JP2020115172A - Lithography device, measurement method, and method for manufacturing article - Google Patents

Lithography device, measurement method, and method for manufacturing article Download PDF

Info

Publication number
JP2020115172A
JP2020115172A JP2019006211A JP2019006211A JP2020115172A JP 2020115172 A JP2020115172 A JP 2020115172A JP 2019006211 A JP2019006211 A JP 2019006211A JP 2019006211 A JP2019006211 A JP 2019006211A JP 2020115172 A JP2020115172 A JP 2020115172A
Authority
JP
Japan
Prior art keywords
substrate
holding surface
substrate holding
flatness
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019006211A
Other languages
Japanese (ja)
Other versions
JP7212528B2 (en
Inventor
大輔 長内
Daisuke Osanai
大輔 長内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019006211A priority Critical patent/JP7212528B2/en
Publication of JP2020115172A publication Critical patent/JP2020115172A/en
Application granted granted Critical
Publication of JP7212528B2 publication Critical patent/JP7212528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide a technique advantageous for measuring flatness of a substrate holding surface of a stage while reducing reduction in throughput.SOLUTION: A lithography device forming patterns in each of a plurality of substrates includes a stage having a substrate holding surface holding a substrate, a substrate conveyance part which carries the substrate from the substrate holding surface and carries the substrate into the substrate holding surface, a detection part which detects the respective heights of the plurality of parts in the substrate holding surface and a processing part which determines the flatness of the substrate holding surface, in which the processing part allows the detection part to perform processing of detecting the height of a partial part among the plurality of parts in a period during until the substrate is carried into the substrate holding surface after the substrate has been carried from the substrate holding surface by changing parts to be detected in each of the periods, and thereby determines the respective heights of the plurality of parts and determines the flatness of the substrate holding surface based on the respective determined heights of the plurality of parts.SELECTED DRAWING: Figure 4

Description

本発明は、リソグラフィ装置、計測方法、および物品の製造方法に関する。 The present invention relates to a lithographic apparatus, a metrology method, and an article manufacturing method.

半導体デバイスや液晶表示デバイスなどの製造には、半導体ウェハやガラスプレートなどの基板にパターンを形成するリソグラフィ装置が用いられる。リソグラフィ装置では、ステージによって保持された基板の平面度が、基板へのパターンの形成精度に影響を与えうる。特許文献1には、基板のショット領域内における複数の計測点で高さを計測し、その計測結果に基づいて、基板の表面が投影光学系の像面に位置するように基板の位置を制御する露光装置が開示されている。 A lithographic apparatus that forms a pattern on a substrate such as a semiconductor wafer or a glass plate is used for manufacturing a semiconductor device, a liquid crystal display device, or the like. In a lithographic apparatus, the flatness of a substrate held by a stage can affect the accuracy with which a pattern is formed on the substrate. In Patent Document 1, the height is measured at a plurality of measurement points in the shot area of the substrate, and based on the measurement result, the position of the substrate is controlled so that the surface of the substrate is located on the image plane of the projection optical system. There is disclosed an exposure apparatus that does.

特開2011−86777号公報JP, 2011-86777, A

リソグラフィ装置では、基板を保持するステージの基板保持面の平面度が、例えば摩耗や歪みによって経時変化することがある。この場合、ステージの基板保持面の平面度に応じて、ステージによって保持された基板の平面度が変化してしまい、基板上における複数の計測点での高さの計測結果に基づいて基板の位置を制御しても、基板へのパターンの形成精度が不十分になりうる。したがって、リソグラフィ装置では、ステージの基板保持面の平面度を計測し、当該基板保持面のメンテナンス(調整)を行うことが好ましい。一方、ステージの基板保持面の平面度の計測は、ステージが基板を保持していない状態で行われる必要がある。つまり、基板保持面の平面度の計測中では、基板へのパターンの形成処理を行うことができないため、スループットの点で不利になりうる。 In a lithographic apparatus, the flatness of a substrate holding surface of a stage that holds a substrate may change over time due to, for example, wear or distortion. In this case, the flatness of the substrate held by the stage changes depending on the flatness of the substrate holding surface of the stage, and the position of the substrate is determined based on the measurement results of the heights at a plurality of measurement points on the substrate. Even if the control is performed, the accuracy of forming the pattern on the substrate may be insufficient. Therefore, in the lithographic apparatus, it is preferable to measure the flatness of the substrate holding surface of the stage and perform maintenance (adjustment) on the substrate holding surface. On the other hand, the flatness of the substrate holding surface of the stage needs to be measured in a state where the stage does not hold the substrate. In other words, during the measurement of the flatness of the substrate holding surface, the pattern forming process cannot be performed on the substrate, which may be disadvantageous in terms of throughput.

そこで、本発明は、スループットの低下を低減しつつ、ステージの基板保持面の平面度を計測するために有利な技術を提供することを目的とする。 Therefore, an object of the present invention is to provide an advantageous technique for measuring the flatness of the substrate holding surface of the stage while reducing the decrease in throughput.

上記目的を達成するために、本発明の一側面としてのリソグラフィ装置は、複数の基板の各々にパターンを形成するリソグラフィ装置であって、基板を保持する基板保持面を有するステージと、前記基板保持面からの基板の搬出と前記基板保持面への基板の搬入とを行う基板搬送部と、前記基板保持面における複数の箇所の各々の高さを検出する検出部と、前記基板保持面の平面度を決定する処理部と、を含み、前記処理部は、前記基板保持面から基板が搬出されてから前記基板保持面に基板が搬入されるまでの期間において前記複数の箇所のうちの一部の箇所の高さを検出する処理を、前記期間ごとに検出対象箇所を変えて前記検出部に行わせることにより、前記複数の箇所の各々の高さを求め、求めた前記複数の箇所の各々の高さに基づいて前記基板保持面の平面度を決定する、ことを特徴とする。 In order to achieve the above object, a lithographic apparatus according to one aspect of the present invention is a lithographic apparatus that forms a pattern on each of a plurality of substrates, the stage having a substrate holding surface for holding the substrate, and the substrate holding apparatus. A substrate carrying section that carries out the substrate from the surface and carries the substrate into the substrate holding surface, a detecting section that detects the height of each of a plurality of locations on the substrate holding surface, and a plane of the substrate holding surface A processing unit that determines a degree, wherein the processing unit is a part of the plurality of locations in a period from when the substrate is unloaded from the substrate holding surface to when the substrate is loaded into the substrate holding surface. The process of detecting the height of the location, by changing the detection target location for each period to perform the detection unit, to obtain the height of each of the plurality of locations, each of the plurality of locations obtained The flatness of the substrate holding surface is determined based on the height of the substrate.

本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。 Further objects and other aspects of the present invention will be made clear by the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、例えば、スループットの低下を低減しつつ、ステージの基板保持面の平面度を計測するために有利な技術を提供することができる。 According to the present invention, for example, it is possible to provide an advantageous technique for measuring the flatness of the substrate holding surface of the stage while reducing the decrease in throughput.

露光装置の構成を示す概略図Schematic showing the configuration of the exposure apparatus 露光装置で行われる処理フローを示す図The figure which shows the processing flow which is done with the exposure device 露光装置で行われる処理を説明するための図Diagram for explaining the processing performed in the exposure apparatus 第1実施形態に係る基板保持面の平面度の計測処理についての処理フローを示す図The figure which shows the processing flow about the measurement processing of the flatness of the board|substrate holding surface which concerns on 1st Embodiment. 平面度情報の表示例を示す図Figure showing a display example of flatness information 基板ステージ(基板保持面)を上方から見た図View of the substrate stage (substrate holding surface) seen from above 第2実施形態に係る基板保持面の平面度の計測処理についての処理フローを示す図The figure which shows the processing flow about the measurement processing of the flatness of the board|substrate holding surface which concerns on 2nd Embodiment. 第3実施形態に係る基板保持面の平面度の計測処理についての処理フローを示す図The figure which shows the processing flow about the measurement processing of the flatness of the board|substrate holding surface which concerns on 3rd Embodiment. 基板ステージ(基板保持面)を上方から見た図View of the substrate stage (substrate holding surface) seen from above

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and duplicated description will be omitted.

