JP2020106320A - 物理量計測装置 - Google Patents

物理量計測装置 Download PDF

Info

Publication number
JP2020106320A
JP2020106320A JP2018243415A JP2018243415A JP2020106320A JP 2020106320 A JP2020106320 A JP 2020106320A JP 2018243415 A JP2018243415 A JP 2018243415A JP 2018243415 A JP2018243415 A JP 2018243415A JP 2020106320 A JP2020106320 A JP 2020106320A
Authority
JP
Japan
Prior art keywords
measurement
downstream
sensor
upstream
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243415A
Other languages
English (en)
Inventor
健悟 伊藤
Kengo Ito
健悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018243415A priority Critical patent/JP2020106320A/ja
Priority to PCT/JP2019/003955 priority patent/WO2019156046A1/ja
Priority to DE112019000709.2T priority patent/DE112019000709T5/de
Priority to PCT/JP2019/003942 priority patent/WO2019156041A1/ja
Priority to DE112019000710.6T priority patent/DE112019000710T5/de
Priority to PCT/JP2019/003947 priority patent/WO2019156044A1/ja
Priority to PCT/JP2019/003960 priority patent/WO2019156048A1/ja
Priority to DE112019000711.4T priority patent/DE112019000711T9/de
Priority to DE112019000700.9T priority patent/DE112019000700T5/de
Priority to PCT/JP2019/003945 priority patent/WO2019156042A1/ja
Priority to PCT/JP2019/003953 priority patent/WO2019156045A1/ja
Priority to DE112019000706.8T priority patent/DE112019000706T5/de
Priority to DE112019000696.7T priority patent/DE112019000696T5/de
Publication of JP2020106320A publication Critical patent/JP2020106320A/ja
Priority to US16/985,496 priority patent/US11480455B2/en
Priority to US16/985,663 priority patent/US11313709B2/en
Priority to US16/985,322 priority patent/US11300434B2/en
Priority to US16/985,547 priority patent/US11255709B2/en
Priority to US16/985,359 priority patent/US20200363249A1/en
Priority to US16/985,416 priority patent/US20200370937A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】物理量の計測精度を高めることができる物理量計測装置を提供する。【解決手段】ハウジング21において、計測流路32はセンサ路405、上流曲がり路406、下流曲がり路407を有している。流量センサ22はセンサ路405に設けられている。上流曲がり路406はセンサ路405から計測入口35に向けて延びており、下流曲がり路407はセンサ路405から計測出口36に向けて延びている。ハウジング21の内面は、上流曲がり路406の曲がりを外側から形成する上流外曲がり面411と、下流曲がり路406の曲がりを外側から形成する下流外曲がり面421とを有している。計測流路32について、流量センサ22を通り、奥行き方向Zに延びる仮想の直線として並び線CL31を想定すると、この並び線CL31上では、流量センサ22が下流外曲がり面421よりも上流外曲がり面411に近い位置に設けられている。【選択図】図15

