JP2020111605A - アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム - Google Patents

アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム Download PDF

Info

Publication number
JP2020111605A
JP2020111605A JP2020070190A JP2020070190A JP2020111605A JP 2020111605 A JP2020111605 A JP 2020111605A JP 2020070190 A JP2020070190 A JP 2020070190A JP 2020070190 A JP2020070190 A JP 2020070190A JP 2020111605 A JP2020111605 A JP 2020111605A
Authority
JP
Japan
Prior art keywords
organic impurities
evaporation
heavy organic
evaporator system
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020070190A
Other languages
English (en)
Other versions
JP7116118B2 (ja
Inventor
ティモシー ロバート マクドネル
Robert Mcdonel Timothy
ティモシー ロバート マクドネル
ジェイ ロバート カウチ
Robert Couch Jay
ジェイ ロバート カウチ
ディヴィッド ルドルフ ワーグナー
Rudolph Wagner David
ディヴィッド ルドルフ ワーグナー
ポール トリッグ ヴェヒテンドルフ
Trigg Wachtendorf Paul
ポール トリッグ ヴェヒテンドルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Europe AG
Original Assignee
Ineos Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineos Europe AG filed Critical Ineos Europe AG
Publication of JP2020111605A publication Critical patent/JP2020111605A/ja
Application granted granted Critical
Publication of JP7116118B2 publication Critical patent/JP7116118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0088Cascade evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof

Abstract

【課題】従来の方法の短所を克服又は縮小する、安全で効果的であり費用効果の高い方法及び装置の提供。【解決手段】プロセス流から重質有機不純物を除去するための方法及びシステムは、水及び約0.5〜約1.5質量%の重質有機不純物を有するプロセス流を用意する工程を含む。前記方法は、1段又は複数の蒸発段を有する蒸発器システムにおいて重質有機不純物から水を分離して、水性凝縮物及び液状残渣を得る工程を含む。前記水性凝縮物は約0.1質量%以下の重質有機不純物を有し、前記液状残渣は約3〜10質量%の重質有機不純物を有する。【選択図】図1

