WO2005093792A1 - Exposure equipment, exposure method and device manufacturing method - Google Patents

Exposure equipment, exposure method and device manufacturing method Download PDF

Info

Publication number
WO2005093792A1
WO2005093792A1 PCT/JP2005/005473 JP2005005473W WO2005093792A1 WO 2005093792 A1 WO2005093792 A1 WO 2005093792A1 JP 2005005473 W JP2005005473 W JP 2005005473W WO 2005093792 A1 WO2005093792 A1 WO 2005093792A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
exposure apparatus
plate
exposure
substrate
Prior art date
Application number
PCT/JP2005/005473
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US10/594,061 priority Critical patent/US20070201010A1/en
Priority to CN2005800146572A priority patent/CN1950929B/en
Priority to KR1020067022068A priority patent/KR101181683B1/en
Priority to EP05721450A priority patent/EP1737024A4/en
Priority to JP2006511515A priority patent/JP4671051B2/en
Publication of WO2005093792A1 publication Critical patent/WO2005093792A1/en
Priority to US12/875,874 priority patent/US20110001943A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method, and more particularly, to an exposure apparatus used in a lithographic process when manufacturing an electronic device such as a semiconductor element (integrated circuit) and a liquid crystal display element.
  • the present invention relates to an apparatus, an exposure method, and a device manufacturing method using the exposure apparatus.
  • a resist photosensitive agent
  • a mask or reticle
  • a projection optical system Is transferred to each of a plurality of shot areas on a photosensitive object such as a wafer or a glass plate (hereinafter, referred to as a “wafer”) coated with a).
  • a loose exposure stepper and a step-and-scan projection exposure apparatus are mainly used.
  • an exposure apparatus using an immersion method As a method of substantially shortening the exposure wavelength and increasing (widening) the depth of focus compared to air, an exposure apparatus using an immersion method has recently attracted attention. I have.
  • an exposure apparatus using the liquid immersion method there is known an exposure apparatus that performs exposure while a space between a lower surface of a projection optical system and a wafer surface is locally filled with a liquid such as water or an organic solvent (for example, See Patent Document 1 below).
  • n is the refractive index of the liquid, usually about 1.2.1.6
  • the depth of focus is increased n times compared to the projection optical system obtained without using the immersion method (assuming that such a projection optical system can be manufactured). It can be enlarged n times.
  • a stage which can be driven in a two-dimensional plane independently of the wafer stage (substrate stage) and is provided with a measuring instrument used for measurement is provided.
  • An exposure apparatus has also been proposed (for example, see Patent Documents 2 and 3).
  • this measurement stage is adopted, only the minimum necessary components (for example, a wafer holder, etc.) required for exposing the wafer need be provided on the wafer stage. Can be achieved. This is expected to reduce the size of the drive mechanism (motor) that drives the wafer stage, reduce the amount of heat generated by the motor, and minimize the thermal deformation of the wafer stage and a decrease in exposure accuracy. .
  • Patent Document 1 International Publication No. 99Z49504 pamphlet
  • Patent Document 2 JP-A-11-135400
  • Patent Document 3 Japanese Patent Application Laid-Open No. 3-212812 Disclosure of the invention
  • the present invention has been made under the above-described circumstances.
  • the present invention is an exposure apparatus that exposes a substrate via a projection optical system.
  • At least a part including the plate is exchangeable among the measurement units having the plate to which the liquid is supplied and performing the measurement related to the exposure through the projection optical system and the liquid. I have. For this reason, by exchanging at least a part including the plate before the plate surface is deteriorated by contact with the liquid, it is possible to always perform high-accuracy exposure measurement and maintain high-accuracy exposure. It becomes possible.
  • an exposure apparatus for exposing a substrate via a projection optical system, the substrate stage being capable of mounting and moving the substrate; at least one end surface having a mirror surface
  • a measurement section having a processed plate, and performing measurement related to the exposure via the projection optical system; at least a part including the plate constituting the measurement section is configured to be replaceable.
  • the plate can be replaced before the plate surface is deteriorated by exposure light or the like during measurement.
  • the measurement relating to the exposure can be performed with high accuracy at all times, and it is possible to maintain the exposure with high accuracy.
  • at least one end face of the plate is mirror-finished, when replacing at least a part of the measuring section including the plate with a new one, the replaced part is roughly roughened. Even if the position is determined, the position of the plate can be accurately measured through the mirror-finished end surface of the plate, for example, using an interferometer or the like. Therefore, even if a part of the measuring unit is roughly positioned during replacement, it is possible to accurately position the measuring unit at a desired position during measurement. Increased downtime due to replacement It is possible to effectively prevent a decrease in device operation efficiency.
  • an exposure apparatus for exposing a substrate via a projection optical system comprising: a substrate stage on which the substrate is placed and movable;
  • a third exposure apparatus comprising: a measurement unit that performs measurement related to the exposure via the projection optical system; and a detection device that detects a time at which the plate is replaced.
  • a time immediately before the measurement accuracy of the measurement unit starts to decrease is determined in advance by an experiment or the like, and this time is set in advance as a plate replacement time detected by the detection device, and the detection device is set in advance. If the plate is replaced when the replacement time is detected, the plate can be replaced at an optimal time before the measurement accuracy of the measuring unit is reduced. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the measurement unit with high accuracy, and to minimize the frequency of plate replacement. Therefore, it is possible to maintain the exposure accuracy with high accuracy over a long period of time, and effectively prevent a decrease in the operation efficiency of the apparatus due to an increase in downtime due to plate replacement.
  • an exposure method for exposing a substrate wherein at least one of the measurement units including the plate is included in a measurement unit that performs measurement related to the exposure via a plate to which a liquid is supplied.
  • a first exposing method comprising: exchanging a unit; and performing a measurement related to the exposure using the measuring unit after the exchanging, and exposing the substrate by reflecting the measurement result.
  • an exposure method for exposing a substrate wherein at least one end face of the measurement unit that performs measurement related to the exposure is processed through a mirror-finished plate. Exchanging at least a part of the plate; measuring the position of the plate after the exchange via the end face, and performing the measurement using the measuring unit; reflecting the measurement result And a step of exposing the substrate.
  • a step of exposing the substrate for example, before the plate surface is deteriorated due to exposure light or the like at the time of measurement, at least a part including the plate is replaced, and the position of the plate is measured via the end face.
  • the exposure-related measurement can be performed with high accuracy, and when replacing at least a part of the measurement unit including the plate with a new one, Even if the part is roughly positioned, the position of the plate can be accurately measured through the mirror-finished end surface of the plate. Therefore, even if a part of the measuring unit is roughly positioned at the time of replacement, the measuring unit can be accurately positioned at a desired position at the time of measurement. In addition, by reflecting the measurement result, highly accurate exposure can be performed.
  • an exposure method for exposing a substrate comprising: performing a measurement using a measurement unit that performs measurement related to the exposure via a plate;
  • a third exposing method comprising: detecting a timing of exchanging the plate and exchanging the plate; and exposing the substrate by reflecting the measurement result.
  • the time immediately before the measurement accuracy of the measurement unit starts to decrease is determined in advance by an experiment or the like, and this time is set in advance as the plate replacement time. Then, by replacing the plate when the replacement time is detected, the plate can be replaced at an optimal time before the measurement accuracy of the measuring unit is reduced. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the measurement unit with high accuracy, and to minimize the frequency of plate replacement. In addition, by reflecting the measurement result, highly accurate exposure can be performed.
  • the substrate is exposed using the first to third exposure apparatuses of the present invention to form a device pattern on the substrate, thereby producing a highly integrated microdevice. It is possible to improve the performance. Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using any of the first to third exposure apparatuses of the present invention.
  • FIG. 1 is a schematic view showing an exposure apparatus according to a first embodiment.
  • FIG. 2 is a perspective view showing a stage device.
  • FIG. 3 (A) is a perspective view showing a measurement stage.
  • FIG. 3 (B) is a perspective view showing a state in which a measurement stage force is also removed from a measurement stage force.
  • FIG. 4 is a longitudinal sectional view of a measurement stage.
  • FIG. 5 is a longitudinal sectional view of a self-weight canceller.
  • FIG. 6 is a schematic diagram for explaining the operation of the self-weight canceller.
  • FIG. 7 is a block diagram showing a main configuration of a control system of the exposure apparatus of the first embodiment.
  • FIG. 8 (A) is a plan view (part 1) for explaining the parallel processing operation of the first embodiment.
  • FIG. 8 (B) is a plan view (part 2) for explaining the parallel processing operation of the first embodiment.
  • FIG. 9 (A) is a plan view (part 3) for explaining the parallel processing operation of the first embodiment.
  • FIG. 9 (B) is a plan view (part 4) for explaining the parallel processing operation of the first embodiment.
  • FIG. 10 is a plan view (part 3) for explaining the parallel processing operation of the first embodiment.
  • FIG. 11 is a perspective view showing a measurement stage and a loading / unloading mechanism according to a second embodiment.
  • FIG. 12 is a perspective view showing a state in which a plate is also carried out with respect to a measurement stage force.
  • FIG. 1 shows a schematic configuration of an exposure apparatus 100 according to the first embodiment.
  • the exposure apparatus 100 is a step-and-scan projection exposure apparatus, that is, a so-called scanning Jung 'stepper (also called a scanner).
  • the exposure apparatus 100 includes a stage having an illumination system 10, a reticle stage RST holding a reticle R as a mask, a projection unit PU, a wafer stage WST as a substrate stage, and a measurement stage MST forming a measurement unit.
  • An apparatus 50 and a control system thereof are provided.
  • the wafer W as a substrate is now mounted on the wafer stage WST!
  • the illumination system 10 illuminates a slit-shaped illumination area on a reticle R defined by a reticle blind (not shown) with illumination light (exposure light) IL at a substantially uniform illuminance.
  • illumination light exposure light
  • an ArF excimer laser beam (wavelength 193 nm) is used as an example of the illumination light IL.
  • reticle stage RST On reticle stage RST, reticle R on which a circuit pattern or the like is formed on its pattern surface (the lower surface in FIG. 1) is fixed, for example, by vacuum suction.
  • the reticle stage RST is driven by a reticle stage drive unit 11 including a linear motor or the like (not shown in FIG. 1; see FIG. 7).
  • a reticle stage drive unit 11 including a linear motor or the like (not shown in FIG. 1; see FIG. 7).
  • it In addition to being capable of minute drive in an XY plane perpendicular to the plane, it can be driven at a specified scan direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1).
  • the position (including rotation about the Z axis) of the reticle stage RST in the stage movement plane is adjusted by a movable mirror 15 (actually, Y-axis) by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 116.
  • reticle interferometer a reticle laser interferometer
  • a moving Y mirror having a reflecting surface perpendicular to the axial direction and an X moving mirror having a reflecting surface perpendicular to the X-axis direction are provided.
  • the measured value of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 1, see FIG. 7), and main controller 20 controls reticle stage RST based on the measured value of reticle interferometer 116.
  • a pair of reticle alignment marks on the reticle R via the projection optical system PL and a pair of reference marks corresponding to these on the measurement stage MST (hereinafter, referred to as a "first reference mark").
  • a pair of reticle alignment detection systems RAa and RAb which also have a TTR (Through The Reticle) alignment system using light of an exposure wavelength for simultaneously observing You.
  • TTR Through The Reticle
  • the projection unit PU is arranged below the reticle stage RST in FIG.
  • the projection unit PU includes a lens barrel 40 and a projection optical system PL composed of a plurality of optical element lenses held in a predetermined positional relationship within the lens barrel 40.
  • a projection optical system PL for example, a plurality of lenses (lens elements) having a common optical axis AX in the Z-axis direction Refractive optics that also provide power are used.
  • the projection optical system PL has a predetermined projection magnification (for example, 1Z4 times or 1Z5 times), for example, on both sides telecentric.
  • the illumination light IL that has passed through the reticle R causes the illumination area IL to pass through the projection optical system PL (projection unit PU).
  • a reduced image of the circuit pattern of reticle R (a reduced image of a part of the circuit pattern) is formed on a wafer having a surface coated with a resist (photosensitive agent).
  • the aperture on the reticle side increases as the numerical aperture NA substantially increases. For this reason, it is difficult for the refractive optical system including only the lens to satisfy the Petzval condition, and the projection optical system tends to be large.
  • a catadioptric system including a mirror and a lens may be used.
  • a lens as an optical element closest to the image plane (side of the wafer W) constituting the projection optical system PL.
  • a liquid supply nozzle 51A and a liquid recovery nozzle 51B that constitute the liquid immersion device 132 are provided.
  • the liquid supply nozzle 51A is connected to the other end of a supply pipe (not shown) connected at one end to a liquid supply device 288 (not shown in Fig. 1, see Fig. 7).
  • the collection nozzle 51B is connected to the other end of a collection pipe (not shown) whose one end is connected to a liquid collection device 292 (not shown in FIG. 1, see FIG. 7).
  • the liquid supply device 288 includes a liquid tank, a pressurizing pump, a temperature control device, a valve for controlling the stop of the supply of the liquid to the supply pipe, and the like.
  • a knob for example, it is possible to adjust the flow rate as well as the supply of liquid. It is desirable to use a flow control valve.
  • the temperature controller adjusts the temperature of the liquid in the liquid tank to a temperature substantially equal to the temperature in a chamber (not shown) in which the exposure apparatus main body is housed.
  • the liquid recovery device 292 is configured to include a liquid tank and a suction pump, a valve for controlling the recovery / stop of the liquid via the recovery pipe, and the like. As the knob, it is desirable to use a flow control valve corresponding to the valve on the liquid supply device 288 described above.
  • ultrapure water (hereinafter, simply referred to as "water” unless otherwise required) through which ArF excimer laser light (light having a wavelength of 193 nm) is transmitted is used.
  • Ultrapure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist or optical lenses on the wafer.
  • the refractive index n of water with respect to ArF excimer laser light is approximately 1.44.
  • the liquid supply device 288 and the liquid recovery device 292 each include a controller, and each controller is controlled by the main controller 20 (see FIG. 7).
  • the controller of the liquid supply device 288 opens the valve connected to the supply pipe at a predetermined opening in accordance with an instruction from the main control device 20, and connects the front end lens 91 and the wafer W via the liquid supply nozzle 51A. Supply water.
  • the controller of the liquid recovery device 292 opens the valve connected to the recovery pipe at a predetermined opening in accordance with an instruction from the main control device 20, and connects the tip lens 91 and the wafer via the liquid recovery nozzle 51B.
  • the force between W and the liquid is collected inside the liquid recovery unit 292 (liquid tank).
  • main controller 20 constantly determines the amount of water supplied by liquid supply nozzle 51A between tip lens 91 and wafer W, and the amount of water recovered through liquid recovery nozzle 51B.
  • a command is given to the controller of the liquid supply device 288 and the controller of the liquid recovery device 292 so as to be equal. Therefore, a certain amount of water Lq (see FIG. 1) is held between the tip lens 91 and the wafer W. In this case, the water Lq held between the tip lens 91 and the wafer W is constantly replaced.
  • the liquid immersion device 132 of this embodiment includes the liquid supply device 288, the liquid recovery device 292, the supply pipe, the recovery pipe, the liquid supply nozzle 51A, and the liquid recovery nozzle.
  • This is a local liquid immersion apparatus configured to include chisel 5 IB and the like.
  • the space between the measurement table MTB and the tip lens 91 can be filled with water in the same manner as described above.
  • a force provided with one liquid supply nozzle and one liquid recovery nozzle is not limited to this.
  • a configuration having many nozzles may be employed. The point is that any configuration can be used as long as the liquid can be supplied between the lowermost optical member (tip lens) 91 and the wafer W constituting the projection optical system PL. .
  • main controller 20 is configured to be able to instantaneously detect the occurrence of water leakage based on the output of this water leakage sensor.
  • the stage device 50 includes a frame caster FC, a base plate 12 provided on the frame caster FC, a wafer stage WST and a measurement stage MST disposed above the upper surface of the base plate 12.
  • An interferometer system 118 as a position measuring device including interferometers 16 and 18 for measuring the positions of these stages WST and MST, and a stage drive 124 (see Fig. 7) for driving the stages WST and MST ).
  • the frame caster FC has a Y-axis direction as a longitudinal direction near one end in the X direction and an end near the other side. It is composed of a substantially flat member in which protruding projections FCa and FCb are formed in a body.
  • the base board 12 also serves as a plate-like member, which is also referred to as a surface board, and is arranged on an area between the above-mentioned convex portions FCa and FCb of the frame caster FC.
  • the upper surface of the base plate 12 has a very high degree of flatness and serves as a guide surface when the wafer stage WST and the measurement stage MST are moved.
  • the wafer stage WST is mounted on a wafer stage main body 28 disposed on the base board 12 via a tilt driving mechanism (not shown) on the wafer stage main body 28.
  • Wafer table WTB Wafer table WTB.
  • the tilt drive mechanism is
  • the wafer stage WTB is configured to include three actuators (for example, a voice coil motor or an electromagnet) that support the wafer table WTB at three points on the wafer stage body 28, and the wafer table WTB is moved in the Z-axis direction and the 0x direction. (Rotation direction around X axis), 0 Micro drive in three directions of freedom of y direction (rotation direction around Y axis).
  • the wafer stage main body 28 is formed of a hollow member having a rectangular cross section and extending in the X-axis direction.
  • a plurality of, for example, four, not shown, gas static pressure bearings, for example, air bearings are provided, and through these air bearings, the wafer stage WST is provided above the above-mentioned guide surface by a number. It is levitated and supported without contact through a clearance of about ⁇ m.
  • a Y-axis stator 86 extending in the Y-axis direction is arranged above the convex portion FCb of the frame caster FC.
  • These Y-axis stators 86 and 87 are supported by floating air bearings (not shown) provided on the lower surfaces thereof, for example, air bearings, through predetermined clearances with respect to the upper surfaces of the convex portions FCa and FCb. Have been.
  • the Y-axis stators 86 and 87 are configured as magnetic pole units having a plurality of permanent magnet group forces.
  • a magnetic pole unit 90 having a permanent magnet group as a mover in the X-axis direction is provided inside the wafer stage main body 28 .
  • An X-axis stator 80 extending in the X-axis direction is inserted into the internal space of the magnetic pole unit 90.
  • the X-axis stator 80 is constituted by an armature unit having a plurality of armature coils arranged at predetermined intervals along the X-axis direction.
  • a moving magnet type X-axis linear motor that drives the wafer stage WST in the X-axis direction is configured by the magnetic pole unit 90 and the X-axis stator 80 including an armature unit.
  • the X-axis linear motor will be referred to as the X-axis linear motor 80 using the same reference numerals as those of the stator (stator for the X-axis) 80 as appropriate.
  • a moving coil type linear motor may be used instead of the moving magnet type linear motor.
  • An armature unit including a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided at one end and the other side in the longitudinal direction of the X-axis stator 80, for example. Consisting of Mover 82, 83 force is fixed respectively. Each of these movers 82 and 83 is inserted into the above-mentioned stator 86 and 87 for the Y-axis, respectively. That is, in the present embodiment, a moving coil type Y-axis linear motor is configured by the movers 82 and 83 formed of the armature unit and the Y-axis stators 86 and 87 formed of the magnetic pole unit.
  • the two Y-axis linear motors will be referred to as the Y-axis linear motor 82 and the Y-axis linear motor 83, respectively, using the same reference numerals as the movers 82 and 83, respectively.
  • moving magnet type linear motors may be used as the Y-axis linear motors 82 and 83.
  • the wafer stage WST is driven in the X-axis direction by the X-axis linear motor 80, and is driven in the Y-axis direction integrally with the X-axis linear motor 80 by the pair of Y-axis linear motors 82 and 83. You.
  • the wafer stage WST is also driven to rotate in the z-direction by slightly varying the driving force in the Y-axis direction generated by the Y-axis linear motors 82 and 83.
  • a wafer holder 70 for holding the wafer W is provided on the wafer table WTB.
  • the wafer holder 70 includes a plate-shaped main body, and an auxiliary plate fixed to the upper surface of the main body and having a circular opening formed at the center thereof having a diameter larger than the diameter of the wafer W by about 2 mm.
  • a large number of pins are arranged in a region of the main body inside the circular opening of the auxiliary plate, and the wafer W is vacuum-sucked in a state where the wafer W is supported by the large number of pins. In this case, when the wafer W is vacuum-sucked, the height of the surface of the wafer W and the surface of the auxiliary plate are almost the same.
  • an X movable mirror 17X having a reflecting surface orthogonal to the X axis at one end (one X side end) in the X axis direction is provided on the upper surface of wafer table WTB in the Y axis direction.
  • One end (+ Y side end) in the Y-axis direction is provided, and a Y movable mirror 17Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction.
  • each of the reflecting surfaces of these movable mirrors 17X and 17Y has an interference from an X-axis interferometer 46 and a Y-axis interferometer 18, which constitute an interferometer system 118 (see FIG. 7) described later.
  • a measuring beam (length measuring beam) is projected, and each of the interferometers 46 and 18 receives the respective reflected light, so that the reference position of each reflecting surface (generally, the side of the projection unit PU and the Opacity alignment)
  • a fixed mirror is placed on the side of the system ALG (see Fig. 7 and Fig. 8 (A) etc.), and the displacement in the measurement direction from the reference mirror is measured.
  • Y-axis interferometer 18 Has a length measuring axis parallel to the Y axis connecting the projection center (optical axis AX) of the projection optical system PL and the detection center of the alignment system ALG, and the X axis interferometer 46 is a Y axis interferometer 18. It has a length measurement axis that vertically intersects with the length measurement axis at the projection center of the projection optical system PL (see Fig. 8 (A), etc.).
  • the Y-axis interferometer 18 is a multi-axis interferometer having at least three optical axes, and the output value of each optical axis can be measured independently.
  • the output value (measurement value) of the Y-axis interferometer 18 is supplied to a main controller 20 as shown in FIG. 7, and the main controller 20 controls the wafer based on the output value from the Y-axis interferometer 18. It is possible to measure not only the position of the table WTB in the Y-axis direction (Y position), but also the rotation amount around the X-axis (pitching amount) and the rotation amount around the Z-axis (jowing amount).
  • the X-axis interferometer 46 is a multi-axis interferometer having at least two optical axes, so that the output value of each optical axis can be measured independently.
  • the output value (measured value) of the X-axis interferometer 46 is supplied to the main controller 20.
  • the main controller 20 determines the position of the wafer table WTB in the X-axis direction based on the output value from the X-axis interferometer 46. It is now possible to measure not only the (X position), but also the amount of rotation (rolling amount) around the Y axis!
  • movable mirrors 17X and 17Y are provided on wafer table WTB. These are typically shown as movable mirror 17 in FIG. Incidentally, for example, the end surface of the wafer table WTB may be mirror-finished to form a reflection surface (corresponding to the reflection surfaces of the moving mirrors 17X and 17Y described above).
  • the measurement stage MST is composed of a combination of a plurality of members such as a Y stage 81 whose longitudinal direction is in the X-axis direction.
  • a plurality of hydrostatic bearings provided on the lower surface of the base member 12, for example, floating above and below the upper surface (guide surface) of the base board 12 via an air bearing through a clearance of several zm without contact. Being done.
  • the measurement stage MST has a rectangular plate-shaped measurement stage main body 81c elongated in the X-axis direction and an X-axis direction on the upper surface of the measurement stage main body 81c.
  • a Y stage 81 having a pair of protrusions 81a and 8 lb fixed to one side and the other side of the Y stage 81; a leveling table 52 disposed above the upper surface of the measurement stage body 81c;
  • a measurement table MTB that constitutes at least a part of the measurement unit provided on the ring table 52 is provided.
  • a plurality of armature coils arranged at predetermined intervals along the Y-axis direction are built in the end surfaces on one side and the other side in the X-axis direction of the measurement stage main body 81c constituting the Y stage 81.
  • the movers 84 and 85 each consisting of an armature unit, are fixed. These movers 84 and 85 are inserted into the Y-axis stators 86 and 87 from the inside, respectively. That is, in the present embodiment, two moving coil type Y-motors are constituted by the movers 84 and 85 formed of the armature units and the Y-axis stators 86 and 87 formed of the magnetic pole units. .
  • each of the two Y-axis linear motors will be referred to as the Y-axis linear motor 84 and the Y-axis linear motor 85, as appropriate, using the same reference numerals as the respective movers 84 and 85. I do.
  • the overall force of the measurement stage MST is driven in the Y-axis direction by these Y-axis linear motors 84 and 85.
  • the Y-axis linear motors 84 and 85 may be moving magnet type linear motors.
  • the above-described plurality of static gas pressure bearings are provided on the bottom surface of the measurement stage main body 81c.
  • the above-mentioned pair of protrusions 81a and 81b are fixed to each other near one end in the X-axis direction and the other end in the X-axis direction on the upper surface of the measurement stage body 81c.
  • stators 61 and 63 extending in the X-axis direction are arranged at predetermined intervals in the Z-axis direction (up and down). Are fixed to the protrusions 81a and 81b, respectively.
  • a mover of an X voice coil motor 54a is provided on the + X side end surface of the leveling table 52, and a stator of the X voice coil motor 54a is fixed to an upper surface of the measurement stage main body 81c. Have been. Further, on the + Y end surface of the leveling table 52, movers of Y voice coil motors 54b and 54c are provided, respectively. The stators of these Y voice coil motors 54b and 54c are provided on the upper surface of the measurement stage body 81c. It is fixed to.
  • the X voice coil motor 54a is composed of, for example, a mover composed of a magnetic pole unit and a stator composed of an armature unit, and generates a driving force in the X-axis direction by electromagnetic interaction therebetween.
  • the Y voice coil motors 54b and 54c are similarly configured and generate a driving force in the Y-axis direction. That is, the leveling table 52 is driven in the X-axis direction with respect to the Y stage 81 by the X voice coil motor 54a, and is driven in the Y-axis direction with respect to the Y stage 81 by the Y voice coil motors 54b and 54c. Is done. Also, voice coil motors 54b and 54c are generated. By varying the driving force, the leveling table 52 can be driven relative to the Y stage 81 in the direction of rotation around the Z axis ( ⁇ direction).
  • the leveling table 52 has a plate-like casing with an open bottom surface, as schematically shown in a partial cross section in Fig. 4, and has a Z-axis inside.
  • Three Z voice coil motors 56 that generate directional driving force (however, Z voice coil motors 56 on the far side of the drawing are not shown) 1S are arranged.
  • the stator of each Z voice coil motor 56 is composed of an armature unit, and is fixed to the upper surface of measurement stage main body 81c.
  • the mover of each Z voice coil motor 56 is formed of a magnetic pole unit, and is fixed to the leveling table 52.
  • These three Z voice coil motors 56 generate a driving force in the Z-axis direction by electromagnetic interaction between the respective stators and movers.
  • the leveling table 52 is driven in the Z-axis direction by the three Z voice coil motors 56, and is rotated around the X-axis (0 X direction) and around the Y-axis (0 y direction). ⁇ They are also driven minutely.
  • the leveling table 52 has six degrees of freedom directions (X, ⁇ , Z, ⁇ ⁇ , ⁇ ⁇ ⁇ ) by the above-described X voice coil motor 54a, Y voice coil motors 54b, 54c, and three Z voice coil motors 56. ⁇ ⁇ , 0 ⁇ ) and can be micro-driven in a non-contact manner.
  • a self-weight canceling mechanism 58 for canceling the self-weight of the leveling table 52 is also arranged inside the leveling table 52.
  • the self-weight canceling mechanism 58 compensates for the self-weight of the measurement table ⁇ .
  • the self-weight canceling mechanism 58 is disposed near the position of the approximate center of gravity of the triangle constituted by the three voice coil motors 56 described above.
  • the self-weight canceller 58 is a cylindrical cylinder having an open lower end (end on one side) and a closed upper end (+ ⁇ end). A portion 170A and a piston portion 170B inserted into the cylinder portion 17OA through the opening and movable relative to the cylinder portion 170A.
  • annular first annular convex portion 172a is formed near the lower end portion (-Z side end portion) of the cylinder portion 170A over the entire circumference of the inner peripheral surface thereof. Further, a second annular convex portion 172b is formed at a predetermined interval below (-Z side) the first annular convex portion 172a. And Siri The inner bottom surface of the annular concave groove 172d having a predetermined depth formed between the first annular convex portion 172a and the second annular convex portion 172b of the cylinder portion 170A communicates the internal space of the cylinder portion 170A with the outside. Through holes 172c are formed at a plurality of locations at predetermined intervals.
  • the piston portion 170B is inserted into the cylinder portion 170A with a predetermined clearance formed between the outer peripheral surface and the first and second annular convex portions 172a and 172b.
  • the piston 170B has a two-part force consisting of a cylindrical part having a first diameter and a disk part having a second diameter (> the first diameter) provided on the Z side and concentric with the cylindrical part. It has a columnar shape.
  • the piston portion 170B is formed with a ventilation pipe 174a extending in the Z-axis direction from the center of the upper end surface to the bottom surface.
  • the ventilation pipe 174a communicates with a groove 174b formed on the lower end surface (-Z side end surface) of the piston portion 170B, and is formed near the lower end surface of the piston portion 170B so as to become narrower as approaching the lower end surface. ing. That is, the lower end of the ventilation pipe 174a is formed to serve as a kind of nozzle (tapered nozzle).
  • the groove 174b actually has a shape in which a circle and a cross which is orthogonal at the center thereof are combined.
  • a substantially airtight space 180 is formed above the piston portion 170B inside the cylinder portion 170A.
  • One end of an air supply pipe (not shown) is connected to this space 180 via an opening (not shown) formed in a part of the cylinder portion 170A, and the other end of the air supply pipe is connected to a gas supply (not shown).
  • a gas supply (not shown).
  • a rare gas such as helium or a gas such as nitrogen or air is supplied into the space 180 through an air supply pipe, and the space 180 has a higher pressure than the outside of the cylinder 170A. It is a compressed space. Therefore, hereinafter, the space 180 is also referred to as “positive pressure space 180”.
  • a kind of aerostatic bearing is substantially formed on the bottom surface of the piston 170B, and the piston 170B is floated above the measurement stage main body 81c in a non-contact manner.
  • this gas static pressure bearing is also referred to as “thrust bearing”.
  • each of the four ventilation pipes 176 has a gas indicated by an arrow B.
  • the air is sprayed on the second annular convex portion 172b.
  • the outer peripheral surface of the piston portion 170B and the first and second annular convex portions 172a, 172b are caused by the static pressure of gas (pressure in the gap) between the second annular convex portion 172b and the outer peripheral surface of the piston portion 170B.
  • a predetermined clearance ⁇ L is formed. That is, on the peripheral wall of the piston portion 170B,
  • this gas static pressure bearing is also referred to as “radial bearing”.
  • a gas flow indicated by an arrow C is generated in the plurality of through holes 172c formed at predetermined intervals in the annular concave groove 172d of the cylinder portion 170A, whereby the second annular convex portion is formed.
  • the gas in the clearance A L such as the gas injected into b and the gas in the positive pressure space 180,
  • the self-weight canceller 58 of the present embodiment when the leveling table 52 is supported at its upper end, its own weight is supported by the positive pressure in the positive pressure space 180 and the Y stage 81 is supported.
  • the clearance AL can always be maintained between the upper surface of the measurement stage main body 81c and the upper surface of the main stage 81c by the action of the thrust bearing. Also, leveling table 5 Even if a force is applied to tilt in the tilting direction (0x, 0y direction), the clearance AL is maintained by the action of the radial bearing.
  • the oblique will be absorbed. Therefore, according to the self-weight canceller 58, it is possible to support the leveling table 52 with low rigidity by positive pressure and absorb the inclination thereof.
  • the measurement table MTB is composed of a measurement table main body 59 made of a material such as Zerodur (trade name of SCHOTT) and a vertically arranged side of the Y side of the measurement table main body 59.
  • Movers 62 and 64 having a substantially U-shaped cross section and having the X-axis direction as a longitudinal direction.
  • a plurality of, for example, four air bearings 42 are provided on the bottom surface of the measurement table main body 59, and the measurement table MTB is provided above the upper surface of the leveling table 52 via these air bearings 42. It is levitated and supported without contact through a clearance of several ⁇ m.
  • the mover 62 includes a mover yoke having a substantially U-shaped YZ section, and N-pole permanent magnets arranged at predetermined intervals and alternately along the X-axis direction on the inner surface (upper and lower surfaces) of the mover yoke.
  • a permanent magnet group including a plurality of pairs of magnets and S pole permanent magnets is provided, and is engaged with the stator 61 described above.
  • an alternating magnetic field is formed along the X-axis direction.
  • the stator 61 is formed of, for example, an armature unit including a plurality of armature coils arranged at predetermined intervals along the X-axis direction. That is, a moving magnet type X-axis linear motor LX that drives the measurement table MTB in the X-axis direction is constituted by the stator 61 and the mover 62!
  • the mover 64 includes a mover yoke having a substantially U-shaped YZ cross section, and an N-pole permanent magnet and an S-pole permanent magnet provided on inner surfaces (upper and lower surfaces) of the mover yoke, respectively. , And are engaged with the stator 63 described above. In the inner space of the mover yoke of the mover 64, a magnetic field of + Z direction or Z direction is formed.
  • the stator 63 includes an armature coil disposed therein such that an electric current flows only in the X-axis direction in a magnetic field formed by the N-pole magnet and the S-pole magnet.
  • the moving magnet type Y voice coil motor VY that drives the measuring table MTB in the Y-axis direction by the mover 64 and the stator 63. It is configured.
  • the Y-axis linear motors 82 to 85 and the X-axis linear motor 80, the fine movement mechanism (not shown) for driving the wafer table WTB, and the measurement stage MST constitute the stage driving section 124 shown in FIG.
  • Various drive mechanisms constituting the stage drive section 124 are controlled by the main controller 20 shown in FIG.
  • the measurement table MTB further includes measuring instruments for performing various measurements related to exposure. More specifically, on the upper surface of the measurement table main body 59, a plate 101 having a glass material such as Zeguchi Dua (trade name of Schott) or quartz glass is provided. The surface of the plate 101 is coated with chromium over almost the entire surface, and in some places, a region for a measuring instrument, a Japanese Patent Application Laid-Open No. 5-21314, and a corresponding US Pat. No. 5,243,195, etc. are used. There is a reference mark area FM in which a plurality of reference marks to be disclosed are formed. To the extent permitted by the laws of the designated country (or selected elected country) specified in this international application, the disclosures of the above gazettes and corresponding US patents are incorporated herein by reference.
  • the measurement device area is patterned, and various measurement aperture patterns are formed.