Description

この明細書による開示は、物理量計測装置に関する。
流体の物理量を計測する物理量計測装置として、例えば特許文献1には、サブバイパス流路を形成するハウジングと、サブバイパス流路を流れる空気の流量を検出する流量センサと、を備えた空気流量測定装置が開示されている。この空気流量測定装置では、サブバイパス流路は、空気が流れ込むサブ入口と、流れ込んだ空気を流出させるサブ出口とを有しており、これらサブ入口とサブ出口との間で空気の流れをUターンさせる流路形状になっている。サブバイパス流路においては、サブ入口に向けて曲がった部分と、サブ出口に向けて曲がった部分との間に流量センサが設けられている。
特開2013−190447号公報
上記特許文献1では、サブ入口からサブバイパス流路に流れ込んだ空気が、流量センサを通過した後に、サブバイパス流路においてサブ出口に向けて曲がった部分の壁面に当たり、サブバイパス流路での空気の流れが乱れることが懸念される。例えば、壁面に当たった空気がサブバイパス流路を逆流して流量センサまで戻ることなどが懸念される。この場合、サブバイパス流路において流量センサを通過する空気の流れが乱れ、流量センサによる流量の検出精度が低下しやすくなる。したがって、空気等の流体について流量等の物理量を計測する精度が低下し、物理量計測装置の計測精度が低下してしまう。
本開示の主な目的は、物理量の計測精度を高めることができる物理量計測装置を提供することにある。
上記目的を達成するため、開示された態様は、
流体の物理量を計測する物理量計測装置(20)であって、
流体が流入する計測入口(35)と、計測入口から流入した流体が流出する計測出口(36)とを有する計測流路(32)と、
計測流路に設けられ、流体の物理量を検出する物理量センサ(22)と、
計測流路を形成しているハウジング(21)と、
を備え、
計測流路は、
物理量センサが設けられたセンサ路(405)と、
計測流路においてセンサ路と計測入口との間に設けられ、ハウジングにおいてセンサ路から計測入口に向けて延びるように曲がっている上流曲がり路(406)と、
計測流路においてセンサ路と計測出口との間に設けられ、ハウジングにおいてセンサ路から計測出口に向けて延びるように曲がっている下流曲がり路(407)と、
を有しており、
ハウジングの内面は、
上流曲がり路を曲がりの外側から形成する上流外曲がり面(411)と、
下流曲がり路を曲がりの外側から形成する下流外曲がり面(421)と、
を有しており、
物理量センサを通り且つ上流曲がり路と下流曲がり路との並び方向(Z)に延びた仮想の直線として並び線(CL31)を想定し、
並び線上での下流外曲がり面と物理量センサとの離間距離(L31b)が、並び線上での上流外曲がり面と物理量センサとの離間距離(L31a)よりも大きい、物理量計測装置である。
上記態様によれば、並び線上において、下流外曲がり面と物理量センサとの離間距離が、上流外曲がり面と物理量センサとの離間距離よりも大きくなっている。この構成では、上流外曲がり面と下流外曲がり面との間において、物理量センサを下流外曲がり面から極力離れた位置に配置することができる。このため、仮に、計測流路において物理量センサを通過した流体が下流外曲がり面に当たって物理量センサ側に戻る向きに逆流したとしても、その逆流が物理量センサに届きにくくなっている。また、逆流に伴う気流の乱れが下流外曲がり面の周辺に生じたとしても、この乱れが物理量センサに届きにくくなっている。したがって、計測流路での気流の乱れによって物理量センサの検出精度が低下するということを抑制できる。このように物理量センサによる物理量の計測精度を高めることで、物理量計測装置による物理量の計測精度を高めることができる。
なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものにすぎず、本開示の技術的範囲を限定するものではない。
第1実施形態における燃焼システムの構成を示す図。 吸気管に取り付けられた状態のエアフロメータの正面図。 吸気管に取り付けられた状態のエアフロメータの平面図。 通過入口側から見たエアフロメータの斜視図。 通過出口側から見たエアフロメータの斜視図。 エアフロメータをコネクタ部側から見た側面図。 エアフロメータをコネクタ部とは反対側から見た側面図。 図2のVIII−VIII線断面図。 センサSAの斜視図。 モールド表面側から見たセンサSAの平面図。 モールド裏面側から見たセンサSAの平面図。 流量センサの斜視図。 メンブレン部の配線パターンを示す図。 エアフロメータの縦断面図。 図14のセンサ路周辺の拡大図。 図14のXVI−XVI線断面図。 図16のセンサ路周辺の拡大図。 第2実施形態におけるエアフロメータでのセンサ路周辺の縦断面図。 第3実施形態におけるエアフロメータの横断面図。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第1実施形態)