Description

プロセス流から重質有機不純物を除去するための方法が提供される。より具体的には、前記方法は、プロセス流を用意する工程、及び蒸発器システムにおいてプロセス流からの重質有機物から水を分離する工程を含む。前記蒸発器システムは、水性凝縮物及び液状残渣を得る上で有効である。
アクリロニトリル及びメタクリロニトリルを製造するための各種方法及びシステムが知られている。例えば米国特許第6,107,509号を参照されたい。典型的には、プロパン、プロピレン又はイソブチレンからなる群から選択された炭化水素、アンモニア及び酸素を、触媒の存在下で直接反応させることにより製造されるアクリロニトリル/メタクリロニトリルの回収・精製は、アクリロニトリル/メタクリロニトリルを含有する反応器流出物を第1の塔(急冷)に移送して、反応器流出物を第1の水性流によって冷却する工程、冷却されたアクリロニトリル/メタクリロニトリル含有流出物を第2の塔(吸収塔)に移送して、冷却された前記流出物を第2の水性流と接触させて、第2の水性流にアクリロニトリル/メタクリロニトリルを吸収させる工程、アクリロニトリル/メタクリロニトリルを含有する第2の水性流を第2の塔から第1の蒸留塔(回収塔)に移送して、第2の水性流から粗アクリロニトリル/メタクリロニトリルを分離する工程、及び分離された粗アクリロニトリル/メタクリロニトリルを第2の蒸留塔(初留塔)に移送して、粗アクリロニトリル/メタクリロニトリルから少なくとも一部の不純物を除去し、部分精製されたアクリロニトリル/メタクリロニトリルを第3の蒸留塔(生成物塔)に移送して、アクリロニトリル/メタクリロニトリル生成物を得る工程により、達成される。米国特許第4,234,510号、第3,885,928号、第3,352,764号、第3,198,750号及び第3,044,966号は、アクリロニトリル及びメタクリロニトリルの典型的な回収・精製プロセスを例示している。
オレフィン性ニトリルの回収方法は、米国特許第4,334,965号に記載されている。米国特許第4,334,965号に記載されているように、多段蒸発器は、急冷液としてアクリロニトリル精製・回収システムの急冷塔へ再循環される抽出蒸留物又はストリッパー塔缶出液から水を除去するために使用される。このプロセスは、前記システムにより産出される急冷塔廃缶出液の量の著しい低減をもたらす。多重効用蒸発器の使用は、再循環流の含水量を低減させる他の技術と比較して大幅なエネルギー節約となる。米国特許第4,334,965号は、多重効用蒸発器を用いることにより、米国特許第4,166,008号と同様に、再循環流の液体の50%以上を再循環流から除去し、高濃度の再循環流を残して、急冷液として利用できることを開示している。ただし、米国特許第4,334,965号は、多重効用蒸発器のエネルギー効率が非常に高いため、当該技術のエネルギーコスト全体は、米国特許第4,166,008号に記載の技術と比較して、はるかに低いことを開示している。
アクリロニトリル/メタクリロニトリルの製造は長年にわたり商業的に実施されているが、改善が実質的に有益と思われる領域が残っている。そのような改善領域の1つは、回収塔缶出液に対するより効率的な蒸発器の運転であろう。
従って、本開示の一態様では、従来の方法の短所を克服又は縮小する、安全で効果的であり費用効果の高い方法及び装置を提供する。
プロセス流から重質有機不純物を除去するための方法は、水及び約0.5〜約1.5質量%の重質有機不純物を有するプロセス流を用意する工程を含む。前記方法は、1段又は複数の蒸発段を有する蒸発器システムにおいて重質有機不純物から水を分離して、水性凝縮物及び液状残渣を得る工程を含む。前記水性凝縮物は約0.1質量%以下の重質有機不純物を有し、前記液状残渣は約3〜10質量%の重質有機不純物を有する。
液状残渣をアンモ酸化プロセス流に提供するプロセスは、水及び重質有機不純物を含むプロセス流を用意する工程;1段又は複数の蒸発段を有する蒸発器システムにおいて重質有機不純物から水を分離して、水性凝縮物及び液状残渣を得る工程;並びに急冷塔内で液状残渣を反応器流出物に接触させて、硫酸アンモニウムを得る工程を含む。一態様において、硫酸アンモニウムの量及びポリマーの量は、式y=−M1x+C1(式中、yは硫酸アンモニウムの質量%、xはポリマーの質量%、M1は4.6以下、C1は45以下である)によって定義される。