  • the measurement aperture pattern include an aerial image measurement aperture pattern (for example, a slit-shaped aperture pattern), an uneven illumination measurement pinhole aperture pattern, an illuminance measurement aperture pattern, and a wavefront aberration measurement aperture pattern. Is formed.
  • a light receiving system is provided for receiving the light by the projection optical system PL disclosed in, for example, JP-A-2002-14005 and the corresponding US Patent Application Publication No. 2002Z0041377.
  • An aerial image measuring device for measuring the light intensity of the aerial image (projected image) of the pattern is constructed.
  • a non-uniform illuminance measuring instrument has a pinhole-shaped light receiving unit that receives the illumination light IL on the image plane of the science and engineering PL.
  • a light receiving system including a light receiving element is provided inside the measurement table body 59 below the illuminance measurement opening pattern, whereby, for example, Japanese Patent Application Laid-Open No. 11-16816 and An illuminance monitor having a light receiving unit having a predetermined area for receiving illumination light IL via water on an image plane of a projection optical system PL disclosed in US Patent Application Publication No. 2002Z0061469 and the like corresponding to .
  • the disclosures in this specification shall be made with reference to the disclosures of the above-mentioned publications and corresponding U.S. patents or U.S. patent application publications. Partly.
  • a light receiving system including, for example, a microlens array is provided inside the measurement table main body 59 below the aperture pattern for measuring wavefront aberration, whereby, for example, International Publication No. 99/60361.
  • a wavefront aberration measuring instrument disclosed in a pamphlet and the corresponding European Patent No. 1,079,223 is constituted.
  • the aerial image measuring device, the illuminance unevenness measuring device, the illuminance monitor, and the wavefront aberration measuring device are shown as a measuring device group 43.
  • the illumination light IL in response to the immersion exposure for exposing the wafer W with the exposure light (illumination light) IL via the projection optical system PL and water, the illumination light IL In the illuminance monitor, illuminance unevenness measuring device, aerial image measuring device, wavefront aberration measuring device, and the like used in the measurement using the illuminator, the illumination light IL is received via the projection optical system PL and water. For this reason, the surface of the plate 101 is provided with a water-repellent coat. Note that, for each of the measuring instruments, for example, only a part of the optical system or the like may be mounted on the measuring stage MST, or the entire measuring instrument may be arranged on the measuring stage MST.
  • an X movable mirror 117X having a reflection surface orthogonal to the X axis at one end (one X side end) in the X axis direction is extended in the Y axis direction.
  • a Y moving mirror 117Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction.
  • the interferometer beam (length measuring beam) from the Y-axis interferometer 16 constituting the interferometer system 118 is projected onto the reflecting surface of the Y moving mirror 117Y, and the interferometer 16 By receiving the reflected light, the reference position force of the reflecting surface of the Y moving mirror 117Y is reduced. Measure the displacement. Also, when the measurement table MTB moves immediately below the projection unit PU during measurement or the like, the interferometer beam (length measuring beam) from the X-axis interferometer 46 is projected on the reflecting surface of the X movable mirror 117X, By receiving the reflected light, the interferometer 46 measures the displacement of the reflecting surface of the X moving mirror 117X from the reference position.
  • the Y-axis interferometer 16 has a length-measuring axis parallel to the Y-axis direction perpendicular to the length-measuring axis of the X-axis interferometer 46 at the projection center (optical axis AX) of the projection optical system PL, You.
  • the Y-axis interferometer 16 is a multi-axis interferometer having at least three optical axes, and the output value of each optical axis can be measured independently.
  • the output value (measured value) of the Y-axis interferometer 16 is supplied to the main controller 20 as shown in FIG. 7, and the main controller 20 measures the output value based on the output value from the Y-axis interferometer 16. It is possible to measure not only the Y position of the table MTB, but also the pitching and jowing amounts.
  • main controller 20 measures the X position and the amount of rolling of measurement table MTB based on the output value from X-axis interferometer 46.
  • the interferometer beam from the Y-axis interferometer 18 is always projected on the movable mirror 17Y over the entire movement range of the wafer stage WST, Interferometer An interferometer beam of as much as 16 forces is always projected on the movable mirror 117Y over the entire moving range of the measurement stage MST. Therefore, in the Y-axis direction, the positions of the stages WST and MST are always managed by the main controller 20 based on the measured values of the Y-axis interferometers 18 and 16.
  • the main controller 20 controls the X-axis interferometer 46 only within the range of the interferometer beam force from the X-axis interferometer 46 and the movable mirror 17X.
  • the X position of the wafer table WTB (wafer stage WST) is managed based on the output value, and the interferometer beam force from the X-axis interferometer 46 is based on the output value of the X-axis interferometer 46 only within the range of the moving mirror 117X.
  • the X position of the measurement table MTB (measurement stage MST) is managed.
  • the main controller 20 can control the wafer table WTB and Manage the position of the table MTB.
  • main controller 20 controls the state in which the interferometer beam from X-axis interferometer 46 does not hit any of moving mirrors 17X and 117X.
  • the X-axis interferometer 46 that has not been used for control is reset, and thereafter, the Y-axis interferometer 18 or 16 and the X-axis interferometer 46 that constitute the interferometer system 118 are reset. It is used to manage the position of the wafer stage WST or measurement stage MST.
  • a plurality of force X-axis interferometers including the two Y-axis interferometers 16 and 18 and the one X-axis interferometer 46 to constitute the interferometer system 118 of FIG. It is also possible to adopt a configuration that always provides the interferometer beam force from one of the X-axis interferometers to the movable mirror 17X or 117X. In this case, the X-axis interferometer that controls the positions of the wafer stage WST and the measurement stage MST should be switched according to the X position of these stages!
  • the above-mentioned multi-axis interferometer irradiates a laser beam onto a reflection surface provided on a holding member for holding projection unit PU via a reflection surface provided on stage WST or MST at an angle of 45 °.
  • relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL between the reflection surface and the stage may be detected.
  • the holding member for holding the projection unit PU includes an off-axis alignment system (hereinafter abbreviated as "alignment system”) ALG (not shown in FIG. 1, 7 and 8 (A) etc.).
  • this alignment-based ALG irradiates the target mark with a broadband detection light beam that does not expose the resist on the wafer, and the target mark image formed on the light-receiving surface by the reflected light with the target mark power.
  • An image of the index (the index pattern on the index plate provided in the alignment system ALG) is captured using an imaging element (such as a CCD), and the image processing method FI A ( Field Image Alignment) type sensors are used.
  • the imaging signal from the alignment ALG is supplied to the main controller 20 in FIG.
  • the alignment type ALG is not limited to the FIA type, but irradiates a target mark with a coherent detection light and detects scattered light or diffracted light that also generates the target mark force, or detects the target light.
  • Two diffracted beams that also generate a mark force can be used in combination as appropriate.
  • the exposure apparatus 100 includes a force irradiation system 90a and a light receiving system 90b (see FIG. 7), which are not shown in FIG. 1, for example, Japanese Patent Application Laid-Open No. 6-283403 and corresponding thereto.
  • An oblique incidence type multi-point focal position detection system similar to that disclosed in US Pat. No. 5,448,332 is provided.
  • the irradiation system 90a is suspended and supported by a holding member that holds the projection unit PU on the ⁇ X side of the projection unit PU, and the light receiving system 90b is held on the + X side of the projection unit PU. It is suspended and supported below the member.
  • the irradiation system 90a, the light receiving system 90b, and the projection optical system PL are mounted on the same member, and the positional relationship between them is maintained constant.
  • the disclosures of the above-mentioned publications and corresponding US patents are incorporated herein by reference.
  • FIG. 7 shows a main configuration of a control system of exposure apparatus 100.
  • This control system is mainly configured by a main controller 20 composed of a microcomputer (or a workstation) that controls the entire apparatus as a whole. Further, a display DIS such as a memory MEM and a CRT display (or a liquid crystal display) is connected to the main controller 20.
  • a display DIS such as a memory MEM and a CRT display (or a liquid crystal display) is connected to the main controller 20.
  • the main controller 20 controls the opening and closing of each valve of the liquid supply device 288 and the liquid recovery device 292 of the liquid immersion device 132 as described above.
  • the area immediately below the lens 91 is always filled with water.
  • the description of the control of the liquid supply device 288 and the liquid recovery device 292 will be omitted.
  • FIG. 8A shows a step-and-scan exposure method for wafer W on wafer stage WST (here, for example, the last wafer of one lot (one lot is 25 or 50)). The state where light is being performed is shown. At this time, measurement stage MST waits at a predetermined standby position without colliding with wafer stage WST! /
  • the above-described exposure operation is performed by the main controller 20 in advance, for example, in the case of the Enhanced Group.
  • the scanning start position for the exposure of each shot area on the wafer W is performed by repeating a shot-to-shot movement operation in which the wafer stage WST is moved to the (start position) and a scanning exposure operation of transferring a pattern formed on the reticle R to each shot area by a scanning exposure method.
  • the movement between shots in which the wafer stage WST is moved is performed by monitoring the measurement values of the 20-force interferometers 18 and 46 of the main control device, and using the X-axis linear motor 80 and the Y-axis linear motor. This is done by controlling 82 and 83.
  • the above scanning exposure is performed while monitoring the measured values of the main controller 20 force interferometers 18, 46 and the reticle interferometer 116, while controlling the reticle stage driving unit 11 and the Y-axis linear motors 82, 83 (and X-axis).
  • the reticle R (reticle stage RST) and the wafer W (wafer stage WST) are scanned relative to each other in the Y-axis direction. This is realized by synchronously moving the reticle R (reticle stage RST) and wafer W (wafer stage WST) at constant speed in the Y-axis direction with respect to the illumination area of the illumination light IL during the uniform movement.
  • the above-described exposure operation is performed in a state where water is held between the tip lens 91 and the wafer W.
  • the main controller 20 sets the Y-axis linear based on the measurement value of the interferometer 16 and the measurement value of the encoder (not shown).
  • the measurement table MTB is moved to the position shown in FIG. In the state shown in FIG. 8B, the end surface on the + Y side of measurement table MTB is in contact with the end surface on the Y side of wafer table WTB.
  • the measurement values of the interferometers 16 and 18 may be monitored, and the measurement table MTB and the wafer table WTB may be separated from each other by about 300 m in the Y-axis direction to maintain a non-contact state.
  • main controller 20 starts an operation of simultaneously driving both stages WST and MST in the + Y direction while maintaining the positional relationship between wafer table WTB and measurement table MTB in the Y-axis direction.
  • FIG. 9 (A) shows a state in which water is simultaneously present on the wafer stage WST and the measurement stage MST during the above movement, that is, immediately before water is passed on the wafer stage WST force measurement stage MST. State is shown.
  • main controller 20 manages the X position of wafer table WTB (wafer stage WST) based on a measurement value of an encoder (not shown).
  • main controller 20 controls linear motors 80, 82, and 83 while controlling the position of wafer stage WST based on the interferometer 18 and the measurement values of the encoder, and performs predetermined wafer exchange.
  • the wafer stage WST is moved to the position and replaced with the first wafer of the next lot, and in parallel with this, predetermined measurement using the measurement stage MST is performed as necessary.
  • An example of this measurement is a baseline measurement of an alignment ALG performed after the reticle is replaced on the reticle stage RST.
  • main controller 20 reticle alignment marks on the reticle corresponding to a pair of first reference marks in reference mark area FM provided on plate 101 on measurement table MTB are described above.
  • the positional relationship between the pair of first fiducial marks and the corresponding reticle alignment marks is detected by simultaneously detecting using the alignment systems RAa and RAb.
  • main controller 20 detects the second fiducial mark in the fiducial mark area FM with the alignment ALG, thereby detecting the positional relationship between the detection center of the alignment ALG and the second fiducial mark. I do.
  • main controller 20 determines the positional relationship between the pair of first fiducial marks and the corresponding reticle alignment mark, and the detection center of alignment ALG and the second alignment mark.
  • the center of projection of the reticle pattern by the projection optical system PL and the center of detection of the alignment system ALG based on the positional relationship between the two fiducial marks and the known positional relationship between the pair of first fiducial marks and the second fiducial mark. Find the distance, ie, the baseline of the alignment ALG. The state at this time is shown in FIG.
  • a plurality of pairs of reticle alignment marks are formed on the reticle, and a plurality of pairs of the first reference marks are formed in the reference mark area FM in response to this.
  • at least two pairs of the first fiducial marks and the corresponding reticle alignment marks are moved relative to the reticle stage RST and the wafer stage WST in the Y-axis direction while moving the reticle alignment systems RAa and RAb.
  • the so-called reticle alignment is performed by using the measurement.
  • mark detection using reticle alignment systems RAa and RAb is performed via projection optical system PL and water.
  • main controller 20 brings measurement table MTB and wafer table WTB (wafer stage WST) into contact with each other, and maintains the state. While moving in the XY plane, returning the wafer stage WST directly below the projection unit. During this movement, the main controller 20 irradiates the interferometer beam from the X-axis interferometer 46 to the moving mirror 17X on the wafer table WTB! / At some point, the X-axis Performing reset of interferometer 46.
  • a wafer alignment is performed on the replaced wafer, that is, an alignment mark on the replaced wafer is detected by an alignment ALG, and the position coordinates of a plurality of shot areas on the wafer are determined. Is calculated.
  • the measurement table MTB and the wafer table WTB can be in a non-contact state! ,.
  • main controller 20 simultaneously drives both stages WST and MST in the Y direction while maintaining the positional relationship between wafer table WTB (wafer stage WST) and measurement table MTB in the Y-axis direction. Then, after moving the wafer stage WST (Ueno) below the projection optical system PL, the measurement stage MST is retracted to a predetermined position.
  • main controller 20 executes a step 'and' scan exposure operation on the new wafer in the same manner as described above, and reticle patterning is performed on a plurality of shot areas on the wafer. Are sequentially transferred.
  • the present invention is not limited to this, and the measurement stage MST is performed while each wafer is replaced on the wafer stage WST side.
  • the measurement instrument group 43 may be used to perform illuminance measurement, illuminance unevenness measurement, aerial image measurement, wavefront aberration measurement, and the like, and the measurement results may be reflected in subsequent wafer exposure.
  • the projection optical system PL can be adjusted by the above-described imaging characteristic correction controller 381 based on the measurement result.
  • measurement table MTB is in a state of non-contact engagement with other components of measurement stage MST. In other words, the measurement table MTB is shifted to the + Y side to release the engagement between the mover and the stator of each of the X linear motor LX and Y voice coil motor VY.
  • the measurement table MTB can be easily detached from other components and components of the measurement stage MST.
  • the measurement table MTB is replaced with a new measurement table at a predetermined replacement time.
  • the water-repellent coating should be used in order to maintain the measurement accuracy of various measurements well and minimize the downtime of the equipment accompanying the replacement of the measurement table MTB. It is desirable to set the time immediately before the deterioration (immediately before the deterioration exceeds a predetermined allowable range).
  • the deterioration of the water-repellent coat and the measurement table MTB Based on the relationship with the change in the measurement results of the various measuring instruments provided in, the measured values of the various measuring instruments immediately before the water-repellent coat deteriorates are calculated, and the value of the boundary where the measurement results of the various measuring instruments exceed the allowable value Is stored in the memory MEM (see FIG. 7) as a threshold value.
  • the main control device 20 compares the measurement result with a threshold value stored in the memory MEM to determine a replacement time. It is to be determined whether or not it has arrived.
  • main controller 20 determines that the replacement time has come, it displays that fact on display DIS (see FIG. 7). Therefore, the operator stops the operation of the exposure apparatus 100 and manually replaces the measurement table MTB. That is, in the present embodiment, a detection device that detects the replacement time of the plate 101 by the main control device 20 and the memory MEM is configured.
  • main controller 20 displays the replacement time on display DIS, stops the operation of the device, and stops the robot. It is also possible to carry out the measurement table MTB to the outside and to carry in a new measurement table onto the measurement stage body 81c by using, for example.
  • the part other than the part used for various measurements of the plate 101 of the measurement table MTB is irradiated with the detection light for the same (or somewhat longer) time as the measurement time, and the illuminance (light amount) of the detection light at that time is measured. It is also possible to determine the arrival of the replacement time by measuring with an optical sensor provided exclusively for detecting the replacement time and calculating the degree of deterioration based on the measurement result.
  • the degree of deterioration may be predicted using a timer or the like based on the deterioration time obtained in advance by simulation or the like.
  • any method can be used as long as it can detect the degree of deterioration of the water-repellent coat using any means and can detect that the replacement time has come.
  • the exposure apparatus 100 includes the plate 101 to which water (liquid) is supplied, and performs measurement related to exposure via the projection optical system and water.
  • the measurement table MTB including the plate 101 can be exchanged. Yes.
  • the measurement related to exposure is repeatedly performed using the measurement stage MST via the projection optical system PL and water in a state where water is supplied to the surface of the plate 101, the surface of the plate 101 may be in contact with water.
  • measurement related to exposure can always be performed with high accuracy, and as a result, highly accurate exposure can be maintained.
  • the time immediately before the measurement accuracy of the various measuring instruments provided in the measurement table MTB starts to decrease is determined in advance by an experiment or the like, and this time is determined by the replacement time of the measurement table MTB.
  • the arrival of that time is detected as described above. Therefore, by exchanging the measurement table MTB according to the detection result, the measurement table MTB can be exchanged at an optimal time before the measurement accuracy of the various measuring instruments provided in the measurement table MTB is reduced. It becomes possible. In other words, it is possible to maintain the measurement accuracy of the measurement related to exposure using the measurement table MTB with high accuracy, and to minimize the frequency of replacement of the measurement table MTB. Therefore, it is possible to maintain the exposure accuracy with high accuracy over a long period of time, and to effectively prevent a decrease in apparatus operation efficiency due to an increase in downtime due to replacement of the measurement table.
  • the pattern of the reticle R can be transferred onto the wafer with high precision by performing high-resolution exposure with a large depth of focus compared to that in the air by immersion exposure.
  • transfer of a fine pattern of about 70-100 nm can be realized as a device rule.
  • the force described in the case where the measurement stage MST includes the replaceable measurement table MTB is not limited to this.
  • the measurement stage MST itself is not limited to this.
  • a configuration may be adopted in which the engagement between the mover and the stator of the Y-axis rear motor that drives the measurement stage in the Y-axis direction can be released.
  • the force described in the case where the measurement table MTB is detachable from the leveling table 52 configuring the measurement stage MST is not limited to this.
  • the table may be screwed to a part of the measurement stage MST. Even if it is strong, the measurement table can be removed by removing the screws. Is an exchangeable force.
  • the leveling table 52 has a configuration having six degrees of freedom and the measurement table MTB force has S3 degrees of freedom has been described.
  • the present invention is not limited to this, and the leveling table 52 may have three degrees of freedom.
  • the configuration in which the measurement table MTB has three degrees of freedom may be adopted.
  • a configuration in which the measurement table MTB has six degrees of freedom may be employed without providing the leveling table 52. In short, it is only necessary that at least a part of the measuring unit including the plate 101 is replaceable.
  • the piston-shaped dead weight canceller 58 is employed as a mechanism for canceling the dead weight of the leveling table 52 .
  • the present invention is not limited to this, and a bellows-shaped dead weight canceller or the like may be used. It may be adopted.
  • the weight of the wafer stage body 28 may be canceled by the weight canceller 58!
  • FIG. 11 is a perspective view showing measurement stage MST ′ according to the second embodiment. Comparing FIG. 11 with FIG. 3 (A), in the measurement stage MST ′ of the second embodiment, the measurement table MTB ′ as a measurement unit is replaced with the measurement table MTB ′ of the above-described first embodiment. It can be seen that is provided.
  • the plate 101 ′ is made of a glass material such as Zerodur (trade name of Schott), quartz glass, or the like, as in the first embodiment, and covers almost the entire surface thereof. ROM is applied, and areas for measuring instruments and reference mark areas are provided in some places. Then, a pattern jung is applied to the measurement device area, and the same aerial image measurement aperture pattern (for example, slit-shaped aperture pattern), illumination unevenness measurement pinhole aperture pattern, and the like as in the first embodiment described above. Measurement aperture patterns such as an illuminance measurement aperture pattern and a wavefront aberration measurement aperture pattern are formed.
  • the Y-side end surface and the X-side end surface of the plate 101 ' are mirror-finished and have reflecting surfaces (corresponding to the reflecting surfaces of the moving mirrors 117X and 117Y on the measurement table MTB in the first embodiment). Is formed. Also, in the second embodiment, since various measurements are performed in a state where water is supplied onto the plate 101 ′, a water-repellent coat is applied to the surface of the plate 101 ′.
  • the plate 101 ' is suction-held on the measurement table main body 159 via a vacuum chuck (not shown) provided in the measurement table main body 159.
  • the plate 101 ′ may be fixed to the measurement table body 159 using a mechanical mechanism instead of vacuum suction.
  • the measurement table main body 159 is provided with a plurality of light receiving systems corresponding to the above-described various measurement aperture patterns, respectively, as in the first embodiment. .
  • a groove 21a extending in the X-axis direction is formed at the center of the end surface on the + X side in the Y-axis direction below the region where the plate 101 'is mounted.
  • Grooves 21b and 21c extending in the X-axis direction to below the region where the plate 101 'is mounted are formed near one end in the Y-axis direction and the other end in the Y-axis direction on the side end surface, respectively.
  • a carry-in / out mechanism 24 used to carry in / out the plate 101' is provided above the measurement stage MST 'in FIG. 11. This carrying-in / out mechanism 24 is actually provided above the base board 12 near the end in the ⁇ Y direction.
  • the carrying-in / out mechanism 24 has a main body 27 capable of sliding in the Y-axis direction and a vertical movement in the Z-axis direction, and is mounted on the main body 27 and moves in opposite directions in the X-axis direction (mutually (In the direction of approaching or moving away from the hand), and has two substantially L-shaped hand parts 25a and 25b when viewed from the + Y direction.
  • One hand unit 25a is attached to the main unit 27 in a suspended and supported state, with the + X end protruding outside the main unit 27.
  • a hook 26a is provided.
  • the other hand part 25b is attached to the main body part 27 in a suspended and supported state, with the -X end protruding outside the main body part 27.
  • An extended portion extending in the axial direction is provided, and hook portions 26b and 26c are provided at the + Y side end and the Y side end of the extended portion.
  • the hook portions 26a, 26b, 26c are provided at substantially the same height.
  • the hand units 25a and 25b are slidable in mutually opposing directions along the X-axis direction by a drive mechanism (not shown) provided in the main body unit 27! / ⁇ (that is, openable and closable).
  • the loading / unloading mechanism 24 is controlled by the main controller 20.
  • the difference between the deterioration of the water-repellent coat and the change in the measurement results of various measuring instruments provided in the measurement table MTB ' is determined by an experiment in advance. Based on the relationship, the measured values of various measuring instruments immediately before the water-repellent coat is degraded are obtained, and the boundary value at which the measured results of the various measuring instruments exceed the allowable value is stored as a threshold in the memory MEM. Then, when measurement is performed using the measurement table MTB ', the main controller 20 compares the measurement result with the threshold value stored in the memory MEM to determine when the plate 101' is to be replaced. ⁇ Judge whether or not. That is, in the second embodiment, a detection device that includes the main control device 20 and the memory MEM to detect the arrival of the replacement time of the plate 101 ′ is configured.
  • the detection of the replacement time of the plate 101 may be performed using the other methods described in the first embodiment.
  • the main controller 20 when the main controller 20 detects the replacement time of the plate 101 '(determines that the replacement time has arrived), the main controller 20 displays the arrival of the replacement time on the display DIS, and issues an instruction by the operator. wait.
  • the replacement time of plate 101 ' is detected (it is determined that the replacement time has come)
  • main controller 20 displays the arrival of the replacement time on display DIS.
  • the plate 101 is replaced as follows.
  • the main control device 20 drives the main body 27 downward, and in the state where the hand parts 25a, 25b are open, the hook part 26a, 26b, 26c are also inserted into the grooves 21a, 21b, 21c with an upward force. Then, the main control device 20 closes the hand units 25a and 25b by a predetermined amount via the drive mechanism in the main body unit 27.
  • FIG. 12 shows the state at this time. At this time, the hook portions 26b and 26c are not in contact with the X-side end surface of the plate 101.
  • the main controller 20 stops the vacuum check of the measurement table main body 159, releases the vacuum suction of the plate 101 ', and moves the main body 27 in the + Z direction.
  • the plate 101 ' is lifted by the hooks 26a-26c.
  • the main controller 20 drives the main body 27 up to a predetermined height, and then drives the main unit 27 to the Y side to transfer the plate 101 'to a transport system (not shown).
  • the plate 101 ' is carried out of the exposure apparatus by the transport system, and a new plate 101' is transported to a predetermined position inside the exposure apparatus by the transport system, and stands by at that position. It is delivered to the node portions 25a and 25b of the loading / unloading mechanism 24.
  • main controller 20 carries in a new plate 101 ′ force measurement table main body 159 by performing an operation reverse to the above.
  • the main controller 20 presses the + X side end face or the like of the new plate 101 ′ against a positioning pin (not shown) provided on the measurement table main body 159. Perform rough positioning by using a similar method.
  • the main controller 20 turns on a vacuum chuck (not shown) and suction-holds a new plate 101 ′ on the measurement table main body 159.
  • the position of the plate 101' can be accurately measured using an interferometer. Measurement can be performed with high accuracy even after plate exchange.
  • the time immediately before the measurement accuracy of various measuring instruments on the measurement table MTB ′ starts to decrease is determined in advance by an experiment or the like. Is set in advance as the replacement time of the plate 101, and the main controller 20 as the detecting device replaces the plate 101 'when the replacement time is detected. Plates can be replaced at an optimal time before the measurement accuracy of various measuring instruments decreases. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the various measuring devices on the measurement table MTB 'with high accuracy, and to minimize the frequency of plate replacement. Therefore, the exposure accuracy can be maintained at a high level over a long period of time, and it is possible to effectively prevent a decrease in the operation efficiency of the apparatus due to an increase in downtime due to plate replacement.
  • the plate 101 ' has two mirror-finished end faces. Therefore, when the plate 101' is replaced with a new one, the plate after replacement is replaced with a new one. Even if the plate is roughly positioned, the position of the plate can be accurately measured using the interferometers 16 and 46 via the mirror-finished end surface of the plate. Therefore, even if the plate is roughly positioned at the time of replacement, it is possible to accurately position the measurement table WTB that constitutes the measurement unit at the desired position at the time of measurement. In this respect as well, it is possible to effectively prevent a decrease in device operation efficiency due to an increase in downtime due to replacement.
  • the liquid immersion exposure is performed, so that the pattern of the reticle R can be accurately transferred onto the wafer.
  • the force of the plate 101 ' is assumed to be exchangeable.
  • the present invention is not limited to this.
  • the measurement unit including the plate (the measurement unit of the second embodiment) It suffices if at least a part of the table is configured to be replaceable.
  • the end face of the plate 101' is made to have a mirror surface.
  • the movable mirrors 117X, 117X are mounted on the measurement table main body 159. Y may be provided.
  • the configuration of the other parts of the measurement stage is not limited to the configuration shown in FIG. / ⁇ .
  • a measurement stage having a configuration similar to the wafer stage WST in FIG. 2 may be adopted, and the plate included in the measurement stage may be configured to be exchangeable.
  • the carry-in / out mechanism 24 shown in Fig. 11 is employed as a mechanism for replacing the plate 101 'has been described.
  • a wafer loader is used instead of the carry-in / out mechanism 24 .
  • a robot used for such a purpose may be adopted as the carrying-in / out mechanism.
  • a configuration may be adopted in which the ends of the plate protrude on both sides in the X-axis direction of the measurement tables ⁇ and ⁇ ⁇ ⁇ ⁇ , and the lower force plate may be lifted by the arm of the robot to exchange the plate.
  • a vertical movement mechanism for raising the plate from the measurement table body 159 by a predetermined height is provided on the measurement table MTB ', and with the plate lifted by the vertical movement mechanism, the robot arm is inserted below the plate. The arm may be lifted to replace the plate.
  • the present invention is not limited to this.
  • at least a part of the measuring unit can be replaced (for example, a replaceable measurement table (or a measurement stage) is provided), and the replaceable plate is replaced in the same manner as in the second embodiment. It is effective to provide and mirror-finish the end surface of the plate, and to provide a detection device for detecting the replacement time of at least a part of the measurement unit including the plate.
  • a measurement stage constituting a measurement unit having measurement tables ⁇ and MTB ′ is provided separately from wafer stage WST. It may be provided. In this case, at least a partial force including the plate of the measurement unit constituting the measurement unit should be detachable (replaceable) from the wafer stage WST! [0154]
  • the stage apparatus includes one wafer stage and one measurement stage has been described.
  • the present invention is not limited to this. In order to do this, it is good to provide multiple uenos and stages.
  • ultrapure water water
  • a liquid which is chemically stable and has a high transmittance of the illumination light IL and which is safe for example, a fluorine-based inert liquid
  • a fluorine-based inert liquid for example, Fluorinert (trade name of Threehem, USA) can be used. This fluorine-based inert liquid is also excellent in the cooling effect.
  • a liquid that has transparency to the illuminating light IL and a refractive index as high as possible and that is stable against the photoresist applied to the surface of the projection optical system wafer should be used.
  • a liquid that has transparency to the illuminating light IL and a refractive index as high as possible and that is stable against the photoresist applied to the surface of the projection optical system wafer should be used.
  • Fomblin oil may be selected.
  • the collected liquid may be reused.
  • a filter for removing impurities from the collected liquid is provided in the liquid collection device, the collection pipe, or the like. It is desirable to keep.
  • the force at which the optical element closest to the image plane of the projection optical system PL is the front lens 91 is not limited to a lens.
  • An optical plate parallel plane plate or the like used for adjusting the optical characteristics such as aberration (spherical aberration, coma aberration, etc.) may be used, or a simple cover glass may be used.
  • the optical element closest to the image plane of the projection optical system PL (the tip lens 91 in each of the above embodiments) is a liquid (due to scattering particles generated from the resist by irradiation of the illumination light IL or adhesion of impurities in the liquid, etc.).
  • the surface may be soiled by contact with water. For this reason, the optical element may be detachably (exchangeably) fixed to the lowermost part of the lens barrel 40, and may be periodically replaced.
  • optical elements that come into contact with the liquid are a lens
  • the cost of the replacement part and the time required for the replacement become longer, which increases the maintenance cost (running cost) and the throughput. causes a decline. Therefore, optical elements that come into contact with liquid
  • a parallel flat plate that is less expensive than the lens 91 may be used.
  • the present invention is applied to a scanning exposure apparatus such as a step-and-scan method.
  • a scanning exposure apparatus such as a step-and-scan method
  • the scope of the present invention is not limited to this.
  • the present invention can be applied to a step-and-repeat type projection exposure apparatus, a step-and-stitch type exposure apparatus, or a proximity type exposure apparatus.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for a liquid crystal for transferring a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head it can be widely applied to an exposure device for manufacturing an imaging device (CCD, etc.), a micromachine, a DNA chip, and the like.
  • an imaging device CCD, etc.
  • a micromachine a micromachine
  • DNA chip a DNA chip
  • glass substrates or silicon wafers are used to manufacture reticles or masks used in light exposure equipment that can be used only with micro devices such as semiconductor devices, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern to a substrate.
  • the light source of the exposure apparatus of each of the above embodiments is not limited to an ArF excimer laser, but a KrF excimer laser (output wavelength 248 nm), an F laser (output wavelength 157 nm), and an Ar laser (output laser).
  • pulsed laser light source such as a Kr laser (output wavelength 146 nm), 8-wire (
  • an ultra-high pressure mercury lamp that emits bright lines such as 436 nm wavelength and i-line (365 nm wavelength).
  • a harmonic generation device of a YAG laser can be used.
  • a DFB semiconductor laser or a fiber laser is used to amplify a single-wavelength laser beam in the infrared or visible range that is oscillated by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and to use nonlinear optical optics. It is also possible to use harmonics that have been wavelength-converted into ultraviolet light using a crystal.
  • the projection optical system is not limited to the reduction system, but can be the same magnification and magnification system.
  • the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • EUV Extreme Ultraviolet
  • a soft X-ray region for example, a wavelength range of 5 to 15 nm
  • All-reflection reduction optics designed under eg 13.5nm
  • a step of designing the function and performance of the device a step of manufacturing a reticle based on this design step, a step of manufacturing a wafer from a silicon material
  • the lithography step to transfer the pattern formed on the mask to the resist (photosensitive agent) coated wafer by the exposure equipment of the above, the device assembling step (including the dicing step, the bonding step, the knocking step), the inspection step, etc. It is manufactured through In this case, since the exposure apparatus of each of the above embodiments is used in the lithography step, highly accurate exposure can be realized for a long time. Therefore, the productivity of a highly integrated microdevice on which a fine pattern is formed can be improved.
  • the exposure apparatus, the exposure method, and the device manufacturing method of the present invention are suitable for manufacturing electronic devices such as semiconductor elements (integrated circuits) and liquid crystal display elements.