図1に示す燃焼システム10は、ガソリンエンジン等の内燃機関11、吸気通路12、排気通路13、エアフロメータ20及びECU15を有しており、例えば車両に搭載されている。エアフロメータ20は、吸気通路12に設けられており、内燃機関11に供給される吸入空気の流量や温度、湿度、圧力といった物理量を計測する。エアフロメータ20は、空気の流量を計測する流量計測装置であって、吸入空気等の流体を計測対象とした物理量計測装置に相当する。吸入空気は、内燃機関11の燃焼室11aに供給される気体である。燃焼室11aにおいては、吸入空気と燃料との混合気が点火プラグ17により点火される。
ECU(Engine Control Unit)15は、燃焼システム10の動作制御を行う制御装置である。ECU15は、プロセッサ、RAM、ROM及びフラッシュメモリ等の記憶媒体、並びに入出力部を含むマイクロコンピュータと、電源回路等と、によって構成された演算処理回路である。ECU15には、エアフロメータ20から出力されるセンサ信号や、多数の車載センサから出力されるセンサ信号などが入力される。ECU15は、エアフロメータ20による計測結果を用いて、インジェクタ16の燃料噴射量やEGR量などについてエンジン制御を行う。ECU15は、内燃機関11の運転制御を行う制御装置であり、燃焼システム10をエンジン制御システムと称することもできる。また、ECU15は、外部装置に相当する。
ECU15は、電子制御装置(Electronic Control Unit)とも呼ばれる場合がある。制御装置、または制御システムは、(a)if−then−else形式と呼ばれる複数の論理としてのアルゴリズム、または(b)機械学習によってチューニングされた学習済みモデル、例えばニューラルネットワークとしてのアルゴリズムによって提供される。
制御装置は、少なくとも1つのコンピュータを含む制御システムによって提供される。制御システムは、データ通信装置によってリンクされた複数のコンピュータを含む場合がある。コンピュータは、ハードウェアである少なくとも1つのプロセッサ(ハードウェアプロセッサ)を含む。ハードウェアプロセッサは、下記(i)、(ii)、または(iii)により提供することができる。
(i)ハードウェアプロセッサは、少なくとも1つのメモリに格納されたプログラムを実行する少なくとも1つのプロセッサコアである場合がある。この場合、コンピュータは、少なくとも1つのメモリと、少なくとも1つのプロセッサコアとによって提供される。プロセッサコアは、CPU:Central Processing Unit、GPU:Graphics Processing Unit、RISC−CPUなどと呼ばれる。メモリは、記憶媒体とも呼ばれる。メモリは、プロセッサによって読み取り可能な「プログラムおよび/またはデータ」を非一時的に格納する非遷移的かつ実体的な記憶媒体である。記憶媒体は、半導体メモリ、磁気ディスク、または光学ディスクなどによって提供される。プログラムは、それ単体で、またはプログラムが格納された記憶媒体として流通する場合がある。
(ii)ハードウェアプロセッサは、ハードウェア論理回路である場合がある。この場合、コンピュータは、プログラムされた多数の論理ユニット(ゲート回路)を含むデジタル回路によって提供される。デジタル回路は、ロジック回路アレイ、例えば、ASIC:Application-Specific Integrated Circuit、FPGA:Field Programmable Gate Array、PGA:Programmable Gate Array、CPLD:Complex Programmable Logic Deviceなどとも呼ばれる。デジタル回路は、プログラムおよび/またはデータを格納したメモリを備える場合がある。コンピュータは、アナログ回路によって提供される場合がある。コンピュータは、デジタル回路とアナログ回路との組み合わせによって提供される場合がある。
(iii)ハードウェアプロセッサは、上記(i)と上記(ii)との組み合わせである場合がある。(i)と(ii)とは、異なるチップの上、または共通のチップの上に配置される。これらの場合、(ii)の部分は、アクセラレータとも呼ばれる。
制御装置と信号源と制御対象物とは、多様な要素を提供する。それらの要素の少なくとも一部は、ブロック、モジュール、またはセクションと呼ぶことができる。さらに、制御システムに含まれる要素は、意図的な場合にのみ、機能的な手段と呼ばれる。