蒸発器システムは、1段又は複数の蒸発段を備え、ここで、第1の蒸発段が蒸留塔からプロセス流を受け取るように構成され、1段又は複数の蒸発段が水性凝縮物及び液状残渣を得るように構成されており;急冷塔及び/又は軽質有機物ストリッパーは水性凝縮物を受け取るように構成されている。
蒸発プロセスは、プロセス流を蒸留塔から蒸発器システムへ搬送する工程であって、蒸発器システムは、第1の蒸発段が蒸留塔からプロセス流を受け取るように構成された、1段又は複数の蒸発段を備え、前記1段又は複数の蒸発段から水性凝縮物及び液状残渣を得る工程と、水性凝縮物を急冷塔及び/又は軽質有機物ストリッパーへ搬送する工程とを含む。
本開示の上記及び他の態様、特徴並びに利点は、添付の図面と関連付けて読むべきである、例示されたその実施形態の以下の詳細な説明から明らかとなるであろう。
同一の参照番号が同一の特徴部分を示す添付図面を考慮しながら、以下の説明を参照することにより、本開示の代表的実施形態及びその利点について、より完全な理解を得ることができる。
アクリロニトリル生成物の製造方法の概略フローダイヤグラムである。 アクリロニトリル生成物の代替的製造方法の概略フローダイヤグラムである。
アンモ酸化プロセス
一態様において、アンモ酸化反応プロセスからプロセス流が提供される。そのようなプロセスの一例は、米国特許第4,334,965号に記載されており、その全体が本明細書に組み込まれる。
図1は各種態様の一般的略図である。図1を参照すると、アクリロニトリル、HCN、アセトニトリル、水蒸気及び不純物を含む、導管100内の反応器流出ガスは、まず急冷塔102に渡される。前記ガスは、急冷塔102において急冷液に接触させられてもよい。水及び不純物を含有する缶出液流(bottom stream)は、導管106を介して除去され、廃物処理に送られてもよい。
冷却された反応器流出ガスは、管路108を介して急冷システムから出て、急冷アフタクーラー107に送られてもよい。急冷アフタクーラー107は、急冷流出物を約50℃未満に冷却するのに有効である。冷却された急冷流出物は、管路109を介して吸収塔110に供給される。洗浄水が管路112を介して吸収塔110の上部に投入されてもよい。非凝縮性ガスが管路114を介して吸収塔から除去されてもよい。水、アクリロニトリル、アセトニトリル及び不純物を含有する水溶液は、管路116を介して缶出液流として取り出され、抽出蒸留塔182に渡されてもよい。
抽出蒸留を実施するため、管路184を介して抽出蒸留塔182の上部に溶媒水を導入してもよい。管路186を介して、アクリロニトリル及びHCNが塔頂蒸気として取り出され、更なる精製(図示せず)に送られてもよい。管路188を介して、アセトニトリル及び水を含有する流れが取り出され、ストリッパー190に渡されてもよい。ストリッパー190に熱が加えられ、管路192を介して塔頂蒸気としてアセトニトリルが取り出されてもよい。水、重質有機物及びその他の不純物を含有する缶出液流が、管路196を介して抽出蒸留塔182から取り出されてもよい。主として水を含有する液体流が、管路194を介してストリッパー190の下半分から取り出され、抽出蒸留塔182の溶媒水として使用されてもよい。
蒸発器システム
一態様に従えば、管路196内のストリッパー塔缶出液(プロセス流とも称し得る)は、蒸発器システムにおいて蒸発作用に供されてもよい。本態様において、熱交換器136に入り得る管路196内の抽出蒸留塔缶出液は、水、ポリマー、アンモニア、及びアクリロニトリルを含む。本明細書で使用するとき、「重質有機不純物」とは、ポリマーを指す。本明細書で使用するとき、ポリマーとは、重質有機物と微量の軽質有機物との混合物を指す。重質有機物は、高度のニトリル置換を有し、いくらかの酸化炭化水素基も含有する、種々の高沸点有機化合物の混合物を含んでいてもよい。本態様において、プロセス流は、約0.5〜約1.5質量%の重質有機不純物を含み、別の態様では、約0.75〜約1.25質量%の重質有機不純物を含む。
本態様において、蒸発器システムは、水性凝縮物及び液状残渣を得るのに有効である1段又は複数の蒸発段を含んでいてもよい。例えば、蒸発器システムは、1〜約6段の蒸発段を含んでいてもよく、別の態様では、2〜約6段の蒸発段、別の態様では、2〜約5段の蒸発段、別の態様では、2〜約4段の蒸発段、別の態様では、2〜約3段の蒸発段を含んでいてもよい。