以下の実施形態では、複数の基板の各々にパターンを順次形成するリソグラフィ装置として、基板を露光する露光装置を用いて説明するが、それに限られるものではない。例えば、モールドを用いて基板上にインプリント材のパターンを形成するインプリント装置や、荷電粒子線(ビーム)を基板に照射して当該基板にパターンを形成する描画装置などのリソグラフィ装置においても、本発明を適用することができる。 In the following embodiments, an exposure apparatus that exposes a substrate will be used as a lithographic apparatus that sequentially forms a pattern on each of a plurality of substrates, but the present invention is not limited to this. For example, in an imprint apparatus that forms a pattern of an imprint material on a substrate using a mold, or a lithographic apparatus such as a drawing apparatus that irradiates a substrate with a charged particle beam (beam) to form a pattern on the substrate, The present invention can be applied.

<第1実施形態>
本発明に係る第1実施形態の露光装置100について説明する。露光装置100は、原版Mおよび投影光学系を通過した光で基板W(具体的には、基板上に塗布されたレジスト)を露光することにより、基板Wにおける複数のショット領域の各々に原版Mのパターンを転写する処理(露光処理)を行う。本実施形態の露光装置100は、複数の基板Wの各々に対して露光処理を順次行うことができ、その露光方式としては、ステップ・アンド・スキャン方式であってもよいし、ステップ・アンド・リピート方式であってもよい。また、原版Mとしては、例えばマスクやレチクルなどが用いられ、基板Wとしては、例えばガラスプレートや半導体ウェハなどが用いられうる。
<First Embodiment>
The exposure apparatus 100 according to the first embodiment of the present invention will be described. The exposure apparatus 100 exposes the substrate W (specifically, the resist coated on the substrate) with the light that has passed through the original M and the projection optical system to expose the original M on each of the plurality of shot areas on the substrate W. The process of transferring the pattern (exposure process) is performed. The exposure apparatus 100 of the present embodiment can sequentially perform the exposure processing on each of the plurality of substrates W, and the exposure method may be a step-and-scan method or a step-and-scan method. It may be a repeat system. Further, as the original M, for example, a mask or reticle may be used, and as the substrate W, for example, a glass plate or a semiconductor wafer may be used.

次に、露光装置100の構成例について説明する。図1は、本実施形態の露光装置100の構成を示す概略図である。露光装置100は、原版Mのパターンを基板Wに投影する投影光学系10を備えている。また、投影光学系10の物体面側には、原版ステージ20が配置され、投影光学系10の像面側には、基板ステージ30が配置されている。原版ステージ20と基板ステージ30とはそれぞれ独立して駆動可能であり、これらの位置はレーザ干渉計50で計測される。 Next, a configuration example of the exposure apparatus 100 will be described. FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus 100 of this embodiment. The exposure apparatus 100 includes a projection optical system 10 that projects the pattern of the original plate M onto the substrate W. The original stage 20 is arranged on the object plane side of the projection optical system 10, and the substrate stage 30 is arranged on the image plane side of the projection optical system 10. The original stage 20 and the substrate stage 30 can be independently driven, and their positions are measured by the laser interferometer 50.

原版ステージ20は、原版チャック21と原版駆動機構22とを含み、原版Mを保持して移動可能に構成される。原版チャック21は、例えば真空チャックや静電チャックなどにより原版Mを保持する。原版駆動機構22は、原版チャック21を支持するとともに、X軸方向およびY軸方向のそれぞれに移動可能に、且つ、XY平面内で回転可能に構成されうる。X軸方向およびY軸方向は、投影光学系10から基板Wに照射される光の光軸と垂直な面内において互いに直行する2つの方向である。また、原版ステージ20の上方には、原版Mおよび投影光学系10を介して基板Wを観察する観察光学系40が配置され、さらに、観察光学系40の上方には、原版Mを照明する照明光学系41が配置されている。 The original stage 20 includes an original chuck 21 and an original driving mechanism 22, and is configured to hold the original M and move it. The original plate chuck 21 holds the original plate M by, for example, a vacuum chuck or an electrostatic chuck. The original plate drive mechanism 22 supports the original plate chuck 21, and can be configured to be movable in each of the X-axis direction and the Y-axis direction and rotatable in the XY plane. The X-axis direction and the Y-axis direction are two directions orthogonal to each other in a plane perpendicular to the optical axis of the light emitted from the projection optical system 10 to the substrate W. An observation optical system 40 for observing the substrate W via the original M and the projection optical system 10 is arranged above the original stage 20, and illumination for illuminating the original M is provided above the observation optical system 40. An optical system 41 is arranged.

基板ステージ30は、基板チャック31と基板駆動機構32とを含み、基板Wを保持して移動可能に構成される。基板チャック31は、基板Wに接触して基板Wを保持する基板保持面を有し、例えば真空チャックや静電チャックなどにより基板Wを保持する。本実施形態の場合、基板チャック31は、チャックベース31aとチャックアタッチメント31bとを含み、チャックアタッチメント31bの上面が基板保持面として機能しうる。チャックアタッチメント31bは、例えば、複数の部分領域に分割(区分け)されており、部分領域ごとに平面度を調整可能に構成されている。平面度の調整は、例えばチャックアタッチメント31bを部分領域ごとに交換や研磨を行ったり、チャックアタッチメント31bの部分領域ごとにスペーサ(シム)を挿入したりすることによって行われうる。 The substrate stage 30 includes a substrate chuck 31 and a substrate driving mechanism 32, and is configured to hold and move the substrate W. The substrate chuck 31 has a substrate holding surface that contacts the substrate W and holds the substrate W, and holds the substrate W by, for example, a vacuum chuck or an electrostatic chuck. In the case of the present embodiment, the substrate chuck 31 includes a chuck base 31a and a chuck attachment 31b, and the upper surface of the chuck attachment 31b can function as a substrate holding surface. The chuck attachment 31b is, for example, divided (divided) into a plurality of partial areas, and the flatness can be adjusted for each partial area. The flatness can be adjusted by, for example, exchanging or polishing the chuck attachment 31b for each partial region, or inserting a spacer (shim) for each partial region of the chuck attachment 31b.

また、基板駆動機構32は、ステージ定盤33の上に配置されたY軸ステージ32a、X軸ステージ32bおよびθZステージ32cを有し、基板チャック31を支持するとともに、基板チャック31(基板W)を6軸方向に移動可能に構成される。6軸方向とは、X軸方向、Y軸方向、Z軸方向(投影光学系10から基板Wに照射される光の光軸と平行な方向)、および各軸周りの回転方向のことである。 Further, the substrate driving mechanism 32 has a Y-axis stage 32a, an X-axis stage 32b and a θZ stage 32c arranged on a stage surface plate 33, supports the substrate chuck 31, and also supports the substrate chuck 31 (substrate W). Is movable in six axis directions. The 6-axis directions are the X-axis direction, the Y-axis direction, the Z-axis direction (the direction parallel to the optical axis of the light emitted from the projection optical system 10 to the substrate W), and the rotation directions around the respective axes. ..