この開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。代替的に、この開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。代替的に、この開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
燃焼システム10は、車載センサとして複数の計測部を有している。計測部としては、エアフロメータ20の他に、スロットルセンサ18aや空燃比センサ18bなどがある。これら計測部は、いずれもECU15に電気的に接続されており、ECU15に対して検出信号を出力する。エアフロメータ20は、吸気通路12において、エアクリーナ19の下流側であって、スロットルセンサ18aが取り付けられたスロットルバルブの上流側に設けられている。
図2、図3、図8に示すように、エアフロメータ20は、取り付け対象としての配管ユニット14に取り付けられている。配管ユニット14は、吸気管14a、管フランジ14c、管ボス14dを有しており、吸気通路12を形成する形成部材である。吸気管14a、管フランジ14c及び管ボス14dは、樹脂材料等により形成されている。
吸気管14aは、吸気通路12を形成するダクト等の配管である。吸気管14aには、その外周部を貫通する貫通孔としてエアフロ挿入孔14bが設けられている。管フランジ14cは、円環状に形成されており、エアフロ挿入孔14bの周縁部に沿って延びている。管フランジ14cは、吸気管14aの外面から吸気通路12とは反対側に向けて延びている。管ボス14dは、柱状の部材であり、エアフロメータ20を支持する支持部である。管ボス14dは、吸気管14aの外面から管フランジ14cに沿って延びており、吸気管14aに対して複数(例えば2つ)設けられている。本実施形態では、管フランジ14c及び管ボス14dがいずれも吸気管14aから高さ方向Yに延びている。
エアフロメータ20は、管フランジ14c及びエアフロ挿入孔14bに挿入されることで吸気通路12に入り込んだ状態になっており、この状態でボルト等の固定具により管ボス14dに固定されている。エアフロメータ20は、管フランジ14cの先端面に接触していない一方で、管ボス14dの先端面に接触している。このため、配管ユニット14に対するエアフロメータ20の相対的な位置や角度は、管フランジ14cではなく管ボス14dによって設定されている。複数の管ボス14dの先端面は、互いに面一になっている。なお、図8では、管ボス14dの図示を省略している。
本実施形態では、エアフロメータ20について、幅方向X、高さ方向Y及び奥行き方向Zを設定しており、これら方向X,Y,Zは互いに直交している。エアフロメータ20は高さ方向Yに延びており、吸気通路12は奥行き方向Zに延びている。エアフロメータ20は、吸気通路12に入り込んだ入り込み部分20aと、吸気通路12に入り込まずに管フランジ14cから外部にはみ出したはみ出し部分20bとを有しており、これら入り込み部分20aとはみ出し部分20bとは高さ方向Yに並んでいる。
図2、図4、図7、図8に示すように、エアフロメータ20は、ハウジング21と、吸入空気の流量を検出する流量センサ22と、吸入空気の温度を検出する吸気温センサ23とを有している。ハウジング21は、例えば樹脂材料等により形成されている。流量センサ22はハウジング21の内部に収容されている。エアフロメータ20においては、ハウジング21が吸気管14aに取り付けられていることで、流量センサ22が、吸気通路12を流れる吸入空気と接触可能な状態になる。
ハウジング21は、取り付け対象としての配管ユニット14に取り付けられている。ハウジング21の外面においては、高さ方向Yに並んだ一対の端面21a,21bのうち、入り込み部分20aに含まれた方をハウジング先端面21aと称し、はみ出し部分20bに含まれた方をハウジング基端面21bと称する。ハウジング先端面21a及びハウジング基端面21bは高さ方向Yに直交している。管フランジ14cの先端面も高さ方向Yに直交している。なお、エアフロメータ20やハウジング21が取り付けられる取り付け対象は、吸気通路12を形成する形成部材であれば配管ユニット14でなくてもよい。
ハウジング21の外面においては、吸気通路12の上流側に配置される面をハウジング上流面21cと称し、ハウジング上流面21cとは反対側に配置される面をハウジング下流面21dと称する。また、ハウジング上流面21c及びハウジング基端面21bを介して対向する一対の面のうち一方をハウジング表面21eと称し、他方をハウジング裏面21fと称する。ハウジング表面21eは、後述するセンサSA50において流量センサ22が設けられた側の面である。