Abstract

A measuring stage (MST) is provided with a plate (101) for supplying a liquid and performs measurement relating to exposure through a projection optical system (PL) and the liquid (Lq). In the measuring stage, at least a part of it, including the plate, is replaceable. Therefore, measurement relating to exposure can be constantly performed at a high accuracy and the highly accurate exposure can be maintained by replacing at least the part including the plate, before the plate surface deteriorates due to contact with the liquid. In a case where at least one edge plane of the plate is mirror-finished, at the time of replacing at least a part of a measuring part including the plate, the position of the plate can be accurately measured, for instance, by using an interferometer, through the mirror-processed plate edge plane, even when the part of the measuring part is roughly positioned after replacement.

Description

露光装置及び露光方法、並びにデバイス製造方法  Exposure apparatus, exposure method, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、露光装置及び露光方法、並びにデバイス製造方法に係り、更に詳しく は、半導体素子 (集積回路)、液晶表示素子などの電子デバイスを製造する際にリソ グラフイエ程で用いられる露光装置及び露光方法、並びに前記露光装置を用いるデ バイス製造方法に関する。  The present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method, and more particularly, to an exposure apparatus used in a lithographic process when manufacturing an electronic device such as a semiconductor element (integrated circuit) and a liquid crystal display element. The present invention relates to an apparatus, an exposure method, and a device manufacturing method using the exposure apparatus.
背景技術  Background art
[0002] 従来より、半導体素子 (集積回路等)、液晶表示素子等の電子デバイスを製造する リソグラフイエ程では、マスク (又はレチクル)のパターンの像を投影光学系を介して、 レジスト (感光剤)が塗布されたウェハ又はガラスプレート等の感光性の物体 (以下、「 ウェハ」と呼ぶ)上の複数のショット領域の各々に転写するステップ.アンド ·リピート方 式の縮小投影露光装置 ( 、わゆるステツパ)や、ステップ ·アンド'スキャン方式の投影 露光装置 ( 、わゆるスキャニング'ステツパ (スキャナとも呼ばれる) )などが、主として 用いられている。  [0002] Conventionally, in a lithographic process for manufacturing electronic devices such as semiconductor devices (integrated circuits and the like) and liquid crystal display devices, a resist (photosensitive agent) is formed by projecting an image of a mask (or reticle) pattern through a projection optical system. ) Is transferred to each of a plurality of shot areas on a photosensitive object such as a wafer or a glass plate (hereinafter, referred to as a “wafer”) coated with a). A loose exposure stepper and a step-and-scan projection exposure apparatus (a so-called scanning stepper (also called a scanner)) are mainly used.
[0003] この種の投影露光装置では、集積回路の高集積ィヒによるパターンの微細化に伴つ て、より高い解像力(解像度)が年々要求されるようになり、そのために露光光の短波 長化及び投影光学系の開口数 (NA)の増大化 (大 NA化)が次第に進んできた。し かるに、露光光の短波長化及び投影光学系の大 NA化は、投影露光装置の解像力 を向上させる反面、焦点深度の狭小化を招く。また、露光波長は将来的に更に短波 長化することが確実視されており、このままでは焦点深度が狭くなり過ぎて、露光動 作時のフォーカスマージンが不足するおそれが生じていた。  [0003] In this type of projection exposure apparatus, a higher resolution (resolution) is required year by year as the pattern becomes finer due to the higher integration of integrated circuits. Increasing the numerical aperture (NA) of projection optical systems (large NA) has been gradually advanced. However, shortening the wavelength of the exposure light and increasing the NA of the projection optical system improve the resolving power of the projection exposure apparatus, but also causes a reduction in the depth of focus. Also, it is expected that the exposure wavelength will be further shortened in the future, and if it is left as it is, the depth of focus becomes too narrow, and the focus margin during the exposure operation may be insufficient.
[0004] そこで、実質的に露光波長を短くして、かつ空気中に比べて焦点深度を大きく(広 く)する方法として、液浸法を利用した露光装置が、最近注目されるようになってきた 。この液浸法を利用した露光装置として、投影光学系の下面とウェハ表面との間を水 又は有機溶媒等の液体で局所的に満たした状態で露光を行うものが知られている( 例えば、下記特許文献 1参照)。この特許文献 1に記載の露光装置では、液体中で の露光光の波長力 空気中の lZn倍 (nは液体の屈折率で通常 1. 2-1. 6程度)に なることを利用して解像度を向上すると共に、その解像度と同一の解像度が液浸法 によらず得られる投影光学系(このような投影光学系の製造が可能であるとして)に比 ベて焦点深度を n倍に拡大する、すなわち空気中に比べて焦点深度を実質的に n倍 に拡大することができる。 [0004] Therefore, as a method of substantially shortening the exposure wavelength and increasing (widening) the depth of focus compared to air, an exposure apparatus using an immersion method has recently attracted attention. I have. As an exposure apparatus using the liquid immersion method, there is known an exposure apparatus that performs exposure while a space between a lower surface of a projection optical system and a wafer surface is locally filled with a liquid such as water or an organic solvent (for example, See Patent Document 1 below). In the exposure apparatus described in Patent Document 1, in the liquid The wavelength power of the exposure light is increased by lZn times (n is the refractive index of the liquid, usually about 1.2.1.6) in air, and the resolution is improved. The depth of focus is increased n times compared to the projection optical system obtained without using the immersion method (assuming that such a projection optical system can be manufactured). It can be enlarged n times.
[0005] また、近時においては、ウェハステージ (基板ステージ)とは独立して、 2次元面内 で駆動可能で、計測に用いられる計測器が設けられたステージ (計測ステージ)を、 備えた露光装置も提案されている (例えば、特許文献 2、 3等参照)。この計測ステー ジを採用する場合、ウェハステージにはウェハの露光の際に必要となる必要最低限 の構成部材(例えばウェハホルダなど)のみを設ければ良 、ので、ウェハステージの 小型、軽量ィ匕を図ることができる。これにより、ウェハステージを駆動する駆動機構( モータ)の小型化及びモータからの発熱量を低減することができ、ウェハステージの 熱変形や露光精度の低下を極力抑制することができることが期待される。  [0005] Recently, a stage (measurement stage) which can be driven in a two-dimensional plane independently of the wafer stage (substrate stage) and is provided with a measuring instrument used for measurement is provided. An exposure apparatus has also been proposed (for example, see Patent Documents 2 and 3). When this measurement stage is adopted, only the minimum necessary components (for example, a wafer holder, etc.) required for exposing the wafer need be provided on the wafer stage. Can be achieved. This is expected to reduce the size of the drive mechanism (motor) that drives the wafer stage, reduce the amount of heat generated by the motor, and minimize the thermal deformation of the wafer stage and a decrease in exposure accuracy. .
[0006] しかるに、前述した液浸露光装置に、計測ステージを採用する場合には、計測ステ ージ上に水を浸した状態で露光に関する種々の計測が行われるので、計測ステージ の液体に接する部材の表面が液体との接触及び露光光の照射により劣化し、露光に 関する各種計測の計測精度が経時的に劣化し、ひいては露光精度を長期に渡って 維持することが困難になる蓋然性が高い。勿論、計測ステージの各計測器部分の上 面には撥水コートが施される力 この撥水コートは、一般的に、液浸露光で用いられ る露光光 (遠紫外域又は真空紫外域の光)に対して弱ぐその露光光の照射により劣 化すると ヽぅ性質を有して ヽる。  [0006] However, when a measurement stage is employed in the above-described liquid immersion exposure apparatus, various measurements related to exposure are performed in a state where water is immersed in the measurement stage. There is a high probability that the surface of the member will deteriorate due to contact with the liquid and irradiation of exposure light, the measurement accuracy of various measurements related to exposure will deteriorate over time, and it will be difficult to maintain the exposure accuracy over a long period of time. . Of course, a water-repellent coat is applied to the upper surface of each measuring instrument part of the measurement stage. This water-repellent coat is generally used for exposure light (during deep ultraviolet or vacuum ultraviolet) used in immersion exposure. It has the following properties:
[0007] なお、計測ステージを採用せず、ウェハステージに各種計測器を設ける場合であつ ても、液体に接する部材 (この部材の表面に撥水コートが施されることが多い)の表面 が液体との接触及び露光光の照射により劣化し、露光に関する各種計測の計測精 度が経時的に劣化するという現象が、上記と同様に生じ得る。  [0007] Even when a measurement stage is not used and various measuring instruments are provided on the wafer stage, the surface of the member that comes into contact with the liquid (the surface of this member is often coated with a water-repellent coating) is not used. Similar to the above, a phenomenon may occur in which the measurement accuracy of various measurements related to exposure deteriorates with time due to deterioration due to contact with a liquid and irradiation of exposure light.
[0008] 特許文献 1:国際公開第 99Z49504号パンフレット  [0008] Patent Document 1: International Publication No. 99Z49504 pamphlet
特許文献 2:特開平 11—135400号公報  Patent Document 2: JP-A-11-135400
特許文献 3:特開平 3— 211812号公報 発明の開示 Patent Document 3: Japanese Patent Application Laid-Open No. 3-212812 Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、上述した事情の下になされたものであり、第 1の観点力 すると、投影光 学系を介して基板を露光する露光装置であって、前記基板を載置して移動可能な基 板ステージと;液体が供給されるプレートを有し、前記投影光学系及び前記液体を介 して前記露光に関する計測を行う計測部と;を備え、前記計測部を構成する前記プレ ートを含む少なくとも一部が交換可能に構成されていることを特徴とする第 1の露光 装置である。  [0009] The present invention has been made under the above-described circumstances. In a first aspect, the present invention is an exposure apparatus that exposes a substrate via a projection optical system. A movable substrate stage; and a measuring unit having a plate to which a liquid is supplied, and measuring the exposure via the projection optical system and the liquid. A first exposure apparatus, wherein at least a part including a port is configured to be exchangeable.
[0010] これによれば、液体が供給されるプレートを有し、投影光学系及び液体を介して前 記露光に関する計測を行う計測部のうち、プレートを含む少なくとも一部が交換可能 とされている。このため、プレート表面が液体との接触で劣化する前に、そのプレート を含む少なくとも一部を交換することで、露光に関する計測を常時高精度に行うこと ができ、ひいては高精度な露光を維持することが可能となる。  [0010] According to this, at least a part including the plate is exchangeable among the measurement units having the plate to which the liquid is supplied and performing the measurement related to the exposure through the projection optical system and the liquid. I have. For this reason, by exchanging at least a part including the plate before the plate surface is deteriorated by contact with the liquid, it is possible to always perform high-accuracy exposure measurement and maintain high-accuracy exposure. It becomes possible.
[0011] 本発明は第 2の観点力 すると、投影光学系を介して基板を露光する露光装置で あって、前記基板を載置して移動可能な基板ステージと;少なくとも 1つの端面が鏡 面加工されたプレートを有し、前記投影光学系を介して前記露光に関する計測を行 う計測部と;を備え、前記計測部を構成する前記プレートを含む少なくとも一部が交 換可能に構成されていることを特徴とする第 2の露光装置である。  According to a second aspect of the present invention, there is provided an exposure apparatus for exposing a substrate via a projection optical system, the substrate stage being capable of mounting and moving the substrate; at least one end surface having a mirror surface A measurement section having a processed plate, and performing measurement related to the exposure via the projection optical system; at least a part including the plate constituting the measurement section is configured to be replaceable. A second exposure apparatus.
[0012] これによれば、計測部を構成するプレートを含む少なくとも一部が交換可能とされて いることから、このプレート表面が計測の際の露光光の照射などにより劣化する前に 、そのプレートを含む少なくとも一部を交換することで、露光に関する計測を常時高 精度に行うことができ、ひいては高精度な露光を維持することが可能となる。また、プ レートは、その少なくとも 1つの端面が鏡面カ卩ェされていることから、プレートを含む計 測部の少なくとも一部を新たなものに交換する際に、その交換後の部品をラフに位置 決めしても、プレートの鏡面加工された端面を介して、例えば干渉計等を用いてプレ ートの位置を正確に計測することができる。従って、交換の際に計測部の一部をラフ に位置決めしても、計測の際に計測部を所望の位置に正確に位置決めすることが可 能となるので、交換に長時間をかける必要がなぐ交換に伴うダウンタイムの増加によ る装置稼動効率の低下を効果的に防止することが可能となる。 [0012] According to this, since at least a part of the plate including the plate constituting the measurement unit is replaceable, the plate can be replaced before the plate surface is deteriorated by exposure light or the like during measurement. By exchanging at least a part including, the measurement relating to the exposure can be performed with high accuracy at all times, and it is possible to maintain the exposure with high accuracy. Also, since at least one end face of the plate is mirror-finished, when replacing at least a part of the measuring section including the plate with a new one, the replaced part is roughly roughened. Even if the position is determined, the position of the plate can be accurately measured through the mirror-finished end surface of the plate, for example, using an interferometer or the like. Therefore, even if a part of the measuring unit is roughly positioned during replacement, it is possible to accurately position the measuring unit at a desired position during measurement. Increased downtime due to replacement It is possible to effectively prevent a decrease in device operation efficiency.
[0013] 本発明の第 3の観点力 すると、投影光学系を介して基板を露光する露光装置で あって、前記基板を載置して移動可能な基板ステージと;交換可能なプレートを有し 、前記投影光学系を介して前記露光に関する計測を行う計測部と;前記プレートの交 換時期を検出する検出装置と;を備えることを特徴とする第 3の露光装置である。  According to a third aspect of the present invention, there is provided an exposure apparatus for exposing a substrate via a projection optical system, comprising: a substrate stage on which the substrate is placed and movable; A third exposure apparatus, comprising: a measurement unit that performs measurement related to the exposure via the projection optical system; and a detection device that detects a time at which the plate is replaced.
[0014] これによれば、計測部の計測精度が低下し始める直前の時期を予め実験などで求 め、この時期を検出装置が検出するプレートの交換時期として予め設定しておき、検 出装置がその交換時期を検出したときにプレートの交換をすることとすることで、計測 部の計測精度が低下するより以前の最適な時期にプレートを交換することが可能とな る。すなわち、計測部による露光に関する計測の計測精度を高精度に維持すること ができるとともに、プレートの交換頻度を極力抑制することができる。従って、露光精 度を長期に渡って高精度に維持することができるとともに、プレートの交換に伴うダウ ンタイムの増加による装置稼動効率の低下を効果的に防止することが可能となる。  [0014] According to this, a time immediately before the measurement accuracy of the measurement unit starts to decrease is determined in advance by an experiment or the like, and this time is set in advance as a plate replacement time detected by the detection device, and the detection device is set in advance. If the plate is replaced when the replacement time is detected, the plate can be replaced at an optimal time before the measurement accuracy of the measuring unit is reduced. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the measurement unit with high accuracy, and to minimize the frequency of plate replacement. Therefore, it is possible to maintain the exposure accuracy with high accuracy over a long period of time, and effectively prevent a decrease in the operation efficiency of the apparatus due to an increase in downtime due to plate replacement.
[0015] 本発明は、第 4の観点力 すると、基板を露光する露光方法であって、液体が供給 されるプレートを介して前記露光に関する計測を行う計測部のうち、前記プレートを 含む少なくとも一部を交換する工程と;前記交換後に前記計測部を用いて前記露光 に関する計測を行 、、その計測結果を反映させて前記基板を露光する工程と;を含 む第 1の露光方法である。  According to a fourth aspect of the present invention, there is provided an exposure method for exposing a substrate, wherein at least one of the measurement units including the plate is included in a measurement unit that performs measurement related to the exposure via a plate to which a liquid is supplied. A first exposing method, comprising: exchanging a unit; and performing a measurement related to the exposure using the measuring unit after the exchanging, and exposing the substrate by reflecting the measurement result.
[0016] これによれば、例えばプレート表面が液体との接触で劣化する前に、液体が供給さ れるプレートを介して前記露光に関する計測を行う計測部のうち、前記プレートを含 む少なくとも一部を交換することで、計測部により露光に関する計測を高精度に行う ことができ、その計測結果を反映することで、高精度な露光が可能となる。  [0016] According to this, for example, at least a part including the plate among the measurement units that measure the exposure via the plate to which the liquid is supplied before the plate surface is deteriorated by contact with the liquid By exchanging, it is possible to measure the exposure with high accuracy by the measurement unit, and to reflect the measurement result, it becomes possible to perform the exposure with high accuracy.
[0017] 本発明は、第 5の観点力 すると、基板を露光する露光方法であって、少なくとも 1 つの端面が鏡面加工されたプレートを介して前記露光に関する計測を行う計測部の うち、前記プレートを含む少なくとも一部を交換する工程と;前記交換後の前記プレ ートの位置を前記端面を介して計測し、前記計測部を用いて前記計測を行う工程と; 前記計測結果を反映させて前記基板を露光する工程と;を含む第 2の露光方法であ る。 [0018] これによれば、例えばプレート表面が計測の際の露光光の照射などにより劣化する 前に、そのプレートを含む少なくとも一部を交換し、前記プレートの位置を前記端面 を介して計測して前記計測部を用いて露光に関する計測を行うことで、露光に関する 計測を高精度に行うことができるとともに、プレートを含む計測部の少なくとも一部を 新たなものに交換する際に、その交換後の部品をラフに位置決めしても、プレートの 鏡面加工された端面を介してプレートの位置を正確に計測することができる。従って 、交換の際に計測部の一部をラフに位置決めしても、計測の際に計測部を所望の位 置に正確に位置決めすることが可能となる。また、前記計測結果を反映することで、 高精度な露光が可能となる。 According to a fifth aspect of the present invention, there is provided an exposure method for exposing a substrate, wherein at least one end face of the measurement unit that performs measurement related to the exposure is processed through a mirror-finished plate. Exchanging at least a part of the plate; measuring the position of the plate after the exchange via the end face, and performing the measurement using the measuring unit; reflecting the measurement result And a step of exposing the substrate. [0018] According to this, for example, before the plate surface is deteriorated due to exposure light or the like at the time of measurement, at least a part including the plate is replaced, and the position of the plate is measured via the end face. By performing exposure-related measurement using the measurement unit, the exposure-related measurement can be performed with high accuracy, and when replacing at least a part of the measurement unit including the plate with a new one, Even if the part is roughly positioned, the position of the plate can be accurately measured through the mirror-finished end surface of the plate. Therefore, even if a part of the measuring unit is roughly positioned at the time of replacement, the measuring unit can be accurately positioned at a desired position at the time of measurement. In addition, by reflecting the measurement result, highly accurate exposure can be performed.
[0019] 本発明は、第 6の観点力 すると、基板を露光する露光方法であって、プレートを介 して前記露光に関する計測を行う計測部を用いて前記計測を行う工程と;前記プレ ートの交換時期を検出し、前記プレートを交換する工程と;前記計測結果を反映させ て前記基板を露光する工程と;を含む第 3の露光方法である。  According to a sixth aspect of the present invention, there is provided an exposure method for exposing a substrate, the method comprising: performing a measurement using a measurement unit that performs measurement related to the exposure via a plate; A third exposing method comprising: detecting a timing of exchanging the plate and exchanging the plate; and exposing the substrate by reflecting the measurement result.
[0020] これによれば、計測部の計測精度が低下し始める直前の時期を予め実験などで求 め、この時期をプレートの交換時期として予め設定しておく。そして、その交換時期を 検出したときにプレートの交換をすることで、計測部の計測精度が低下するより以前 の最適な時期にプレートを交換することが可能となる。すなわち、計測部による露光 に関する計測の計測精度を高精度に維持することができるとともに、プレートの交換 頻度を極力抑制することができる。また、前記計測結果を反映することで、高精度な 露光が可能となる。  [0020] According to this, the time immediately before the measurement accuracy of the measurement unit starts to decrease is determined in advance by an experiment or the like, and this time is set in advance as the plate replacement time. Then, by replacing the plate when the replacement time is detected, the plate can be replaced at an optimal time before the measurement accuracy of the measuring unit is reduced. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the measurement unit with high accuracy, and to minimize the frequency of plate replacement. In addition, by reflecting the measurement result, highly accurate exposure can be performed.
[0021] また、リソグラフイエ程において、本発明の第 1一第 3の露光装置を用いて基板を露 光してその基板上にデバイスパターンを形成することにより、高集積度のマイクロデ バイスの生産性を向上することが可能である。従って、本発明は、更に別の観点から すると、本発明の第 1一第 3の露光装置のいずれかを用いるデバイス製造方法である とも言える。  In the lithographic process, the substrate is exposed using the first to third exposure apparatuses of the present invention to form a device pattern on the substrate, thereby producing a highly integrated microdevice. It is possible to improve the performance. Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using any of the first to third exposure apparatuses of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]第 1の実施形態に係る露光装置を示す概略図である。 FIG. 1 is a schematic view showing an exposure apparatus according to a first embodiment.
[図 2]ステージ装置を示す斜視図である。 [図 3(A)]計測ステージを示す斜視図である。 FIG. 2 is a perspective view showing a stage device. FIG. 3 (A) is a perspective view showing a measurement stage.
[図 3(B)]計測ステージ力も計測テーブルが取り外された状態を示す斜視図である。  FIG. 3 (B) is a perspective view showing a state in which a measurement stage force is also removed from a measurement stage force.
[図 4]計測ステージの縦断面図である。  FIG. 4 is a longitudinal sectional view of a measurement stage.
[図 5]自重キャンセラの縦断面図である。  FIG. 5 is a longitudinal sectional view of a self-weight canceller.
[図 6]自重キャンセラの作用を説明するための模式図である。  FIG. 6 is a schematic diagram for explaining the operation of the self-weight canceller.
[図 7]第 1の実施形態の露光装置の制御系の主要な構成を示すブロック図である。  FIG. 7 is a block diagram showing a main configuration of a control system of the exposure apparatus of the first embodiment.
[図 8(A)]第 1の実施形態の並行処理動作を説明するための平面図(その 1)である。  FIG. 8 (A) is a plan view (part 1) for explaining the parallel processing operation of the first embodiment.
[図 8(B)]第 1の実施形態の並行処理動作を説明するための平面図(その 2)である。  FIG. 8 (B) is a plan view (part 2) for explaining the parallel processing operation of the first embodiment.
[図 9(A)]第 1の実施形態の並行処理動作を説明するための平面図(その 3)である。  FIG. 9 (A) is a plan view (part 3) for explaining the parallel processing operation of the first embodiment.
[図 9(B)]第 1の実施形態の並行処理動作を説明するための平面図(その 4)である。  FIG. 9 (B) is a plan view (part 4) for explaining the parallel processing operation of the first embodiment.
[図 10]第 1の実施形態の並行処理動作を説明するための平面図(その 3)である。  FIG. 10 is a plan view (part 3) for explaining the parallel processing operation of the first embodiment.
[図 11]第 2の実施形態に係る計測ステージ及び搬出入機構を示す斜視図である。  FIG. 11 is a perspective view showing a measurement stage and a loading / unloading mechanism according to a second embodiment.
[図 12]計測ステージ力もプレートが搬出される状態を示す斜視図である。  FIG. 12 is a perspective view showing a state in which a plate is also carried out with respect to a measurement stage force.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 《第 1の実施形態》  << First Embodiment >>
以下、本発明の第 1の実施形態を図 1一図 10に基づいて説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0024] 図 1には、第 1の実施形態の露光装置 100の概略構成が示されている。この露光装 置 100は、ステップ ·アンド'スキャン方式の投影露光装置、すなわちいわゆるスキヤ ユング'ステツパ (スキャナとも呼ばれる)である。この露光装置 100は、照明系 10、マ スクとしてのレチクル Rを保持するレチクルステージ RST、投影ユニット PU、基板ステ ージとしてのウェハステージ WST及び計測部を構成する計測ステージ MSTを有す るステージ装置 50、及びこれらの制御系等を備えている。ウェハステージ WST上に は、基板としてのウェハ Wが載置されるようになって!/、る。  FIG. 1 shows a schematic configuration of an exposure apparatus 100 according to the first embodiment. The exposure apparatus 100 is a step-and-scan projection exposure apparatus, that is, a so-called scanning Jung 'stepper (also called a scanner). The exposure apparatus 100 includes a stage having an illumination system 10, a reticle stage RST holding a reticle R as a mask, a projection unit PU, a wafer stage WST as a substrate stage, and a measurement stage MST forming a measurement unit. An apparatus 50 and a control system thereof are provided. The wafer W as a substrate is now mounted on the wafer stage WST!
[0025] 前記照明系 10は、不図示のレチクルブラインドで規定されたレチクル R上のスリット 状の照明領域を照明光 (露光光) ILによりほぼ均一な照度で照明する。ここで、照明 光 ILとしては、一例として ArFエキシマレーザ光(波長 193nm)が用いられている。  The illumination system 10 illuminates a slit-shaped illumination area on a reticle R defined by a reticle blind (not shown) with illumination light (exposure light) IL at a substantially uniform illuminance. Here, an ArF excimer laser beam (wavelength 193 nm) is used as an example of the illumination light IL.
[0026] 前記レチクルステージ RST上には、回路パターンなどがそのパターン面(図 1にお ける下面)に形成されたレチクル Rが、例えば真空吸着により固定されている。レチク ルステージ RSTは、例えばリニアモータ等を含むレチクルステージ駆動部 11 (図 1で は図示せず図 7参照)によって、照明系 10の光軸 (後述する投影光学系 PLの光軸 A Xに一致)に垂直な XY平面内で微少駆動可能であるとともに、所定の走査方向(ここ では図 1における紙面内左右方向である Y軸方向とする)に指定された走査速度で 駆動可能となっている。 On reticle stage RST, reticle R on which a circuit pattern or the like is formed on its pattern surface (the lower surface in FIG. 1) is fixed, for example, by vacuum suction. Retic The reticle stage RST is driven by a reticle stage drive unit 11 including a linear motor or the like (not shown in FIG. 1; see FIG. 7). In addition to being capable of minute drive in an XY plane perpendicular to the plane, it can be driven at a specified scan direction (here, the Y-axis direction, which is the horizontal direction in FIG. 1).
[0027] レチクルステージ RSTのステージ移動面内の位置(Z軸回りの回転を含む)は、レ チタルレーザ干渉計 (以下、「レチクル干渉計」という) 116によって、移動鏡 15 (実際 には、 Y軸方向に直交する反射面を有する Y移動鏡と X軸方向に直交する反射面を 有する X移動鏡とが設けられている)を介して、例えば 0. 5— lnm程度の分解能で 常時検出される。このレチクル干渉計 116の計測値は、主制御装置 20 (図 1では不 図示、図 7参照)に送られ、主制御装置 20では、このレチクル干渉計 116の計測値に 基づいてレチクルステージ RSTの X軸方向、 Y軸方向及び 0 z方向(Z軸回りの回転 方向)の位置を算出するとともに、この算出結果に基づいてレチクルステージ駆動部 11を制御することで、レチクルステージ RSTの位置 (及び速度)を制御する。  The position (including rotation about the Z axis) of the reticle stage RST in the stage movement plane is adjusted by a movable mirror 15 (actually, Y-axis) by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 116. (A moving Y mirror having a reflecting surface perpendicular to the axial direction and an X moving mirror having a reflecting surface perpendicular to the X-axis direction are provided). You. The measured value of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 1, see FIG. 7), and main controller 20 controls reticle stage RST based on the measured value of reticle interferometer 116. By calculating the positions in the X-axis direction, the Y-axis direction, and the 0-z direction (the rotation direction around the Z-axis), and controlling the reticle stage driving unit 11 based on the calculation result, the position of the reticle stage RST (and Speed).
[0028] レチクル Rの上方には、投影光学系 PLを介してレチクル R上の一対のレチクルァラ ィメントマークとこれらに対応する計測ステージ MST上の一対の基準マーク(以下、「 第 1基準マーク」と呼ぶ)とを同時に観察するための露光波長の光を用いた TTR( Through The Reticle)ァライメント系力も成る一対のレチクルァライメント検出系 RAa, RAbが X軸方向に所定距離隔てて設けられて 、る。これらのレチクルァライメント検 出系 RAa, RAbとしては、例えば特開平 7— 176468号公報及びこれに対応する米 国特許第 5, 646, 413号などに開示されるものと同様の構成のものが用いられてい る。本国際出願で指定した指定国 (又は選択した選択国)の国内法令が許す限りに ぉ 、て、上記公報及び対応米国特許の開示を援用して本明細書の記載の一部とす る。  [0028] Above the reticle R, a pair of reticle alignment marks on the reticle R via the projection optical system PL and a pair of reference marks corresponding to these on the measurement stage MST (hereinafter, referred to as a "first reference mark"). And a pair of reticle alignment detection systems RAa and RAb, which also have a TTR (Through The Reticle) alignment system using light of an exposure wavelength for simultaneously observing You. As these reticle alignment detection systems RAa and RAb, those having the same configuration as those disclosed in, for example, JP-A-7-176468 and corresponding US Pat. No. 5,646,413 are used. Used. To the extent permitted by national legislation in the designated country (or selected elected country) specified in this international application, the disclosures of the above-mentioned publications and corresponding US patents will be incorporated herein by reference.
[0029] 前記投影ユニット PUは、レチクルステージ RSTの図 1における下方に配置されて いる。投影ユニット PUは、鏡筒 40と、該鏡筒 40内に所定の位置関係で保持された 複数の光学素子カゝら成る投影光学系 PLとを含んで構成されて ヽる。投影光学系 PL としては、例えば Z軸方向の共通の光軸 AXを有する複数のレンズ(レンズエレメント) 力も成る屈折光学系が用いられている。この投影光学系 PLは、例えば両側テレセン トリックで所定の投影倍率 (例えば 1Z4倍又は 1Z5倍)を有する。このため、照明系 10からの照明光 ILによってレチクル Rの照明領域が照明されると、このレチクル Rを 通過した照明光 ILにより、投影光学系 PL (投影ユニット PU)を介してその照明領域 内のレチクル Rの回路パターンの縮小像(回路パターンの一部の縮小像)が表面に レジスト (感光剤)が塗布されたウェハ上に形成される。 [0029] The projection unit PU is arranged below the reticle stage RST in FIG. The projection unit PU includes a lens barrel 40 and a projection optical system PL composed of a plurality of optical element lenses held in a predetermined positional relationship within the lens barrel 40. As the projection optical system PL, for example, a plurality of lenses (lens elements) having a common optical axis AX in the Z-axis direction Refractive optics that also provide power are used. The projection optical system PL has a predetermined projection magnification (for example, 1Z4 times or 1Z5 times), for example, on both sides telecentric. Therefore, when the illumination area of the reticle R is illuminated by the illumination light IL from the illumination system 10, the illumination light IL that has passed through the reticle R causes the illumination area IL to pass through the projection optical system PL (projection unit PU). A reduced image of the circuit pattern of reticle R (a reduced image of a part of the circuit pattern) is formed on a wafer having a surface coated with a resist (photosensitive agent).
[0030] また、図示は省略されている力 投影光学系 PLを構成する複数のレンズのうち、特 定の複数のレンズは、主制御装置 20からの指令に基づいて、結像特性補正コント口 ーラ 381 (図 7参照)によって制御され、投影光学系 PLの光学特性 (結像特性を含む )、例えば倍率、ディストーション、コマ収差、及び像面湾曲(像面傾斜を含む)などを 調整できるようになって!/、る。  [0030] Further, among the plurality of lenses constituting the force projection optical system PL (not shown), specific plural lenses are formed based on an instruction from the main control device 20. 381 (see Fig. 7) to adjust the optical characteristics (including the imaging characteristics) of the projection optical system PL, such as magnification, distortion, coma, and field curvature (including the image plane tilt). Like! /
[0031] なお、本実施形態の露光装置 100では、後述するように液浸法を適用した露光が 行われるため、開口数 NAが実質的に増大することに伴いレチクル側の開口が大きく なる。このため、レンズのみで構成する屈折光学系においては、ペッツヴァルの条件 を満足することが困難となり、投影光学系が大型化する傾向にある。力かる投影光学 系の大型化を避けるために、ミラーとレンズとを含んで構成される反射屈折系(カタデ ィ ·ォプトリック系)を用 、ても良 、。  [0031] In the exposure apparatus 100 of the present embodiment, since the exposure using the liquid immersion method is performed as described later, the aperture on the reticle side increases as the numerical aperture NA substantially increases. For this reason, it is difficult for the refractive optical system including only the lens to satisfy the Petzval condition, and the projection optical system tends to be large. In order to avoid a large projection optical system, a catadioptric system including a mirror and a lens may be used.
