 00 in the first stage on the input side, the cut-off frequency of the low-pass filter on the reading side of the sensor value is changed according to the rotational speed, The time constant is adjusted to be inversely proportional to the rotation speed of the low-pass filter. As shown in FIG. 9, as an embodiment in which a similar configuration in the invention described in Patent Document 1 is improved, the first stage on the input side can be omitted. FIG. 9 is a block diagram showing signal processing applied to a displacement signal according to a modification of the first embodiment of the present invention, and is another modification in which the same configuration in the invention described in Patent Document 1 is improved. The example which can also be put in other than the 1st step | paragraph on the input side is shown. That is, as shown in FIG. 9, filtering of reference numeral 00 is inserted in the first stage on the input side, but here, all signal components may be processed only partially without filtering. As shown in FIGS. 8 and 9, the machine tool according to the first embodiment of the present invention includes a rotating shaft and a tool rotating device that is attached to the rotating shaft and rotated by the rotating shaft, A displacement meter that detects the axial displacement of the rotating shaft in the tool rotating device in a non-contact manner, and a displacement caused by the tool rotating device is combined with a predetermined first-order lag element with respect to the output of the displacement meter. In a machine tool including a target unit that is configured to estimate and has a hole that is intentionally easy to swing, facing the probe of the displacement meter, an analog-to-digital converter that converts the output of the displacement meter, and a digital low-pass filter The cutoff frequency of the low-pass filter on the reading side of the sensor value is changed according to the rotation speed, that is, adjusted so that the time constant is inversely proportional to the rotation speed of the low-pass filter. It is characterized in Rukoto.

図8における参照符号00のフィルタリング乃至図9における指定した部分の1次遅れ要素の出力更新は例えば、以下の数式(1)(2)(3)により実行される。

Figure 2018161716
Figure 2018161716
Figure 2018161716
The filtering of the reference numeral 00 in FIG. 8 to the update of the output of the first-order lag element of the designated portion in FIG.
Figure 2018161716
Figure 2018161716
Figure 2018161716

次に、本発明の第2の実施形態に係る変位信号に施す信号処理について説明する。上述した第1の実施形態、即ち、図8及び図9に示す構成と数式(1)(2)(3)による処理では、上記のように、時定数を工具(スピンドル)の回転数に完全に比例させると、完全に回転を停止させた時にセンサの出力を全く読み込まなくなるという問題が生じる。従って、この問題を回避するため、微小な定数と回転数の和が時定数の逆数に比例させるように補正指令を処理するようにすること(上述した第1の実施形態の改良例としての第2の実施形態)が好適である。この第2の実施形態に係る変位信号に施す出力信号の更新処理は、以下の数式(4)(5)(6)により実行される。

Figure 2018161716
Figure 2018161716
Figure 2018161716
Next, signal processing applied to the displacement signal according to the second embodiment of the present invention will be described. In the first embodiment described above, that is, in the processing shown in FIGS. 8 and 9 and the processing according to the equations (1), (2), and (3), the time constant is completely set to the rotational speed of the tool (spindle) as described above. If it is proportional to, the output of the sensor will not be read at all when the rotation is completely stopped. Therefore, in order to avoid this problem, the correction command is processed so that the sum of the minute constant and the rotational speed is proportional to the reciprocal of the time constant (the first example as an improvement of the first embodiment described above). 2) is preferred. The update process of the output signal applied to the displacement signal according to the second embodiment is executed by the following equations (4), (5), and (6).
Figure 2018161716
Figure 2018161716
Figure 2018161716