なお、ハウジング21については、高さ方向Yにおいて、ハウジング先端面21a側をハウジング先端側と称し、ハウジング基端面21b側をハウジング基端側と称する。また、奥行き方向Zにおいて、ハウジング上流面21c側をハウジング上流側と称し、ハウジング下流面21d側をハウジング下流側と称する。さらに、幅方向Xにおいて、ハウジング表面21e側をハウジング表側と称し、ハウジング裏面21f側をハウジング裏側と称する。
図2〜図7に示すように、ハウジング21は、シール保持部25、フランジ部27及びコネクタ部28を有している。エアフロメータ20はシール部材26を有しており、シール部材26はシール保持部25に取り付けられている。
シール保持部25は、管フランジ14cの内部に設けられており、シール部材26を高さ方向Yに位置ずれしないように保持している。シール保持部25は、エアフロメータ20の入り込み部分20aに含まれている。シール部材26は、管フランジ14cの内部において吸気通路12を密閉するOリング等の部材であり、シール保持部25の外周面と管フランジ14cの内周面との両方に密着している。
フランジ部27には、ハウジング21を吸気管14aに固定するネジ等の固定具を固定するネジ孔等の固定孔が形成されている。フランジ部27において、ハウジング先端側の面が管ボス14dの先端面に重ねられた状態で接触しており、この重ねられた部分を角度設定面27aと称する。角度設定面27aと管ボス14dの先端面とは、いずれも高さ方向Yに直交する方向に延びており、幅方向X及び奥行き方向Zに延びている。管ボス14dの先端面は、吸気管14aに対する角度設定面27aの相対的な位置や角度を設定している。角度設定面27aは、エアフロメータ20において、吸気管14aに対するハウジング21の相対的な位置や角度を設定している。
配管ユニット14の吸気管14aにおいては、吸気通路12を流れる空気のうち主に流れる主流が奥行き方向Zに進む。主流の進む方向を主流方向と称すると、奥行き方向Zが主流方向になっている。ハウジング21においては、フランジ部27の角度設定面27aが主流方向及び奥行き方向Zに延びている。また、管ボス14dの先端面も主流方向及び奥行き方向Zに延びている。
コネクタ部28は、流量センサ22に電気的に接続されたコネクタターミナル28aを保護する保護部である。コネクタターミナル28aは、ECU15から延びた電気配線がプラグ部等を介してコネクタ部28に接続されることでECU15に電気的に接続される。フランジ部27及びコネクタ部28は、エアフロメータ20のはみ出し部分20bに含まれている。
図8に示すように、吸気温センサ23はハウジング21の外側に設けられている。吸気温センサ23は、吸入空気の温度を感知する感温素子や、感温素子から延びたリード線、リード線に接続された吸気温ターミナルを有している。ハウジング21は、吸気温センサ23を支持する支持部を有しており、この支持部は、ハウジング21の外周側に設けられている。
ハウジング21は、バイパス流路30を有している。バイパス流路30は、ハウジング21の内部に設けられており、ハウジング21の内部空間の少なくとも一部により形成されている。ハウジング21の内面は、バイパス流路30を形成しており、形成面になっている。
バイパス流路30は、エアフロメータ20の入り込み部分20aに配置されている。バイパス流路30は、通過流路31及び計測流路32を有している。計測流路32には、後述するセンサSA50のうち流量センサ22とその周囲の部分とが入り込んだ状態になっている。通過流路31は、ハウジング21の内面により形成されている。計測流路32は、ハウジング21の内面に加えてセンサSA50の一部の外面により形成されている。なお、吸気通路12を主通路と称し、バイパス流路30を副通路と称することもできる。
通過流路31は、奥行き方向Zにハウジング21を貫通している。通過流路31は、その上流端部である通過入口33と、下流端部である通過出口34とを有している。計測流路32は、通過流路31の中間部分から分岐した分岐流路であり、この計測流路32に流量センサ22が設けられている。計測流路32は、その上流端部である計測入口35と、下流端部である計測出口36とを有している。通過流路31から計測流路32が分岐した部分はこれら通過流路31と計測流路32との境界部になっており、この境界部に計測入口35が含まれている。また、通過流路31と計測流路32との境界部を流路境界部と称することもできる。計測入口35は、計測出口36側を向くように傾斜した状態でハウジング先端側を向いている。
計測流路32は、通過流路31からハウジング基端側に向けて延びている。計測流路32は、通過流路31とハウジング基端面21bとの間に設けられている。計測流路32は、計測入口35と計測出口36との間の部分がハウジング基端側に向けて膨らむように曲がっている。計測流路32は、連続的に曲がるように湾曲した部分や、段階的に折れ曲がるように屈折した部分、高さ方向Yや奥行き方向Zに真っ直ぐに延びた部分などを有している。