[0032] また、本実施形態の露光装置 100では、液浸法を適用した露光を行うため、投影 光学系 PLを構成する最も像面側(ウエノヽ W側)の光学素子としてのレンズ (以下、「 先端レンズ」という) 91の近傍には、液浸装置 132を構成する液体供給ノズル 51Aと 、液体回収ノズル 51Bとが設けられている。  Further, in the exposure apparatus 100 of the present embodiment, since the exposure is performed by applying the liquid immersion method, a lens (hereinafter, referred to as a lens) as an optical element closest to the image plane (side of the wafer W) constituting the projection optical system PL. In the vicinity of 91, a liquid supply nozzle 51A and a liquid recovery nozzle 51B that constitute the liquid immersion device 132 are provided.
[0033] 前記液体供給ノズル 51 Aには、その一端が液体供給装置 288 (図 1では不図示、 図 7参照)に接続された不図示の供給管の他端が接続されており、前記液体回収ノ ズル 51Bには、その一端が液体回収装置 292 (図 1では不図示、図 7参照)に接続さ れた不図示の回収管の他端が接続されている。  [0033] The liquid supply nozzle 51A is connected to the other end of a supply pipe (not shown) connected at one end to a liquid supply device 288 (not shown in Fig. 1, see Fig. 7). The collection nozzle 51B is connected to the other end of a collection pipe (not shown) whose one end is connected to a liquid collection device 292 (not shown in FIG. 1, see FIG. 7).
[0034] 前記液体供給装置 288は、液体のタンク、加圧ポンプ、温度制御装置、並びに供 給管に対する液体の供給'停止を制御するためのバルブ等を含んで構成されている 。ノ レブとしては、例えば液体の供給 '停止のみならず、流量の調整も可能となるよう に、流量制御弁を用いることが望ましい。前記温度制御装置は、液体タンク内の液体 の温度を、露光装置本体が収納されているチャンバ (不図示)内の温度と同程度の 温度に調整する。 [0034] The liquid supply device 288 includes a liquid tank, a pressurizing pump, a temperature control device, a valve for controlling the stop of the supply of the liquid to the supply pipe, and the like. As a knob, for example, it is possible to adjust the flow rate as well as the supply of liquid. It is desirable to use a flow control valve. The temperature controller adjusts the temperature of the liquid in the liquid tank to a temperature substantially equal to the temperature in a chamber (not shown) in which the exposure apparatus main body is housed.
[0035] 前記液体回収装置 292は、液体のタンク及び吸引ポンプ、並びに回収管を介した 液体の回収 ·停止を制御するためのバルブ等を含んで構成されている。ノ レブとして は、前述した液体供給装置 288側のバルブに対応して流量制御弁を用いることが望 ましい。  [0035] The liquid recovery device 292 is configured to include a liquid tank and a suction pump, a valve for controlling the recovery / stop of the liquid via the recovery pipe, and the like. As the knob, it is desirable to use a flow control valve corresponding to the valve on the liquid supply device 288 described above.
[0036] 上記の液体としては、ここでは、 ArFエキシマレーザ光(波長 193nmの光)が透過 する超純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものと する。超純水は、半導体製造工場等で容易に大量に入手できると共に、ウェハ上の フォトレジストや光学レンズ等に対する悪影響がない利点がある。  [0036] As the liquid, here, ultrapure water (hereinafter, simply referred to as "water" unless otherwise required) through which ArF excimer laser light (light having a wavelength of 193 nm) is transmitted is used. And Ultrapure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist or optical lenses on the wafer.
[0037] ArFエキシマレーザ光に対する水の屈折率 nは、ほぼ 1. 44である。この水の中で は、照明光 ILの波長は、 193nm X lZn=約 134nmに短波長化される。  [0037] The refractive index n of water with respect to ArF excimer laser light is approximately 1.44. In this water, the wavelength of the illumination light IL is shortened to 193 nm XlZn = about 134 nm.
[0038] 前記液体供給装置 288及び液体回収装置 292は、それぞれコントローラを具備し ており、それぞれのコントローラは、主制御装置 20によって制御されるようになってい る(図 7参照)。液体供給装置 288のコントローラは、主制御装置 20からの指示に応じ 、供給管に接続されたバルブを所定開度で開き、液体供給ノズル 51 Aを介して先端 レンズ 91とウェハ Wとの間に水を供給する。また、このとき、液体回収装置 292のコン トローラは、主制御装置 20からの指示に応じ、回収管に接続されたバルブを所定開 度で開き、液体回収ノズル 51Bを介して先端レンズ 91とウェハ Wとの間力も液体回 収装置 292 (液体のタンク)の内部に水を回収する。このとき、主制御装置 20は、先 端レンズ 91とウェハ Wとの間に液体供給ノズル 51 A力 供給される水の量と、液体 回収ノズル 51Bを介して回収される水の量とが常に等しくなるように、液体供給装置 2 88のコントローラ、液体回収装置 292のコントローラに対して指令を与える。従って、 先端レンズ 91とウェハ Wとの間に、一定量の水 Lq (図 1参照)が保持される。この場 合、先端レンズ 91とウェハ Wとの間に保持された水 Lqは、常に入れ替わつている。  The liquid supply device 288 and the liquid recovery device 292 each include a controller, and each controller is controlled by the main controller 20 (see FIG. 7). The controller of the liquid supply device 288 opens the valve connected to the supply pipe at a predetermined opening in accordance with an instruction from the main control device 20, and connects the front end lens 91 and the wafer W via the liquid supply nozzle 51A. Supply water. At this time, the controller of the liquid recovery device 292 opens the valve connected to the recovery pipe at a predetermined opening in accordance with an instruction from the main control device 20, and connects the tip lens 91 and the wafer via the liquid recovery nozzle 51B. The force between W and the liquid is collected inside the liquid recovery unit 292 (liquid tank). At this time, main controller 20 constantly determines the amount of water supplied by liquid supply nozzle 51A between tip lens 91 and wafer W, and the amount of water recovered through liquid recovery nozzle 51B. A command is given to the controller of the liquid supply device 288 and the controller of the liquid recovery device 292 so as to be equal. Therefore, a certain amount of water Lq (see FIG. 1) is held between the tip lens 91 and the wafer W. In this case, the water Lq held between the tip lens 91 and the wafer W is constantly replaced.
[0039] 上記の説明から明らかなように、本実施形態の液浸装置 132は、上記液体供給装 置 288、液体回収装置 292、供給管、回収管、液体供給ノズル 51 A及び液体回収ノ ズル 5 IB等を含んで構成された、局所液浸装置である。 As is clear from the above description, the liquid immersion device 132 of this embodiment includes the liquid supply device 288, the liquid recovery device 292, the supply pipe, the recovery pipe, the liquid supply nozzle 51A, and the liquid recovery nozzle. This is a local liquid immersion apparatus configured to include chisel 5 IB and the like.
[0040] なお、投影ユニット PU下方に計測ステージ MSTが位置する場合にも、上記と同様 に計測テーブル MTBと先端レンズ 91との間に水を満たすことが可能である。  When the measurement stage MST is located below the projection unit PU, the space between the measurement table MTB and the tip lens 91 can be filled with water in the same manner as described above.
[0041] なお、上記の説明では、その説明を簡単にするため、液体供給ノズルと液体回収ノ ズルとがそれぞれ 1つずつ設けられているものとした力 これに限らず、例えば、国際 公開第 99Z49504号パンフレットに開示されるように、ノズルを多数有する構成を採 用することとしても良い。要は、投影光学系 PLを構成する最下端の光学部材 (先端レ ンズ) 91とウェハ Wとの間に液体を供給することができるのであれば、その構成はい かなるものであっても良い。  In the above description, for simplicity of description, a force provided with one liquid supply nozzle and one liquid recovery nozzle is not limited to this. As disclosed in the 99Z49504 pamphlet, a configuration having many nozzles may be employed. The point is that any configuration can be used as long as the liquid can be supplied between the lowermost optical member (tip lens) 91 and the wafer W constituting the projection optical system PL. .
[0042] なお、不図示ではあるが、水 Lqが保持される液浸領域の外側、例えば液体供給ノ ズル 51A、液体回収ノズル 5 IBの外側に、例えば光ファイバ式の漏水センサが設置 されており、主制御装置 20は、この漏水センサの出力に基づいて漏水発生を瞬時に 検知できる構成となって 、る。  Although not shown, for example, an optical fiber type water leak sensor is installed outside the liquid immersion area where the water Lq is held, for example, outside the liquid supply nozzle 51A and the liquid recovery nozzle 5IB. Therefore, main controller 20 is configured to be able to instantaneously detect the occurrence of water leakage based on the output of this water leakage sensor.
[0043] 前記ステージ装置 50は、フレームキャスタ FCと、該フレームキャスタ FC上に設けら れたベース盤 12と、該ベース盤 12の上面の上方に配置されたウェハステージ WST 及び計測ステージ MSTと、これらのステージ WST、 MSTの位置を計測する干渉計 16、 18を含む位置計測装置としての干渉計システム 118 (図 7参照)と、ステージ WS T、 MSTを駆動するステージ駆動部 124 (図 7参照)と、を備えている。  [0043] The stage device 50 includes a frame caster FC, a base plate 12 provided on the frame caster FC, a wafer stage WST and a measurement stage MST disposed above the upper surface of the base plate 12. An interferometer system 118 (see Fig. 7) as a position measuring device including interferometers 16 and 18 for measuring the positions of these stages WST and MST, and a stage drive 124 (see Fig. 7) for driving the stages WST and MST ).
[0044] 前記フレームキャスタ FCは、ステージ装置 50を斜視図にて示す図 2から分力るよう に、その X側方向一側と他側の端部近傍に Y軸方向を長手方向とし上方に突出した 凸部 FCa, FCbがー体的に形成された概略平板状の部材から成る。  As shown in FIG. 2 which shows the stage device 50 in a perspective view, the frame caster FC has a Y-axis direction as a longitudinal direction near one end in the X direction and an end near the other side. It is composed of a substantially flat member in which protruding projections FCa and FCb are formed in a body.
[0045] 前記ベース盤 12は、定盤とも呼ばれる板状部材カもなり、フレームキャスタ FCの前 記凸部 FCa, FCbに挟まれた領域上に配置されている。ベース盤 12の上面は平坦 度が非常に高く仕上げられ、ウェハステージ WST及び計測ステージ MSTの移動の 際のガイド面とされている。  [0045] The base board 12 also serves as a plate-like member, which is also referred to as a surface board, and is arranged on an area between the above-mentioned convex portions FCa and FCb of the frame caster FC. The upper surface of the base plate 12 has a very high degree of flatness and serves as a guide surface when the wafer stage WST and the measurement stage MST are moved.
[0046] 前記ウェハステージ WSTは、図 2に示されるように、ベース盤 12上に配置されたゥ ェハステージ本体 28と、該ウェハステージ本体 28上に不図示の Ζ·チルト駆動機構 を介して搭載されたウェハテーブル WTBとを備えている。 Ζ·チルト駆動機構は、実 際には、ウェハステージ本体 28上でウェハテーブル WTBを 3点で支持する 3つのァ クチユエータ (例えば、ボイスコイルモータ又は電磁石)等を含んで構成され、ウェハ テーブル WTBを Z軸方向、 0 x方向(X軸回りの回転方向)、 0 y方向(Y軸回りの回 転方向)の 3自由度方向に微小駆動する。 As shown in FIG. 2, the wafer stage WST is mounted on a wafer stage main body 28 disposed on the base board 12 via a tilt driving mechanism (not shown) on the wafer stage main body 28. Wafer table WTB. Ζ The tilt drive mechanism is In this case, the wafer stage WTB is configured to include three actuators (for example, a voice coil motor or an electromagnet) that support the wafer table WTB at three points on the wafer stage body 28, and the wafer table WTB is moved in the Z-axis direction and the 0x direction. (Rotation direction around X axis), 0 Micro drive in three directions of freedom of y direction (rotation direction around Y axis).
[0047] 前記ウェハステージ本体 28は、断面矩形枠状で X軸方向に延びる中空部材によつ て構成されている。このウェハステージ本体 28の下面には、複数、例えば 4つの不図 示の気体静圧軸受け、例えばエアベアリングが設けられ、これらのエアベアリングを 介してウェハステージ WSTが前述のガイド面の上方に数 μ m程度のクリアランスを 介して非接触で浮上支持されて 、る。  The wafer stage main body 28 is formed of a hollow member having a rectangular cross section and extending in the X-axis direction. On the lower surface of the wafer stage main body 28, a plurality of, for example, four, not shown, gas static pressure bearings, for example, air bearings are provided, and through these air bearings, the wafer stage WST is provided above the above-mentioned guide surface by a number. It is levitated and supported without contact through a clearance of about μm.
[0048] 前記フレームキャスタ FCの凸部 FCaの上方には、図 2に示されるように、 Y軸方向 に延びる Y軸用の固定子 86が配置されている。同様に、フレームキャスタ FCの凸部 FCbの上方には、 Y軸方向に延びる Y軸用の固定子 87が、配置されている。これら の Y軸用の固定子 86、 87は、それぞれの下面に設けられた不図示の気体静圧軸受 、例えばエアベアリングによって凸部 FCa, FCbの上面に対して所定のクリアランスを 介して浮上支持されている。 Y軸用の固定子 86, 87は、本実施形態では、複数の永 久磁石群力 成る磁極ユニットして構成されて 、る。  [0048] Above the protrusion FCa of the frame caster FC, as shown in FIG. 2, a Y-axis stator 86 extending in the Y-axis direction is arranged. Similarly, a Y-axis stator 87 extending in the Y-axis direction is arranged above the convex portion FCb of the frame caster FC. These Y-axis stators 86 and 87 are supported by floating air bearings (not shown) provided on the lower surfaces thereof, for example, air bearings, through predetermined clearances with respect to the upper surfaces of the convex portions FCa and FCb. Have been. In the present embodiment, the Y-axis stators 86 and 87 are configured as magnetic pole units having a plurality of permanent magnet group forces.
[0049] 前記ウェハステージ本体 28の内部には、 X軸方向の可動子としての永久磁石群を 有する磁極ユニット 90が設けられて!/、る。  [0049] Inside the wafer stage main body 28, a magnetic pole unit 90 having a permanent magnet group as a mover in the X-axis direction is provided.
[0050] 磁極ユニット 90の内部空間には、 X軸方向に延びる X軸用の固定子 80が揷入され ている。この X軸用の固定子 80は、 X軸方向に沿って所定間隔で配置された複数の 電機子コイルを内蔵する電機子ユニットによって構成されている。この場合、磁極ュ ニット 90と電機子ユニットから成る X軸用の固定子 80とによって、ウェハステージ WS Tを X軸方向に駆動するムービングマグネット型の X軸リニアモータが構成されて 、る 。以下においては、適宜、上記 X軸リニアモータを、その固定子 (X軸用の固定子) 80 と同一の符号を用いて、 X軸リニアモータ 80と呼ぶものとする。なお、ムービングマグ ネット型のリニアモータに代えて、ムービングコイル型のリニアモータを用いても良い。  An X-axis stator 80 extending in the X-axis direction is inserted into the internal space of the magnetic pole unit 90. The X-axis stator 80 is constituted by an armature unit having a plurality of armature coils arranged at predetermined intervals along the X-axis direction. In this case, a moving magnet type X-axis linear motor that drives the wafer stage WST in the X-axis direction is configured by the magnetic pole unit 90 and the X-axis stator 80 including an armature unit. Hereinafter, the X-axis linear motor will be referred to as the X-axis linear motor 80 using the same reference numerals as those of the stator (stator for the X-axis) 80 as appropriate. Note that a moving coil type linear motor may be used instead of the moving magnet type linear motor.
[0051] 前記 X軸用の固定子 80の長手方向の一側と他側の端部には、例えば Y軸方向に 沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットから成 る可動子 82、 83力 それぞれ固定されている。これらの可動子 82、 83のそれぞれは 、前述した Y軸用の固定子 86、 87にそれぞれ内側カゝら挿入されている。すなわち、 本実施形態では、電機子ユニットから成る可動子 82、 83と磁極ユニットから成る Y軸 用の固定子 86, 87とによって、ムービングコイル型の Y軸リニアモータが構成されて いる。以下においては、上記 2つの Y軸リニアモータのそれぞれを、それぞれの可動 子 82、 83と同一の符号を用いて、適宜、 Y軸リニアモータ 82、 Y軸リニアモータ 83と も呼ぶものとする。なお、 Y軸リニアモータ 82, 83として、ムービングマグネット型のリ ニァモータを用いても良い。 [0051] An armature unit including a plurality of armature coils arranged at predetermined intervals along the Y-axis direction is provided at one end and the other side in the longitudinal direction of the X-axis stator 80, for example. Consisting of Mover 82, 83 force is fixed respectively. Each of these movers 82 and 83 is inserted into the above-mentioned stator 86 and 87 for the Y-axis, respectively. That is, in the present embodiment, a moving coil type Y-axis linear motor is configured by the movers 82 and 83 formed of the armature unit and the Y-axis stators 86 and 87 formed of the magnetic pole unit. In the following, the two Y-axis linear motors will be referred to as the Y-axis linear motor 82 and the Y-axis linear motor 83, respectively, using the same reference numerals as the movers 82 and 83, respectively. Note that moving magnet type linear motors may be used as the Y-axis linear motors 82 and 83.
[0052] すなわち、ウェハステージ WSTは、 X軸リニアモータ 80により、 X軸方向に駆動さ れるとともに、一対の Y軸リニアモータ 82, 83によって X軸リニアモータ 80と一体で Y 軸方向に駆動される。また、ウェハステージ WSTは、 Y軸リニアモータ 82, 83が発生 する Y軸方向の駆動力を僅かに異ならせることにより、 Θ z方向にも回転駆動される。  That is, the wafer stage WST is driven in the X-axis direction by the X-axis linear motor 80, and is driven in the Y-axis direction integrally with the X-axis linear motor 80 by the pair of Y-axis linear motors 82 and 83. You. The wafer stage WST is also driven to rotate in the z-direction by slightly varying the driving force in the Y-axis direction generated by the Y-axis linear motors 82 and 83.
[0053] 前記ウェハテーブル WTB上には、ウェハ Wを保持するウェハホルダ 70が設けられ ている。ウェハホルダ 70は、板状の本体部と、該本体部の上面に固定されその中央 にウェハ Wの直径より 2mm程度直径が大きな円形開口が形成された補助プレートと を備えている。この補助プレートの円形開口内部の本体部の領域には、多数のピン が配置されており、その多数のピンによってウェハ Wが支持された状態で真空吸着さ れている。この場合、ウェハ Wが真空吸着された状態では、そのウェハ W表面と補助 プレートの表面との高さがほぼ同一の高さとなるようになつている。  [0053] On the wafer table WTB, a wafer holder 70 for holding the wafer W is provided. The wafer holder 70 includes a plate-shaped main body, and an auxiliary plate fixed to the upper surface of the main body and having a circular opening formed at the center thereof having a diameter larger than the diameter of the wafer W by about 2 mm. A large number of pins are arranged in a region of the main body inside the circular opening of the auxiliary plate, and the wafer W is vacuum-sucked in a state where the wafer W is supported by the large number of pins. In this case, when the wafer W is vacuum-sucked, the height of the surface of the wafer W and the surface of the auxiliary plate are almost the same.
[0054] また、ウェハテーブル WTBの上面には、図 2に示されるように、 X軸方向の一端 (一 X側端)に X軸に直交する反射面を有する X移動鏡 17Xが Y軸方向に延設され、 Y軸 方向の一端( + Y側端)〖こ Y軸に直交する反射面を有する Y移動鏡 17Yが X軸方向 に延設されている。これらの移動鏡 17X, 17Yの各反射面には、図 2に示されるよう に、後述する干渉計システム 118 (図 7参照)を構成する X軸干渉計 46, Y軸干渉計 18からの干渉計ビーム (測長ビーム)がそれぞれ投射され、各干渉計 46、 18ではそ れぞれの反射光を受光することで、各反射面の基準位置 (一般には投影ユニット PU 側面や、オファクシス'ァライメント系 ALG (図 7,図 8 (A)等参照)の側面に固定ミラ 一を配置し、そこを基準面とする)からの計測方向の変位を計測する。 Y軸干渉計 18 は、投影光学系 PLの投影中心 (光軸 AX)及びァライメント系 ALGの検出中心を結 ぶ Y軸に平行な測長軸を有しており、 X軸干渉計 46は、 Y軸干渉計 18の測長軸と投 影光学系 PLの投影中心で垂直に交差する測長軸を有している(図 8 (A)等参照)。 As shown in FIG. 2, an X movable mirror 17X having a reflecting surface orthogonal to the X axis at one end (one X side end) in the X axis direction is provided on the upper surface of wafer table WTB in the Y axis direction. One end (+ Y side end) in the Y-axis direction is provided, and a Y movable mirror 17Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction. As shown in FIG. 2, each of the reflecting surfaces of these movable mirrors 17X and 17Y has an interference from an X-axis interferometer 46 and a Y-axis interferometer 18, which constitute an interferometer system 118 (see FIG. 7) described later. A measuring beam (length measuring beam) is projected, and each of the interferometers 46 and 18 receives the respective reflected light, so that the reference position of each reflecting surface (generally, the side of the projection unit PU and the Opacity alignment) A fixed mirror is placed on the side of the system ALG (see Fig. 7 and Fig. 8 (A) etc.), and the displacement in the measurement direction from the reference mirror is measured. Y-axis interferometer 18 Has a length measuring axis parallel to the Y axis connecting the projection center (optical axis AX) of the projection optical system PL and the detection center of the alignment system ALG, and the X axis interferometer 46 is a Y axis interferometer 18. It has a length measurement axis that vertically intersects with the length measurement axis at the projection center of the projection optical system PL (see Fig. 8 (A), etc.).
[0055] 前記 Y軸干渉計 18は、少なくとも 3本の光軸を有する多軸干渉計であり、各光軸の 出力値は独立に計測できるようになって 、る。この Y軸干渉計 18の出力値 (計測値) は、図 7に示されるように、主制御装置 20に供給され、主制御装置 20では Y軸干渉 計 18からの出力値に基づいて、ウェハテーブル WTBの Y軸方向の位置 (Y位置)の みならず、 X軸回りの回転量 (ピッチング量)及び Z軸回りの回転量 (ョーイング量)を も計測できるようになつている。また、 X軸干渉計 46は、少なくとも 2本の光軸を有する 多軸干渉計であり、各光軸の出力値は独立に計測できるようになつている。この X軸 干渉計 46の出力値 (計測値)は、主制御装置 20に供給され、主制御装置 20では X 軸干渉計 46からの出力値に基づいて、ウェハテーブル WTBの X軸方向の位置 (X 位置)のみならず、 Y軸回りの回転量 (ローリング量)をも計測できるようになって!/、る。  The Y-axis interferometer 18 is a multi-axis interferometer having at least three optical axes, and the output value of each optical axis can be measured independently. The output value (measurement value) of the Y-axis interferometer 18 is supplied to a main controller 20 as shown in FIG. 7, and the main controller 20 controls the wafer based on the output value from the Y-axis interferometer 18. It is possible to measure not only the position of the table WTB in the Y-axis direction (Y position), but also the rotation amount around the X-axis (pitching amount) and the rotation amount around the Z-axis (jowing amount). Further, the X-axis interferometer 46 is a multi-axis interferometer having at least two optical axes, so that the output value of each optical axis can be measured independently. The output value (measured value) of the X-axis interferometer 46 is supplied to the main controller 20. The main controller 20 determines the position of the wafer table WTB in the X-axis direction based on the output value from the X-axis interferometer 46. It is now possible to measure not only the (X position), but also the amount of rotation (rolling amount) around the Y axis!
[0056] 上述のように、ウェハテーブル WTB上には、実際には、移動鏡 17X、 17Yが設け られている力 図 1ではこれらが代表的に移動鏡 17として示されている。なお、例え ば、ウェハテーブル WTBの端面を鏡面カ卩ェして反射面(前述した移動鏡 17X、 17Y の反射面に相当)を形成しても良 、。  As described above, in practice, movable mirrors 17X and 17Y are provided on wafer table WTB. These are typically shown as movable mirror 17 in FIG. Incidentally, for example, the end surface of the wafer table WTB may be mirror-finished to form a reflection surface (corresponding to the reflection surfaces of the moving mirrors 17X and 17Y described above).
[0057] 前記計測ステージ MSTは、図 2に示されるように、 X軸方向を長手方向とする Yス テージ 81などの複数の部材の組み合わせによって構成され、その最下面 (ベース盤 12に最も接近している部材の下面)に設けられた複数の気体静圧軸受け、例えばェ ァベアリングを介してベース盤 12の上面 (ガイド面)上方に数/ z m程度のクリアランス を介して非接触で浮上支持されて ヽる。  As shown in FIG. 2, the measurement stage MST is composed of a combination of a plurality of members such as a Y stage 81 whose longitudinal direction is in the X-axis direction. A plurality of hydrostatic bearings provided on the lower surface of the base member 12, for example, floating above and below the upper surface (guide surface) of the base board 12 via an air bearing through a clearance of several zm without contact. Being done.
[0058] 計測ステージ MSTは、図 3 (A)の斜視図からも分力るように、 X軸方向に細長い長 方形の板状の計測ステージ本体 81cと該計測ステージ本体 81c上面の X軸方向の 一側、他側にそれぞれ固定された一対の突出部 81a、 8 lbとを有する Yステージ 81 と、前記計測ステージ本体 81cの上面の上方に配置されたレべリングテーブル 52と、 該レべリングテーブル 52上に設けられた計測ユニットの少なくとも一部を構成する計 測テーブル MTBとを備えて!/、る。 [0059] 前記 Yステージ 81を構成する計測ステージ本体 81cの X軸方向の一側と他側の端 面には、 Y軸方向に沿って所定間隔で配置された複数の電機子コイルを内蔵する電 機子ユニットから成る可動子 84、 85力 それぞれ固定されている。これらの可動子 8 4、 85のそれぞれは、前述した Y軸用の固定子 86、 87にそれぞれ内側から挿入され ている。すなわち、本実施形態では、電機子ユニットから成る可動子 84, 85と磁極ュ ニットから成る Y軸用の固定子 86, 87とによって、 2つのムービングコイル型の Y軸リ ユアモータが構成されている。以下においては、上記 2つの Y軸リニアモータのそれ ぞれを、それぞれの可動子 84、 85と同一の符号を用いて、適宜、 Y軸リニアモータ 8 4、 Y軸リニアモータ 85とも呼ぶものとする。本実施形態では、これらの Y軸リニアモー タ 84、 85によって、計測ステージ MSTの全体力 Y軸方向に駆動される。なお、この Y軸リニアモータ 84, 85をムービングマグネット型のリニアモータとしても良い。 As can be seen from the perspective view of FIG. 3 (A), the measurement stage MST has a rectangular plate-shaped measurement stage main body 81c elongated in the X-axis direction and an X-axis direction on the upper surface of the measurement stage main body 81c. A Y stage 81 having a pair of protrusions 81a and 8 lb fixed to one side and the other side of the Y stage 81; a leveling table 52 disposed above the upper surface of the measurement stage body 81c; A measurement table MTB that constitutes at least a part of the measurement unit provided on the ring table 52 is provided. [0059] A plurality of armature coils arranged at predetermined intervals along the Y-axis direction are built in the end surfaces on one side and the other side in the X-axis direction of the measurement stage main body 81c constituting the Y stage 81. The movers 84 and 85, each consisting of an armature unit, are fixed. These movers 84 and 85 are inserted into the Y-axis stators 86 and 87 from the inside, respectively. That is, in the present embodiment, two moving coil type Y-motors are constituted by the movers 84 and 85 formed of the armature units and the Y-axis stators 86 and 87 formed of the magnetic pole units. . In the following, each of the two Y-axis linear motors will be referred to as the Y-axis linear motor 84 and the Y-axis linear motor 85, as appropriate, using the same reference numerals as the respective movers 84 and 85. I do. In the present embodiment, the overall force of the measurement stage MST is driven in the Y-axis direction by these Y-axis linear motors 84 and 85. The Y-axis linear motors 84 and 85 may be moving magnet type linear motors.
[0060] 前記計測ステージ本体 81cの底面には、前述の複数の気体静圧軸受けが設けら れている。この計測ステージ本体 81c上面の X軸方向の一側、他側の Y側端部近 傍に、前述の一対の突出部 81a、 81bが相互に対畤して固定されている。これらの突 出部 81a、 81b相互間には、 X軸方向にそれぞれ延びる固定子 61、固定子 63が、 Z 軸方向(上下)に所定間隔を隔てて配置され、それぞれの固定子 61、 63の両端部が 突出部 81a、 81bにそれぞれ固定されている。  [0060] On the bottom surface of the measurement stage main body 81c, the above-described plurality of static gas pressure bearings are provided. The above-mentioned pair of protrusions 81a and 81b are fixed to each other near one end in the X-axis direction and the other end in the X-axis direction on the upper surface of the measurement stage body 81c. Between these protruding portions 81a and 81b, stators 61 and 63 extending in the X-axis direction are arranged at predetermined intervals in the Z-axis direction (up and down). Are fixed to the protrusions 81a and 81b, respectively.
[0061] 前記レべリングテーブル 52の +X側の端面には、 Xボイスコイルモータ 54aの可動 子が設けられ、該 Xボイスコイルモータ 54aの固定子は、計測ステージ本体 81cの上 面に固定されている。また、レべリングテーブル 52の +Y端面には、 Yボイスコイルモ ータ 54b、 54cの可動子がそれぞれ設けられ、これらの Yボイスコイルモータ 54b、 54 cの固定子は、計測ステージ本体 81cの上面に固定されている。前記 Xボイスコイル モータ 54aは、例えば磁極ユニットから成る可動子と電機子ユニットから成る固定子と から構成され、これらの間の電磁相互作用により、 X軸方向の駆動力を発生する。ま た、前記 Yボイスコイルモータ 54b, 54cも同様に構成され、 Y軸方向の駆動力を発 生する。すなわち、レべリングテーブル 52は、 Xボイスコイルモータ 54aにより Yステー ジ 81に対して、 X軸方向に駆動され、 Yボイスコイルモータ 54b, 54cにより Yステー ジ 81に対して Y軸方向に駆動される。また、ボイスコイルモータ 54b, 54cが発生する 駆動力を異ならせることにより、レべリングテーブル 52を Yステージ 81に対して Z軸回 りの回転方向( Θ z方向)へ駆動することができるようになつている。 [0061] A mover of an X voice coil motor 54a is provided on the + X side end surface of the leveling table 52, and a stator of the X voice coil motor 54a is fixed to an upper surface of the measurement stage main body 81c. Have been. Further, on the + Y end surface of the leveling table 52, movers of Y voice coil motors 54b and 54c are provided, respectively. The stators of these Y voice coil motors 54b and 54c are provided on the upper surface of the measurement stage body 81c. It is fixed to. The X voice coil motor 54a is composed of, for example, a mover composed of a magnetic pole unit and a stator composed of an armature unit, and generates a driving force in the X-axis direction by electromagnetic interaction therebetween. The Y voice coil motors 54b and 54c are similarly configured and generate a driving force in the Y-axis direction. That is, the leveling table 52 is driven in the X-axis direction with respect to the Y stage 81 by the X voice coil motor 54a, and is driven in the Y-axis direction with respect to the Y stage 81 by the Y voice coil motors 54b and 54c. Is done. Also, voice coil motors 54b and 54c are generated. By varying the driving force, the leveling table 52 can be driven relative to the Y stage 81 in the direction of rotation around the Z axis (Θ direction).
[0062] 前記レべリングテーブル 52は、図 4に一部を断面して模式的に示されるように、そ の底面が開口した外観が板状の筐体力 成り、その内部には、 Z軸方向の駆動力を 発生する 3つの Zボイスコイルモータ 56 (ただし、紙面奥側の Zボイスコイルモータ 56 については不図示) 1S それぞれ配置されている。各 Zボイスコイルモータ 56の固定 子は、電機子ユニットから成り、計測ステージ本体 81cの上面に固定されている。また 、各 Zボイスコイルモータ 56の可動子は、磁極ユニットから成り、レべリングテーブル 5 2に固定されている。これら 3つの Zボイスコイルモータ 56は、それぞれの固定子と可 動子との間の電磁相互作用により、 Z軸方向の駆動力を発生する。従って、レベリン グテーブル 52は、 3つの Zボイスコイルモータ 56によって Z軸方向に駆動されるととも に、 X軸回りの回転方向( 0 X方向), Y軸回りの回転方向( 0 y方向)〖こも微小駆動さ れるようになっている。 [0062] The leveling table 52 has a plate-like casing with an open bottom surface, as schematically shown in a partial cross section in Fig. 4, and has a Z-axis inside. Three Z voice coil motors 56 that generate directional driving force (however, Z voice coil motors 56 on the far side of the drawing are not shown) 1S are arranged. The stator of each Z voice coil motor 56 is composed of an armature unit, and is fixed to the upper surface of measurement stage main body 81c. The mover of each Z voice coil motor 56 is formed of a magnetic pole unit, and is fixed to the leveling table 52. These three Z voice coil motors 56 generate a driving force in the Z-axis direction by electromagnetic interaction between the respective stators and movers. Therefore, the leveling table 52 is driven in the Z-axis direction by the three Z voice coil motors 56, and is rotated around the X-axis (0 X direction) and around the Y-axis (0 y direction). 〖They are also driven minutely.
[0063] すなわち、レべリングテーブル 52は、前述した Xボイスコイルモータ 54a、 Yボイスコ ィルモータ 54b, 54c、 3つの Zボイスコイルモータ 56により、 6自由度方向(X, Υ, Z , θ χ, θ γ, 0 ζ)に非接触で微小駆動可能とされている。  That is, the leveling table 52 has six degrees of freedom directions (X, Υ, Z, θ θ, に よ り) by the above-described X voice coil motor 54a, Y voice coil motors 54b, 54c, and three Z voice coil motors 56. θ γ, 0 ζ) and can be micro-driven in a non-contact manner.
[0064] また、前記レべリングテーブル 52の内部には、図 4に示されるように、レベリングテ 一ブル 52の自重をキャンセルする自重キャンセル機構 58も配置されて 、る。すなわ ち、自重キャンセル機構 58は、計測テーブル ΜΤΒの自重を補償しているとも言える 。この自重キャンセル機構 58は、前述の 3つの Ζボイスコイルモータ 56で構成される 三角形の略重心位置の近傍に配置されている。  As shown in FIG. 4, a self-weight canceling mechanism 58 for canceling the self-weight of the leveling table 52 is also arranged inside the leveling table 52. In other words, it can be said that the self-weight canceling mechanism 58 compensates for the self-weight of the measurement table ΜΤΒ. The self-weight canceling mechanism 58 is disposed near the position of the approximate center of gravity of the triangle constituted by the three voice coil motors 56 described above.
[0065] 自重キャンセラ 58は、図 5の縦断面図に示されるように、下端部 (一 Ζ側端部)が開 口し、上端部(+Ζ端部)が閉塞された円筒状のシリンダ部 170Aと、該シリンダ部 17 OAの内部に前記開口を介して挿入され、該シリンダ部 170Aに対して相対移動可能 なピストン部 170Bとを備えて 、る。  As shown in the vertical sectional view of FIG. 5, the self-weight canceller 58 is a cylindrical cylinder having an open lower end (end on one side) and a closed upper end (+ Ζ end). A portion 170A and a piston portion 170B inserted into the cylinder portion 17OA through the opening and movable relative to the cylinder portion 170A.
[0066] 前記シリンダ部 170Aには、その下端部 (-Z側端部)近傍にその内周面の全周に わたって環状の第 1環状凸部 172aが形成されている。また、第 1環状凸部 172aの下 側 (-Z側)には所定間隔をあけて第 2環状凸部 172bが形成されている。そして、シリ ンダ部 170Aの第 1環状凸部 172aと第 2環状凸部 172bとの間に形成された所定深 さの環状凹溝 172dの内部底面には、シリンダ部 170Aの内部空間と外部とを連通す る貫通孔 172cが所定の間隔で複数箇所に形成されている。 [0066] An annular first annular convex portion 172a is formed near the lower end portion (-Z side end portion) of the cylinder portion 170A over the entire circumference of the inner peripheral surface thereof. Further, a second annular convex portion 172b is formed at a predetermined interval below (-Z side) the first annular convex portion 172a. And Siri The inner bottom surface of the annular concave groove 172d having a predetermined depth formed between the first annular convex portion 172a and the second annular convex portion 172b of the cylinder portion 170A communicates the internal space of the cylinder portion 170A with the outside. Through holes 172c are formed at a plurality of locations at predetermined intervals.