次に、本発明の第3の実施形態に係る変位信号に施す信号処理について説明する。上述した第2の実施形態、即ち、上記のように数式(4)(5)(6)による処理をした場合,停止中もセンサの値を読み込むので,長期的には,振れ分のわずかな偏差が生じる。そこで,回転装置に回転体の現在の方向を読み取る装置を搭載し,回転体の方向と意図的に設けた振れの成分の補償情報のマップを表ないし数式の状態で保持し,完全に回転が停止した時に回転体の方向情報から,その振れ補償情報を読み出し,補正指令を補償するように構成しても良い。図10は、本発明の第3の実施形態に係る工作機械が備える、このような装置ないしは機構の一例である。図10(a)に示すように、本発明の第3の実施形態に係る工作機械は、回転装置、即ちスピンドルモータ300(図1では、スピンドルモータ116に相当)に回転体、即ち工具311(図1では、工具(砥石)209に相当)の現在の方向を読み取る装置としてロータリエンコーダ読み取りヘッド321及びロータリエンコーダ回転側円盤322を搭載している。尚、301は、非接触変位計ヘッド、301cは、ケーブル、302は、非接触変位計アンプ(増幅器)への流れを示す。図10(b)に示すように、この回転体の現在の方向を読み取る装置としてのロータリエンコーダ回転側円盤322及びロータリエンコーダ読み取りヘッド321からの角度情報等は321の処理によりプログラマブルコントローラ304に入力される。図10(b)に示すように、非接触変位計ヘッド301(図2のプローブ301に相当)からの信号は、その信号を電圧として出力するコントローラ302で電圧に変換した後、アナログ入力モジュール303によってデジタル信号に変換する。デジタル信号はプログラマブルコントローラ304のプログラムでデジタルフィルタと上述した321の処理とを併せた信号処理を行う。そして、プログラマブルコントローラ304で信号処理までされた値をCNC107に転送し、作業者(図示せず)に通知もしくは通知せずに自動で図2に示すZ軸方向にオフセットを与える。これにより、Z軸方向の変位分の補正が完了する。回転体の方向と意図的に設けた振れの成分の補償情報のマップを表として321に保持する場合に、かかる表の一例を以下の表1にしめす。

Figure 2018161716
また、回転体の方向と意図的に設けた振れの成分の補償処理を321で実行する場合に、振れ分補償の式の例を以下の数式(7)(8)に示す。
Figure 2018161716
Figure 2018161716
Next, signal processing applied to the displacement signal according to the third embodiment of the present invention will be described. In the second embodiment described above, that is, when the processing according to the formulas (4), (5), and (6) is performed as described above, the sensor value is read even during the stop, so that in the long run, the amount of fluctuation is small. Deviation occurs. Therefore, a device that reads the current direction of the rotating body is installed in the rotating device, and a map of compensation information of the direction of the rotating body and the intentionally provided shake component is maintained in the form of a table or a mathematical expression, so that the rotation is complete. It may be configured to read out the shake compensation information from the direction information of the rotating body when it stops and compensate the correction command. FIG. 10 is an example of such an apparatus or mechanism provided in the machine tool according to the third embodiment of the present invention. As shown in FIG. 10 (a), the machine tool according to the third embodiment of the present invention has a rotating device, that is, a spindle motor 300 (corresponding to the spindle motor 116 in FIG. 1), a rotating body, that is, a tool 311 ( In FIG. 1, a rotary encoder reading head 321 and a rotary encoder rotating side disk 322 are mounted as devices for reading the current direction of a tool (grinding stone) 209). Reference numeral 301 denotes a non-contact displacement meter head, 301 c denotes a cable, and 302 denotes a flow to a non-contact displacement meter amplifier (amplifier). As shown in FIG. 10B, angle information and the like from the rotary encoder rotating side disk 322 and the rotary encoder reading head 321 as a device for reading the current direction of the rotating body are input to the programmable controller 304 by the process of 321. The As shown in FIG. 10B, a signal from the non-contact displacement meter head 301 (corresponding to the probe 301 in FIG. 2) is converted into a voltage by a controller 302 that outputs the signal as a voltage, and then an analog input module 303. To convert it to a digital signal. The digital signal is subjected to signal processing that combines the digital filter and the above-described processing 321 by the program of the programmable controller 304. Then, the value up to the signal processing by the programmable controller 304 is transferred to the CNC 107, and an offset is automatically given in the Z-axis direction shown in FIG. 2 without notifying or notifying the operator (not shown). Thereby, the correction for the displacement in the Z-axis direction is completed. An example of such a table is shown in Table 1 below when a map of compensation information of the direction of the rotating body and the intentionally provided shake component is stored in 321 as a table.
Figure 2018161716
Further, in the case of executing the compensation process of the direction of the rotating body and the intentionally provided shake component at 321, examples of shake compensation formulas are shown in the following formulas (7) and (8).
Figure 2018161716
Figure 2018161716

上記のようにした場合について,デジタルフィルタを整数または固定小数点型を使用して構成した場合,時定数の逆数が最小表現単位に未満になることができない。この場合にサンプリング間隔の切り替えによって時定数を上記の上限以上に伸ばす処理ができるように構成された工作機械とするのが好適である。即ち、整数型を用いて実装した場合の出力更新を行うのが好適であり、その出力更新は、以下の数式(9)(10)により実行される。なお更新を省くスキャンは擬似乱数列などを用いて確率的に選んでもよいことは言うまでもない。