図1に示される態様において、蒸発器システムは、直列の多管式熱交換器(shell and tube heat exchangers)136、138及び142を備える。本明細書で使用するとき、「蒸発段」とは、単一の熱交換器を指す。各熱交換器において、交換器の管側の液体は、部分的に蒸発し、蒸気状流出物及び液状流出物を生成する。液状流出物は直列内の次の熱交換器の管側に供給される一方で、蒸気状流出物は同じ熱交換器の胴側に供給され、液体の追加的部分蒸発を発生させる。この技法は、ストリッパー缶出液から所望量の水を除去するために、必要な数の段にわたって継続される。各段において、熱供給蒸気が熱交換を介して凝縮されて生成された凝縮物は、回収されて、再利用のために再循環されるか、化学的又は生物学的精製に供される。
水、重質有機物及びその他の不純物を含有する缶出液流は、管路196を介して抽出蒸留塔182から取り出され、第1の熱交換器136の管側に送られてもよく、一方で、低圧蒸気流は、この熱交換器の胴側を通る。一態様において、熱交換器の管側を通るフローは約1〜約3m/秒であり、別の態様では、約1.5〜約2.5m/秒である。そこでの熱交換により、低圧蒸気は凝縮し、抽出蒸留塔缶出液は部分的に蒸発する。凝縮物は、管路146を介して再利用のために第1の熱交換器136から取り出されてもよい。
第1の熱交換器136における抽出蒸留塔缶出液の加熱により、抽出蒸留塔缶出液は気相及び液相に部分分離される。2つ以上の熱交換器が使用される態様において、液相は管路148を介して抜き取られ、第2の熱交換器138の管側に移送され、抜き取られた液体の一部は管路150を介して第1の熱交換器136の管側底部へ再循環される。第1の熱交換器136内で生成された蒸気は、管路152を介して抜き取られ、第2の熱交換器138の胴側へ移送される。熱交換器138における熱交換により、胴側での蒸気の凝縮及び管側での液体の部分蒸発が発生し、それにより第2の熱交換器138における気相中に液体が生成する。第2の熱交換器138の胴側に生成された凝縮物は、管路154を介して排出される。この凝縮物は、比較的低濃度のポリマー等の重質有機物を有する。
3つ以上の熱交換器が使用される態様において、第2の熱交換器138の管側に残留する液相は管路156を介して第3の熱交換器142の管側に移され、液体の一部は管路158を介して第2の熱交換器138の管側へ再循環される。第2の熱交換器138の管側で発生した蒸気は、管路160を介して第3の熱交換器142の胴側に移送される。この場合も、第3の熱交換器142における熱交換により、胴側の蒸気の凝縮が発生し、凝縮物が形成され、凝縮物は、第2の熱交換器138からの凝縮物と同様に、管路176を介して抜き取られ搬送される。
第3の熱交換器142の管側で発生した蒸気は、管路170を介して抜き取られ、凝縮器172内で凝縮され、用水容器内に回収され、並びに/又は管路146、154、162及び/若しくは176からの凝集物と混合される。熱交換器142の胴側からの凝縮物は、管路176を介して用水容器へ移送されて、例えば135において混合され提供されてもよい。第3の熱交換器142の管側から回収された液体は、管路178を介して抜き取られ、管路180を介して第3の熱交換器の管側に再循環されてもよい。水性凝縮物は、急冷塔(例えば、急冷塔の第1段)及び/又は軽質有機物ストリッパーへのリターン水として、例えば各種プロセス設備の洗浄時の通常の清浄水として使用できる程度の高純度を有していてもよい。本態様において、水性凝縮物は約0.1質量%以下の重質有機不純物を有し、別の態様では約0.075質量%の重質有機不純物、別の態様では約0.05質量%の重質有機不純物、別の態様では約0.025質量%の重質有機不純物を有する。
本態様において、液状残渣は約3〜約10質量%の重質有機不純物を有し、別の態様では約4〜約8質量%の重質有機不純物、別の態様では約5〜約7質量%の重質有機不純物を有する。図1に示すように、液状残渣は、廃水焼却炉(WWI)に送られてもよい。あるいは、図2に示すように、液状残渣は、管路179を介して急冷塔102の下部に送られてもよい。
一態様において、第2及び第3の熱交換器内で発生する水性凝縮物は、微量の重質有機物を含有する。従って、それらの水性凝縮物は、環境に適合する水を生成するために、通常の生物又は化学処理によって直接処理され得る。更に、第4の熱交換器内で生成される凝縮物は、凝縮器によって生成される凝縮物と同様に、更なる処理なしに洗浄水などの各種プロセス目的で使用できる程度の純度を有する。第1の熱交換器により生成される凝縮物は、他のプロセス流とは接触しないため、純度が高い。