[0067] 前記ピストン部 170Bは、その外周面と前記第 1、第 2環状凸部 172a, 172bとの間 に所定のクリアランスが形成された状態で、シリンダ部 170A内に挿入されている。  [0067] The piston portion 170B is inserted into the cylinder portion 170A with a predetermined clearance formed between the outer peripheral surface and the first and second annular convex portions 172a and 172b.
[0068] ピストン部 170Bは、第 1の直径の円柱部と、その Z側に設けられ円柱部と同心の 第 2の直径(>第 1の直径)の円板部との 2部分力 成る段付き円柱状の形状を有し ている。このピストン部 170Bには、上端面の中央部から底面まで達する Z軸方向の 通気管路 174aが形成されている。通気管路 174aは、ピストン部 170Bの下端面 (-Z 側端面)に形成された、溝 174bに連通し、ピストン部 170Bの下端面近傍では、該下 端面に近づくほど狭くなるように加工されている。すなわち、通気管路 174aの下端部 は、一種のノズル (先細ノズル)の役目を果たすように形成されている。なお、溝 174b は、実際には、円とその中心で直交する十字とを組み合わせた形状を有している。  [0068] The piston 170B has a two-part force consisting of a cylindrical part having a first diameter and a disk part having a second diameter (> the first diameter) provided on the Z side and concentric with the cylindrical part. It has a columnar shape. The piston portion 170B is formed with a ventilation pipe 174a extending in the Z-axis direction from the center of the upper end surface to the bottom surface. The ventilation pipe 174a communicates with a groove 174b formed on the lower end surface (-Z side end surface) of the piston portion 170B, and is formed near the lower end surface of the piston portion 170B so as to become narrower as approaching the lower end surface. ing. That is, the lower end of the ventilation pipe 174a is formed to serve as a kind of nozzle (tapered nozzle). Note that the groove 174b actually has a shape in which a circle and a cross which is orthogonal at the center thereof are combined.
[0069] また、ピストン部 170Bの上端面の周縁の近傍には、中心角 90° の間隔で 4つの通 気管路 176 (ただし、図 5では +Y側、 -Y側にそれぞ; ^立置する 2つの通気管路 17 6のみを図示、 +X側、 -X側にそれぞれ位置する残り 2つの通気管路 176について は不図示)が、ピストン部 170Bの高さ方向中央部やや上側の位置まで掘り下げられ た状態で形成されている。これらの 4つの通気管路 176の下端部近傍にはピストン部 170Bの外周面の外側に連通する気体噴出口としての絞り孔 178が貫通形成されて いる。  [0069] Also, in the vicinity of the periphery of the upper end surface of the piston portion 170B, four ventilation pipes 176 (in FIG. 5, each on the + Y side and the -Y side; Only the two ventilation pipes 176 to be placed are shown, and the remaining two ventilation pipes 176 located on the + X side and the -X side are not shown). It is formed in a state dug down to the position. In the vicinity of the lower ends of these four ventilation pipes 176, there are formed through holes 178 as gas outlets communicating with the outside of the outer peripheral surface of the piston 170B.
[0070] この場合、シリンダ部 170Aの内部のピストン部 170Bより上方には、ほぼ気密状態 の空間 180が形成されている。この空間 180には、シリンダ部 170Aの一部に形成さ れた不図示の開口を介して不図示の給気管の一端が接続されており、この給気管の 他端は、不図示の気体供給装置に接続されている。この気体供給装置から、例えば ヘリウムなどの希ガスあるいは窒素、又は空気などの気体が給気管を介して空間 18 0内に供給され、該空間 180は、シリンダ 170Aの外部に比べて気圧の高い陽圧空 間とされている。従って、以下では、空間 180を「陽圧空間 180」とも呼ぶものとする。  [0070] In this case, a substantially airtight space 180 is formed above the piston portion 170B inside the cylinder portion 170A. One end of an air supply pipe (not shown) is connected to this space 180 via an opening (not shown) formed in a part of the cylinder portion 170A, and the other end of the air supply pipe is connected to a gas supply (not shown). Connected to the device. From this gas supply device, for example, a rare gas such as helium or a gas such as nitrogen or air is supplied into the space 180 through an air supply pipe, and the space 180 has a higher pressure than the outside of the cylinder 170A. It is a compressed space. Therefore, hereinafter, the space 180 is also referred to as “positive pressure space 180”.
[0071] このようにして構成された自重キャンセラ 58では、図 6に示されるように、空間 180 が陽圧空間とされることにより通気管路 174a内には矢印 Aで示されるガスの流れ( In the self-weight canceller 58 thus configured, as shown in FIG. Is a positive pressure space, so that the gas flow indicated by the arrow A in the ventilation pipe 174a (
1  1
以下、適宜「流れ A」とも呼ぶ)が生じる。この流れ Aで示されるガス力 前述の通気  Hereinafter, “flow A” is generated as appropriate). Gas force indicated by this flow A
1 1  1 1
管路 174aの下端の先細ノズル部から噴出され、溝 174b内に矢印 Aで示されるガス  The gas ejected from the tapered nozzle at the lower end of the conduit 174a and indicated by an arrow A in the groove 174b
2  2
の流れが生じる。このガスが、溝 174bの全域に行き渡り、溝 174bの全体カゝら計測ス テージ本体 81cの上面に向けて噴出される。これにより、ピストン部 170Bの底面と計 測ステージ本体 81cの上面との間のガスの静圧(隙間内圧力)により、ピストン部 170 Bの底面と計測ステージ本体 81cの上面との間に、所定のクリアランス A Lが形成さ  Flow occurs. This gas spreads over the entire area of the groove 174b and is ejected toward the upper surface of the measurement stage main body 81c in the entire groove 174b. As a result, a predetermined pressure is generated between the bottom surface of the piston 170B and the upper surface of the measurement stage main body 81c by the static pressure of the gas (pressure in the gap) between the bottom surface of the piston 170B and the upper surface of the measurement stage main body 81c. Clearance of AL formed
1 れるようになっている。すなわち、ピストン部 170Bの底面には、実質的に、一種の気 体静圧軸受が形成されており、ピストン部 170Bが計測ステージ本体 81cの上方に非 接触で浮上支持されている。以下では、この気体静圧軸受を「スラスト軸受」とも呼ぶ ものとする。  1 That is, a kind of aerostatic bearing is substantially formed on the bottom surface of the piston 170B, and the piston 170B is floated above the measurement stage main body 81c in a non-contact manner. Hereinafter, this gas static pressure bearing is also referred to as “thrust bearing”.
[0072] 通気管路 174aと同様に、 4つの通気管路 176のそれぞれにも矢印 Bで示されるガ  [0072] Similarly to the ventilation pipes 174a, each of the four ventilation pipes 176 has a gas indicated by an arrow B.
1  1
スの流れが生じることとなり、これに伴って、絞り孔 178には、ピストン部 170B内部か ら外部に向かう、矢印 Bで示されるガスの流れが生じ、絞り孔 178から噴出されたガ  As a result, a gas flow indicated by an arrow B from the inside of the piston portion 170B to the outside is generated in the throttle hole 178, and the gas ejected from the throttle hole 178 is generated.
2  2
スは、第 2環状凸部 172bに対して噴き付けられることとなる。このとき、第 2環状凸部 172bとピストン部 170B外周面との間のガスの静圧(隙間内圧力)により、ピストン部 1 70Bの外周面と、第 1、第 2環状凸部 172a, 172bとの間には、所定のクリアランス Δ Lが形成されるようになっている。すなわち、ピストン部 170Bの周壁には、実質的に The air is sprayed on the second annular convex portion 172b. At this time, the outer peripheral surface of the piston portion 170B and the first and second annular convex portions 172a, 172b are caused by the static pressure of gas (pressure in the gap) between the second annular convex portion 172b and the outer peripheral surface of the piston portion 170B. , A predetermined clearance ΔL is formed. That is, on the peripheral wall of the piston portion 170B,
2 2
、気体静圧軸受が形成されており、ピストン部 170Bとシリンダ部 170Aとの間は非接 触とされている。以下では、この気体静圧軸受を「ラジアル軸受」とも呼ぶものとする。  In addition, a gas static pressure bearing is formed, and the piston 170B and the cylinder 170A are not in contact with each other. Hereinafter, this gas static pressure bearing is also referred to as “radial bearing”.
[0073] 更に、シリンダ部 170Aの環状凹溝 172dに所定間隔で形成された複数の貫通孔 1 72cには、矢印 Cで示されるガスの流れが生じており、これにより、第 2環状凸部 172 [0073] Further, a gas flow indicated by an arrow C is generated in the plurality of through holes 172c formed at predetermined intervals in the annular concave groove 172d of the cylinder portion 170A, whereby the second annular convex portion is formed. 172
1  1
bに噴き付けられたガス、陽圧空間 180内のガス等、クリアランス A L内のガスが外部  The gas in the clearance A L, such as the gas injected into b and the gas in the positive pressure space 180,
2  2
に排出されるようになって!/、る。  It is being discharged to!
[0074] 本実施形態の自重キャンセラ 58によると、その上端部でレべリングテーブル 52を支 持した際に、その自重は、陽圧空間 180の陽圧により支持されるとともに、 Yステージ 81を構成する計測ステージ本体 81cの上面との間には、スラスト軸受の作用により、 常にクリアランス A Lを維持することが可能となっている。また、レべリングテーブル 5 2に傾斜方向( 0 x、 0 y方向)に傾こうとする力が生じた場合であっても、ラジアル軸 受の作用により、クリアランス A Lを維持しょうとするので、レべリングテーブル 52の傾 According to the self-weight canceller 58 of the present embodiment, when the leveling table 52 is supported at its upper end, its own weight is supported by the positive pressure in the positive pressure space 180 and the Y stage 81 is supported. The clearance AL can always be maintained between the upper surface of the measurement stage main body 81c and the upper surface of the main stage 81c by the action of the thrust bearing. Also, leveling table 5 Even if a force is applied to tilt in the tilting direction (0x, 0y direction), the clearance AL is maintained by the action of the radial bearing.
2  2
斜が吸収されることとなる。従って、自重キャンセラ 58によると、レべリングテーブル 5 2を陽圧により低剛性で支持するとともに、その傾斜を吸収することが可能となってい る。  The oblique will be absorbed. Therefore, according to the self-weight canceller 58, it is possible to support the leveling table 52 with low rigidity by positive pressure and absorb the inclination thereof.
[0075] 図 3 (A)に戻り、前記計測テーブル MTBは、ゼロデュア (ショット社の商品名)等の 材料により構成される計測テーブル本体 59と、該計測テーブル本体 59の Y側面に 上下に並んで固定された、 X軸方向を長手方向とする断面略 U字状の可動子 62、 6 4とを備えている。  Returning to FIG. 3 (A), the measurement table MTB is composed of a measurement table main body 59 made of a material such as Zerodur (trade name of SCHOTT) and a vertically arranged side of the Y side of the measurement table main body 59. Movers 62 and 64 having a substantially U-shaped cross section and having the X-axis direction as a longitudinal direction.
[0076] 前記計測テーブル本体 59の底面には、複数、例えば 4つのエアベアリング 42 (図 4 参照)が設けられ、これらのエアベアリング 42を介して計測テーブル MTBがレベリン グテーブル 52の上面の上方に数 μ m程度のクリアランスを介して非接触で浮上支持 されている。  A plurality of, for example, four air bearings 42 (see FIG. 4) are provided on the bottom surface of the measurement table main body 59, and the measurement table MTB is provided above the upper surface of the leveling table 52 via these air bearings 42. It is levitated and supported without contact through a clearance of several μm.
[0077] 前記可動子 62は、 YZ断面略 U字状の可動子ヨークと、該可動子ヨークの内面(上 下面)に X軸方向に沿って所定間隔でかつ交互に配置された N極永久磁石と S極永 久磁石の複数の組から成る永久磁石群とを備え、前述の固定子 61に係合状態とさ れている。可動子 62の可動子ヨークの内部空間には、 X軸方向に沿って交番磁界が 形成されている。前記固定子 61は、例えば X軸方向に沿って所定間隔で配置された 複数の電機子コイルを内蔵する電機子ユニットから成る。すなわち、固定子 61と可動 子 62と〖こよって、計測テーブル MTBを X軸方向に駆動するムービングマグネット型 の X軸リニアモータ LXが構成されて!、る。  The mover 62 includes a mover yoke having a substantially U-shaped YZ section, and N-pole permanent magnets arranged at predetermined intervals and alternately along the X-axis direction on the inner surface (upper and lower surfaces) of the mover yoke. A permanent magnet group including a plurality of pairs of magnets and S pole permanent magnets is provided, and is engaged with the stator 61 described above. In the inner space of the mover yoke of the mover 62, an alternating magnetic field is formed along the X-axis direction. The stator 61 is formed of, for example, an armature unit including a plurality of armature coils arranged at predetermined intervals along the X-axis direction. That is, a moving magnet type X-axis linear motor LX that drives the measurement table MTB in the X-axis direction is constituted by the stator 61 and the mover 62!
[0078] 前記可動子 64は、 YZ断面略 U字状の可動子ヨークと、該可動子ヨークの内面(上 下面)に 1つずつ設けられた N極永久磁石と S極永久磁石とを備え、前述の固定子 6 3に係合状態とされている。可動子 64の可動子ヨークの内部空間には、 +Z向き又は Z向きの磁界が形成されている。前記固定子 63は、その内部に、 N極磁石と S極磁 石とにより形成される磁界中で X軸方向にのみ電流が流れるような配置で配置された 電機子コイルを備えている。すなわち、可動子 64と固定子 63とによって、計測テープ ル MTBを Y軸方向に駆動するムービングマグネット型の Yボイスコイルモータ VYが 構成されている。 The mover 64 includes a mover yoke having a substantially U-shaped YZ cross section, and an N-pole permanent magnet and an S-pole permanent magnet provided on inner surfaces (upper and lower surfaces) of the mover yoke, respectively. , And are engaged with the stator 63 described above. In the inner space of the mover yoke of the mover 64, a magnetic field of + Z direction or Z direction is formed. The stator 63 includes an armature coil disposed therein such that an electric current flows only in the X-axis direction in a magnetic field formed by the N-pole magnet and the S-pole magnet. In other words, the moving magnet type Y voice coil motor VY that drives the measuring table MTB in the Y-axis direction by the mover 64 and the stator 63. It is configured.
[0079] これまでの説明から明らかなように、本実施形態では、 Y軸リニアモータ 82— 85及 び X軸リニアモータ 80、ウェハテーブル WTBを駆動する不図示の微動機構、計測ス テージ MST上の上述した各モータ(54a— 54c, 56, LX, VY)により、図 7に示され るステージ駆動部 124が構成されて 、る。このステージ駆動部 124を構成する各種 駆動機構が、図 7に示される主制御装置 20によって制御されるようになっている。  As is clear from the above description, in the present embodiment, the Y-axis linear motors 82 to 85 and the X-axis linear motor 80, the fine movement mechanism (not shown) for driving the wafer table WTB, and the measurement stage MST The above-described motors (54a-54c, 56, LX, VY) constitute the stage driving section 124 shown in FIG. Various drive mechanisms constituting the stage drive section 124 are controlled by the main controller 20 shown in FIG.
[0080] 前記計測テーブル MTBは、露光に関する各種計測を行うための計測器類を、さら に備えている。これをさらに詳述すると、計測テーブル本体 59の上面には、例えばゼ 口デュア(ショット社の商品名)や石英ガラス等のガラス材料力も成るプレート 101が設 けられている。このプレート 101の表面にはそのほぼ全面に渡ってクロムが塗布され 、所々に計測器用の領域や、特開平 5 - 21314号公報及びこれに対応する米国特 許第 5, 243, 195号などに開示される複数の基準マークが形成された基準マーク領 域 FMが設けられている。本国際出願で指定した指定国 (又は選択した選択国)の国 内法令が許す限りにおいて、上記公報及び対応米国特許の開示を援用して本明細 書の記載の一部とする。  [0080] The measurement table MTB further includes measuring instruments for performing various measurements related to exposure. More specifically, on the upper surface of the measurement table main body 59, a plate 101 having a glass material such as Zeguchi Dua (trade name of Schott) or quartz glass is provided. The surface of the plate 101 is coated with chromium over almost the entire surface, and in some places, a region for a measuring instrument, a Japanese Patent Application Laid-Open No. 5-21314, and a corresponding US Pat. No. 5,243,195, etc. are used. There is a reference mark area FM in which a plurality of reference marks to be disclosed are formed. To the extent permitted by the laws of the designated country (or selected elected country) specified in this international application, the disclosures of the above gazettes and corresponding US patents are incorporated herein by reference.
[0081] 前記計測器用の領域には、パターンニングが施され、各種計測用開口パターンが 形成されている。この計測用開口パターンとしては、例えば空間像計測用開ロパタ ーン (例えばスリット状開口パターン)、照明むら計測用ピンホール開口パターン、照 度計測用開口パターン、及び波面収差計測用開口パターンなどが形成されている。  The measurement device area is patterned, and various measurement aperture patterns are formed. Examples of the measurement aperture pattern include an aerial image measurement aperture pattern (for example, a slit-shaped aperture pattern), an uneven illumination measurement pinhole aperture pattern, an illuminance measurement aperture pattern, and a wavefront aberration measurement aperture pattern. Is formed.
[0082] 前記空間像計測用開口パターンの下方の計測テーブル本体 59の内部には、投影 光学系 PL及び水を介してプレート 101に照射される露光光を、前記空間像計測用 開口パターンを介して受光する受光系が設けられており、これによつて、例えば特開 2002— 14005号公報及びこれに対応する米国特許出願公開第 2002Z0041377 号明細書などに開示される投影光学系 PLにより投影されるパターンの空間像 (投影 像)の光強度を計測する空間像計測器が構成されて 、る。  [0082] Inside the measurement table main body 59 below the aerial image measurement aperture pattern, exposure light applied to the plate 101 via the projection optical system PL and water is applied through the aerial image measurement aperture pattern. A light receiving system is provided for receiving the light by the projection optical system PL disclosed in, for example, JP-A-2002-14005 and the corresponding US Patent Application Publication No. 2002Z0041377. An aerial image measuring device for measuring the light intensity of the aerial image (projected image) of the pattern is constructed.
[0083] また、照明むら計測用ピンホール開口パターンの下方の計測テーブル本体 59の内 部には、受光素子を含む受光系が設けられており、これによつて、特開昭 57-1172 38号公報及びこれに対応する米国特許第 4, 465, 368号などに開示される投影光 学系 PLの像面上で照明光 ILを受光するピンホール状の受光部を有する照度むら計 測器が構成されている。 Further, a light receiving system including a light receiving element is provided inside the measurement table main body 59 below the illumination unevenness measurement pinhole opening pattern. No. 4,465,368 and the corresponding projection light disclosed therein A non-uniform illuminance measuring instrument has a pinhole-shaped light receiving unit that receives the illumination light IL on the image plane of the science and engineering PL.
[0084] また、照度計測用開口パターンの下方の計測テーブル本体 59の内部には、受光 素子を含む受光系が設けられており、これによつて、例えば特開平 11— 16816号公 報及びこれに対応する米国特許出願公開第 2002Z0061469号明細書などに開 示される投影光学系 PLの像面上で水を介して照明光 ILを受光する所定面積の受光 部を有する照度モニタが構成されている。本国際出願で指定した指定国 (又は選択 した選択国)の国内法令が許す限りにおいて、上記各公報及び対応する米国特許 又は米国特許出願公開明細書の開示を援用して本明細書の記載の一部とする。  Further, a light receiving system including a light receiving element is provided inside the measurement table body 59 below the illuminance measurement opening pattern, whereby, for example, Japanese Patent Application Laid-Open No. 11-16816 and An illuminance monitor having a light receiving unit having a predetermined area for receiving illumination light IL via water on an image plane of a projection optical system PL disclosed in US Patent Application Publication No. 2002Z0061469 and the like corresponding to . To the extent permitted by national laws and regulations of the designated country (or selected elected country) specified in this international application, the disclosures in this specification shall be made with reference to the disclosures of the above-mentioned publications and corresponding U.S. patents or U.S. patent application publications. Partly.
[0085] また、波面収差計測用開口パターンの下方の計測テーブル本体 59の内部には、 例えばマイクロレンズアレイを含む受光系が設けられており、これによつて例えば国 際公開第 99/60361号パンフレット及びこれに対応する欧州特許第 1, 079, 223 号明細書などに開示される波面収差計測器が構成されている。  Further, a light receiving system including, for example, a microlens array is provided inside the measurement table main body 59 below the aperture pattern for measuring wavefront aberration, whereby, for example, International Publication No. 99/60361. A wavefront aberration measuring instrument disclosed in a pamphlet and the corresponding European Patent No. 1,079,223 is constituted.
[0086] なお、図 7では上記の空間像計測器、照度むら計測器、照度モニタ及び波面収差 計測器が、計測器群 43として示されている。  In FIG. 7, the aerial image measuring device, the illuminance unevenness measuring device, the illuminance monitor, and the wavefront aberration measuring device are shown as a measuring device group 43.
[0087] なお、本実施形態では、投影光学系 PLと水とを介して露光光 (照明光) ILによりゥ ェハ Wを露光する液浸露光が行われるのに対応して、照明光 ILを用いる計測に使 用される上記の照度モニタ、照度むら計測器、空間像計測器、波面収差計測器など では、投影光学系 PL及び水を介して照明光 ILを受光することとなる。このため、プレ ート 101の表面には撥水コートが施されている。なお、上記各計測器は、例えば光学 系などの一部だけが計測ステージ MSTに搭載されて 、ても良 、し、計測器全体を 計測ステージ MSTに配置するようにしても良 、。  In the present embodiment, in response to the immersion exposure for exposing the wafer W with the exposure light (illumination light) IL via the projection optical system PL and water, the illumination light IL In the illuminance monitor, illuminance unevenness measuring device, aerial image measuring device, wavefront aberration measuring device, and the like used in the measurement using the illuminator, the illumination light IL is received via the projection optical system PL and water. For this reason, the surface of the plate 101 is provided with a water-repellent coat. Note that, for each of the measuring instruments, for example, only a part of the optical system or the like may be mounted on the measuring stage MST, or the entire measuring instrument may be arranged on the measuring stage MST.
[0088] 前記計測テーブル MTB (プレート 101)の上面には、 X軸方向の一端 (一 X側端)に X軸に直交する反射面を有する X移動鏡 117Xが Y軸方向に延設され、 Y軸方向の 一端 (一 Y側端)に Y軸に直交する反射面を有する Y移動鏡 117Yが X軸方向に延設 されている。 Y移動鏡 117Yの反射面には、図 2に示されるように、干渉計システム 11 8を構成する Y軸干渉計 16からの干渉計ビーム (測長ビーム)が投射され、干渉計 1 6ではその反射光を受光することにより、 Y移動鏡 117Yの反射面の基準位置力 の 変位を計測する。また、計測テーブル MTBが、計測時などに投影ユニット PUの直下 に移動した場合には、 X移動鏡 117Xの反射面に X軸干渉計 46からの干渉計ビーム (測長ビーム)が投射され、干渉計 46ではその反射光を受光することにより、 X移動鏡 117Xの反射面の基準位置からの変位を計測するようになって 、る。 Y軸干渉計 16 は、投影光学系 PLの投影中心 (光軸 AX)で前述の X軸干渉計 46の測長軸と垂直に 交差する Y軸方向に平行な測長軸を有して 、る。 [0088] On the upper surface of the measurement table MTB (plate 101), an X movable mirror 117X having a reflection surface orthogonal to the X axis at one end (one X side end) in the X axis direction is extended in the Y axis direction. At one end (one Y-side end) in the Y-axis direction, a Y moving mirror 117Y having a reflecting surface orthogonal to the Y-axis is extended in the X-axis direction. As shown in FIG. 2, the interferometer beam (length measuring beam) from the Y-axis interferometer 16 constituting the interferometer system 118 is projected onto the reflecting surface of the Y moving mirror 117Y, and the interferometer 16 By receiving the reflected light, the reference position force of the reflecting surface of the Y moving mirror 117Y is reduced. Measure the displacement. Also, when the measurement table MTB moves immediately below the projection unit PU during measurement or the like, the interferometer beam (length measuring beam) from the X-axis interferometer 46 is projected on the reflecting surface of the X movable mirror 117X, By receiving the reflected light, the interferometer 46 measures the displacement of the reflecting surface of the X moving mirror 117X from the reference position. The Y-axis interferometer 16 has a length-measuring axis parallel to the Y-axis direction perpendicular to the length-measuring axis of the X-axis interferometer 46 at the projection center (optical axis AX) of the projection optical system PL, You.
[0089] 前記 Y軸干渉計 16は、少なくとも 3本の光軸を有する多軸干渉計であり、各光軸の 出力値は独立に計測できるようになって 、る。この Y軸干渉計 16の出力値 (計測値) は、図 7に示されるように、主制御装置 20に供給され、主制御装置 20では Y軸干渉 計 16からの出力値に基づいて、計測テーブル MTBの Y位置のみならず、ピッチング 量及びョーイング量をも計測できるようになつている。また、主制御装置 20では X軸 干渉計 46からの出力値に基づ!/、て、計測テーブル MTBの X位置及びローリング量 を計測するようになって 、る。  [0089] The Y-axis interferometer 16 is a multi-axis interferometer having at least three optical axes, and the output value of each optical axis can be measured independently. The output value (measured value) of the Y-axis interferometer 16 is supplied to the main controller 20 as shown in FIG. 7, and the main controller 20 measures the output value based on the output value from the Y-axis interferometer 16. It is possible to measure not only the Y position of the table MTB, but also the pitching and jowing amounts. In addition, main controller 20 measures the X position and the amount of rolling of measurement table MTB based on the output value from X-axis interferometer 46.
[0090] これまでの説明からわかるように、本実施形態では、 Y軸干渉計 18からの干渉計ビ ームは、ウェハステージ WSTの移動範囲の全域で常に移動鏡 17Yに投射され、 Y 軸干渉計 16力もの干渉計ビームは、計測ステージ MSTの移動範囲の全域で常に 移動鏡 117Yに投射されるようになっている。従って、 Y軸方向については、常にステ ージ WST、 MSTの位置は、主制御装置 20により Y軸干渉計 18、 16の計測値に基 づいて管理される。  As can be understood from the above description, in the present embodiment, the interferometer beam from the Y-axis interferometer 18 is always projected on the movable mirror 17Y over the entire movement range of the wafer stage WST, Interferometer An interferometer beam of as much as 16 forces is always projected on the movable mirror 117Y over the entire moving range of the measurement stage MST. Therefore, in the Y-axis direction, the positions of the stages WST and MST are always managed by the main controller 20 based on the measured values of the Y-axis interferometers 18 and 16.
[0091] この一方、図 2からも容易に想像されるように、主制御装置 20は、 X軸干渉計 46か らの干渉計ビーム力 移動鏡 17Xに当たる範囲でのみ、 X軸干渉計 46の出力値に 基づいてウェハテーブル WTB (ウェハステージ WST)の X位置を管理するとともに、 X軸干渉計 46からの干渉計ビーム力 移動鏡 117Xに当たる範囲でのみ、 X軸干渉 計 46の出力値に基づ 、て計測テーブル MTB (計測ステージ MST)の X位置を管理 する。従って、 X軸干渉計 46の出力値に基づいて X位置を管理できない間の、ゥェ ハテーブル WTB、計測テーブル MTBの位置は、不図示のエンコーダで計測される ようになっており、このエンコーダの計測値に基づいて、主制御装置 20は、 X軸干渉 計 46の出力値に基づいて X位置を管理できない間の、ウェハテーブル WTB、計測 テーブル MTBの位置を管理する。 On the other hand, as can be easily imagined from FIG. 2, the main controller 20 controls the X-axis interferometer 46 only within the range of the interferometer beam force from the X-axis interferometer 46 and the movable mirror 17X. The X position of the wafer table WTB (wafer stage WST) is managed based on the output value, and the interferometer beam force from the X-axis interferometer 46 is based on the output value of the X-axis interferometer 46 only within the range of the moving mirror 117X. Next, the X position of the measurement table MTB (measurement stage MST) is managed. Therefore, while the X position cannot be managed based on the output value of the X-axis interferometer 46, the positions of the wafer table WTB and the measurement table MTB are measured by an encoder (not shown). Based on the measured values of the X-axis interferometer 46, the main controller 20 can control the wafer table WTB and Manage the position of the table MTB.
[0092] また、主制御装置 20は、 X軸干渉計 46からの干渉計ビームが、移動鏡 17X、 117 Xのいずれにも当たらない状態力 移動鏡 17X又は移動鏡 117Xに当たり始めた直 後の時点で、それまで制御に用いられていな力つた X軸干渉計 46をリセットし、それ 以後は、干渉計システム 118を構成する、 Y軸干渉計 18又は 16と、 X軸干渉計 46と を用いて、ウェハステージ WST又は計測ステージ MSTの位置を管理するようになつ ている。 [0092] In addition, main controller 20 controls the state in which the interferometer beam from X-axis interferometer 46 does not hit any of moving mirrors 17X and 117X. At this point, the X-axis interferometer 46 that has not been used for control is reset, and thereafter, the Y-axis interferometer 18 or 16 and the X-axis interferometer 46 that constitute the interferometer system 118 are reset. It is used to manage the position of the wafer stage WST or measurement stage MST.
[0093] 本実施形態では、 2つの Y軸干渉計 16, 18と、 1つの X軸干渉計 46とを含んで、図 7の干渉計システム 118が構成されている力 X軸干渉計を複数設け、常にいずれか の X軸干渉計からの干渉計ビーム力 移動鏡 17X、 117Xに当たるような構成を採用 しても良い。この場合には、ウェハステージ WST、計測ステージ MSTの位置を管理 する X軸干渉計を、これらのステージの X位置に応じて切り替えれば良!、。  In the present embodiment, a plurality of force X-axis interferometers including the two Y-axis interferometers 16 and 18 and the one X-axis interferometer 46 to constitute the interferometer system 118 of FIG. It is also possible to adopt a configuration that always provides the interferometer beam force from one of the X-axis interferometers to the movable mirror 17X or 117X. In this case, the X-axis interferometer that controls the positions of the wafer stage WST and the measurement stage MST should be switched according to the X position of these stages!
[0094] また、前述の多軸干渉計は 45° 傾いてステージ WST、 MSTに設置される反射面 を介して、投影ユニット PUが保持される保持部材に設置される反射面にレーザビー ムを照射し、その反射面とステージとの投影光学系 PLの光軸方向(Z軸方向)に関す る相対位置情報を検出するようにしても良 ヽ。  [0094] Further, the above-mentioned multi-axis interferometer irradiates a laser beam onto a reflection surface provided on a holding member for holding projection unit PU via a reflection surface provided on stage WST or MST at an angle of 45 °. Alternatively, relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL between the reflection surface and the stage may be detected.
[0095] また、本実施形態の露光装置 100では、投影ユニット PUを保持する保持部材には 、オファクシス .ァライメント系(以下、「ァライメント系」と略述する) ALG (図 1では図示 せず、図 7、図 8 (A)等参照)が設けられている。このァライメント系 ALGとしては、例 えばウェハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照 射し、その対象マーク力もの反射光により受光面に結像された対象マークの像と不図 示の指標 (ァライメント系 ALG内に設けられた指標板上の指標パターン)の像とを撮 像素子 (CCD等)を用いて撮像し、それらの撮像信号を出力する画像処理方式の FI A (Field Image Alignment)系のセンサが用いられている。ァライメント系 ALGからの 撮像信号は、図 7の主制御装置 20に供給されるようになっている。  [0095] In the exposure apparatus 100 of the present embodiment, the holding member for holding the projection unit PU includes an off-axis alignment system (hereinafter abbreviated as "alignment system") ALG (not shown in FIG. 1, 7 and 8 (A) etc.). For example, this alignment-based ALG irradiates the target mark with a broadband detection light beam that does not expose the resist on the wafer, and the target mark image formed on the light-receiving surface by the reflected light with the target mark power. An image of the index (the index pattern on the index plate provided in the alignment system ALG) is captured using an imaging element (such as a CCD), and the image processing method FI A ( Field Image Alignment) type sensors are used. The imaging signal from the alignment ALG is supplied to the main controller 20 in FIG.
[0096] なお、ァライメント系 ALGとしては、 FIA系に限らず、コヒーレントな検出光を対象マ ークに照射し、その対象マーク力も発生する散乱光又は回折光を検出する、あるい はその対象マーク力も発生する 2つの回折光 (例えば同次数の回折光、あるいは同 方向に回折する回折光)を干渉させて検出するァライメントセンサを単独である ヽは 適宜組み合わせて用いることは勿論可能である。 [0096] The alignment type ALG is not limited to the FIA type, but irradiates a target mark with a coherent detection light and detects scattered light or diffracted light that also generates the target mark force, or detects the target light. Two diffracted beams that also generate a mark force (for example, diffracted beams of the same order or A single alignment sensor for detecting interference by diffracting light diffracted in the direction) can be used in combination as appropriate.
[0097] 本実施形態の露光装置 100では、図 1では図示が省略されている力 照射系 90a 及び受光系 90b (図 7参照)から成る、例えば特開平 6— 283403号公報及びこれに 対応する米国特許第 5, 448, 332号等に開示されるものと同様の斜入射方式の多 点焦点位置検出系が設けられている。本実施形態では、一例として、照射系 90aが 投影ユニット PUの- X側にて投影ユニット PUを保持する保持部材に吊り下げ支持さ れ、受光系 90bが投影ユニット PUの +X側にて保持部材の下方に吊り下げ支持され ている。すなわち、照射系 90a及び受光系 90bと、投影光学系 PLとが、同一の部材 に取り付けられており、両者の位置関係が一定に維持されている。本国際出願で指 定した指定国 (又は選択した選択国)の国内法令が許す限りにおいて、上記公報及 び対応米国特許の開示を援用して本明細書の記載の一部とする。  The exposure apparatus 100 according to the present embodiment includes a force irradiation system 90a and a light receiving system 90b (see FIG. 7), which are not shown in FIG. 1, for example, Japanese Patent Application Laid-Open No. 6-283403 and corresponding thereto. An oblique incidence type multi-point focal position detection system similar to that disclosed in US Pat. No. 5,448,332 is provided. In the present embodiment, as an example, the irradiation system 90a is suspended and supported by a holding member that holds the projection unit PU on the −X side of the projection unit PU, and the light receiving system 90b is held on the + X side of the projection unit PU. It is suspended and supported below the member. That is, the irradiation system 90a, the light receiving system 90b, and the projection optical system PL are mounted on the same member, and the positional relationship between them is maintained constant. To the extent permitted by the national laws of the designated States (or selected elected States) specified in this International Application, the disclosures of the above-mentioned publications and corresponding US patents are incorporated herein by reference.