Figure 2018161716
Figure 2018161716
In the case described above, when the digital filter is configured using an integer or a fixed-point type, the reciprocal of the time constant cannot be less than the minimum expression unit. In this case, it is preferable that the machine tool is configured so that the processing can extend the time constant to the above upper limit or more by switching the sampling interval. That is, it is preferable to perform output update when implemented using an integer type, and the output update is executed by the following formulas (9) and (10). Needless to say, a scan that does not require updating may be selected stochastically using a pseudo-random number sequence or the like.
Figure 2018161716
Figure 2018161716

201 回転軸、 209 工具(砥石)、 121 工具回転装置、301 変位計のプローブ、 10、20、30 1次遅れ要素、100 工作機械、 300 ターゲット(環状の工作物)、 299 穴、
303 アナログデジタル変換機(アナログ入力モジュール)、304 プログラマブルコントローラ(デジタルローパスフィルタ)


201 Rotating shaft, 209 Tool (grinding stone), 121 Tool rotating device, 301 Displacement probe, 10, 20, 30 First-order lag element, 100 Machine tool, 300 Target (annular workpiece), 299 hole,
303 Analog-digital converter (analog input module), 304 Programmable controller (digital low-pass filter)


Claims (4)

回転軸と、該回転軸に取り付けられ該回転軸により回転される工具とを有する工具回転装置と、該工具回転装置における前記回転軸の軸方向変位を非接触で検出する変位計を備え、該変位計の出力に対し、所定の1次遅れ要素の組み合わせにより、前記工具回転装置に起因する変位を推定するように構成され、前記変位計のプローブが対向する意図的に振れ易い穴や段差などの部位を設けたターゲット部と、前記変位計の出力を変換するアナログデジタル変換機と、デジタルローパスフィルタを有する工作機械において、センサの値の読み取り側のローパスフィルタのカットオフ周波数を回転数に応じて変化させることを特徴とする工作機械。   A tool rotating device having a rotating shaft and a tool attached to the rotating shaft and rotated by the rotating shaft; and a displacement meter for detecting an axial displacement of the rotating shaft in the tool rotating device in a non-contact manner, It is configured to estimate the displacement caused by the tool rotating device by combining a predetermined first order lag element with respect to the output of the displacement meter. In a machine tool having a target section provided with a portion, an analog-digital converter for converting the output of the displacement meter, and a digital low-pass filter, the cut-off frequency of the low-pass filter on the sensor value reading side is determined according to the number of rotations. A machine tool characterized by changing. 請求項1に記載の工作機械において、時定数を回転数に完全に比例させると完全に回転を停止させた時にセンサの出力を全く読み込まなくなる事態を回避するため、微小な定数と回転数の和が時定数の逆数に比例させるように補正指令を処理することを特徴とする工作機械。   In the machine tool according to claim 1, in order to avoid a situation where the output of the sensor is not read at all when the rotation is completely stopped when the time constant is made completely proportional to the rotation speed, the sum of the minute constant and the rotation speed is avoided. A machine tool characterized by processing a correction command so that is proportional to the inverse of the time constant. 請求項2に記載の工作機械において、回転装置に回転体の現在の方向を読み取る装置を搭載し,回転体の方向と意図的に設けた振れの成分の補償情報のマップを数式ないし表の状態で保持し,完全に回転が停止した時に回転体の方向情報から,その振れ補償情報を読み出し,補正指令を補償するように構成されたことを特徴とする工作機械。   The machine tool according to claim 2, wherein a device for reading the current direction of the rotating body is mounted on the rotating device, and a map of compensation information of the direction of the rotating body and the intentionally provided shake component is expressed in a mathematical expression or a table state. The machine tool is configured to read out the shake compensation information from the direction information of the rotating body and compensate the correction command when the rotation is completely stopped. 請求項3に記載の工作機械において、デジタルフィルタを整数または固定小数点型を使用して構成した場合、時定数の逆数が最小表現単位に未満になることができないので、この場合にサンプリング間隔の切り替えによって時定数を上記の上限以上に伸ばす処理ができるように構成されたことを特徴とする工作機械。


4. The machine tool according to claim 3, wherein when the digital filter is configured using an integer or a fixed-point type, the reciprocal of the time constant cannot be less than the minimum expression unit. In this case, the sampling interval is switched. A machine tool configured to be able to perform a process of extending the time constant to the above upper limit or more.