レーザ干渉計50は、レーザヘッド51と、原版駆動機構22に取り付けられた第1ミラー52と、基板駆動機構32(θZステージ32c)に取り付けられた第2ミラー53とを含み、原版Mと基板Wとの相対位置(相対変位)を計測する。具体的には、レーザヘッド51から射出されたレーザ光はハーフミラー54で分岐され、一部のレーザ光はミラー55で反射されて第1ミラー52に入射し、残りのレーザ光は第2ミラー53に入射する。第1ミラー52で反射されたレーザ光と第2ミラー53で反射されたレーザ光とは再びハーフミラーを通ることで干渉し合うため、その干渉パターンに基づいて、原版駆動機構22(原版M)と基板駆動機構32(基板W)との相対位置を計測することができる。 The laser interferometer 50 includes a laser head 51, a first mirror 52 attached to the original plate drive mechanism 22, and a second mirror 53 attached to the substrate drive mechanism 32 (θZ stage 32c), and the original plate M and the substrate. The relative position (relative displacement) with W is measured. Specifically, the laser light emitted from the laser head 51 is branched by the half mirror 54, a part of the laser light is reflected by the mirror 55 and is incident on the first mirror 52, and the remaining laser light is reflected by the second mirror. It is incident on 53. Since the laser light reflected by the first mirror 52 and the laser light reflected by the second mirror 53 interfere with each other by passing through the half mirror again, based on the interference pattern, the original plate drive mechanism 22 (original plate M). The relative position between the substrate drive mechanism 32 (substrate W) can be measured.

制御部CNTは、例えばCPUやメモリなどを有するコンピュータによって構成され、装置全体の動作を統括して制御する(即ち、基板Wの露光処理を制御する。本実施形態の場合、制御部CNTは、後述するように基板ステージ30の基板保持面の平面度を決定する処理部としての機能を有する。 The control unit CNT is configured by, for example, a computer having a CPU, a memory, and the like, and integrally controls the operation of the entire apparatus (that is, controls the exposure processing of the substrate W. In the case of the present embodiment, the control unit CNT, As will be described later, it has a function as a processing unit that determines the flatness of the substrate holding surface of the substrate stage 30.

また、露光装置100は、基板搬送部60と検出部70とを含む。基板搬送部60は、基板ステージ30(基板保持面)から基板Wを搬出する搬出処理と、基板ステージ30(基板保持面)に新たな基板Wを搬入する搬入処理とを行う。基板搬送部60は、例えば、基板Wを保持するハンド61と当該ハンド61を駆動するアーム62とを有する搬送ロボットを含みうる。検出部70は、基板ステージ30の基板保持面における複数の箇所の各々の高さ(Z軸方向の位置)を順次検出する。本実施形態の場合、検出部70は、基板保持面における1つの箇所の高さを検出する処理を、基板ステージ30をステップ移動させて基板保持面における複数の箇所の各々について行うことで、当該複数の箇所の各々の高さを検出することができる。検出部70は、例えばレーザ干渉計を含みうる。ここで、本実施形態では、検出部70が投影光学系10に設けられているが、それに限られず、露光装置100の内部であれば検出部70を任意に配置してよい。 The exposure apparatus 100 also includes a substrate transfer unit 60 and a detection unit 70. The substrate transport unit 60 performs a carry-out process of carrying out the substrate W from the substrate stage 30 (substrate holding surface) and a carry-in process of carrying in a new substrate W to the substrate stage 30 (substrate holding surface). The substrate transfer unit 60 can include, for example, a transfer robot having a hand 61 that holds the substrate W and an arm 62 that drives the hand 61. The detection unit 70 sequentially detects the height (position in the Z-axis direction) of each of a plurality of locations on the substrate holding surface of the substrate stage 30. In the case of the present embodiment, the detection unit 70 performs the process of detecting the height of one location on the substrate holding surface by step-moving the substrate stage 30 for each of the plurality of locations on the substrate holding surface. The height of each of the plurality of points can be detected. The detector 70 may include, for example, a laser interferometer. Here, in the present embodiment, the detection unit 70 is provided in the projection optical system 10, but the present invention is not limited to this, and the detection unit 70 may be arbitrarily arranged within the exposure apparatus 100.

露光装置100では、基板ステージ30の基板保持面の平面度が、例えば摩耗や歪みによって経時変化することがある。この場合、基板ステージ30の基板保持面の平面度に応じて、基板ステージ30によって保持された基板Wの平面度が変化してしまうため、基板Wへのパターンの形成精度が不十分になりうる。したがって、露光装置100では、基板ステージ30の基板保持面の平面度を計測し、当該基板保持面のメンテナンス(調整)を行うことが好ましい。一方、基板保持面の平面度の計測は、基板ステージ30が基板Wを保持していない状態、即ち、基板ステージ30上に基板Wが搭載されていない状態で行われる必要がある。つまり、基板保持面の平面度の計測中では、基板Wへのパターンの形成処理を行うことができないため、スループットの点で不利になりうる。 In the exposure apparatus 100, the flatness of the substrate holding surface of the substrate stage 30 may change with time due to, for example, wear or distortion. In this case, since the flatness of the substrate W held by the substrate stage 30 changes according to the flatness of the substrate holding surface of the substrate stage 30, the pattern forming accuracy on the substrate W may be insufficient. .. Therefore, in the exposure apparatus 100, it is preferable to measure the flatness of the substrate holding surface of the substrate stage 30 and perform maintenance (adjustment) on the substrate holding surface. On the other hand, the flatness of the substrate holding surface needs to be measured in the state where the substrate stage 30 does not hold the substrate W, that is, the state where the substrate W is not mounted on the substrate stage 30. That is, during the measurement of the flatness of the substrate holding surface, the pattern forming process on the substrate W cannot be performed, which may be disadvantageous in terms of throughput.

そこで、本実施形態の露光装置100は、基板搬送部60により基板ステージ30の基板保持面から基板Wが搬出されてから基板保持面に基板Wが搬入されるまでの期間において、基板保持面における複数の箇所のうち一部の箇所の高さを検出する(検出処理)。そして、このような検出処理を当該期間ごとに検出対象箇所を変えて行うことにより、基板保持面における複数の箇所の各々の高さを求め、求めた複数の箇所の各々の高さに基づいて基板保持面の平面度を決定する。つまり、本実施形態の露光装置100は、基板ステージ30上の基板Wを交換する期間、即ち、複数の基板Wに対するパターン形成の合間の期間を利用して、基板保持面における複数の箇所の高さ検出を分割して行う。これにより、スループットの低下を低減しつつ、基板保持面の平面度を計測することができる。 Therefore, in the exposure apparatus 100 of the present embodiment, in the period from when the substrate W is unloaded from the substrate holding surface of the substrate stage 30 by the substrate transport unit 60 to when the substrate W is loaded in the substrate holding surface, The height of some of the plurality of locations is detected (detection processing). Then, by performing such a detection process by changing the detection target location for each period, the height of each of the plurality of locations on the substrate holding surface is obtained, and based on the obtained height of each of the plurality of locations. Determine the flatness of the substrate holding surface. That is, the exposure apparatus 100 of the present embodiment uses the period during which the substrate W on the substrate stage 30 is exchanged, that is, the period between pattern formations for a plurality of substrates W, to increase the height of a plurality of locations on the substrate holding surface. Detection is performed separately. This makes it possible to measure the flatness of the substrate holding surface while reducing the decrease in throughput.

次に、本実施形態の露光装置100で行われる処理フローについて、図2および図3を参照しながら説明する。図2は、本実施形態の露光装置100で行われる処理フローを示す図である。図2に示す処理フローの各工程は、制御部CNTによる制御のもとで行われうる。また、図3は、本実施形態の露光装置100で行われる処理を説明するための図である。図3では、説明を分かり易くするため、図1に比べて装置構成を簡略化している。 Next, a processing flow performed by the exposure apparatus 100 of this embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram showing a processing flow performed by the exposure apparatus 100 of this embodiment. Each step of the processing flow shown in FIG. 2 can be performed under the control of the control unit CNT. Further, FIG. 3 is a diagram for explaining processing performed by the exposure apparatus 100 of the present embodiment. In FIG. 3, the device configuration is simplified as compared with FIG. 1 for the sake of easy understanding.