蒸発百分率
一態様において、蒸発器凝縮物を再利用又は廃棄し得るので、より高い蒸発量が有益となり得るが、多段蒸発器の最後の段からの液状残渣は、灰化及び/又は代わりに廃棄してもよい。
一態様において、抽出蒸留塔の缶出液の蒸発百分率は、約55%を超え約85%以下でもよい。一態様において、抽出蒸留塔の缶出液の蒸発百分率は、約60%より大きくてもよい。一態様において、抽出蒸留塔の缶出液の蒸発百分率は、約60%を超え約85%以下でもよい。一態様において、抽出蒸留塔の缶出液の蒸発百分率は、約73%〜約75%の範囲であってもよい。
気化百分率が約55〜約60%、一態様では、約57%の4段蒸発プロセスを実施することにより、第4及び最後の熱交換器142から出る蒸発器缶出液中の液状ポリマーの百分率は、約2.2質量%になり得る。
気化百分率が約60〜65%、一態様では、約63%の4段蒸発プロセスを実施することにより、第4及び最後の熱交換器142から出る蒸発器缶出液中の液状ポリマーの百分率は、約3質量%になり得る。
気化百分率が約80〜85%、一態様では、約83%の4段蒸発プロセスを実施することにより、第4及び最後の熱交換器142から出る蒸発器缶出液中の液状ポリマーの百分率は、約6質量%になり得る。
気化百分率が約73〜75%、一態様では、約74%の4段蒸発プロセスを実施することにより、第4及び最後の熱交換器142から出る蒸発器缶出液中の液状ポリマーの百分率は、約5.5質量%になり得る。
一態様において、各蒸発段は、約15〜約25%の蒸発率を実現する。
一態様において、供給百分率で割った蒸発器凝縮物の百分率は、抽出蒸留塔182の缶出液の蒸発百分率になり得る。一態様において、蒸発百分率は、約55〜約60%であり、別の態様では約57%である。液状残渣中のポリマーの量は、約2.2質量%である。
一態様において、蒸発百分率の値とポリマーの質量%との比は、約55〜60:2.2である。
別の態様において、液状残渣中のポリマーの量は、約3質量%である。一態様において、蒸発百分率の値とポリマーの質量%との比は、約60〜65:3である。
一態様において、蒸発百分率は約82〜約83%であり、液状残渣中のポリマーの量は約6.0質量%である。凝縮物は、更なる処理のために管路135を介して軽質有機物ストリッパー(LOS)(図示せず)への供給物として供給されるか、急冷液として急冷塔102へ送られてもよい。一態様において、蒸発百分率の値とポリマーの質量%との比は、約82〜83:6である。
一態様において、蒸発百分率は約73〜約75%であり、液状残渣中のポリマーは約5.5質量%である。凝縮物は、更なる処理のために管路135を介して軽質有機物ストリッパー(LOS)(図示せず)への供給物として供給されるか、急冷液として急冷塔102へ送られてもよい。一態様において、蒸発百分率の値とポリマーの質量%との比は、約73〜75:5.5である。
一態様において、蒸発百分率が約74%である場合、蒸発百分率約83%の場合と比較して発生するファウリングが実質的に少ない一方で、同時に、液状残渣中のポリマーの比較的高い質量、即ち5.5質量%が得られるが、これに対して蒸発百分率約83%では6.0質量%となることが見出された。ファウリングの量は液体流中のポリマーの質量%に対して比例関係になると予想されると思われたので、これは驚くべき結果である。
蒸発百分率が約83%よりも大きい場合、第4段蒸発器又は熱交換器142において非常に多くのファウリングが(多くの場合、管側に)発生し得ることが見出された。約73〜75%の蒸発百分率はファウリングの量を大幅に低減するが、同時に、液状残渣中のポリマーの質量が比較的高くなることが見出された。
当業者は、本開示に従えば、本開示の精神及び範囲から逸脱することなしに多くの改変を行うことができることを理解するであろう。例えば、蒸発器システムにおいて任意数の段を用いることができる。更に、全ての蒸発に必要な熱を供給するものとして低圧蒸気が上記の説明に示されているが、任意の熱源を用いることができる。ただし、典型的なアクリロニトリル精製・回収プラントにおいては、低圧蒸気、即ち、最大100psig、通常約20〜60psigの圧力を有する飽和蒸気が容易に利用可能であり、使用されることが好ましい。同様に、多重効用蒸発器によって除去されるストリッパー塔内の水の量は、主に経済性に応じて変わり得る。最後に、本開示の多重効用蒸発器は、上記の説明に示されたストリッパー塔缶出液に対する使用に制限される必要はなく、急冷液として使用するために再循環される他の任意のプロセス流の凝縮に用いることができる点も理解すべきである。例えば、多重効用蒸発器は、米国特許第4,166,008号の図2の管路156において再循環される抽出蒸留塔缶出液を処理するために使用できる。このような全ての改変は本開示の範囲に含まれることが意図されており、本開示の範囲は以下の特許請求の範囲のみによって限定される。