JP2017060251A 2017-03-26 2017-03-26 Machine tool, its tool rotating device and spindle thermal displacement compensation method Active JP6951039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060251A JP6951039B2 (en) 2017-03-26 2017-03-26 Machine tool, its tool rotating device and spindle thermal displacement compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060251A JP6951039B2 (en) 2017-03-26 2017-03-26 Machine tool, its tool rotating device and spindle thermal displacement compensation method

Publications (2)

Publication Number Publication Date
JP2018161716A true JP2018161716A (en) 2018-10-18
JP6951039B2 JP6951039B2 (en) 2021-10-20

Family

ID=63859110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060251A Active JP6951039B2 (en) 2017-03-26 2017-03-26 Machine tool, its tool rotating device and spindle thermal displacement compensation method

Country Status (1)

Country Link
JP (1) JP6951039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116714A (en) * 2019-01-27 2020-08-06 三井精機工業株式会社 Grinder and operation method for probing device thereof
JP7434054B2 (en) 2020-05-18 2024-02-20 三井精機工業株式会社 How to operate probing equipment in machine tools

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128643A (en) * 1996-10-25 1998-05-19 Ntn Corp Condition monitoring device for work machine spindle
JP2012078227A (en) * 2010-10-01 2012-04-19 Nsk Ltd Physical quantity measuring device for rotary member
US20120294688A1 (en) * 2011-05-18 2012-11-22 The Department Of Electrical Engineering, National Chang-Hua University Of Education Spindle control system for a milling machine
JP2014200129A (en) * 2013-03-29 2014-10-23 山洋電気株式会社 Motor speed controller
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128643A (en) * 1996-10-25 1998-05-19 Ntn Corp Condition monitoring device for work machine spindle
JP2012078227A (en) * 2010-10-01 2012-04-19 Nsk Ltd Physical quantity measuring device for rotary member
US20120294688A1 (en) * 2011-05-18 2012-11-22 The Department Of Electrical Engineering, National Chang-Hua University Of Education Spindle control system for a milling machine
JP2014200129A (en) * 2013-03-29 2014-10-23 山洋電気株式会社 Motor speed controller
JP2016175167A (en) * 2015-03-22 2016-10-06 三井精機工業株式会社 Machine tool, tool slewing gear, and main shaft thermal displacement correction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116714A (en) * 2019-01-27 2020-08-06 三井精機工業株式会社 Grinder and operation method for probing device thereof
JP7168469B2 (en) 2019-01-27 2022-11-09 三井精機工業株式会社 Grinding machine and its probing equipment operation method
JP7434054B2 (en) 2020-05-18 2024-02-20 三井精機工業株式会社 How to operate probing equipment in machine tools

Also Published As

Publication number Publication date
JP6951039B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
JP4684330B2 (en) Screw tightening device
US10543574B2 (en) Machine motion trajectory measuring apparatus
JP4962488B2 (en) Torque measuring device
JP4291382B2 (en) Machine tool with automatic correction function of mounting error by contact detection
JP3389417B2 (en) How to compensate for lost motion
US9304504B2 (en) Servo controller for reducing interference between axes in machining
TWI540402B (en) Motor controlling device
JP4824080B2 (en) Synchronous control system
JP4693898B2 (en) Screw tightening control system and screw tightening control method
KR101015483B1 (en) Motor controller and control method
KR100968559B1 (en) Screw tightening device
US9471058B2 (en) Data acquisition device for acquiring cause of stoppage of drive axis and information relating thereto
JP2006227886A (en) Servo-control device and method for adjusting servo system
JP2018161716A (en) Machine tool, tool slewing gear thereof and method for correction of spindle thermal displacement
WO2015083275A1 (en) Trajectory measurement device, numerical control device, and trajectory measurement method
KR20080094930A (en) Torque measurement device
JP6553906B2 (en) Machine tool and its tool rotating device
TWI389764B (en) Machine tool with function for setting up a measurement reference point of a work
JP7168469B2 (en) Grinding machine and its probing equipment operation method
JP2020038569A (en) Numerical control method and numerical control device
JP6333495B1 (en) Servo control device
CN113219818B (en) Control method and device of numerical control machine tool
JP5919125B2 (en) Rotation holding device and rotation method in rotation holding device
JP2004362204A (en) Frictional force measuring method in machine tool and numeric control device using measured value obtained by frictional force measuring method
CN109002062A (en) Servo motor control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210923

R150 Certificate of patent or registration of utility model

Ref document number: 6951039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150