S11では、制御部CNTは、図3(a)に示すように、基板ステージ30を基板搬入位置に移動させ、基板搬送部60により基板Wを基板ステージ30(基板保持面)の上に搬入する。S12では、制御部CNTは、図3(b)に示すように、基板Wの対象ショット領域(露光処理を行うべきショット領域)が投影光学系10の下方に配置されるように基板ステージ30を移動させ、対象ショット領域に対して露光処理(パターン形成)を行う。S13では、制御部CNTは、基板ステージ30上の基板Wにおける複数のショット領域の全てに対して露光処理を行ったか否かを判定する。露光処理を行っていないショット領域がある場合にはS12に戻り、露光処理を行っていないショット領域を対象ショット領域に設定して露光処理を行う。一方、全てのショット領域に対して露光処理を行った場合にはS14に進む。 In S11, as shown in FIG. 3A, the control unit CNT moves the substrate stage 30 to the substrate loading position, and loads the substrate W onto the substrate stage 30 (substrate holding surface) by the substrate transport unit 60. .. In S12, as shown in FIG. 3B, the control unit CNT sets the substrate stage 30 so that the target shot area of the substrate W (shot area where exposure processing should be performed) is arranged below the projection optical system 10. The target shot area is moved and exposure processing (pattern formation) is performed. In S13, the control unit CNT determines whether or not the exposure processing has been performed on all of the plurality of shot areas on the substrate W on the substrate stage 30. If there is a shot area that has not been subjected to the exposure processing, the process returns to S12, and the shot area that has not been subjected to the exposure processing is set as the target shot area, and the exposure processing is performed. On the other hand, if exposure processing has been performed for all shot areas, the process proceeds to S14.

S14では、制御部CNTは、図3(c)に示すように、基板ステージ30を基板搬出位置に移動させ、基板搬送部60により基板Wを基板ステージ30(基板保持面)の上から搬出する。本実施形態の場合、基板搬入位置と基板搬出位置とは同一の位置であるが、互いに異なる位置であってもよい。S15では、制御部CNTは、次に露光処理を行うべき基板W(次の基板W)があるか否かを判定する。次の基板Wがない場合には終了する。一方、次の基板Wがある場合にはS16に進む。S16では、制御部CNTは、図3(d)に示すように、検出部70の下方に基板ステージ30を移動させ、基板ステージ30の基板保持面における複数の箇所のうち一部の箇所について、検出部70による高さ検出を行う(検出処理)。そして、新たな基板Wを基板ステージ30上に搬入する際には、S16の検出処理を終了し、S11に戻る。 In S14, as shown in FIG. 3C, the control unit CNT moves the substrate stage 30 to the substrate unloading position, and unloads the substrate W from the substrate stage 30 (substrate holding surface) by the substrate transporting unit 60. .. In the case of the present embodiment, the substrate loading position and the substrate unloading position are the same position, but may be different positions. In S15, the control unit CNT determines whether or not there is a substrate W (next substrate W) to be subjected to the exposure processing next. If there is no next substrate W, the process ends. On the other hand, if there is a next substrate W, the process proceeds to S16. In S16, as shown in FIG. 3D, the control unit CNT moves the substrate stage 30 below the detection unit 70, and at some of the plurality of positions on the substrate holding surface of the substrate stage 30, Height detection is performed by the detection unit 70 (detection processing). Then, when the new substrate W is loaded onto the substrate stage 30, the detection process of S16 is ended, and the process returns to S11.

次に、基板保持面の平面度の計測処理(計測方法)について、図4を参照しながら説明する。図4は、基板保持面の平面度の計測処理についての処理フローを示す図である。図4に示す処理フローの各工程は、制御部CNTによる制御のもとで行われうる。 Next, the measurement processing (measurement method) of the flatness of the substrate holding surface will be described with reference to FIG. FIG. 4 is a diagram showing a processing flow for measuring the flatness of the substrate holding surface. Each step of the processing flow shown in FIG. 4 can be performed under the control of the control unit CNT.

S21〜S24は、図2に示す処理フローのS16で行われる検出処理である。S21〜S24の工程では、基板保持面における複数の箇所についての検出部70による高さ検出が、基板保持面から基板Wが搬出されてから基板保持面に基板Wが搬入されるまでの期間ごとに、検出対象箇所を変えて分割して行われる。そして、S21〜S24の工程が終了したら、図2に示す処理フローのS11を開始し、新たな基板Wの搬入処理が行われうる。なお、以下では、基板保持面から基板Wが搬出されてから基板保持面に基板Wが搬入されるまでの期間を、「基板Wの交換期間」と称することがある。 S21 to S24 are the detection process performed in S16 of the process flow shown in FIG. In steps S21 to S24, the height detection by the detection unit 70 at a plurality of positions on the substrate holding surface is performed every period from when the substrate W is unloaded from the substrate holding surface to when the substrate W is loaded into the substrate holding surface. In addition, the detection target portion is changed and divided. Then, when the steps of S21 to S24 are completed, S11 of the processing flow shown in FIG. 2 may be started to carry in a new substrate W. Note that, hereinafter, a period from when the substrate W is unloaded from the substrate holding surface to when the substrate W is loaded into the substrate holding surface may be referred to as a “replacement period of the substrate W”.

S21では、制御部CNTは、基板搬送部60による基板Wの搬出処理が行われ、基板ステージ30の基板保持面から基板Wが搬出されたか否かを判定する。制御部CNTは、例えば、基板ステージ30(基板保持面)上の基板Wが基板搬送部60のハンド61によって保持された場合に、基板保持面から基板Wが搬出されたと判定することができる。基板保持面から基板Wが搬出されていないと判定した場合にはS21を繰り返し行い、基板保持面から基板Wが搬出されたと判定した場合にはS22に進む。 In S21, the control unit CNT determines whether the substrate W is carried out by the substrate transport unit 60 and the substrate W is carried out from the substrate holding surface of the substrate stage 30. The control unit CNT can determine that the substrate W is unloaded from the substrate holding surface when the substrate W on the substrate stage 30 (substrate holding surface) is held by the hand 61 of the substrate transfer unit 60, for example. When it is determined that the substrate W has not been unloaded from the substrate holding surface, S21 is repeated, and when it is determined that the substrate W has been unloaded from the substrate holding surface, the process proceeds to S22.

S22では、制御部CNTは、基板ステージ30の基板保持面における複数の箇所のうち、検出部70による高さ検出が未実施である箇所(以下では、未実施個所と称することがある)を特定する。S23では、制御部CNTは、S22で特定された基板保持面の未実施箇所を検出対象箇所として、検出部70による高さ検出を行う。S24では、制御部CNTは、基板搬送部60による基板Wの搬入処理が開始されるか否かを判定する。例えば、制御部CNTは、新たな基板Wを基板搬送部60のハンド61が保持した場合に、基板Wの搬入処理が開始されると判定することができる。基板Wの搬入処理がまだ開始されないと判定した場合にはS22に戻り、基板Wの搬入処理が開始されると判定した場合にはS25に進む。 In S22, the control unit CNT identifies a portion (hereinafter, may be referred to as an unexecuted portion) where the height detection by the detection unit 70 has not been performed among a plurality of portions on the substrate holding surface of the substrate stage 30. To do. In S23, the control unit CNT performs height detection by the detection unit 70 with the unexecuted portion of the substrate holding surface specified in S22 as the detection target portion. In S24, the control unit CNT determines whether or not the loading process of the substrate W by the substrate transport unit 60 is started. For example, the control unit CNT can determine that the loading process of the substrate W is started when the hand 61 of the substrate transport unit 60 holds the new substrate W. When it is determined that the loading process of the substrate W is not yet started, the process returns to S22, and when it is determined that the loading process of the substrate W is started, the process proceeds to S25.

S25〜S27は、基板ステージ30の基板保持面の平面度を決定して報知する工程である。S25〜S27の工程は、制御部CNT(処理部)によって行われうるが、露光装置100の外部に設けられた情報処理装置(コンピュータ)によって行われてもよい。また、S25〜S27の工程は、図2に示す処理フローのS11〜S15の工程と並行して行われてもよい。 S25 to S27 are steps of determining and notifying the flatness of the substrate holding surface of the substrate stage 30. The steps S25 to S27 may be performed by the control unit CNT (processing unit), but may be performed by an information processing device (computer) provided outside the exposure apparatus 100. The steps S25 to S27 may be performed in parallel with the steps S11 to S15 of the processing flow shown in FIG.