急冷塔の運転
一態様において、急冷塔を運転する方法は、急冷塔に反応器流出物を搬送する工程、及び流出物抽出区画においてポリマーを含有する水に反応器流出物を接触させて、抽出流出物流を得る工程を含む。前記方法は、酸接触区画において抽出流出物流を硫酸と接触させる工程、及び第1の流れを取り出して、約10質量%以下のポリマーを有する第1の急冷塔流を提供する工程を更に含む。一態様において、前記方法は、蒸発器システムからの水の少なくとも一部を提供する工程を含む。本明細書に記載されているように、前記水は、水性凝縮物及び/又は液状残渣であり得る。
一態様において、式y=−M1x+C1(式中、yは硫酸アンモニウムの質量%、xはポリマーの質量%、M1は4.6以下、C1は45以下である)が、急冷塔缶出液流における硫酸アンモニウムの量及びポリマーの量を定義する。関連する態様において、M1は1.5以下であり、C1は30以下である。一態様において、前記方法は、約10〜約25質量%の硫酸アンモニウム及び約5%未満のポリマーを有する急冷塔缶出液流を提供し、別の態様では、約15〜約21質量%の硫酸アンモニウム及び約5%未満のポリマーを有する急冷塔缶出液流を提供する。前記急冷塔缶出液流は、約4.5〜約6.0のpHを有する。
別の態様において、前記方法は、第2の流れを取り出して、約10質量%超のポリマー及び約5質量%未満の硫酸アンモニウムを有する第2の急冷塔流を得る工程を含む。
別の態様において、第2の急冷塔流の少なくとも一部は、流出物抽出区画に再循環される。抽出流出物流は、硫酸に対して向流となる。一態様において、第1の急冷塔流が、流出物抽出区画の上流で取り出される。流出物抽出区画において断熱冷却が行われてもよい。
一態様において、方法は、約10〜約25質量%の急冷塔缶出液流において特定の濃度の硫酸アンモニウムを得るために、急冷塔へ搬送される補給水の量を制御する工程及び/又は急冷塔へ搬送される硫酸の量を制御する工程を含んでもよい。一態様において、方法は、急冷塔の缶出液のpHを検知する工程、及び検知された缶出液のpHに基づいて急冷塔への硫酸のフローを制御し、約4.5〜6.0のpHを有する急冷塔缶出液流を得る工程を含んでもよい。一態様において、方法は、急冷塔への硫酸の流量及び急冷塔に出入りする急冷塔缶出液流の流量に基づいて、急冷塔缶出液流中の硫酸アンモニウムの濃度を定量する工程を含んでもよい。一態様において、前記方法は、硫酸アンモニウムの濃度を約10〜約25質量%の範囲に維持するために、定量工程において定量された硫酸アンモニウムの濃度に基づいて、急冷塔へ搬送される硫酸及び/又は補給水の流量を調整する工程を含んでもよい。急冷塔缶出液流中の硫酸アンモニウムの濃度を、通常のプロセスにおいて得られる約5〜約10質量%から、約10〜約25質量%へ増大させることにより、更に高濃度の硫酸アンモニウムを得るために急冷塔缶出液流から除去する必要のある水が少なくなる。急冷塔缶出液流中の硫酸アンモニウムの濃度を約10〜約25質量%へ増大させることにより、サルフェート凝縮器を使用して、急冷塔缶出液流を約35〜40質量%へ効率的に凝縮できることが見出された。
上記明細書において、本開示がその特定の好ましい実施形態に関連して説明され、例示目的で多くの詳細が記載されているが、本開示において更なる実施形態も可能であること、また本明細書に記載された詳細のいくつかは、本開示の基本原理から逸脱することなく、大幅な変更が可能であることは、当業者には明白であろう。本開示の特徴は、本開示の精神及び範囲又は特許請求の範囲から逸脱することなしに、修正、改変、変更又は置換することが可能であると理解すべきである。例えば、各種構成要素の寸法、数、大きさ及び形状は、特定の用途に合わせて改変することができる。従って、本明細書に図示及び記載された特定の実施形態は、例示のみを目的とするものである。