[0098] 図 7には、露光装置 100の制御系の主要な構成が示されている。この制御系は、装 置全体を統括的に制御するマイクロコンピュータ (又はワークステーション)から成る 主制御装置 20を中心として構成されている。また、主制御装置 20には、メモリ MEM 、 CRTディスプレイ (又は液晶ディスプレイ)等のディスプレイ DISが接続されて ヽる。  FIG. 7 shows a main configuration of a control system of exposure apparatus 100. This control system is mainly configured by a main controller 20 composed of a microcomputer (or a workstation) that controls the entire apparatus as a whole. Further, a display DIS such as a memory MEM and a CRT display (or a liquid crystal display) is connected to the main controller 20.
[0099] 次に、上述のようにして構成された本実施形態の露光装置 100における、ウェハス テージ WSTと計測ステージ MSTとを用いた並行処理動作について、図 8 (A)—図 1 0に基づいて説明する。なお、以下の動作中、主制御装置 20によって、液浸装置 13 2の液体供給装置 288及び液体回収装置 292の各バルブの開閉制御が前述したよ うにして行われ、投影光学系 PLの先端レンズ 91の直下には常時水が満たされてい る。しかし、以下では、説明を分力り易くするため、液体供給装置 288及び液体回収 装置 292の制御に関する説明は省略する。  [0099] Next, the parallel processing operation using wafer stage WST and measurement stage MST in exposure apparatus 100 of the present embodiment configured as described above will be described with reference to FIGS. Will be explained. During the following operation, the main controller 20 controls the opening and closing of each valve of the liquid supply device 288 and the liquid recovery device 292 of the liquid immersion device 132 as described above. The area immediately below the lens 91 is always filled with water. However, in the following, in order to facilitate the description, the description of the control of the liquid supply device 288 and the liquid recovery device 292 will be omitted.
[0100] 図 8 (A)には、ウェハステージ WST上のウェハ W (ここでは例えば 1ロット(1ロットは 25枚又は 50枚)の最後のウェハとする)に対するステップ ·アンド'スキャン方式の露 光が行われている状態が示されている。このとき、計測ステージ MSTは、ウェハステ ージ WSTと衝突しな 、所定の待機位置にて待機して!/、る。  [0100] FIG. 8A shows a step-and-scan exposure method for wafer W on wafer stage WST (here, for example, the last wafer of one lot (one lot is 25 or 50)). The state where light is being performed is shown. At this time, measurement stage MST waits at a predetermined standby position without colliding with wafer stage WST! /
[0101] 上記の露光動作は、主制御装置 20により、事前に行われた例えばェンハンスト'グ ローバル.ァライメント(EGA)などのウェハァライメントの結果及び最新のァライメント 系 ALGのベースラインの計測結果等に基づ 、て、ウェハ W上の各ショット領域の露 光のための走査開始位置 (加速開始位置)へウェハステージ WSTが移動されるショ ット間移動動作と、レチクル Rに形成されたパターンを各ショット領域に走査露光方式 で転写する走査露光動作とを繰り返すことにより、行われる。 [0101] The above-described exposure operation is performed by the main controller 20 in advance, for example, in the case of the Enhanced Group. Based on the results of wafer alignment such as global alignment ( EGA) and the measurement results of the latest alignment-based ALG, etc., the scanning start position for the exposure of each shot area on the wafer W (acceleration) This is performed by repeating a shot-to-shot movement operation in which the wafer stage WST is moved to the (start position) and a scanning exposure operation of transferring a pattern formed on the reticle R to each shot area by a scanning exposure method.
[0102] ここで、上記のウェハステージ WSTが移動されるショット間移動動作は、主制御装 置 20力 干渉計 18、 46の計測値をモニタしつつ、 X軸リニアモータ 80及び Y軸リニ ァモータ 82, 83を制御することで行われる。また、上記の走査露光は、主制御装置 2 0力 干渉計 18, 46及びレチクル干渉計 116の計測値をモニタしつつ、レチクルステ ージ駆動部 11並びに Y軸リニアモータ 82, 83 (及び X軸リニアモータ 80)を制御して 、レチクル R (レチクルステージ RST)とウェハ W (ウェハステージ WST)とを Y軸方向 に関して相対走査し、その相対走査中の加速終了後と減速開始直前との間の等速 移動時に、照明光 ILの照明領域に対してレチクル R (レチクルステージ RST)とゥェ ハ W (ウェハステージ WST)とを Y軸方向に関して等速同期移動することで実現され る。なお、上記の露光動作は、先端レンズ 91とウェハ Wとの間に水を保持した状態で 行われる。 [0102] Here, the movement between shots in which the wafer stage WST is moved is performed by monitoring the measurement values of the 20-force interferometers 18 and 46 of the main control device, and using the X-axis linear motor 80 and the Y-axis linear motor. This is done by controlling 82 and 83. In addition, the above scanning exposure is performed while monitoring the measured values of the main controller 20 force interferometers 18, 46 and the reticle interferometer 116, while controlling the reticle stage driving unit 11 and the Y-axis linear motors 82, 83 (and X-axis). By controlling the linear motor 80), the reticle R (reticle stage RST) and the wafer W (wafer stage WST) are scanned relative to each other in the Y-axis direction. This is realized by synchronously moving the reticle R (reticle stage RST) and wafer W (wafer stage WST) at constant speed in the Y-axis direction with respect to the illumination area of the illumination light IL during the uniform movement. The above-described exposure operation is performed in a state where water is held between the tip lens 91 and the wafer W.
[0103] そして、ウェハステージ WST側で、ウエノ、 Wに対する露光が終了した段階で、主制 御装置 20は、干渉計 16の計測値、及び不図示のエンコーダの計測値に基づいて Y 軸リニアモータ 84, 85及び X軸リニアモータ LXを制御して、計測テーブル MTBを図 8 (B)に示される位置まで移動させる。この図 8 (B)の状態では、計測テーブル MTB の +Y側の端面とウェハテーブル WTBの Y側の端面とは接触している。なお、干 渉計 16, 18の計測値をモニタして計測テーブル MTBとウェハテーブル WTBとを Y 軸方向に関して 300 m程度離間させて、非接触の状態を保っても良い。  [0103] Then, at the stage where the exposure of the wafer and the W on the wafer stage WST side is completed, the main controller 20 sets the Y-axis linear based on the measurement value of the interferometer 16 and the measurement value of the encoder (not shown). By controlling the motors 84 and 85 and the X-axis linear motor LX, the measurement table MTB is moved to the position shown in FIG. In the state shown in FIG. 8B, the end surface on the + Y side of measurement table MTB is in contact with the end surface on the Y side of wafer table WTB. The measurement values of the interferometers 16 and 18 may be monitored, and the measurement table MTB and the wafer table WTB may be separated from each other by about 300 m in the Y-axis direction to maintain a non-contact state.
[0104] 次いで、主制御装置 20は、ウェハテーブル WTBと計測テーブル MTBの Y軸方向 の位置関係を保ちつつ、両ステージ WST、 MSTを +Y方向に同時に駆動する動作 を開始する。  Next, main controller 20 starts an operation of simultaneously driving both stages WST and MST in the + Y direction while maintaining the positional relationship between wafer table WTB and measurement table MTB in the Y-axis direction.
[0105] このようにして、主制御装置 20により、ウェハステージ WST、計測ステージ MSTが 同時に駆動されると、図 8 (B)の状態では、投影ユニット PUの先端レンズ 91とウェハ Wとの間に保持されていた水力 ウェハステージ WST、計測ステージ MSTの +Y側 への移動に伴って、ウェハ W→ウェハホルダ 70→計測テーブル MTB上を順次移動 する。なお、上記の移動の間中、ウェハテーブル WTB、計測テーブル MTBは相互 に接触する位置関係を保っている。図 9 (A)には、上記の移動の途中に水がウェハ ステージ WST、計測ステージ MST上に同時に存在するときの状態、すなわちゥェ ハステージ WST上力 計測ステージ MST上に水が渡される直前の状態が示されて いる。 In this manner, when main controller 20 drives wafer stage WST and measurement stage MST simultaneously, in the state of FIG. 8B, tip lens 91 of projection unit PU and wafer Hydraulic force held between W and wafer stage WST and measurement stage MST move in the + Y side and move sequentially from wafer W to wafer holder 70 to measurement table MTB. During the above movement, the wafer table WTB and the measurement table MTB maintain the positional relationship of contact with each other. FIG. 9 (A) shows a state in which water is simultaneously present on the wafer stage WST and the measurement stage MST during the above movement, that is, immediately before water is passed on the wafer stage WST force measurement stage MST. State is shown.
[0106] 図 9 (A)の状態から、更にウェハステージ WST,計測ステージ MSTが +Y方向に 同時に所定距離駆動されると、図 9 (B)に示されるように、計測テーブル MTBと先端 レンズ 91との間に水が保持された状態となる。これに先立って、主制御装置 20では 、 X軸干渉計 46からの干渉計ビームが計測テーブル MTB上の移動鏡 117Xに照射 されるようになった!/、ずれかの時点で X軸干渉計 46のリセットを実行して 、る。また、 図 9 (B)の状態では、主制御装置 20は、ウェハテーブル WTB (ウェハステージ WST )の X位置を、不図示のエンコーダの計測値に基づいて管理している。  When the wafer stage WST and the measurement stage MST are simultaneously driven a predetermined distance in the + Y direction from the state shown in FIG. 9A, as shown in FIG. 9B, the measurement table MTB and the tip lens The water is held between the air conditioner and 91. Prior to this, in the main controller 20, the interferometer beam from the X-axis interferometer 46 is irradiated on the moving mirror 117X on the measurement table MTB! / Perform 46 resets. In the state shown in FIG. 9B, main controller 20 manages the X position of wafer table WTB (wafer stage WST) based on a measurement value of an encoder (not shown).
[0107] 次いで、主制御装置 20は、ウェハステージ WSTの位置を干渉計 18、エンコーダ の計測値に基づいて管理しつつ、リニアモータ 80, 82, 83を制御して、所定のゥェ ハ交換位置にウェハステージ WSTを移動させるとともに次のロットの最初のウェハへ の交換を行い、これと並行して、計測ステージ MSTを用いた所定の計測を必要に応 じて実行する。この計測としては、例えばレチクルステージ RST上のレチクル交換後 に行われる、ァライメント系 ALGのベースライン計測が一例として挙げられる。具体的 には、主制御装置 20では、計測テーブル MTB上のプレート 101上に設けられた基 準マーク領域 FM内の一対の第 1基準マークと対応するレチクル上のレチクルァライ メントマークを前述のレチクルァライメント系 RAa、RAbを用いて同時に検出して一対 の第 1基準マークと対応するレチクルァライメントマークの位置関係を検出する。これ と同時に、主制御装置 20では、上記基準マーク領域 FM内の第 2基準マークをァラ ィメント系 ALGで検出することで、ァライメント系 ALGの検出中心と第 2基準マークと の位置関係を検出する。そして、主制御装置 20は、上記一対の第 1基準マークと対 応するレチクルァライメントマークの位置関係と、ァライメント系 ALGの検出中心と第 2基準マークとの位置関係と、既知の一対の第 1基準マークと第 2基準マークとの位 置関係とに基づいて、投影光学系 PLによるレチクルパターンの投影中心とァライメン ト系 ALGの検出中心との距離、すなわちァライメント系 ALGのベースラインを求める 。なお、このときの状態が、図 10に示されている。 [0107] Next, main controller 20 controls linear motors 80, 82, and 83 while controlling the position of wafer stage WST based on the interferometer 18 and the measurement values of the encoder, and performs predetermined wafer exchange. The wafer stage WST is moved to the position and replaced with the first wafer of the next lot, and in parallel with this, predetermined measurement using the measurement stage MST is performed as necessary. An example of this measurement is a baseline measurement of an alignment ALG performed after the reticle is replaced on the reticle stage RST. Specifically, in main controller 20, reticle alignment marks on the reticle corresponding to a pair of first reference marks in reference mark area FM provided on plate 101 on measurement table MTB are described above. The positional relationship between the pair of first fiducial marks and the corresponding reticle alignment marks is detected by simultaneously detecting using the alignment systems RAa and RAb. At the same time, main controller 20 detects the second fiducial mark in the fiducial mark area FM with the alignment ALG, thereby detecting the positional relationship between the detection center of the alignment ALG and the second fiducial mark. I do. Then, main controller 20 determines the positional relationship between the pair of first fiducial marks and the corresponding reticle alignment mark, and the detection center of alignment ALG and the second alignment mark. The center of projection of the reticle pattern by the projection optical system PL and the center of detection of the alignment system ALG based on the positional relationship between the two fiducial marks and the known positional relationship between the pair of first fiducial marks and the second fiducial mark. Find the distance, ie, the baseline of the alignment ALG. The state at this time is shown in FIG.
[0108] なお、上記のァライメント系 ALGのベースラインの計測とともに、レチクル上にレチク ルァライメントマークを複数対形成し、これに対応して基準マーク領域 FM内に複数 対の第 1基準マークを形成しておき、少なくとも 2対の第 1基準マークと対応するレチ クルァライメントマークとの相対位置を、レチクルステージ RST、ウェハステージ WST を Y軸方向にステップ移動しつつ、レチクルァライメント系 RAa、 RAbを用いて計測 することで、いわゆるレチクルァライメントが行われる。  [0108] In addition to the measurement of the baseline of the alignment ALG described above, a plurality of pairs of reticle alignment marks are formed on the reticle, and a plurality of pairs of the first reference marks are formed in the reference mark area FM in response to this. In addition, at least two pairs of the first fiducial marks and the corresponding reticle alignment marks are moved relative to the reticle stage RST and the wafer stage WST in the Y-axis direction while moving the reticle alignment systems RAa and RAb. The so-called reticle alignment is performed by using the measurement.
[0109] この場合、レチクルァライメント系 RAa, RAbを用いたマークの検出は、投影光学系 PL及び水を介して行われる。  In this case, mark detection using reticle alignment systems RAa and RAb is performed via projection optical system PL and water.
[0110] そして、上述した両ステージ WST、 MST上における作業が終了した段階で、主制 御装置 20は、計測テーブル MTBとウェハテーブル WTB (ウェハステージ WST)と を、接触させ、その状態を維持しつつ、 XY面内で駆動し、ウェハステージ WSTを投 影ユニット直下に戻す。この移動中も、主制御装置 20では、 X軸干渉計 46からの干 渉計ビームがウェハテーブル WTB上の移動鏡 17Xに照射されるようになった!/、ず れかの時点で X軸干渉計 46のリセットを実行している。そして、ウェハステージ WST 側では、交換後のウェハに対してウェハァライメント、すなわちァライメント系 ALGに よる交換後のウェハ上のァライメントマークの検出を行 、、ウェハ上の複数のショット 領域の位置座標を算出する。なお、前述のように、計測テーブル MTBとウェハテー ブル WTB (ウェハステージ WST)とを非接触の状態にしても良!、。  [0110] At the stage where the operations on both stages WST and MST described above are completed, main controller 20 brings measurement table MTB and wafer table WTB (wafer stage WST) into contact with each other, and maintains the state. While moving in the XY plane, returning the wafer stage WST directly below the projection unit. During this movement, the main controller 20 irradiates the interferometer beam from the X-axis interferometer 46 to the moving mirror 17X on the wafer table WTB! / At some point, the X-axis Performing reset of interferometer 46. Then, on the wafer stage WST side, a wafer alignment is performed on the replaced wafer, that is, an alignment mark on the replaced wafer is detected by an alignment ALG, and the position coordinates of a plurality of shot areas on the wafer are determined. Is calculated. As described above, the measurement table MTB and the wafer table WTB (wafer stage WST) can be in a non-contact state! ,.
[0111] その後、主制御装置 20では、先程とは逆にウェハテーブル WTB (ウェハステージ WST)と計測テーブル MTBの Y軸方向の位置関係を保ちつつ、両ステージ WST、 MSTを Y方向に同時に駆動して、ウェハステージ WST (ウエノ、)を投影光学系 PL の下方に移動させた後、計測ステージ MSTを所定の位置に退避させる。  [0111] Thereafter, main controller 20 simultaneously drives both stages WST and MST in the Y direction while maintaining the positional relationship between wafer table WTB (wafer stage WST) and measurement table MTB in the Y-axis direction. Then, after moving the wafer stage WST (Ueno) below the projection optical system PL, the measurement stage MST is retracted to a predetermined position.
[0112] その後、主制御装置 20では、上記と同様に新たなウェハに対してステップ 'アンド' スキャン方式の露光動作を実行し、ウェハ上の複数のショット領域にレチクルパター ンを順次転写する。 [0112] Thereafter, main controller 20 executes a step 'and' scan exposure operation on the new wafer in the same manner as described above, and reticle patterning is performed on a plurality of shot areas on the wafer. Are sequentially transferred.
[0113] なお、上記の説明では、計測動作として、ベースライン計測を行う場合について説 明したが、これに限らず、ウェハステージ WST側で各ウェハの交換を行っている間 に、計測ステージ MSTの計測器群 43を用いて、照度計測、照度むら計測、空間像 計測、波面収差計測などを行い、その計測結果をその後に行われるウェハの露光に 反映させることとしても良い。具体的には、例えば、計測結果に基づいて前述した結 像特性補正コントローラ 381により投影光学系 PLの調整を行うこととすることができる  [0113] In the above description, the case where the baseline measurement is performed as the measurement operation is described. However, the present invention is not limited to this, and the measurement stage MST is performed while each wafer is replaced on the wafer stage WST side. The measurement instrument group 43 may be used to perform illuminance measurement, illuminance unevenness measurement, aerial image measurement, wavefront aberration measurement, and the like, and the measurement results may be reflected in subsequent wafer exposure. Specifically, for example, the projection optical system PL can be adjusted by the above-described imaging characteristic correction controller 381 based on the measurement result.
[0114] この場合、ウェハ交換に要する時間に応じて、ウェハ交換毎に、異なる計測を行な うこととすることができる。また、 1つの計測が 1度のウェハ交換の間に完了しない場合 には、その計測を分割して複数回に渡って行うこととすることもできる。 [0114] In this case, different measurements can be performed for each wafer exchange according to the time required for the wafer exchange. If one measurement is not completed during one wafer exchange, the measurement can be divided and performed multiple times.
[0115] ところで、上述したように、前記各計測器を用いた計測は、計測テーブル MTBのプ レート 101上に、水が満たされた状態で行われるため、プレート 101の表面(上面)に は撥水コートが施されている。し力しながら、この撥水コートは紫外線に弱ぐ長時間 紫外線が照射されると劣化するため、所定の頻度で撥水コート部分のメンテナンス ( 交換)を行う必要がある。かかる点に鑑みて、本実施形態の露光装置 100では、計測 テーブル MTBを、計測ステージ MSTのその他の構成部分と非接触で係合した状態 としている。すなわち、計測テーブル MTBを +Y側にずらして、 Xリニアモータ LX、 Y ボイスコイルモータ VYそれぞれの可動子と固定子との係合を解除することにより、図 By the way, as described above, since the measurement using each of the measuring devices is performed on the plate 101 of the measurement table MTB in a state where water is filled, the surface (upper surface) of the plate 101 is not Water repellent coat is applied. However, since the water-repellent coat deteriorates when exposed to ultraviolet light for a long period of time that is weak to ultraviolet light, it is necessary to perform maintenance (replacement) of the water-repellent coat portion at a predetermined frequency. In view of the above, in exposure apparatus 100 of the present embodiment, measurement table MTB is in a state of non-contact engagement with other components of measurement stage MST. In other words, the measurement table MTB is shifted to the + Y side to release the engagement between the mover and the stator of each of the X linear motor LX and Y voice coil motor VY.
3 (B)に示されるように、計測テーブル MTBを、計測ステージ MSTのその他の構成 部分力も容易に取り外すことができるようになつている。そして、本実施形態では、所 定の交換時期に、計測テーブル MTBを新たな計測テーブルに交換することとして ヽ る。 As shown in 3 (B), the measurement table MTB can be easily detached from other components and components of the measurement stage MST. In the present embodiment, the measurement table MTB is replaced with a new measurement table at a predetermined replacement time.
[0116] 計測テーブル MTBの交換を行う時期としては、各種計測の計測精度を良好に維 持し、かつその計測テーブル MTBの交換に伴う装置のダウンタイムを極力少なくす る観点から、撥水コートが劣化する直前 (劣化が所定の許容範囲を超える直前)とす ることが望ましい。  [0116] When replacing the measurement table MTB, the water-repellent coating should be used in order to maintain the measurement accuracy of various measurements well and minimize the downtime of the equipment accompanying the replacement of the measurement table MTB. It is desirable to set the time immediately before the deterioration (immediately before the deterioration exceeds a predetermined allowable range).
[0117] そこで、本実施形態では、予め実験により、撥水コートの劣化と計測テーブル MTB に設けられた各種計測器の計測結果の変化との関係に基づいて、撥水コートが劣化 する直前の各種計測器の計測値を求め、各種計測器の計測結果が許容値を超える 境目の値を閾値としてメモリ MEM (図 7参照)に記憶しておく。そして、装置の使用中 は、計測テーブル MTBを用いて計測が行われた場合に、主制御装置 20が、その計 測結果とメモリ MEMに記憶された閾値とを比較することで、交換時期が到来したか 否かを判断することとしている。そして、主制御装置 20は、交換時期が到来したと判 断したとき、ディスプレイ DIS (図 7参照)にその旨を表示する。そこで、オペレータは 、露光装置 100の運転を停止して、計測テーブル MTBの交換をマニュアルにて実 行する。すなわち、本実施形態では、主制御装置 20及びメモリ MEMによってプレー ト 101の交換時期を検出する検出装置が構成されている。 Therefore, in the present embodiment, the deterioration of the water-repellent coat and the measurement table MTB Based on the relationship with the change in the measurement results of the various measuring instruments provided in, the measured values of the various measuring instruments immediately before the water-repellent coat deteriorates are calculated, and the value of the boundary where the measurement results of the various measuring instruments exceed the allowable value Is stored in the memory MEM (see FIG. 7) as a threshold value. During use of the device, when measurement is performed using the measurement table MTB, the main control device 20 compares the measurement result with a threshold value stored in the memory MEM to determine a replacement time. It is to be determined whether or not it has arrived. Then, when main controller 20 determines that the replacement time has come, it displays that fact on display DIS (see FIG. 7). Therefore, the operator stops the operation of the exposure apparatus 100 and manually replaces the measurement table MTB. That is, in the present embodiment, a detection device that detects the replacement time of the plate 101 by the main control device 20 and the memory MEM is configured.
[0118] なお、計測テーブル MTBの交換に用いられるロボットなどを備えている場合には、 主制御装置 20は、交換時期をディスプレイ DISに表示するとともに、装置の運転を停 止して、そのロボットなどを用いて、計測テーブル MTBを外部に搬出するとともに、 新しい計測テーブルを、計測ステージ本体 81c上に搬入するようにすることも可能で ある。 When a robot or the like used for replacing measurement table MTB is provided, main controller 20 displays the replacement time on display DIS, stops the operation of the device, and stops the robot. It is also possible to carry out the measurement table MTB to the outside and to carry in a new measurement table onto the measurement stage body 81c by using, for example.
[0119] また、計測テーブル MTBの交換を行う時期の検出は、例えば露光光とは別に、露 光光と同一波長の光 (検出光)を、光ファイバ等を用いて投影ユニット PU近傍に導き 、計測テーブル MTBのプレート 101の各種計測に用いる部分以外の部分に、計測 時間と同一 (又は幾分長い)時間だけ検出光を照射し、そのときの検出光の照度 (光 量)等を、交換時期検出専用として設けられた光センサで計測し、この計測結果に基 づいて劣化度合を算出することで、交換時期の到来を判断することとしても良い。こ の他、シミュレーション等で予め求めておいた劣化時間に基づいて、タイマーなどを 用いて、劣化度合を予測することとしても良い。要は、何らかの手段を用いて撥水コ ートの劣化具合を検知し、交換時期が到来したことを検出することができるのであれ ば、その手法は問わない。  [0119] Further, when detecting when to exchange the measurement table MTB, for example, separately from the exposure light, light having the same wavelength as the exposure light (detection light) is guided to the vicinity of the projection unit PU using an optical fiber or the like. Then, the part other than the part used for various measurements of the plate 101 of the measurement table MTB is irradiated with the detection light for the same (or somewhat longer) time as the measurement time, and the illuminance (light amount) of the detection light at that time is measured. It is also possible to determine the arrival of the replacement time by measuring with an optical sensor provided exclusively for detecting the replacement time and calculating the degree of deterioration based on the measurement result. In addition, the degree of deterioration may be predicted using a timer or the like based on the deterioration time obtained in advance by simulation or the like. In short, any method can be used as long as it can detect the degree of deterioration of the water-repellent coat using any means and can detect that the replacement time has come.
[0120] 以上詳細に説明したように、本実施形態の露光装置 100によると、水 (液体)が供 給されるプレート 101を有し、投影光学系及び水を介して露光に関する計測を行う計 測ステージ MSTでは、プレート 101を含む計測テーブル MTBが交換可能とされて いる。このため、プレート 101表面に水が供給された状態で、投影光学系 PL及び水 を介して露光に関する計測が計測ステージ MSTを用いて繰り返し行われる場合であ つても、プレート 101表面が水との接触で劣化する前に、計測テーブル MTBを交換 することで、露光に関する計測を常時高精度に行うことができ、ひいては高精度な露 光を維持することが可能となる。 As described in detail above, according to the exposure apparatus 100 of the present embodiment, the exposure apparatus 100 includes the plate 101 to which water (liquid) is supplied, and performs measurement related to exposure via the projection optical system and water. In the measurement stage MST, the measurement table MTB including the plate 101 can be exchanged. Yes. For this reason, even when the measurement related to exposure is repeatedly performed using the measurement stage MST via the projection optical system PL and water in a state where water is supplied to the surface of the plate 101, the surface of the plate 101 may be in contact with water. By exchanging the measurement table MTB before deterioration due to contact, measurement related to exposure can always be performed with high accuracy, and as a result, highly accurate exposure can be maintained.
[0121] また、本実施形態の露光装置では、計測テーブル MTBに設けられた各種計測器 の計測精度が低下し始める直前の時期を予め実験などで求め、この時期を計測テー ブル MTBの交換時期として予め設定しておき、その時期の到来を、主制御装置 20 力 前述のようにして検出する。従って、その検出結果に応じて計測テーブル MTB を交換をすることで、計測テーブル MTBに設けられた各種計測器の計測精度が低 下するより以前の最適な時期に計測テーブル MTBを交換することが可能となる。す なわち、計測テーブル MTBによる露光に関する計測の計測精度を高精度に維持す ることができるとともに、計測テーブル MTBの交換頻度を極力抑制することができる。 従って、露光精度を長期に渡って高精度に維持することができるとともに、計測テー ブルの交換に伴うダウンタイムの増加による装置稼動効率の低下を効果的に防止す ることが可能となる。 [0121] In the exposure apparatus of the present embodiment, the time immediately before the measurement accuracy of the various measuring instruments provided in the measurement table MTB starts to decrease is determined in advance by an experiment or the like, and this time is determined by the replacement time of the measurement table MTB. The arrival of that time is detected as described above. Therefore, by exchanging the measurement table MTB according to the detection result, the measurement table MTB can be exchanged at an optimal time before the measurement accuracy of the various measuring instruments provided in the measurement table MTB is reduced. It becomes possible. In other words, it is possible to maintain the measurement accuracy of the measurement related to exposure using the measurement table MTB with high accuracy, and to minimize the frequency of replacement of the measurement table MTB. Therefore, it is possible to maintain the exposure accuracy with high accuracy over a long period of time, and to effectively prevent a decrease in apparatus operation efficiency due to an increase in downtime due to replacement of the measurement table.
[0122] また、露光装置 100によると、液浸露光により、高解像度かつ空気中と比べて大焦 点深度の露光を行うことで、レチクル Rのパターンを精度良くウェハ上に転写すること ができ、例えばデバイスルールとして 70— lOOnm程度の微細パターンの転写を実 現することができる。  [0122] Further, according to the exposure apparatus 100, the pattern of the reticle R can be transferred onto the wafer with high precision by performing high-resolution exposure with a large depth of focus compared to that in the air by immersion exposure. For example, transfer of a fine pattern of about 70-100 nm can be realized as a device rule.
[0123] なお、上記実施形態では、計測ステージ MSTが交換可能な計測テーブル MTBを 備えている場合について説明した力 本発明がこれに限られるものではなぐ計測ス テージ MST自体が交換可能、すなわち、計測ステージを Y軸方向に駆動する Y軸リ ユアモータの可動子と固定子との間の係合が解除可能な構成を採用しても良い。  In the above embodiment, the force described in the case where the measurement stage MST includes the replaceable measurement table MTB is not limited to this. The measurement stage MST itself is not limited to this. A configuration may be adopted in which the engagement between the mover and the stator of the Y-axis rear motor that drives the measurement stage in the Y-axis direction can be released.
[0124] なお、上記実施形態では、計測テーブル MTBが計測ステージ MSTを構成するレ ベリングテーブル 52に対して着脱自在である場合について説明した力 本発明がこ れに限られるものではなぐ例えば、計測テーブルが計測ステージ MSTの一部にね じ止めされていても良い。力かる場合であっても、ねじを外すことにより計測テーブル は交換可能だ力 である。 In the above embodiment, the force described in the case where the measurement table MTB is detachable from the leveling table 52 configuring the measurement stage MST is not limited to this. The table may be screwed to a part of the measurement stage MST. Even if it is strong, the measurement table can be removed by removing the screws. Is an exchangeable force.
[0125] また、上記実施形態では、レべリングテーブル 52が 6自由度、計測テーブル MTB 力 S3自由度有する構成を採用した場合について説明したが、これに限らず、レベリン グテーブル 52が 3自由度、計測テーブル MTBが 3自由度有する構成を採用しても 良い。また、レべリングテーブル 52を設けずに、計測テーブル MTBが 6自由度有す る構成を採用することとしても良い。要は、プレート 101を含む計測部の少なくとも一 部が交換可能な構成であれば良 、。  In the above embodiment, the case where the leveling table 52 has a configuration having six degrees of freedom and the measurement table MTB force has S3 degrees of freedom has been described. However, the present invention is not limited to this, and the leveling table 52 may have three degrees of freedom. The configuration in which the measurement table MTB has three degrees of freedom may be adopted. Further, a configuration in which the measurement table MTB has six degrees of freedom may be employed without providing the leveling table 52. In short, it is only necessary that at least a part of the measuring unit including the plate 101 is replaceable.
[0126] なお、上記実施形態では、レべリングテーブル 52の自重をキャンセルする機構とし てピストン状の自重キャンセラ 58を採用する場合について説明したが、これに限らず 、ベローズ状の自重キャンセラ等を採用することとしても良い。また、ウェハステージ 本体 28の自重を自重キャンセラ 58によりキャンセルしても良!、。  In the above embodiment, the case where the piston-shaped dead weight canceller 58 is employed as a mechanism for canceling the dead weight of the leveling table 52 has been described. However, the present invention is not limited to this, and a bellows-shaped dead weight canceller or the like may be used. It may be adopted. In addition, the weight of the wafer stage body 28 may be canceled by the weight canceller 58!
[0127] 《第 2の実施形態》  << Second Embodiment >>
次に、本発明の第 2の実施形態を図 11、図 12に基づいて説明する。ここで、前述し た第 1の実施形態と同一若しくは同等の部分については、同一の符号を用いるととも にその説明を簡略にし、若しくは省略するものとする。この第 2の実施形態の露光装 置では、計測部としての計測ステージの構成等が前述の第 1の実施形態と異なって おり、その他の部分の構成等は、前述の第 1の実施形態と同様になつている。従って 、以下では重複説明を避ける観点から相違点を中心として説明する。  Next, a second embodiment of the present invention will be described with reference to FIGS. Here, parts that are the same as or equivalent to those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is simplified or omitted. In the exposure apparatus of the second embodiment, the configuration and the like of a measurement stage as a measurement unit are different from those of the above-described first embodiment, and the configurations and the like of other parts are the same as those of the above-described first embodiment. The same goes. Therefore, the following description focuses on the differences from the viewpoint of avoiding redundant description.
[0128] 図 11には、本第 2の実施形態に係る計測ステージ MST'が斜視図にて示されてい る。この図 11と図 3 (A)とを比べると、本第 2の実施形態の計測ステージ MST'では、 前述した第 1の実施形態の計測テーブル MTBに代えて、計測ユニットとしての計測 テーブル MTB'が設けられていることがわかる。この計測テーブル MTB'は、前述の 計測テーブル本体 59と僅かに構成が異なる計測テーブル本体 159と、該計測テー ブル本体 159上に着脱自在に装着されたプレート 101 'とを備えている。従ってこれ らの点を除き、基本的には、前述の計測テーブル MTBと同様に構成され、同様の機 能を有している。  FIG. 11 is a perspective view showing measurement stage MST ′ according to the second embodiment. Comparing FIG. 11 with FIG. 3 (A), in the measurement stage MST ′ of the second embodiment, the measurement table MTB ′ as a measurement unit is replaced with the measurement table MTB ′ of the above-described first embodiment. It can be seen that is provided. The measurement table MTB 'includes a measurement table main body 159 slightly different in configuration from the above-described measurement table main body 59, and a plate 101' detachably mounted on the measurement table main body 159. Therefore, except for these points, it is basically configured and has the same functions as the above-mentioned measurement table MTB.