S25では、制御部CNTは、基板ステージ30の基板保持面における複数の箇所の全てについて、検出部70による高さ検出が行われたか否かを判定する。全ての箇所についての高さ検出が行われていない場合にはS21に戻り、全ての箇所についての高さ検出が行われた場合にはS26に進む。S26では、制御部CNTは、基板ステージ30の基板保持面における複数の箇所の各々の高さに基づいて、基板保持面の平面度を決定する。例えば、制御部CNTは、基板保持面における複数の箇所の高さを近似計算することで得られる基板保持面の高さ分布、当該複数の箇所の高さから算出される平均値および標準偏差を、基板保持面の平面度として決定してもよい。 In S25, the control unit CNT determines whether or not the height detection by the detection unit 70 has been performed for all of the plurality of locations on the substrate holding surface of the substrate stage 30. If the height detection has not been performed for all the locations, the process returns to S21, and if the height detection has been performed for all the locations, the process proceeds to S26. In S26, the control unit CNT determines the flatness of the substrate holding surface based on the height of each of the plurality of positions on the substrate holding surface of the substrate stage 30. For example, the control unit CNT calculates the height distribution of the substrate holding surface obtained by approximating the heights of the plurality of positions on the substrate holding surface, the average value and the standard deviation calculated from the heights of the plurality of positions. , May be determined as the flatness of the substrate holding surface.

S27では、制御部CNTは、S26で決定された基板保持面の平面度に関する情報(以下では、平面度情報と称することがある)を報知する。平面度情報の報知は、例えば、露光装置100に設けられた表示部(ディスプレイ)に平面度情報を表示することによって行われてもよい。また、露光装置100の外部コンピュータに平面度情報を出力する(外部コンピュータの表示部に表示する)ことによって行われてもよい。ここで、制御部CNTは、基板保持面の平面度に基づいて基板保持面の異常部分を特定し、平面度情報を、当該異常部分と他の部分とを識別可能に報知(表示)することが好ましい。例えば、制御部CNTは、基板保持面の高さ分布のうち、平均高さに対する差異が許容範囲より大きな高さを有する部分を、異常箇所として特定することができる。また、異常部分を特定した場合、制御部CNTは、基板ステージ30(基板保持面、チャックアタッチメント31b)のメンテナンスを促す表示を、平面度情報と共に表示するとよい。図5は、平面度情報の表示例を示す図である。図5に示す平面度情報の表示例では、基板保持面の平面度として、基板保持面の高さ分布34が等高線によって表されており、基板保持面の異常部分35がハッチングによって示されている。 In S27, the control unit CNT notifies the information regarding the flatness of the substrate holding surface determined in S26 (hereinafter, may be referred to as flatness information). The notification of the flatness information may be performed, for example, by displaying the flatness information on a display unit (display) provided in the exposure apparatus 100. Alternatively, the flatness information may be output to an external computer of the exposure apparatus 100 (displayed on a display unit of the external computer). Here, the control unit CNT specifies the abnormal portion of the substrate holding surface based on the flatness of the substrate holding surface, and notifies (displays) the flatness information such that the abnormal portion and other portions can be distinguished. Is preferred. For example, the control unit CNT can specify, as the abnormal portion, a portion of the height distribution of the substrate holding surface, which has a height whose difference from the average height is larger than the allowable range. Further, when the abnormal portion is specified, the control unit CNT may display a display prompting the maintenance of the substrate stage 30 (the substrate holding surface, the chuck attachment 31b) together with the flatness information. FIG. 5 is a diagram showing a display example of flatness information. In the display example of the flatness information shown in FIG. 5, as the flatness of the substrate holding surface, the height distribution 34 of the substrate holding surface is represented by contour lines, and the abnormal portion 35 of the substrate holding surface is shown by hatching. ..

ここで、制御部CNTは、S26で決定された基板保持面の平面度に基づいて、次に基板保持面の平面度を決定する際(即ち、次回の計測処理の際)に高さ検出を行うべき複数の箇所の配置を設定(変更)してもよい。例えば、基板保持面に異常部分が特定された場合、制御部CNTは、基板保持面の異常部分において、検出部70による高さ検出を行うべき箇所の数を増加させるように、基板保持面における複数の箇所の配置を設定してもよい。また、制御部CNTは、基板保持面のうち異常部分以外の部分において、検出部70による高さ検出を行うべき箇所の数を減少させるように、基板保持面における複数の箇所の配置を設定してもよい。 Here, based on the flatness of the substrate holding surface determined in S26, the control unit CNT performs height detection when determining the flatness of the substrate holding surface next time (that is, in the next measurement process). You may set (change) the arrangement|positioning of the some location which should be performed. For example, when an abnormal portion is specified on the substrate holding surface, the control unit CNT controls the substrate holding surface so as to increase the number of places where the detection unit 70 should perform height detection in the abnormal portion of the substrate holding surface. You may set up the arrangement of two or more places. Further, the control unit CNT sets the arrangement of a plurality of locations on the substrate holding surface so as to reduce the number of locations where the height detection should be performed by the detection unit 70 in the portion other than the abnormal portion of the substrate holding surface. May be.

上述したように、本実施形態の露光装置100は、基板ステージ30の基板保持面における複数の箇所の高さ検出を、基板Wの交換期間ごとに分割して行う。これにより、スループットの低下を低減しつつ、基板保持面の平面度を計測(決定)することができる。 As described above, the exposure apparatus 100 according to the present embodiment performs height detection at a plurality of positions on the substrate holding surface of the substrate stage 30 by dividing it for each replacement period of the substrate W. This makes it possible to measure (determine) the flatness of the substrate holding surface while reducing the decrease in throughput.

<第2実施形態>
本発明に係る第2実施形態について説明する。本実施形態では、基板保持面の平面度の計測処理に関する他の例について説明する。第1実施形態では、基板Wの交換期間に、検出部70による高さ検出を可能な限り多くの箇所で行う例について説明した。本実施形態では、基板Wの交換期間に、予め設定された回数(即ち、予め設定された数の箇所について)高さ検出を行う例について説明する。なお、本実施形態は、基板保持面の平面度の計測処理以外は、第1実施形態を基本的に受け継ぐものであり、露光装置100の構成、および、図2に示す露光装置100の処理フローについては第1実施形態と同様である。
<Second Embodiment>
A second embodiment according to the present invention will be described. In the present embodiment, another example regarding the processing of measuring the flatness of the substrate holding surface will be described. In the first embodiment, the example in which the height detection by the detection unit 70 is performed at as many locations as possible during the replacement period of the substrate W has been described. In the present embodiment, an example will be described in which height detection is performed a preset number of times (that is, for a preset number of locations) during the replacement period of the substrate W. The present embodiment basically inherits the first embodiment except for the processing of measuring the flatness of the substrate holding surface. The configuration of the exposure apparatus 100 and the processing flow of the exposure apparatus 100 shown in FIG. Is the same as in the first embodiment.

ここで、基板ステージ30(チャックアタッチメント31b)の基板保持面は、図6に示すように、複数の部分領域36に分割(区分け)されており、部分領域36ごとに平面度を調整可能に構成されている。図6は、基板Wを保持していない状態の基板ステージ30(基板保持面)を上方から見た図である。本実施形態では、図6に示すように、複数の部分領域36の各々に、検出部70による高さ検出を行うべき箇所Pが少なくとも1つ設定される(図6に示す例では、4つの箇所Pが設定される)。そして、1つの基板Wの交換期間において(交換期間ごとに)、基板保持面における複数の箇所のうち、1つの部分領域36に含まれる箇所Pの高さ計測を行う。 Here, as shown in FIG. 6, the substrate holding surface of the substrate stage 30 (chuck attachment 31b) is divided (divided) into a plurality of partial regions 36, and the flatness can be adjusted for each partial region 36. Has been done. FIG. 6 is a view of the substrate stage 30 (substrate holding surface) in a state in which the substrate W is not held, viewed from above. In the present embodiment, as shown in FIG. 6, at least one portion P where the height detection by the detection unit 70 should be performed is set in each of the plurality of partial areas 36 (in the example shown in FIG. Point P is set). Then, during the replacement period of one substrate W (for each replacement period), the height of the position P included in one partial region 36 among the plurality of positions on the substrate holding surface is measured.