Claims (24)

  1. プロセス流から重質有機不純物を除去するための方法であって、
    水及び重質有機不純物を含むプロセス流を用意する工程、並びに
    1段又は複数の蒸発段を有する蒸発器システムにおいて前記重質有機不純物から水を分離して、水性凝縮物及び液状残渣を得る工程
    を含み、
    前記水性凝縮物が約0.1質量%以下の重質有機不純物を有し、前記液状残渣が約3〜約10質量%の重質有機不純物を有する、方法。
  2. 前記プロセス流が、約0.5〜約1.5質量%の重質有機不純物を含む、請求項1に記載の方法。
  3. 前記重質有機不純物が、アンモ酸化反応プロセスにおいて生成されたポリマー状物質を含む、請求項1に記載の方法。
  4. 前記蒸発器システムが、1〜約6段の蒸発段を備える、請求項1に記載の方法。
  5. 前記蒸発器システムが、2〜約6段の蒸発段を備える、請求項1に記載の方法。
  6. 前記蒸発器システムが、2〜約5段の蒸発段を備える、請求項1に記載の方法。
  7. 前記蒸発器システムが、2〜約4段の蒸発段を備える、請求項1に記載の方法。
  8. 前記蒸発器システムが、2〜約3段の蒸発段を備える、請求項1に記載の方法。
  9. 前記プロセス流が、約0.75〜約1.25質量%の重質有機不純物を含む、請求項1に記載の方法。
  10. 前記アンモ酸化反応プロセスが、アクリロニトリルプロセスである、請求項3に記載の方法。
  11. 前記プロセス流が、アクリロニトリルプロセスの抽出蒸留塔からの缶出液流である、請求項10に記載の方法。
  12. 前記水性凝縮物が、約0.075質量%以下の重質有機不純物を有する、請求項1に記載の方法。
  13. 前記水性凝縮物が、約0.05質量%以下の重質有機不純物を有する、請求項1に記載の方法。
  14. 前記水性凝縮物が、約0.025質量%以下の重質有機不純物を有する、請求項1に記載の方法。
  15. 前記水性凝縮物の少なくとも一部が、急冷塔及び/又は軽質有機物ストリッパーへ搬送される、請求項1に記載の方法。
  16. 前記水性凝縮物の少なくとも一部が、急冷塔の第1段へ搬送される、請求項15に記載の方法。
  17. 前記蒸発器システムが、約55%を超え約85%以下の全蒸発百分率を実現するのに有効である、請求項1に記載の方法。
  18. 前記蒸発器システムが、約60%を超え約85%以下の全蒸発百分率を実現するのに有効である、請求項1に記載の方法。
  19. 前記蒸発器システムが、約73%を超え約75%以下の全蒸発百分率を実現するのに有効である、請求項1に記載の方法。
  20. 前記液状残渣が、約4〜約8質量%の重質有機不純物を有する、請求項1に記載の方法。
  21. 前記液状残渣が、約5〜約7質量%の重質有機不純物を有する、請求項1に記載の方法。
  22. 前記蒸発器システムが、少なくとも1つの多管式熱交換器を備える、請求項1に記載の方法。
  23. 前記熱交換器の管側を通るフローが、約1〜約3m/秒である、請求項22に記載の方法。
  24. 各蒸発段が、約15〜約25%の蒸発率を実現する、請求項1に記載の方法。
JP2020070190A 2014-09-29 2020-04-09 アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム Active JP7116118B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410511193.7A CN105521615A (zh) 2014-09-29 2014-09-29 用于工艺流的蒸发系统
CN201410511193.7 2014-09-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017516893A Division JP7098324B2 (ja) 2014-09-29 2015-09-01 アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム

Publications (2)

Publication Number Publication Date
JP2020111605A true JP2020111605A (ja) 2020-07-27
JP7116118B2 JP7116118B2 (ja) 2022-08-09

Family

ID=54147275

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017516893A Active JP7098324B2 (ja) 2014-09-29 2015-09-01 アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム
JP2020070190A Active JP7116118B2 (ja) 2014-09-29 2020-04-09 アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017516893A Active JP7098324B2 (ja) 2014-09-29 2015-09-01 アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム

Country Status (7)

Country Link
EP (2) EP3200887A1 (ja)
JP (2) JP7098324B2 (ja)
KR (2) KR102466816B1 (ja)
CN (2) CN112587950A (ja)
RU (1) RU2696386C2 (ja)
TW (1) TWI698271B (ja)
WO (1) WO2016053551A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105521616A (zh) * 2014-09-29 2016-04-27 英尼奥斯欧洲股份公司 用于工艺流的蒸发系统
CN107941039B (zh) * 2016-10-12 2020-03-03 英尼奥斯欧洲股份公司 骤冷塔后冷却器
CN107963616B (zh) * 2017-12-29 2023-06-27 无锡英罗唯森科技有限公司 一种用于硫酸浓缩的蒸发器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734943A (en) * 1971-05-06 1973-05-22 Standard Oil Co Deep well disposal process for acrylonitrile process waste water
JPS5337617A (en) * 1976-09-13 1978-04-06 Du Pont Method of recovering products from waste flow of acrylonitrile production process
JPS53136356A (en) * 1977-05-02 1978-11-28 Showa Denko Kk Wastewater disposal method
JPS5427524A (en) * 1977-07-29 1979-03-01 Standard Oil Co Method of recovering olefinic nitrile
US4334965A (en) * 1980-12-31 1982-06-15 Standard Oil Company Process for recovery of olefinic nitriles
US4377444A (en) * 1970-04-16 1983-03-22 The Standard Oil Co. Recovery and purification of olefinic nitriles
JPS58124753A (ja) * 1982-01-20 1983-07-25 ザ・スタンダ−ド・オイル・カンパニ− オレフインニトリルの回収法
JP2002501476A (ja) * 1996-10-23 2002-01-15 ソリユテイア・インコーポレイテツド アクリロニトリルの精製法
JP2002540188A (ja) * 1999-03-31 2002-11-26 ザ・スタンダード・オイル・カンパニー アクリロニトリル及びメタクリロニトリルの回収に対する改良方法
JP2003181444A (ja) * 2001-12-14 2003-07-02 Mitsubishi Heavy Ind Ltd アンモニア処理方法とその装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044966A (en) 1959-08-05 1962-07-17 Standard Oil Co Attrition resistant oxidation catalysts
US3198750A (en) 1962-12-26 1965-08-03 Standard Oil Co Mixed antimony oxide-uranium oxide oxidation catalyst
US3352764A (en) 1966-05-02 1967-11-14 Standard Oil Co Absorption and distillation process for separating crude unsaturated nitriles from acetonitrile with selective solvent recycle
GB1199697A (en) 1967-11-13 1970-07-22 Nitto Chemical Industry Co Ltd Process for the Removal of Unreacted Ammonia in the Production of Acrylonitrile
US3936360A (en) * 1971-04-07 1976-02-03 The Standard Oil Company Process for distillation and recovery of olefinic nitriles
US4234510A (en) 1973-06-07 1980-11-18 Standard Oil Company Recovery of acrylonitrile or methacrylonitrile by condensation
US3885928A (en) * 1973-06-18 1975-05-27 Standard Oil Co Ohio Acrylonitrile and methacrylonitrile recovery and purification system
JPS6048505B2 (ja) * 1975-11-25 1985-10-28 ザ スタンダード オイル コムパニー アクリロニトリルおよびメタクリロニトリルの回収および精製
ES2064885T3 (es) * 1986-07-10 1995-02-01 Whitaker Corp Terminal electrico.
RU2196766C2 (ru) * 1997-08-06 2003-01-20 Дзе Стандарт Ойл Компани Способ извлечения акрилонитрила или метакрилонитрила
US7071140B2 (en) * 2002-12-02 2006-07-04 The Standard Oil Company Catalyst for the manufacture of acrylonitrile
JP2004331533A (ja) * 2003-05-02 2004-11-25 Daiyanitorikkusu Kk アクリロニトリルの製造方法
JP2004339112A (ja) * 2003-05-14 2004-12-02 Mitsubishi Rayon Co Ltd 高純度アセトニトリルの製造法
US9044693B2 (en) * 2011-02-15 2015-06-02 Purestream Services, Llc Controlled-gradient, accelerated-vapor-recompression apparatus and method
US8455388B2 (en) * 2010-03-23 2013-06-04 Ineos Usa Llc Attrition resistant mixed metal oxide ammoxidation catalysts
CN102657946B (zh) * 2012-04-20 2014-11-05 中国天辰工程有限公司 一种从丙烯腈装置回收制备硫酸铵的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377444A (en) * 1970-04-16 1983-03-22 The Standard Oil Co. Recovery and purification of olefinic nitriles
US3734943A (en) * 1971-05-06 1973-05-22 Standard Oil Co Deep well disposal process for acrylonitrile process waste water
JPS5337617A (en) * 1976-09-13 1978-04-06 Du Pont Method of recovering products from waste flow of acrylonitrile production process
JPS53136356A (en) * 1977-05-02 1978-11-28 Showa Denko Kk Wastewater disposal method
JPS5427524A (en) * 1977-07-29 1979-03-01 Standard Oil Co Method of recovering olefinic nitrile
US4334965A (en) * 1980-12-31 1982-06-15 Standard Oil Company Process for recovery of olefinic nitriles
JPS58124753A (ja) * 1982-01-20 1983-07-25 ザ・スタンダ−ド・オイル・カンパニ− オレフインニトリルの回収法
JP2002501476A (ja) * 1996-10-23 2002-01-15 ソリユテイア・インコーポレイテツド アクリロニトリルの精製法
JP2002540188A (ja) * 1999-03-31 2002-11-26 ザ・スタンダード・オイル・カンパニー アクリロニトリル及びメタクリロニトリルの回収に対する改良方法
JP2003181444A (ja) * 2001-12-14 2003-07-02 Mitsubishi Heavy Ind Ltd アンモニア処理方法とその装置

Also Published As

Publication number Publication date
CN105521615A (zh) 2016-04-27
KR20220078720A (ko) 2022-06-10
RU2696386C2 (ru) 2019-08-01
TW201618838A (zh) 2016-06-01
JP2017530133A (ja) 2017-10-12
CN112587950A (zh) 2021-04-02
KR20170065525A (ko) 2017-06-13
TWI698271B (zh) 2020-07-11
RU2019116821A (ru) 2019-06-28
WO2016053551A1 (en) 2016-04-07
JP7116118B2 (ja) 2022-08-09
KR102466816B1 (ko) 2022-11-11
RU2017114572A3 (ja) 2019-03-01
JP7098324B2 (ja) 2022-07-11
EP3200887A1 (en) 2017-08-09
EP3300784A1 (en) 2018-04-04
KR102466815B1 (ko) 2022-11-11
RU2017114572A (ru) 2018-11-09

Similar Documents

Publication Publication Date Title
JP7116118B2 (ja) アンモ酸化プロセス流を処理するための一連の蒸発器を備えた蒸発システム
EP0055607B1 (en) Process for recovery of olefinic nitriles
JP2004217656A (ja) アクリロニトリル精製プロセスにおける凝縮させた冷却オーバーヘッドの再循環
JP7096283B2 (ja) プロセス流のための蒸発システム
TWI713466B (zh) 蒸發方法
CN204447371U (zh) 蒸发器系统
RU2801385C2 (ru) Испарительная установка для технологического потока
CN105727582A (zh) 用于工艺流的蒸发系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7116118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150