[0129] 前記プレート 101 'は、上記第 1の実施形態と同様、例えばゼロデュア (ショット社の 商品名)、石英ガラス等のガラス材料力 構成され、その表面のほぼ全面に渡ってク ロムが塗布され、所々に計測器用の領域や基準マーク領域が設けられている。そし て、計測器用の領域には、パターンユングが施され、前述の第 1の実施形態と同様の 空間像計測用開口パターン (例えばスリット状開口パターン)、照明むら計測用ピンホ ール開口パターン、照度計測用開口パターン、及び波面収差計測用開口パターン などの計測用開口パターンが形成されている。 The plate 101 ′ is made of a glass material such as Zerodur (trade name of Schott), quartz glass, or the like, as in the first embodiment, and covers almost the entire surface thereof. ROM is applied, and areas for measuring instruments and reference mark areas are provided in some places. Then, a pattern jung is applied to the measurement device area, and the same aerial image measurement aperture pattern (for example, slit-shaped aperture pattern), illumination unevenness measurement pinhole aperture pattern, and the like as in the first embodiment described above. Measurement aperture patterns such as an illuminance measurement aperture pattern and a wavefront aberration measurement aperture pattern are formed.
[0130] また、プレート 101 'の Y側端面及び X側端面は、鏡面加工が施されて反射面( 第 1の実施形態における計測テーブル MTB上の移動鏡 117X, 117Yの反射面に 相当)が形成されている。また、本第 2の実施形態においても、プレート 101 '上に水 が供給された状態で、各種計測が行われるので、プレート 101 'の表面には撥水コー トが施されている。 [0130] The Y-side end surface and the X-side end surface of the plate 101 'are mirror-finished and have reflecting surfaces (corresponding to the reflecting surfaces of the moving mirrors 117X and 117Y on the measurement table MTB in the first embodiment). Is formed. Also, in the second embodiment, since various measurements are performed in a state where water is supplied onto the plate 101 ′, a water-repellent coat is applied to the surface of the plate 101 ′.
[0131] 本第 2の実施形態では、プレート 101 'は、計測テーブル本体 159に設けられた不 図示の真空チャックを介して計測テーブル本体 159上に吸着保持されている。勿論 、真空吸着に限らず、メカ-カルな機構を用いて、プレート 101 'を計測テーブル本 体 159に固定することとしても良い。  [0131] In the second embodiment, the plate 101 'is suction-held on the measurement table main body 159 via a vacuum chuck (not shown) provided in the measurement table main body 159. Of course, the plate 101 ′ may be fixed to the measurement table body 159 using a mechanical mechanism instead of vacuum suction.
[0132] 前記計測テーブル本体 159には、その内部に、前述の各種計測用開口パターンに それぞれ対応する、複数の受光系が設けられている点は、前述の第 1の実施形態と 同様である。但し、この計測テーブル本体 159の上面には、 +X側の端面の Y軸方 向の中央部に、プレート 101 'が搭載される領域の下方まで X軸方向に延びる溝 21a が形成され、 X側の端面の Y軸方向の一側と他側の端部近傍に、プレート 101 'が 搭載される領域の下方まで X軸方向に延びる溝 21b、 21cがそれぞれ形成されてい る。  The measurement table main body 159 is provided with a plurality of light receiving systems corresponding to the above-described various measurement aperture patterns, respectively, as in the first embodiment. . However, on the upper surface of the measurement table main body 159, a groove 21a extending in the X-axis direction is formed at the center of the end surface on the + X side in the Y-axis direction below the region where the plate 101 'is mounted. Grooves 21b and 21c extending in the X-axis direction to below the region where the plate 101 'is mounted are formed near one end in the Y-axis direction and the other end in the Y-axis direction on the side end surface, respectively.
[0133] 図 11における計測ステージ MST'の上方には、プレート 101 'の搬出入に用いられ る搬出入機構 24が設けられている。この搬出入機構 24は、実際には、ベース盤 12 の- Y方向端部近傍の上方に設けられている。  [0133] Above the measurement stage MST 'in FIG. 11, a carry-in / out mechanism 24 used to carry in / out the plate 101' is provided. This carrying-in / out mechanism 24 is actually provided above the base board 12 near the end in the −Y direction.
[0134] 搬出入機構 24は、 Y軸方向に関するスライド動作及び Z軸方向に関する昇降動作 が可能な本体部 27と、該本体部 27に取り付けられ、 X軸方向に関して相反する方向 への移動 (相互に接近、離間する方向への移動)が可能な +Y方向から見て略 L字 状の 2つのハンド部 25a, 25bとを備えている。 [0135] 一方のハンド部 25aは、本体部 27の外側に +X側の端部が張り出す状態で、本体 部 27に吊り下げ支持状態で取り付けられており、 +X側の端部にはフック部 26aが設 けられている。また、他方のハンド部 25bは、本体部 27の外側に- X側の端部が張り 出す状態で、本体部 27に吊り下げ支持状態で取り付けられており、 X側の端部に は、 Y軸方向に延びる延設部が設けられ、該延設部の +Y側の端部及び Y側の端 部には、フック部 26b, 26cが設けられている。フック部 26a、 26b、 26cは、略同一の 高さ位置に設けられている。 The carrying-in / out mechanism 24 has a main body 27 capable of sliding in the Y-axis direction and a vertical movement in the Z-axis direction, and is mounted on the main body 27 and moves in opposite directions in the X-axis direction (mutually (In the direction of approaching or moving away from the hand), and has two substantially L-shaped hand parts 25a and 25b when viewed from the + Y direction. [0135] One hand unit 25a is attached to the main unit 27 in a suspended and supported state, with the + X end protruding outside the main unit 27. A hook 26a is provided. The other hand part 25b is attached to the main body part 27 in a suspended and supported state, with the -X end protruding outside the main body part 27. An extended portion extending in the axial direction is provided, and hook portions 26b and 26c are provided at the + Y side end and the Y side end of the extended portion. The hook portions 26a, 26b, 26c are provided at substantially the same height.
[0136] ハンド部 25a, 25bは、本体部 27内に設けられた不図示の駆動機構により、 X軸方 向に沿って互いに相反する方向にスライド自在とされて!/ヽる(すなわち、開閉自在とさ れている)。この搬出入機構 24は、主制御装置 20により制御されるようになっている。  [0136] The hand units 25a and 25b are slidable in mutually opposing directions along the X-axis direction by a drive mechanism (not shown) provided in the main body unit 27! / ヽ (that is, openable and closable). The loading / unloading mechanism 24 is controlled by the main controller 20.
[0137] その他の部分の構成等は、前述の第 1の実施形態と同様になつている。従って、本 第 2の実施形態の露光装置においても、前述した第 1の実施形態と同様のシーケン スで露光動作及び計測動作が行われる。  [0137] The configuration and the like of the other parts are the same as those of the first embodiment. Therefore, also in the exposure apparatus of the second embodiment, the exposure operation and the measurement operation are performed in the same sequence as in the first embodiment.
[0138] 本第 2の実施形態においては、上記第 1の実施形態と同様に、予め実験により、撥 水コートの劣化と計測テーブル MTB'に設けられた各種計測器の計測結果の変化と の関係に基づいて、撥水コートが劣化する直前の各種計測器の計測値を求め、各種 計測器の計測結果が許容値を超える境目の値を閾値としてメモリ MEMに記憶して おく。そして、計測テーブル MTB'を用いて計測が行われた場合に、主制御装置 20 力 その計測結果とメモリ MEMに記憶された閾値とを比較することで、プレート 101 ' の交換時期が到来したカゝ否かを判断する。すなわち、本第 2の実施形態では、主制 御装置 20及びメモリ MEMを含んで、プレート 101 'の交換時期の到来を検出する検 出装置が構成される。  [0138] In the second embodiment, as in the case of the first embodiment, the difference between the deterioration of the water-repellent coat and the change in the measurement results of various measuring instruments provided in the measurement table MTB 'is determined by an experiment in advance. Based on the relationship, the measured values of various measuring instruments immediately before the water-repellent coat is degraded are obtained, and the boundary value at which the measured results of the various measuring instruments exceed the allowable value is stored as a threshold in the memory MEM. Then, when measurement is performed using the measurement table MTB ', the main controller 20 compares the measurement result with the threshold value stored in the memory MEM to determine when the plate 101' is to be replaced.ゝ Judge whether or not. That is, in the second embodiment, a detection device that includes the main control device 20 and the memory MEM to detect the arrival of the replacement time of the plate 101 ′ is configured.
[0139] また、プレート 101,の交換時期の検出を、前述の第 1の実施形態に掲げるその他 の手法を用いて行うこととしても良 、。  [0139] Further, the detection of the replacement time of the plate 101 may be performed using the other methods described in the first embodiment.
[0140] いずれにしても、主制御装置 20は、プレート 101 'の交換時期を検出(交換時期が 到来したと判断)すると、交換時期の到来をディスプレイ DISに表示して、オペレータ 力もの指示を待つ。あるいは、プレート 101 'の交換時期を検出(交換時期が到来し たと判断)すると、主制御装置 20は、交換時期の到来をディスプレイ DISに表示する とともに、次のようにして、プレート 101,の交換を行う。 [0140] In any case, when the main controller 20 detects the replacement time of the plate 101 '(determines that the replacement time has arrived), the main controller 20 displays the arrival of the replacement time on the display DIS, and issues an instruction by the operator. wait. Alternatively, when the replacement time of plate 101 'is detected (it is determined that the replacement time has come), main controller 20 displays the arrival of the replacement time on display DIS. At the same time, the plate 101 is replaced as follows.
[0141] すなわち、主制御装置 20は、搬出入機構 24を図 11に示される位置まで移動させ た後、本体部 27を下方に駆動して、ハンド部 25a, 25bが開いた状態でフック部 26a 、 26b, 26cを前述の溝 21a、 21b、 21c内部に上方力も挿入する。そして、主制御装 置 20は、本体部 27内の駆動機構を介して、ハンド部 25a, 25bを所定量だけ閉じる 。これによりハンド部 25aがー X側に駆動され、ハンド部 25bが +X側に駆動され、ノヽ ンド咅 25aのフック咅 26aとノヽンド咅 25bのフック咅 26b, 26cと力 ^プレー卜 101 'の下 方にそれぞ; ^立置するようになる。図 12には、このときの状態が示されている。このと き、フック部 26b, 26cは、プレート 101,の X側の端面に接してはいない。  [0141] That is, after moving the loading / unloading mechanism 24 to the position shown in Fig. 11, the main control device 20 drives the main body 27 downward, and in the state where the hand parts 25a, 25b are open, the hook part 26a, 26b, 26c are also inserted into the grooves 21a, 21b, 21c with an upward force. Then, the main control device 20 closes the hand units 25a and 25b by a predetermined amount via the drive mechanism in the main body unit 27. As a result, the hand 25a is driven to the −X side, the hand 25b is driven to the + X side, and the hook 26a of the node 25a, the hooks 26b, 26c of the node 25b, and the force ^ plate 101 ' Each underneath; ^ come to stand. FIG. 12 shows the state at this time. At this time, the hook portions 26b and 26c are not in contact with the X-side end surface of the plate 101.
[0142] そして、この図 12の状態で、主制御装置 20は、計測テーブル本体 159の真空チヤ ックを停止して、プレート 101 'の真空吸着を解除した後、本体部 27を +Z方向に駆 動することによりフック部 26a— 26cによってプレート 101 'を持ち上げる。その後、主 制御装置 20は、本体部 27を所定高さまで上昇駆動した後、 Y側に駆動することで 、プレート 101 'を不図示の搬送系に渡す。これにより、その搬送系によって、プレー ト 101 'が露光装置の外部へ搬出され、新たなプレート 101 'が、前記搬送系によって 、露光装置内部の所定位置まで搬送され、その位置に待機している搬出入機構 24 のノヽンド部 25a, 25bに渡される。  [0142] Then, in the state of Fig. 12, the main controller 20 stops the vacuum check of the measurement table main body 159, releases the vacuum suction of the plate 101 ', and moves the main body 27 in the + Z direction. The plate 101 'is lifted by the hooks 26a-26c. After that, the main controller 20 drives the main body 27 up to a predetermined height, and then drives the main unit 27 to the Y side to transfer the plate 101 'to a transport system (not shown). Thereby, the plate 101 'is carried out of the exposure apparatus by the transport system, and a new plate 101' is transported to a predetermined position inside the exposure apparatus by the transport system, and stands by at that position. It is delivered to the node portions 25a and 25b of the loading / unloading mechanism 24.
[0143] その後、主制御装置 20が、上記と逆の動作を行うことにより、新たなプレート 101 ' 力 計測テーブル本体 159上に搬入される。但し、この新たなプレート 101 'の搬入 に際しては、主制御装置 20は、計測テーブル本体 159に設けられた不図示の位置 決めピンにその新たなプレート 101 'の +X側の端面などを押し当てるなどしてラフな 位置決めを行う。そして、位置決め終了後、主制御装置 20では、不図示のバキュー ムチャックをオンにして新たなプレート 101 'を計測テーブル本体 159上に吸着保持 する。  Thereafter, main controller 20 carries in a new plate 101 ′ force measurement table main body 159 by performing an operation reverse to the above. However, when carrying in the new plate 101 ′, the main controller 20 presses the + X side end face or the like of the new plate 101 ′ against a positioning pin (not shown) provided on the measurement table main body 159. Perform rough positioning by using a similar method. Then, after the positioning is completed, the main controller 20 turns on a vacuum chuck (not shown) and suction-holds a new plate 101 ′ on the measurement table main body 159.
[0144] この場合、前述したようにプレート 101 'の端面が鏡面カ卩ェされて ヽることから、上述 のように、プレート 101 'をラフに位置決めすることとしても、その後に行われる、計測 ステージ MST'を用いた種々の計測に際しては、プレート 101 'の位置を干渉計を用 いて正確に計測することができるので、結果的に、計測ステージ MST'を用いた種々 の計測を、プレート交換後も高精度に行うことが可能である。 In this case, since the end surface of the plate 101 ′ is mirror-finished as described above, even if the plate 101 ′ is roughly positioned as described above, In various measurements using the stage MST ', the position of the plate 101' can be accurately measured using an interferometer. Measurement can be performed with high accuracy even after plate exchange.
[0145] 以上説明したように、本第 2の実施形態の露光装置によると、計測テーブル MTB' 上の各種計測器の計測精度が低下し始める直前の時期を予め実験などで求め、こ の時期をプレート 101,の交換時期として予め設定しておくことで、検出装置としての 主制御装置 20が、交換時期を検出した場合にプレート 101 'の交換をすることで、計 測テーブル MTB'上の各種計測器の計測精度が低下するより以前の最適な時期に プレートを交換することが可能となる。すなわち、計測テーブル MTB'上の各種計測 器による露光に関する計測の計測精度を高精度に維持することができるとともに、プ レートの交換頻度を極力抑制することができる。従って、露光精度を長期に渡って高 精度に維持することができるとともに、プレートの交換に伴うダウンタイムの増加による 装置稼動効率の低下を効果的に防止することが可能となる。  As described above, according to the exposure apparatus of the second embodiment, the time immediately before the measurement accuracy of various measuring instruments on the measurement table MTB ′ starts to decrease is determined in advance by an experiment or the like. Is set in advance as the replacement time of the plate 101, and the main controller 20 as the detecting device replaces the plate 101 'when the replacement time is detected. Plates can be replaced at an optimal time before the measurement accuracy of various measuring instruments decreases. That is, it is possible to maintain the measurement accuracy of the exposure-related measurement by the various measuring devices on the measurement table MTB 'with high accuracy, and to minimize the frequency of plate replacement. Therefore, the exposure accuracy can be maintained at a high level over a long period of time, and it is possible to effectively prevent a decrease in the operation efficiency of the apparatus due to an increase in downtime due to plate replacement.
[0146] また、本第 2の実施形態では、プレート 101 'は、 2つの端面が鏡面カ卩ェされている ことから、プレート 101 'を新たなものに交換する際に、その交換後のプレートをラフに 位置決めしても、プレートの鏡面カ卩ェされた端面を介して、干渉計 16、 46を用いて プレートの位置を正確に計測することができる。従って、交換の際にプレートをラフに 位置決めしても、計測の際に計測部を構成する計測テーブル WTBを所望の位置に 正確に位置決めすることが可能となるので、交換に長時間をかける必要がなくなり、こ の点においても、交換に伴うダウンタイムの増加による装置稼動効率の低下を効果 的に防止することが可能となる。  [0146] In the second embodiment, the plate 101 'has two mirror-finished end faces. Therefore, when the plate 101' is replaced with a new one, the plate after replacement is replaced with a new one. Even if the plate is roughly positioned, the position of the plate can be accurately measured using the interferometers 16 and 46 via the mirror-finished end surface of the plate. Therefore, even if the plate is roughly positioned at the time of replacement, it is possible to accurately position the measurement table WTB that constitutes the measurement unit at the desired position at the time of measurement. In this respect as well, it is possible to effectively prevent a decrease in device operation efficiency due to an increase in downtime due to replacement.
[0147] また、本第 2の実施形態の露光装置においても、液浸露光が行われるので、レチク ル Rのパターンを精度良くウェハ上に転写することができる。  [0147] Also in the exposure apparatus of the second embodiment, the liquid immersion exposure is performed, so that the pattern of the reticle R can be accurately transferred onto the wafer.
[0148] なお、上記第 2の実施形態では、プレート 101 'が交換可能であるものとした力 本 発明がこれに限定されるものではなぐプレートを含む計測部(上記第 2の実施形態 の計測テーブルがこれに相当)の少なくとも一部が交換可能に構成されていれば良 い。  [0148] In the second embodiment, the force of the plate 101 'is assumed to be exchangeable. The present invention is not limited to this. The measurement unit including the plate (the measurement unit of the second embodiment) It suffices if at least a part of the table is configured to be replaceable.
[0149] また、上記第 2の実施形態では、プレート 101 'の交換に際してラフな位置決めで足 りるようにするため、プレート 101 'の端面を鏡面カ卩ェするものとした力 これに限らず 、前述の第 1の実施形態と同様に、計測テーブル本体 159上に移動鏡 117X, 117 Yを設けることとしても良い。 [0149] In the second embodiment, in order to make rough positioning sufficient when replacing the plate 101 ', the end face of the plate 101' is made to have a mirror surface. As in the first embodiment, the movable mirrors 117X, 117X are mounted on the measurement table main body 159. Y may be provided.
[0150] また、上記第 2の実施形態では、プレートが交換可能な構成であれば良 、ので、計 測ステージのその他の部分の構成は、図 11に示される構成に限られるものではな!/ヽ 。例えば、図 2のウェハステージ WSTのような構成の計測ステージを採用し、この計 測ステージが備えるプレートを交換可能に構成しても良い。  Further, in the second embodiment, it is sufficient if the plate is replaceable, so the configuration of the other parts of the measurement stage is not limited to the configuration shown in FIG. / ヽ. For example, a measurement stage having a configuration similar to the wafer stage WST in FIG. 2 may be adopted, and the plate included in the measurement stage may be configured to be exchangeable.
[0151] また、上記第 2の実施形態では、プレート 101 'を交換する機構として、図 11に示さ れる搬出入機構 24を採用する場合について説明したが、該搬出入機構 24に代えて 、ウェハローダなどに用いられるロボットを、搬出入機構として採用しても良い。この場 合、計測テーブル ΜΤΒ,の X軸方向の両側にプレートの端部がはみ出す構成を採 用して、そのロボットのアームにより下方力 プレートを持ち上げてプレート交換を行う ようにしても良いし、プレートを計測テーブル本体 159から所定高さだけ上昇させるた めの上下動機構を計測テーブル MTB'に設け、該上下動機構でプレートを持ち上 げた状態で、ロボットのアームをプレートの下方に挿入してアームを持ち上げてプレ ート交換を行うようにしても良 、。  [0151] In the second embodiment, the case where the carry-in / out mechanism 24 shown in Fig. 11 is employed as a mechanism for replacing the plate 101 'has been described. However, instead of the carry-in / out mechanism 24, a wafer loader is used. For example, a robot used for such a purpose may be adopted as the carrying-in / out mechanism. In this case, a configuration may be adopted in which the ends of the plate protrude on both sides in the X-axis direction of the measurement tables ΜΤΒ and ロ ボ ッ ト, and the lower force plate may be lifted by the arm of the robot to exchange the plate. A vertical movement mechanism for raising the plate from the measurement table body 159 by a predetermined height is provided on the measurement table MTB ', and with the plate lifted by the vertical movement mechanism, the robot arm is inserted below the plate. The arm may be lifted to replace the plate.
[0152] なお、上記各実施形態では、本発明が液浸露光装置に適用された場合について 説明したが、これに限らず、液浸でない露光を行う露光装置であっても、上記第 1の 実施形態と同様に計測部の少なくとも一部を交換可能にすること (例えば交換可能な 計測テーブル (又は計測ステージ)を設けること)や、上記第 2の実施形態と同様に交 換可能なプレートを設け、該プレートの端面を鏡面加工すること、さらには、プレート を含む計測部の少なくとも一部の交換時期を検出する検出装置を設けることは、有 効である。この場合、プレートに撥水コートを施す必要がないが、プレートを含む計測 部の一部を交換することで、高工ネルギの露光光の照射によるプレートの劣化に起 因する各種計測精度の低下を効果的に防止することができる力 である。  In each of the above embodiments, the case where the present invention is applied to an immersion exposure apparatus has been described. However, the present invention is not limited to this. As in the second embodiment, at least a part of the measuring unit can be replaced (for example, a replaceable measurement table (or a measurement stage) is provided), and the replaceable plate is replaced in the same manner as in the second embodiment. It is effective to provide and mirror-finish the end surface of the plate, and to provide a detection device for detecting the replacement time of at least a part of the measurement unit including the plate. In this case, it is not necessary to apply a water-repellent coat to the plate, but by replacing a part of the measurement unit including the plate, various measurement accuracy decreases due to deterioration of the plate due to irradiation of exposure light of high energy. Is a force that can effectively prevent
[0153] なお、上記各実施形態では、ウェハステージ WSTとは別に、計測テーブル ΜΤΒ, MTB'を有する計測部を構成する計測ステージを設けることとしたが、計測部は、ゥ エノ、ステージ WSTに設けられることとしても良い。この場合、計測部を構成する計測 ユニットのプレートを含む少なくとも一部力 ウェハステージ WSTに対して着脱可能( 交換可能)とされて ヽれば良!ヽ。 [0154] なお、上記各実施形態では、ステージ装置がウェハステージを 1つ、計測ステージ を 1つ具備する場合について説明したが、本発明がこれに限られるものではなぐ露 光動作のスループットを向上するために、ウエノ、ステージを複数設けることとしても良 い。 In each of the above embodiments, a measurement stage constituting a measurement unit having measurement tables ΜΤΒ and MTB ′ is provided separately from wafer stage WST. It may be provided. In this case, at least a partial force including the plate of the measurement unit constituting the measurement unit should be detachable (replaceable) from the wafer stage WST! [0154] In each of the above embodiments, the case where the stage apparatus includes one wafer stage and one measurement stage has been described. However, the present invention is not limited to this. In order to do this, it is good to provide multiple uenos and stages.
[0155] なお、上記各実施形態では、液体として超純水(水)を用いるものとしたが、本発明 力 れに限定されないことは勿論である。液体としては、化学的に安定で、照明光 IL の透過率が高く安全な液体、例えばフッ素系不活性液体を使用しても良い。このフッ 素系不活性液体としては、例えばフロリナート (米国スリーェム社の商品名)が使用で きる。このフッ素系不活性液体は冷却効果の点でも優れている。また、液体として、照 明光 ILに対する透過性があってできるだけ屈折率が高ぐまた、投影光学系ゃゥェ ハ表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油等)を使 用することもできる。また、 Fレ  [0155] In each of the above embodiments, ultrapure water (water) is used as the liquid, but it is a matter of course that the present invention is not limited to this. As the liquid, a liquid which is chemically stable and has a high transmittance of the illumination light IL and which is safe, for example, a fluorine-based inert liquid may be used. As the fluorine-based inert liquid, for example, Fluorinert (trade name of Threehem, USA) can be used. This fluorine-based inert liquid is also excellent in the cooling effect. In addition, a liquid that has transparency to the illuminating light IL and a refractive index as high as possible and that is stable against the photoresist applied to the surface of the projection optical system wafer (for example, cedar oil) should be used. Can also be used. Also, F
2 ーザを光源とする場合は、フォンブリンオイルを選択す れば良い。  If a laser is used as the light source, Fomblin oil may be selected.
[0156] また、上記各実施形態で、回収された液体を再利用するようにしても良ぐこの場合 は回収された液体から不純物を除去するフィルタを液体回収装置、又は回収管等に 設けておくことが望ましい。  [0156] In each of the above embodiments, the collected liquid may be reused. In this case, a filter for removing impurities from the collected liquid is provided in the liquid collection device, the collection pipe, or the like. It is desirable to keep.
[0157] なお、上記各実施形態では、投影光学系 PLの最も像面側の光学素子が先端レン ズ 91であるものとした力 その光学素子は、レンズに限られるものではなぐ投影光学 系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の調整に用いる光学プレー ト(平行平面板等)であっても良いし、単なるカバーガラスであっても良い。投影光学 系 PLの最も像面側の光学素子 (上記各実施形態では先端レンズ 91)は、照明光 IL の照射によってレジストから発生する飛散粒子又は液体中の不純物の付着等に起因 して液体 (上記各実施形態では水)に接触してその表面が汚れることがある。このた め、その光学素子は、鏡筒 40の最下部に着脱 (交換)自在に固定することとし、定期 的に交換することとしても良い。  [0157] In each of the above embodiments, the force at which the optical element closest to the image plane of the projection optical system PL is the front lens 91 is not limited to a lens. An optical plate (parallel plane plate or the like) used for adjusting the optical characteristics such as aberration (spherical aberration, coma aberration, etc.) may be used, or a simple cover glass may be used. The optical element closest to the image plane of the projection optical system PL (the tip lens 91 in each of the above embodiments) is a liquid (due to scattering particles generated from the resist by irradiation of the illumination light IL or adhesion of impurities in the liquid, etc.). In the above embodiments, the surface may be soiled by contact with water. For this reason, the optical element may be detachably (exchangeably) fixed to the lowermost part of the lens barrel 40, and may be periodically replaced.
[0158] このような場合、液体に接触する光学素子がレンズであると、その交換部品のコスト が高ぐかつ交換に要する時間が長くなつてしまい、メンテナンスコスト (ランニングコ スト)の上昇やスループットの低下を招く。そこで、液体と接触する光学素子を、例え ばレンズ 91よりも安価な平行平面板とするようにしても良 、。 [0158] In such a case, if the optical element that comes into contact with the liquid is a lens, the cost of the replacement part and the time required for the replacement become longer, which increases the maintenance cost (running cost) and the throughput. Causes a decline. Therefore, optical elements that come into contact with liquid For example, a parallel flat plate that is less expensive than the lens 91 may be used.
[0159] また、上記各実施形態では、ステップ'アンド'スキャン方式等の走査型露光装置に 本発明が適用された場合について説明したが、本発明の適用範囲がこれに限定さ れないことは勿論である。すなわちステップ'アンド'リピート方式の投影露光装置、さ らに、ステップ ·アンド'スティツチ方式の露光装置、又はプロキシミティ方式の露光装 置などにも、本発明は適用できる。  [0159] In each of the above embodiments, the case where the present invention is applied to a scanning exposure apparatus such as a step-and-scan method has been described. However, the scope of the present invention is not limited to this. Of course. That is, the present invention can be applied to a step-and-repeat type projection exposure apparatus, a step-and-stitch type exposure apparatus, or a proximity type exposure apparatus.
[0160] 露光装置の用途としては半導体製造用の露光装置に限定されることなぐ例えば、 角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有 機 EL、薄膜磁気ヘッド、撮像素子 (CCD等)、マイクロマシン及び DNAチップなどを 製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバ イスだけでなぐ光露光装置、 EUV露光装置、 X線露光装置、及び電子線露光装置 などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンゥェ ハなどに回路パターンを転写する露光装置にも本発明を適用できる。  The use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing. For example, an exposure apparatus for a liquid crystal for transferring a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head Also, it can be widely applied to an exposure device for manufacturing an imaging device (CCD, etc.), a micromachine, a DNA chip, and the like. In addition, glass substrates or silicon wafers are used to manufacture reticles or masks used in light exposure equipment that can be used only with micro devices such as semiconductor devices, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern to a substrate.
[0161] なお、上記各実施形態の露光装置の光源は、 ArFエキシマレーザに限らず、 KrF エキシマレーザ(出力波長 248nm)、 Fレーザ(出力波長 157nm)、 Arレーザ(出  The light source of the exposure apparatus of each of the above embodiments is not limited to an ArF excimer laser, but a KrF excimer laser (output wavelength 248 nm), an F laser (output wavelength 157 nm), and an Ar laser (output laser).
2 2 力波長 126nm)、 Krレーザ(出力波長 146nm)などのパルスレーザ光源や、 8線( 2 2 power wavelength 126 nm), and pulsed laser light source such as a Kr laser (output wavelength 146 nm), 8-wire (
2  2
波長 436nm)、 i線 (波長 365nm)などの輝線を発する超高圧水銀ランプなどを用い ることも可能である。また、 YAGレーザの高調波発生装置などを用いることもできる。 この他、 DFB半導体レーザ又はファイバーレーザ力 発振される赤外域、又は可視 域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両 方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波 長変換した高調波を用いても良い。また、投影光学系は縮小系のみならず等倍およ び拡大系の!ヽずれでも良 ヽ。  It is also possible to use an ultra-high pressure mercury lamp that emits bright lines such as 436 nm wavelength and i-line (365 nm wavelength). In addition, a harmonic generation device of a YAG laser can be used. In addition, a DFB semiconductor laser or a fiber laser is used to amplify a single-wavelength laser beam in the infrared or visible range that is oscillated by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and to use nonlinear optical optics. It is also possible to use harmonics that have been wavelength-converted into ultraviolet light using a crystal. In addition, the projection optical system is not limited to the reduction system, but can be the same magnification and magnification system.
[0162] また、上記各実施形態では、露光装置の照明光 ILとしては波長 lOOnm以上の光 に限らず、波長 lOOnm未満の光を用いても良いことはいうまでもない。例えば、近年 、 70nm以下のパターンを露光するために、 SORやプラズマレーザを光源として、軟 X線領域(例えば 5— 15nmの波長域)の EUV (Extreme Ultraviolet)光を発生させる とともに、その露光波長(例えば 13. 5nm)の下で設計されたオール反射縮小光学 系、及び反射型マスクを用いた EUV露光装置の開発が行われている。この装置に おいては、円弧照明を用いてマスクとウェハを同期走査してスキャン露光する構成が 考えられる。 In each of the above embodiments, it goes without saying that the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used. For example, in recent years, in order to expose a pattern of 70 nm or less, EUV (Extreme Ultraviolet) light in a soft X-ray region (for example, a wavelength range of 5 to 15 nm) is generated using a SOR or a plasma laser as a light source, and the exposure wavelength All-reflection reduction optics designed under (eg 13.5nm) An EUV exposure apparatus using a system and a reflective mask is being developed. In this apparatus, a configuration in which scan exposure is performed by synchronously scanning the mask and the wafer using arc illumination can be considered.
[0163] なお、半導体デバイスは、デバイスの機能 ·性能設計を行うステップ、この設計ステ ップに基づ 、たレチクルを製作するステップ、シリコン材料からウェハを製作するステ ップ、上記各実施形態の露光装置でマスクに形成されたパターンをレジスト (感光剤) が塗布されたウェハ上に転写するリソグラフィステップ、デバイス組み立てステップ (ダ イシング工程、ボンディング工程、ノ ッケージ工程を含む)、検査ステップ等を経て製 造される。この場合、リソグラフィステップで、上記各実施形態の露光装置が用いられ るので、高精度な露光を長期に渡って実現することができる。従って、微細パターン が形成された高集積度のマイクロデバイスの生産性を向上することができる。  In the semiconductor device, a step of designing the function and performance of the device, a step of manufacturing a reticle based on this design step, a step of manufacturing a wafer from a silicon material, The lithography step to transfer the pattern formed on the mask to the resist (photosensitive agent) coated wafer by the exposure equipment of the above, the device assembling step (including the dicing step, the bonding step, the knocking step), the inspection step, etc. It is manufactured through In this case, since the exposure apparatus of each of the above embodiments is used in the lithography step, highly accurate exposure can be realized for a long time. Therefore, the productivity of a highly integrated microdevice on which a fine pattern is formed can be improved.
産業上の利用可能性  Industrial applicability
[0164] 以上説明したように、本発明の露光装置及び露光方法、並びにデバイス製造方法 は、半導体素子 (集積回路)、液晶表示素子などの電子デバイスを製造するのに適し ている。 [0164] As described above, the exposure apparatus, the exposure method, and the device manufacturing method of the present invention are suitable for manufacturing electronic devices such as semiconductor elements (integrated circuits) and liquid crystal display elements.