図7は、本実施形態に係る基板保持面の平面度の計測処理についての処理フローを示す図である。図7に示す処理フローの各工程は、制御部CNTによる制御のもとで行われうる。 FIG. 7 is a diagram showing a processing flow for measuring the flatness of the substrate holding surface according to the present embodiment. Each step of the processing flow shown in FIG. 7 can be performed under the control of the control unit CNT.

S31〜S34は、図2に示す処理フローのS16で行われる検出処理である。S31では、制御部CNTは、基板搬送部60による基板Wの搬出処理が行われ、基板ステージ30の基板保持面から基板Wが搬出されたか否かを判定する。基板保持面から基板Wが搬出されていないと判定した場合にはS31を繰り返し行い、基板保持面から基板Wが搬出されたと判定した場合にはS32に進む。S32では、基板保持面における複数の部分領域のうち、検出部70による高さ検出が未実施である1つの部分領域36を特定する。S33では、制御部CNTは、S32で特定された1つの部分領域36に含まれる箇所を検出対象箇所として、検出部70による高さ検出を行う。S34では、制御部CNTは、S32で特定された1つの部分領域に含まれる全ての箇所について高さ検出を行ったか否かを判定する。全ての箇所について高さ検出を行っていない場合にはS31に戻る。一方、全ての箇所について高さ検出を行った場合にはS35に進むとともに、図2に示す処理フローのS11を開始する。 S31 to S34 are the detection process performed in S16 of the process flow shown in FIG. In S31, the control unit CNT determines whether the substrate W is carried out by the substrate transfer unit 60 and the substrate W is carried out from the substrate holding surface of the substrate stage 30. When it is determined that the substrate W has not been unloaded from the substrate holding surface, S31 is repeated, and when it is determined that the substrate W has been unloaded from the substrate holding surface, the process proceeds to S32. In S<b>32, of the plurality of partial areas on the substrate holding surface, one partial area 36 for which the height detection by the detection unit 70 has not been performed is specified. In S33, the control unit CNT performs height detection by the detection unit 70, with the location included in the one partial region 36 specified in S32 as the detection target location. In S34, the control unit CNT determines whether or not height detection has been performed for all the locations included in the one partial area specified in S32. If height detection has not been performed for all the locations, the process returns to S31. On the other hand, when the heights have been detected for all the locations, the process proceeds to S35, and S11 of the processing flow shown in FIG. 2 is started.

図6に示す例では、1回目の検出処理では、部分領域36aに含まれる4つの箇所Pについて高さ検出が行われ、2回目の検出処理では、部分領域36bに含まれる4つの箇所Pについて高さ検出が行われる。同様に、3回目の検出処理では、部分領域36cに含まれる4つの箇所Pについての高さ検出が行われ、4回目の検出処理では、部分領域36dに含まれる4つの箇所Pについての高さ検出が行われる。このように、検出処理ごと(即ち、基板Wの交換期間ごと)に、部分領域36を変えて、検出部70による高さ検出が順次行われる。 In the example shown in FIG. 6, height detection is performed for four locations P included in the partial area 36a in the first detection processing, and height detection is performed for four locations P included in the partial area 36b in the second detection processing. Height detection is performed. Similarly, in the third detection process, the heights of the four places P included in the partial area 36c are detected, and in the fourth detection process, the heights of the four places P included in the partial area 36d are detected. Detection is done. In this manner, the height detection by the detection unit 70 is sequentially performed by changing the partial region 36 for each detection process (that is, for each replacement period of the substrate W).

S35〜S36は、基板ステージ30の基板保持面の平面度を決定して報知する工程である。S35〜S36の工程は、図4に示す処理フローのS26〜S27と同様の工程であるため、その説明を省略する。ここで、S36において、制御部CNTは、基板保持面の異常部分を、基板保持面の部分領域36ごとに特定するとよい。これにより、ユーザは、どの部分領域36について高さ調整を行うべきかを容易に認識することができる。 S35 to S36 are steps of determining and notifying the flatness of the substrate holding surface of the substrate stage 30. Since the steps S35 to S36 are the same as steps S26 to S27 in the processing flow shown in FIG. 4, the description thereof will be omitted. Here, in S36, the control unit CNT may identify the abnormal portion of the substrate holding surface for each partial region 36 of the substrate holding surface. This allows the user to easily recognize which partial area 36 the height should be adjusted.

このように、本実施形態では、基板ステージ30の基板保持面における複数の箇所の各々の高さ検出を、個別に高さを調整可能な部分領域36ごとに行う。これにより、第1実施形態と同様に、スループットの低下を低減しつつ、基板保持面の平面度を計測(決定)することができる。 As described above, in the present embodiment, the height of each of the plurality of positions on the substrate holding surface of the substrate stage 30 is detected for each partial area 36 whose height can be adjusted individually. As a result, similarly to the first embodiment, it is possible to measure (determine) the flatness of the substrate holding surface while reducing the decrease in throughput.

<第3実施形態>
本発明に係る第3実施形態について説明する。本実施形態では、基板保持面の平面度の計測処理に関する他の例について説明する。本実施形態では、基板保持面の平坦度に基づいて異常部分が特定された場合、当該異常部分に対し、より詳細に高さ検出を行う例について説明する。なお、本実施形態は、基板保持面の平面度の計測処理以外は、第1〜第2実施形態を基本的に受け継ぐものであり、露光装置100の構成、および、図2に示す露光装置100の処理フローについては第1実施形態と同様である。
<Third Embodiment>
A third embodiment according to the present invention will be described. In the present embodiment, another example regarding the processing of measuring the flatness of the substrate holding surface will be described. In the present embodiment, an example will be described in which when an abnormal portion is specified based on the flatness of the substrate holding surface, the height of the abnormal portion is detected in more detail. The present embodiment basically inherits the first and second embodiments except for the processing of measuring the flatness of the substrate holding surface. The configuration of the exposure apparatus 100 and the exposure apparatus 100 shown in FIG. The processing flow of is the same as that of the first embodiment.

図8は、本実施形態に係る基板保持面の平面度の計測処理についての処理フローを示す図である。図8に示す処理フローの各工程は、制御部CNTによる制御のもとで行われうる。なお、図8に示す処理フローのS41〜S46は、図4に示す処理フローのS21〜S26と同様の工程であるため、ここでの説明を省略する。 FIG. 8 is a diagram showing a processing flow for measuring the flatness of the substrate holding surface according to the present embodiment. Each step of the processing flow shown in FIG. 8 can be performed under the control of the control unit CNT. Note that S41 to S46 of the processing flow shown in FIG. 8 are the same steps as S21 to S26 of the processing flow shown in FIG. 4, and therefore description thereof will be omitted here.

S47では、制御部CNTは、S46で決定した基板保持面の平面度に基づいて、基板保持面の異常部分があるか否かを判定する。制御部CNTは、上述したように、基板保持面の高さ分布のうち、平均高さに対する差異が許容範囲より大きな高さを有する部分を、異常部分として特定することができる。基板保持面に異常部分がある場合にはS48に進み、異常部分がない場合にはS50に進む。 In S47, the control unit CNT determines whether there is an abnormal portion of the substrate holding surface based on the flatness of the substrate holding surface determined in S46. As described above, the control unit CNT can specify, as the abnormal portion, a portion of the height distribution of the substrate holding surface, which has a height whose difference from the average height is larger than the allowable range. When there is an abnormal portion on the substrate holding surface, the process proceeds to S48, and when there is no abnormal portion, the process proceeds to S50.

S48では、制御部CNTは、基板保持面の異常部分に対し、検出部70による高さ検出を行うべき複数の第2箇所を設定する。複数の第2箇所は、予め設定された複数の箇所(第1箇所)より狭い間隔で設定されうる。図9は、基板Wを保持していない状態の基板ステージ30(基板保持面)を上方から見た図であり、高さ検出を行うべき複数の箇所の配置例を示している。図9(a)は、予め設定された複数の第1箇所P1の配置例を示し、図9(b)は、特定された異常部分35において、S48で新たに設定された複数の第2箇所P2の配置例を示している。 In S48, the control unit CNT sets a plurality of second locations where the detection unit 70 should detect the height of the abnormal portion of the substrate holding surface. The plurality of second locations may be set at a narrower interval than the preset plurality of locations (first locations). FIG. 9 is a view of the substrate stage 30 (substrate holding surface) in a state in which the substrate W is not held, as seen from above, and shows an arrangement example of a plurality of locations where height detection should be performed. FIG. 9A shows an arrangement example of a plurality of preset first places P1, and FIG. 9B shows a plurality of second places newly set in S48 in the identified abnormal portion 35. The example of arrangement of P2 is shown.

S49では、制御部CNTは、S48で設定された複数の第2箇所の各々について検出部70による高さ検出を行い、基板保持面における複数の第1箇所の各々の高さと、複数の第2箇所の各々の高さとに基づいて、基板保持面の平面度を更新(決定)する。このS49の工程は、複数の第2箇所についてS41〜S46と同様の工程を行うことが好ましい。つまり、基板Wの交換期間において一部の第2箇所の高さを検出する検出処理を、期間ごとに検出対象箇所を変えて行うことが好ましい。 In S49, the control unit CNT performs height detection by the detection unit 70 for each of the plurality of second locations set in S48, and the height of each of the plurality of first locations on the substrate holding surface and the plurality of second locations. The flatness of the substrate holding surface is updated (determined) based on the height of each of the points. In this step S49, it is preferable to perform the same steps as steps S41 to S46 for the plurality of second locations. That is, it is preferable to perform the detection process of detecting the heights of some of the second locations during the replacement period of the substrate W by changing the detection target locations for each period.

S50では、制御部CNTは、S49で決定された基板保持面の平面度に関する情報(平面度情報)を報知する。S50の工程は、図4に示す処理フローのS27と同様の工程であるため、その詳細な説明を省略する。 In S50, the control unit CNT notifies the information (flatness information) regarding the flatness of the substrate holding surface determined in S49. The step S50 is the same step as the step S27 of the processing flow shown in FIG. 4, and thus detailed description thereof will be omitted.

上述したように、本実施形態では、基板保持面の平面度に基づいて異常部分が特定された場合、当該異常部分に対して複数の第2箇所を設定し、より詳細に高さ検出を行う。これにより、ユーザは、特定された基板保持面の異常部分について、どのような平面度であるのかを詳細に把握することができるため、基板ステージ30(基板保持面)のメンテナンスを精度よく行うことができる。 As described above, in the present embodiment, when an abnormal portion is specified based on the flatness of the substrate holding surface, a plurality of second locations are set for the abnormal portion, and height detection is performed in more detail. .. This allows the user to grasp in detail what flatness the specified abnormal portion of the substrate holding surface has, and therefore the maintenance of the substrate stage 30 (substrate holding surface) can be performed accurately. You can

<物品の製造方法の実施形態>
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、上記のリソグラフィ装置(露光装置)を用いて基板上にパターンを形成する工程と、かかる工程でパターンを形成された基板を加工する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of Manufacturing Method of Article>
The method for producing an article according to the embodiment of the present invention is suitable for producing an article such as a microdevice such as a semiconductor device or an element having a fine structure, for example. The method of manufacturing an article according to the present embodiment includes a step of forming a pattern on a substrate using the above-mentioned lithographic apparatus (exposure apparatus), and a step of processing the substrate on which the pattern is formed in the step. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The article manufacturing method of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are attached to open the scope of the invention.

10:投影光学系、20:原版ステージ、30:基板ステージ、60:基板搬送部、70:検出部、CNT:制御部(処理部) 10: Projection optical system, 20: Original stage, 30: Substrate stage, 60: Substrate transport section, 70: Detection section, CNT: Control section (processing section)

Claims (12)