Claims

請求の範囲 The scope of the claims
[1] 投影光学系を介して基板を露光する露光装置であって、  [1] An exposure apparatus for exposing a substrate via a projection optical system,
前記基板を載置して移動可能な基板ステージと;  A substrate stage on which the substrate can be mounted and movable;
液体が供給されるプレートを有し、前記投影光学系及び前記液体を介して前記露 光に関する計測を行う計測部と;を備え、  A measurement unit that has a plate to which liquid is supplied, and performs measurement related to the exposure via the projection optical system and the liquid.
前記計測部を構成する前記プレートを含む少なくとも一部が交換可能に構成され て!ヽることを特徴とする露光装置。  An exposure apparatus, wherein at least a part including the plate constituting the measuring unit is configured to be replaceable.
[2] 請求項 1に記載の露光装置において、 [2] In the exposure apparatus according to claim 1,
前記計測部は、前記基板ステージの一部にその少なくとも一部が設けられた計測 ユニットから成り、該計測ユニットを構成する前記プレートを少なくとも含む一部の構 成部材は、前記基板ステージに着脱自在に取り付けられていることを特徴とする露光 装置。  The measurement unit includes a measurement unit in which at least a part is provided on a part of the substrate stage, and some constituent members including at least the plate constituting the measurement unit are detachable from the substrate stage. An exposure apparatus, wherein the exposure apparatus is attached to a camera.
[3] 請求項 1に記載の露光装置において、  [3] The exposure apparatus according to claim 1,
前記計測部は、前記基板ステージとは独立して 2次元面内で移動可能な計測ステ ージ本体と、前記プレートを保持する計測テーブル本体と、を備えていることを特徴と する露光装置。  The exposure apparatus according to claim 1, wherein the measurement unit includes a measurement stage main body that is movable in a two-dimensional plane independently of the substrate stage, and a measurement table main body that holds the plate.
[4] 請求項 3に記載の露光装置において、 [4] In the exposure apparatus according to claim 3,
前記プレートは前記計測テーブル本体力 着脱可能に保持されていることを特徴と する露光装置。  The exposure apparatus according to claim 1, wherein the plate is held detachably from the main body of the measurement table.
[5] 請求項 4に記載の露光装置において、 [5] The exposure apparatus according to claim 4,
前記計測ステージ本体上に取り付けられたレべリングテーブルを更に備え、 前記計測テーブル本体は、前記レべリングテーブル上で微動可能に支持されて ヽ ることを特徴とする露光装置。  An exposure apparatus, further comprising a leveling table mounted on the measurement stage main body, wherein the measurement table main body is supported movably on the leveling table.
[6] 請求項 5に記載の露光装置において、 [6] The exposure apparatus according to claim 5,
前記レべリングテーブルは、 6自由度方向に駆動可能であり、  The leveling table can be driven in directions of six degrees of freedom,
前記計測テーブル本体は、水平面内の 3自由度方向に駆動可能であることを特徴 とする露光装置。  An exposure apparatus, wherein the measurement table body is drivable in three directions of freedom within a horizontal plane.
[7] 請求項 3に記載の露光装置において、 前記計測テーブル本体の自重を補償する自重補償機構を備えることを特徴とする 露光装置。 [7] The exposure apparatus according to claim 3, An exposure apparatus comprising: a self-weight compensation mechanism that compensates for the self-weight of the measurement table main body.
[8] 請求項 1に記載の露光装置において、  [8] The exposure apparatus according to claim 1,
前記プレートには、少なくとも 1つの基準マークと、少なくとも 1つの計測用パターン とが形成され、  At least one reference mark and at least one measurement pattern are formed on the plate,
前記計測部は、前記投影光学系を介して前記プレートに照射される露光光を、前 記計測用パターンを介して受光する受光系を有することを特徴とする露光装置。  An exposure apparatus, wherein the measurement unit includes a light receiving system that receives exposure light applied to the plate via the projection optical system via the measurement pattern.
[9] 請求項 8に記載の露光装置において、 [9] The exposure apparatus according to claim 8,
前記プレートには、複数種類の計測用パターンが形成され、  A plurality of types of measurement patterns are formed on the plate,
前記計測部は、前記計測用パターンに対応して、前記受光系を複数有することを 特徴とする露光装置。  An exposure apparatus, wherein the measurement unit has a plurality of the light receiving systems corresponding to the measurement patterns.
[10] 請求項 9に記載の露光装置において、 [10] The exposure apparatus according to claim 9,
前記複数種類の計測用パターンは、空間像計測用開口パターン、照明むら計測用 ピンホール開口パターン、照度計測用開口パターン、波面収差計測用開口パターン のうちの少なくとも 1つを含むことを特徴とする露光装置。  The plurality of types of measurement patterns include at least one of an aerial image measurement aperture pattern, an illumination unevenness measurement pinhole aperture pattern, an illuminance measurement aperture pattern, and a wavefront aberration measurement aperture pattern. Exposure equipment.
[11] 請求項 1に記載の露光装置において、 [11] The exposure apparatus according to claim 1,
前記基板が載置される前記基板ステージとは別の基板ステージを少なくとも 1っ更 に備えることを特徴とする露光装置。  An exposure apparatus further comprising at least one substrate stage different from the substrate stage on which the substrate is mounted.
[12] 請求項 1に記載の露光装置において、 [12] The exposure apparatus according to claim 1,
前記計測部による計測を、前記基板ステージ上での基板の交換時間に応じて実行 する制御装置を更に備えることを特徴とする露光装置。  An exposure apparatus, further comprising: a control device that executes the measurement by the measurement unit in accordance with a substrate exchange time on the substrate stage.
[13] 請求項 12に記載の露光装置において、 [13] The exposure apparatus according to claim 12, wherein
前記制御装置は、特定種類の計測を、前記基板の交換時間に応じて複数回に分 けて実行することを特徴とする露光装置。  An exposure apparatus, wherein the control device executes a specific type of measurement a plurality of times in accordance with the substrate replacement time.
[14] 投影光学系を介して基板を露光する露光装置であって、  [14] An exposure apparatus for exposing a substrate via a projection optical system,
前記基板を載置して移動可能な基板ステージと;  A substrate stage on which the substrate can be mounted and movable;
少なくとも 1つの端面が鏡面加工されたプレートを有し、前記投影光学系を介して 前記露光に関する計測を行う計測部と;を備え、 前記計測部を構成する前記プレートを含む少なくとも一部が交換可能に構成され て!ヽることを特徴とする露光装置。 At least one end face having a mirror-finished plate, and a measurement unit that performs measurement related to the exposure via the projection optical system; An exposure apparatus, wherein at least a part including the plate constituting the measuring unit is configured to be replaceable.
[15] 請求項 14に記載の露光装置において、 [15] The exposure apparatus according to claim 14,
前記計測部は、前記基板ステージの一部にその少なくとも一部が設けられた計測 ユニットから成り、該計測ユニットを構成する前記プレートを少なくとも含む一部の構 成部材は、前記基板ステージに着脱自在に取り付けられていることを特徴とする露光 装置。  The measurement unit includes a measurement unit in which at least a part is provided on a part of the substrate stage, and some constituent members including at least the plate constituting the measurement unit are detachable from the substrate stage. An exposure apparatus, wherein the exposure apparatus is attached to a camera.
[16] 請求項 14に記載の露光装置において、  [16] The exposure apparatus according to claim 14,
前記計測部は、前記基板ステージとは独立して 2次元面内で移動可能な計測ステ ージ本体と、前記プレートを保持する計測テーブル本体と、を備えていることを特徴と する露光装置。  The exposure apparatus according to claim 1, wherein the measurement unit includes a measurement stage main body that is movable in a two-dimensional plane independently of the substrate stage, and a measurement table main body that holds the plate.
[17] 請求項 16に記載の露光装置において、 [17] The exposure apparatus according to claim 16, wherein
前記プレートは前記計測テーブル本体力 着脱可能に保持されていることを特徴と する露光装置。  The exposure apparatus according to claim 1, wherein the plate is held detachably from the main body of the measurement table.
[18] 請求項 17に記載の露光装置において、 [18] The exposure apparatus according to claim 17,
前記計測ステージ本体上に取り付けられたレべリングテーブルを更に備え、 前記計測テーブル本体は、前記レべリングテーブル上で微動可能に支持されて ヽ ることを特徴とする露光装置。  An exposure apparatus, further comprising a leveling table mounted on the measurement stage main body, wherein the measurement table main body is supported movably on the leveling table.
[19] 請求項 18に記載の露光装置において、 [19] The exposure apparatus according to claim 18, wherein
前記レべリングテーブルは、 6自由度方向に駆動可能であり、  The leveling table can be driven in directions of six degrees of freedom,
前記計測テーブル本体は、水平面内の 3自由度方向に駆動可能であることを特徴 とする露光装置。  An exposure apparatus, wherein the measurement table body is drivable in three directions of freedom within a horizontal plane.
[20] 請求項 17に記載の露光装置において、 [20] The exposure apparatus according to claim 17,
前記計測テーブル本体の自重を補償する自重補償機構を備えることを特徴とする 露光装置。  An exposure apparatus comprising: a self-weight compensation mechanism that compensates for the self-weight of the measurement table main body.
[21] 請求項 14に記載の露光装置において、  [21] The exposure apparatus according to claim 14,
前記プレートには、少なくとも 1つの基準マークと、少なくとも 1つの計測用パターン とが形成され、 前記計測部は、前記投影光学系を介して前記プレートに照射される露光光を、前 記計測用パターンを介して受光する受光系を有することを特徴とする露光装置。 At least one reference mark and at least one measurement pattern are formed on the plate, An exposure apparatus, wherein the measurement unit includes a light receiving system that receives exposure light applied to the plate via the projection optical system via the measurement pattern.
[22] 請求項 21に記載の露光装置において、 [22] The exposure apparatus according to claim 21,
前記プレートには、複数種類の計測用パターンが形成され、  A plurality of types of measurement patterns are formed on the plate,
前記計測部は、前記計測用パターンに対応して、前記受光系を複数有することを 特徴とする露光装置。  An exposure apparatus, wherein the measurement unit has a plurality of the light receiving systems corresponding to the measurement patterns.
[23] 請求項 22に記載の露光装置において、 [23] The exposure apparatus according to claim 22, wherein
前記複数種類の計測用パターンは、空間像計測用開口パターン、照明むら計測用 ピンホール開口パターン、照度計測用開口パターン、波面収差計測用開口パターン のうちの少なくとも 1つを含むことを特徴とする露光装置。  The plurality of types of measurement patterns include at least one of an aerial image measurement aperture pattern, illumination unevenness measurement pinhole aperture pattern, illuminance measurement aperture pattern, and wavefront aberration measurement aperture pattern. Exposure equipment.
[24] 請求項 14に記載の露光装置において、 [24] The exposure apparatus according to claim 14,
前記基板が載置される前記基板ステージとは別の基板ステージを少なくとも 1っ更 に備える露光装置。  An exposure apparatus further comprising at least one substrate stage other than the substrate stage on which the substrate is mounted.
[25] 請求項 14に記載の露光装置において、 [25] The exposure apparatus according to claim 14,
前記計測部による計測を、前記基板ステージ上での基板の交換時間に応じて実行 する制御装置を更に備えることを特徴とする露光装置。  An exposure apparatus, further comprising: a control device that executes the measurement by the measurement unit in accordance with a substrate exchange time on the substrate stage.
[26] 請求項 25に記載の露光装置において、 [26] The exposure apparatus according to claim 25,
前記制御装置は、特定種類の計測を、前記基板の交換時間に応じて複数回に分 けて実行することを特徴とする露光装置。  An exposure apparatus, wherein the control device executes a specific type of measurement a plurality of times in accordance with the substrate replacement time.
[27] 投影光学系を介して基板を露光する露光装置であって、  [27] An exposure apparatus for exposing a substrate via a projection optical system,
前記基板を載置して移動可能な基板ステージと;  A substrate stage on which the substrate can be mounted and movable;
交換可能なプレートを有し、前記投影光学系を介して前記露光に関する計測を行 う計測部と;  A measurement unit having an exchangeable plate and performing measurement related to the exposure via the projection optical system;
前記プレートの交換時期を検出する検出装置と;を備えることを特徴とする露光装 置。  An exposure device, comprising: a detection device that detects a time at which the plate is replaced.
[28] 請求項 27に記載の露光装置において、  [28] The exposure apparatus according to claim 27,
前記プレートには、少なくとも 1つの基準マークと、少なくとも 1つの計測用パターン とが形成され、 前記計測部は、前記投影光学系を介して前記プレートに照射される露光光を、前 記計測用パターンを介して受光する受光系を有することを特徴とする露光装置。 At least one reference mark and at least one measurement pattern are formed on the plate, An exposure apparatus, wherein the measurement unit includes a light receiving system that receives exposure light applied to the plate via the projection optical system via the measurement pattern.
[29] 請求項 28に記載の露光装置において、 [29] The exposure apparatus according to claim 28,
前記プレートには、複数種類の計測用パターンが形成され、  A plurality of types of measurement patterns are formed on the plate,
前記計測部は、前記計測用パターンに対応して、前記受光系を複数有することを 特徴とする露光装置。  An exposure apparatus, wherein the measurement unit has a plurality of the light receiving systems corresponding to the measurement patterns.
[30] 請求項 29に記載の露光装置において、 [30] The exposure apparatus according to claim 29,
前記複数種類の計測用パターンは、空間像計測用開口パターン、照明むら計測用 ピンホール開口パターン、照度計測用開口パターン、波面収差計測用開口パターン のうちの少なくとも 1つを含むことを特徴とする露光装置。  The plurality of types of measurement patterns include at least one of an aerial image measurement aperture pattern, an illumination unevenness measurement pinhole aperture pattern, an illuminance measurement aperture pattern, and a wavefront aberration measurement aperture pattern. Exposure equipment.
[31] 請求項 27に記載の露光装置において、 [31] The exposure apparatus according to claim 27,
前記基板が載置される前記基板ステージとは別の基板ステージを少なくとも 1っ更 に備えることを特徴とする露光装置。  An exposure apparatus further comprising at least one substrate stage different from the substrate stage on which the substrate is mounted.
[32] 請求項 27に記載の露光装置において、 [32] The exposure apparatus according to claim 27,
前記計測部による計測を、前記基板ステージ上での基板の交換時間に応じて実行 する制御装置を更に備えることを特徴とする露光装置。  An exposure apparatus, further comprising: a control device that executes the measurement by the measurement unit in accordance with a substrate exchange time on the substrate stage.
[33] 請求項 32に記載の露光装置において、 [33] The exposure apparatus according to claim 32,
前記制御装置は、特定種類の計測を、前記基板の交換時間に応じて複数回に分 けて実行することを特徴とする露光装置。  An exposure apparatus, wherein the control device executes a specific type of measurement a plurality of times in accordance with the substrate replacement time.
[34] 請求項 1一 33の 、ずれか一項に記載の露光装置を用 、て基板上にデバイスバタ ーンを転写するリソグラフイエ程を含む、デバイス製造方法。  [34] A device manufacturing method including a lithographic step of transferring a device pattern onto a substrate by using the exposure apparatus according to any one of the above aspects.
[35] 基板を露光する露光方法であって、 [35] An exposure method for exposing a substrate, comprising:
液体が供給されるプレートを介して前記露光に関する計測を行う計測部のうち、前 記プレートを含む少なくとも一部を交換する工程と;  Exchanging at least a part of the measuring unit that performs the measurement related to the exposure through the plate to which the liquid is supplied, including the plate;
前記交換後に前記計測部を用いて前記露光に関する計測を行!、、その計測結果 を反映させて前記基板を露光する工程と;を含む露光方法。  Performing the measurement related to the exposure using the measurement unit after the replacement, and exposing the substrate by reflecting the measurement result.
[36] 基板を露光する露光方法であって、 [36] An exposure method for exposing a substrate, comprising:
少なくとも 1つの端面が鏡面加工されたプレートを介して前記露光に関する計測を 行う計測部のうち、前記プレートを含む少なくとも一部を交換する工程と; 前記交換後の前記プレートの位置を前記端面を介して計測し、前記計測部を用い て前記計測を行う工程と; The exposure measurement is performed via at least one mirror-finished plate. Replacing at least a part including the plate among the measurement units to be performed; and measuring the position of the plate after the exchange via the end face, and performing the measurement using the measurement unit;
前記計測結果を反映させて前記基板を露光する工程と;を含む露光方法。  Exposing the substrate while reflecting the measurement result.
基板を露光する露光方法であって、  An exposure method for exposing a substrate, comprising:
プレートを介して前記露光に関する計測を行う計測部を用いて前記計測を行う工程 と;  Performing the measurement using a measurement unit that performs measurement related to the exposure via a plate;
前記プレートの交換時期を検出し、前記プレートを交換する工程と;  Detecting a replacement time of the plate and replacing the plate;
前記計測結果を反映させて前記基板を露光する工程と;を含む露光方法。  Exposing the substrate while reflecting the measurement result.
PCT/JP2005/005473 2004-03-25 2005-03-25 Exposure equipment, exposure method and device manufacturing method WO2005093792A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/594,061 US20070201010A1 (en) 2004-03-25 2005-03-25 Exposure Apparatus, Exposure Method, And Device Manufacturing Method
CN2005800146572A CN1950929B (en) 2004-03-25 2005-03-25 Exposure equipment, exposure method and device manufacturing method
KR1020067022068A KR101181683B1 (en) 2004-03-25 2005-03-25 Exposure equipment, exposure method and device manufacturing method
EP05721450A EP1737024A4 (en) 2004-03-25 2005-03-25 Exposure equipment, exposure method and device manufacturing method
JP2006511515A JP4671051B2 (en) 2004-03-25 2005-03-25 Exposure apparatus, exposure method, and device manufacturing method
US12/875,874 US20110001943A1 (en) 2004-03-25 2010-09-03 Exposure apparatus, exposure method, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-088282 2004-03-25
JP2004088282 2004-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/594,061 A-371-Of-International US20070201010A1 (en) 2004-03-25 2005-03-25 Exposure Apparatus, Exposure Method, And Device Manufacturing Method
US12/875,874 Continuation US20110001943A1 (en) 2004-03-25 2010-09-03 Exposure apparatus, exposure method, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2005093792A1 true WO2005093792A1 (en) 2005-10-06

Family

ID=35056455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005473 WO2005093792A1 (en) 2004-03-25 2005-03-25 Exposure equipment, exposure method and device manufacturing method

Country Status (6)

Country Link
US (2) US20070201010A1 (en)
EP (1) EP1737024A4 (en)
JP (1) JP4671051B2 (en)
KR (1) KR101181683B1 (en)
CN (1) CN1950929B (en)
WO (1) WO2005093792A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029829A1 (en) * 2005-09-09 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, and device production method
JP2007251165A (en) * 2006-03-17 2007-09-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JPWO2007097380A1 (en) * 2006-02-21 2009-07-16 株式会社ニコン PATTERN FORMING APPARATUS AND PATTERN FORMING METHOD, MOBILE BODY DRIVING SYSTEM, MOBILE BODY DRIVING METHOD, EXPOSURE APPARATUS AND EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
JP2016224470A (en) * 2008-05-28 2016-12-28 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method of operating apparatus
EP3267259A1 (en) * 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2020115172A (en) * 2019-01-17 2020-07-30 キヤノン株式会社 Lithography device, measurement method, and method for manufacturing article

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194232B2 (en) * 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8599359B2 (en) 2008-12-19 2013-12-03 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and carrier method
US8472008B2 (en) * 2009-06-19 2013-06-25 Nikon Corporation Movable body apparatus, exposure apparatus and device manufacturing method
US8355116B2 (en) 2009-06-19 2013-01-15 Nikon Corporation Exposure apparatus and device manufacturing method
US8355114B2 (en) 2009-06-19 2013-01-15 Nikon Corporation Exposure apparatus and device manufacturing method
US8294878B2 (en) 2009-06-19 2012-10-23 Nikon Corporation Exposure apparatus and device manufacturing method
US20110008734A1 (en) 2009-06-19 2011-01-13 Nikon Corporation Exposure apparatus and device manufacturing method
US8446569B2 (en) * 2009-06-19 2013-05-21 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
TW201102765A (en) 2009-07-01 2011-01-16 Nikon Corp Grinding device, grinding method, exposure device and production method of a device
US20110086315A1 (en) 2009-09-30 2011-04-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20110085150A1 (en) 2009-09-30 2011-04-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20110075120A1 (en) 2009-09-30 2011-03-31 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2011052703A1 (en) 2009-10-30 2011-05-05 Nikon Corporation Exposure apparatus and device manufacturing method
JPWO2012011512A1 (en) * 2010-07-20 2013-09-09 株式会社ニコン Exposure method, exposure apparatus and cleaning method
JP6601128B2 (en) * 2015-10-08 2019-11-06 ウシオ電機株式会社 Light irradiation apparatus and light irradiation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684757A (en) * 1992-09-04 1994-03-25 Nikon Corp Projection aligner
JPH1187237A (en) * 1997-09-10 1999-03-30 Nikon Corp Alignment device
JPH11135400A (en) * 1997-10-31 1999-05-21 Nikon Corp Exposure system
JP2000164504A (en) * 1998-11-30 2000-06-16 Nikon Corp Stage device and aligner and positioning method using the stage device
JP2000283889A (en) * 1999-03-31 2000-10-13 Nikon Corp Inspection device and method of projection optical system, aligner, and manufacture of micro device
JP2002202221A (en) * 2000-12-28 2002-07-19 Nikon Corp Position detection method, position detector, optical characteristic measuring method, optical characteristic measuring device, exposure device, and device manufacturing method
JP2004061177A (en) * 2002-07-25 2004-02-26 Canon Inc Optical device and measuring method, and manufacturing method of semiconductor device
WO2005043607A1 (en) * 2003-10-31 2005-05-12 Nikon Corporation Exposure apparatus and device producing method
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) * 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
US5243195A (en) * 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
US5424552A (en) * 1991-07-09 1995-06-13 Nikon Corporation Projection exposing apparatus
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
KR100300618B1 (en) * 1992-12-25 2001-11-22 오노 시게오 EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD USING THE DEVICE
JP3412704B2 (en) * 1993-02-26 2003-06-03 株式会社ニコン Projection exposure method and apparatus, and exposure apparatus
JPH08316124A (en) * 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
EP0890136B9 (en) * 1996-12-24 2003-12-10 ASML Netherlands B.V. Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JPH1116816A (en) * 1997-06-25 1999-01-22 Nikon Corp Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device
WO1999031462A1 (en) * 1997-12-18 1999-06-24 Nikon Corporation Stage device and exposure apparatus
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
KR100592576B1 (en) * 2000-06-02 2006-06-26 에이에스엠엘 네델란즈 비.브이. Lithographic projection apparatus, supporting assembly and device manufacturing method
CN101382738B (en) * 2002-11-12 2011-01-12 Asml荷兰有限公司 Lithographic projection apparatus
KR100588124B1 (en) * 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
SG124270A1 (en) * 2002-12-16 2006-08-30 Asml Netherlands Bv Lithographic apparatus with alignment subsystem, device manufacturing method using alignment, and alignment structure
TWI263859B (en) * 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TW201809911A (en) * 2003-09-29 2018-03-16 尼康股份有限公司 Exposure apparatus, exposure method, and method for producing device
TWI440981B (en) * 2003-12-03 2014-06-11 尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
EP1713114B1 (en) * 2004-02-03 2018-09-19 Nikon Corporation Exposure apparatus and device manufacturing method
EP3208658B1 (en) * 2004-02-04 2018-06-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
WO2005081293A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and exposure method, and device producing method
WO2005081291A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and method of producing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684757A (en) * 1992-09-04 1994-03-25 Nikon Corp Projection aligner
JPH1187237A (en) * 1997-09-10 1999-03-30 Nikon Corp Alignment device
JPH11135400A (en) * 1997-10-31 1999-05-21 Nikon Corp Exposure system
JP2000164504A (en) * 1998-11-30 2000-06-16 Nikon Corp Stage device and aligner and positioning method using the stage device
JP2000283889A (en) * 1999-03-31 2000-10-13 Nikon Corp Inspection device and method of projection optical system, aligner, and manufacture of micro device
JP2002202221A (en) * 2000-12-28 2002-07-19 Nikon Corp Position detection method, position detector, optical characteristic measuring method, optical characteristic measuring device, exposure device, and device manufacturing method
JP2004061177A (en) * 2002-07-25 2004-02-26 Canon Inc Optical device and measuring method, and manufacturing method of semiconductor device
JP2005129914A (en) * 2003-10-02 2005-05-19 Nikon Corp Aligner and exposure method, and method for manufacturing device
WO2005043607A1 (en) * 2003-10-31 2005-05-12 Nikon Corporation Exposure apparatus and device producing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1737024A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
WO2007029829A1 (en) * 2005-09-09 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, and device production method
JP5055579B2 (en) * 2005-09-09 2012-10-24 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3267259A1 (en) * 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JPWO2007097380A1 (en) * 2006-02-21 2009-07-16 株式会社ニコン PATTERN FORMING APPARATUS AND PATTERN FORMING METHOD, MOBILE BODY DRIVING SYSTEM, MOBILE BODY DRIVING METHOD, EXPOSURE APPARATUS AND EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
EP3267258A1 (en) * 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP5115859B2 (en) * 2006-02-21 2013-01-09 株式会社ニコン Pattern forming apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2007251165A (en) * 2006-03-17 2007-09-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4490984B2 (en) * 2006-03-17 2010-06-30 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2016224470A (en) * 2008-05-28 2016-12-28 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method of operating apparatus
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP7212528B2 (en) 2019-01-17 2023-01-25 キヤノン株式会社 Lithographic apparatus, metrology methods, and methods of manufacturing articles
JP2020115172A (en) * 2019-01-17 2020-07-30 キヤノン株式会社 Lithography device, measurement method, and method for manufacturing article

Also Published As

Publication number Publication date
US20110001943A1 (en) 2011-01-06
KR101181683B1 (en) 2012-09-19
CN1950929B (en) 2011-05-25
CN1950929A (en) 2007-04-18
US20070201010A1 (en) 2007-08-30
EP1737024A4 (en) 2008-10-15
KR20070019721A (en) 2007-02-15
JP4671051B2 (en) 2011-04-13
EP1737024A1 (en) 2006-12-27
JPWO2005093792A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4671051B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US10222708B2 (en) Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
TWI748563B (en) Carrier system, exposure apparatus, and carrying method
WO2007007746A1 (en) Exposure apparatus and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 6201/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020067022068

Country of ref document: KR

Ref document number: 2005721450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580014657.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10594061

Country of ref document: US

Ref document number: 2007201010

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005721450

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067022068

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10594061

Country of ref document: US