基板にパターンを形成するリソグラフィ装置であって、
基板を保持する基板保持面を有するステージと、
前記基板保持面からの基板の搬出と前記基板保持面への基板の搬入とを行う基板搬送部と、
前記基板保持面における複数の箇所の各々の高さを検出する検出部と、
前記基板保持面の平面度を決定する処理部と、
を含み、
前記処理部は、前記基板保持面から基板が搬出されてから前記基板保持面に基板が搬入されるまでの期間において前記複数の箇所のうちの一部の箇所の高さを検出する処理を、前記期間ごとに検出対象箇所を変えて前記検出部に行わせることにより、前記複数の箇所の各々の高さを求め、求めた前記複数の箇所の各々の高さに基づいて前記基板保持面の平面度を決定する、ことを特徴とするリソグラフィ装置。
A lithographic apparatus for forming a pattern on a substrate, comprising:
A stage having a substrate holding surface for holding the substrate;
A substrate transfer unit that carries out the substrate from the substrate holding surface and carries the substrate into the substrate holding surface;
A detection unit that detects the height of each of a plurality of locations on the substrate holding surface,
A processing unit for determining the flatness of the substrate holding surface,
Including
The processing unit performs a process of detecting the height of a part of the plurality of positions in a period from when the substrate is unloaded from the substrate holding surface to when the substrate is loaded into the substrate holding surface, The height of each of the plurality of locations is determined by changing the detection target location for each period and causing the detection unit to determine the height of each of the plurality of locations. A lithographic apparatus, characterized in that it determines a flatness.
前記基板保持面は、高さを個別に調整可能な複数の部分領域に分割されており、
前記複数の部分領域の各々は、前記検出部に高さを検出させるべき少なくとも1つの箇所を含み、
前記処理部は、前記期間ごとに、1つの部分領域に含まれる前記少なくとも1つの箇所の高さを前記検出部に検出させる、ことを特徴とする請求項1に記載のリソグラフィ装置。
The substrate holding surface is divided into a plurality of partial regions whose height can be adjusted individually,
Each of the plurality of partial regions includes at least one location where the detection unit should detect the height,
The lithographic apparatus according to claim 1, wherein the processing unit causes the detection unit to detect the height of the at least one location included in one partial region for each period.
前記処理部は、前記期間ごとに、前記検出部に高さを検出させるべき部分領域を変更する、ことを特徴とする請求項2に記載のリソグラフィ装置。 The lithographic apparatus according to claim 2, wherein the processing unit changes, for each of the periods, a partial region in which the height is to be detected by the detection unit. 前記処理部は、決定した前記基板保持面の平面度に基づいて、次に前記基板保持面の平面度を決定する際に高さを検出すべき前記複数の箇所の配置を設定する、ことを特徴とする請求項1乃至3のいずれか1項に記載のリソグラフィ装置。 The processing unit, based on the determined flatness of the substrate holding surface, sets the arrangement of the plurality of locations whose heights should be detected when determining the flatness of the substrate holding surface next. A lithographic apparatus according to any one of claims 1 to 3, characterized in that 前記処理部は、決定した前記基板保持面の平面度に基づいて前記基板保持面の異常部分を特定し、当該異常部分において前記検出部に高さを検出させるべき箇所の数を増加させるように、次に前記基板保持面の平面度を決定する際に高さを検出すべき前記複数の箇所の配置を設定する、ことを特徴とする請求項4に記載のリソグラフィ装置。 The processing unit identifies an abnormal portion of the substrate holding surface based on the determined flatness of the substrate holding surface, and increases the number of places where the detection unit should detect the height in the abnormal portion. The lithographic apparatus according to claim 4, further comprising: setting the arrangement of the plurality of locations whose heights should be detected when determining the flatness of the substrate holding surface. 前記処理部は、決定した前記基板保持面の平面度に基づいて前記基板保持面の異常部分を特定し、前記基板保持面のうち当該異常部分以外の部分において前記検出部に高さを検出させるべき箇所の数を減少させるように、次に前記基板保持面の平面度を決定する際に高さを検出すべき前記複数の箇所の配置を設定する、ことを特徴とする請求項4又は5に記載のリソグラフィ装置。 The processing unit identifies an abnormal portion of the substrate holding surface based on the determined flatness of the substrate holding surface, and causes the detection unit to detect a height in a portion other than the abnormal portion of the substrate holding surface. 6. The arrangement of the plurality of places where heights are to be detected when determining the flatness of the substrate holding surface next is set so as to reduce the number of power places. A lithographic apparatus according to claim 1. 前記処理部は、決定した前記基板保持面の平面度に基づいて前記基板保持面の異常部分を特定し、当該異常部分に対して、前記複数の箇所より小さい間隔を有する複数の第2箇所を設定し、前記期間において前記複数の第2箇所の各々の高さを前記検出部に検出させた結果に基づいて、前記基板保持面の平面度を更新する、ことを特徴とする請求項1乃至6のうちいずれか1項に記載のリソグラフィ装置。 The processing unit identifies an abnormal portion of the substrate holding surface based on the determined flatness of the substrate holding surface, and identifies a plurality of second locations having a smaller space than the plurality of locations with respect to the abnormal portion. The flatness of the substrate holding surface is updated based on a result of setting and detecting the height of each of the plurality of second locations by the detection unit during the period. 6. The lithographic apparatus according to any one of 6, 前記処理部は、前記期間において一部の第2箇所の高さを検出する処理を、前記期間ごとに検出対象箇所を変えて前記検出部に行わせる、ことを特徴とする請求項7に記載のリソグラフィ装置。 The processing unit causes the detection unit to perform a process of detecting the height of a part of the second places in the period by changing the detection target place for each period. Lithographic apparatus. 前記処理部は、決定した前記基板保持面の平面度を報知する、ことを特徴とする請求項1乃至8のいずれか1項に記載のリソグラフィ装置。 The lithographic apparatus according to claim 1, wherein the processing unit notifies the determined flatness of the substrate holding surface. 前記処理部は、前記基板保持面の平面度に基づいて前記基板保持面の異常部分を特定し、前記基板保持面の平面度を、当該異常部分と他の部分とを識別可能に報知する、ことを特徴とする請求項9に記載のリソグラフィ装置。 The processing unit identifies an abnormal portion of the substrate holding surface based on the flatness of the substrate holding surface, and notifies the flatness of the substrate holding surface such that the abnormal portion and other portions can be distinguished. A lithographic apparatus according to claim 9, characterized in that 基板を保持するステージにおける基板保持面の平面度を計測する計測方法であって、
前記基板保持面から基板を搬出する搬出工程と、
前記基板保持面に基板を搬入する搬入工程と、
前記基板保持面の平面度を計測する計測工程と、
を含み、
前記計測工程は、前記搬出工程から前記搬入工程までの期間において、前記基板保持面における複数の箇所のうち一部の箇所の高さを検出する検出工程を含み、前記期間ごとに検出対象箇所を変えて前記検出工程を行うことで得られた前記複数の箇所の各々の高さに基づいて、前記基板保持面の平面度を決定する、ことを特徴とする計測方法。
A measuring method for measuring the flatness of a substrate holding surface of a stage for holding a substrate,
An unloading step of unloading the substrate from the substrate holding surface,
A carrying-in step of carrying in the substrate onto the substrate holding surface,
A measurement step of measuring the flatness of the substrate holding surface,
Including
The measurement step includes a detection step of detecting a height of a part of a plurality of locations on the substrate holding surface in a period from the unloading step to the loading step, and a detection target location for each period. The measuring method is characterized in that the flatness of the substrate holding surface is determined based on the height of each of the plurality of locations obtained by performing the detecting step instead.
請求項1乃至10のいずれか1項に記載のリソグラフィ装置を用いて基板上にパターンを形成する工程と、
前記工程でパターンが形成された前記基板を加工する工程と、を含み、
加工された前記基板から物品を製造することを特徴とする物品の製造方法。
Forming a pattern on a substrate using the lithographic apparatus according to claim 1.
A step of processing the substrate on which the pattern is formed in the step,
An article manufacturing method comprising: manufacturing an article from the processed substrate.
JP2019006211A 2019-01-17 2019-01-17 Lithographic apparatus, metrology methods, and methods of manufacturing articles Active JP7212528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006211A JP7212528B2 (en) 2019-01-17 2019-01-17 Lithographic apparatus, metrology methods, and methods of manufacturing articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006211A JP7212528B2 (en) 2019-01-17 2019-01-17 Lithographic apparatus, metrology methods, and methods of manufacturing articles

Publications (2)

Publication Number Publication Date
JP2020115172A true JP2020115172A (en) 2020-07-30
JP7212528B2 JP7212528B2 (en) 2023-01-25

Family

ID=71778512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006211A Active JP7212528B2 (en) 2019-01-17 2019-01-17 Lithographic apparatus, metrology methods, and methods of manufacturing articles

Country Status (1)

Country Link
JP (1) JP7212528B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313241A (en) * 2000-04-28 2001-11-09 Canon Inc Aligner and aligning method
WO2005093792A1 (en) * 2004-03-25 2005-10-06 Nikon Corporation Exposure equipment, exposure method and device manufacturing method
JP2006179906A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithography device and device manufacturing method
JP2011103407A (en) * 2009-11-11 2011-05-26 Canon Inc Aligner and device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313241A (en) * 2000-04-28 2001-11-09 Canon Inc Aligner and aligning method
WO2005093792A1 (en) * 2004-03-25 2005-10-06 Nikon Corporation Exposure equipment, exposure method and device manufacturing method
JP2006179906A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithography device and device manufacturing method
JP2011103407A (en) * 2009-11-11 2011-05-26 Canon Inc Aligner and device manufacturing method

Also Published As

Publication number Publication date
JP7212528B2 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
JP6620208B2 (en) Exposure equipment
JP2019020729A (en) Measurement device and substrate stage, handler system
JP2015032800A (en) Lithographic apparatus and article manufacturing method
JP2007115784A (en) Exposure system, exposure method, and device manufacturing factory
JP7212528B2 (en) Lithographic apparatus, metrology methods, and methods of manufacturing articles
JP2021005045A (en) Stage device, control method, substrate treatment apparatus and manufacturing method of articles
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JP2006148013A (en) Positioning method and exposing method
US20230341782A1 (en) Lithography information processing apparatus, lithography system, storage medium, lithography information processing method, and article manufacturing method
JP2013205678A (en) Proximity exposure device, substrate positioning method of proximity exposure device, and manufacturing method of display panel substrate
WO2016208160A1 (en) Imprint apparatus, imprint method, and method of manufacturing article
JP2015079812A (en) Substrate holding device and exposure device
JP6298345B2 (en) Measuring method, exposure apparatus, and article manufacturing method
JP2022124335A (en) Lithography device and article production method
TW201511072A (en) Lithography apparatus and method of manufacturing article
JP5441800B2 (en) Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, display panel substrate manufacturing method, and minute angle detection method using optical displacement meter
JP2004172624A (en) Method for adjusting position of substrate in apparatus which performs exposure
JP2018049076A (en) Stage device, lithography device, and method of manufacturing article
JP2012103584A (en) Proximity exposure device, substrate positioning method for proximity exposure device, and manufacturing method for display panel substrate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R151 Written notification of patent or utility model registration

Ref document number: 7212528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151