流量センサ22は、ヒータ部を有する熱式の流量検出部である。流量センサ22は、ヒータ部の発熱に伴って温度変化が生じた場合に、その温度変化に応じた検出信号を出力する。流量センサ22は直方体状のチップ部品であり、流量センサ22をセンサチップと称することもできる。なお、流量センサ22を、吸入空気の流量を流体の物理量として検出する物理量センサや物理量検出部と称することもできる。
エアフロメータ20は、流量センサ22を含んで構成されたセンササブアッセンブリを有しており、このセンササブアッセンブリをセンサSA50と称する。センサSA50は、センサSA50の一部が計測流路32に入り込んだ状態でハウジング21の内部に埋め込まれている。エアフロメータ20においては、センサSA50とバイパス流路30とが高さ方向Yに並べられている。具体的には、センサSA50と通過流路31とが高さ方向に並べられている。なお、センサSA50が検出ユニットに相当する。また、センサSA50を計測ユニットやセンサパッケージと称することもできる。
図9、図10、図11に示すように、センサSA50は、流量センサ22に加えてセンサ支持部51を有している。センサ支持部51は、ハウジング21に取り付けられており、流量センサ22を支持している。センサ支持部51は、SA基板53及びモールド部55を有している。SA基板53は、流量センサ22が搭載された基板であり、モールド部55は、流量センサ22の少なくとも一部やSA基板53の少なくとも一部を覆っている。SA基板53をリードフレームと称することもできる。
モールド部55は、全体として板状に形成されている。モールド部55の外面においては、高さ方向Yに並んだ一対の端面55a,55bのうち、ハウジング先端側の方をモールド先端面55aと称し、ハウジング基端側の方をモールド基端面55bと称する。なお、モールド先端面55aが、モールド部55及びセンサ支持部51の先端部になっており、支持先端部に相当する。また、モールド部55が保護樹脂部に相当する。
モールド部55の外面においては、モールド先端面55a及びモールド基端面55bを挟んで設けられた一対の面のうち一方をモールド上流面55cと称し、他方をモールド下流面55dと称する。センサSA50は、図8において、モールド先端面55aがエアフロ先端側に配置され、且つモールド上流面55cがモールド下流面55dよりも計測流路32の上流側に配置される向きで、ハウジング21の内部に設置されている。
センサSA50のモールド上流面55cは、計測流路32においてモールド下流面55dよりも上流側に配置されている。計測流路32において流量センサ22が設けられた部分においては、空気の流れる向きが吸気通路12での空気の流れる向きとは反対になっている。このため、モールド上流面55cは、吸気通路12においてはモールド下流面55dよりも下流側に配置されていることになる。なお、流量センサ22に沿って流れる空気は奥行き方向Zに流れ、この奥行き方向Zを流れ方向と称することもできる。
図9、図10に示すように、センサSA50においては、流量センサ22がセンサSA50の一面側に露出している。モールド部55の外面においては、流量センサ22が露出した側の板面をモールド表面55eと称し、反対側の板面をモールド裏面55fと称する。センサSA50の一方の板面がモールド表面55eにより形成されており、このモールド表面55eが支持表面に相当し、モールド裏面55fが支持裏面に相当する。
SA基板53は、金属材料等により全体として板状に形成されており、導電性を有する基板である。SA基板53の板面は、幅方向Xに直交しており、高さ方向Y及び奥行き方向Zに延びている。SA基板53には流量センサ22が搭載されている。SA基板53は、コネクタターミナル28aに接続されたリードターミナル53aを形成している。SA基板53は、モールド部55により覆われた部分と、モールド部55により覆われていない部分とを有しており、覆われていない部分がリードターミナル53aになっている。リードターミナル53aは、モールド基端面55bから高さ方向Yに突出している。なお、図8においては、リードターミナル53aの図示を省略している。
図12に示すように、流量センサ22は全体として板状に形成されている。流量センサ22は、一面であるセンサ表面22aと、センサ表面22aとは反対のセンサ裏面22bとを有している。流量センサ22においては、センサ裏面22bがSA基板53に重ねられており、センサ表面22aの一部がセンサSA50の外部に露出している。
流量センサ22は、センサ凹部61及びメンブレン部62を有している。センサ凹部61はセンサ裏面22bに対して設けられており、メンブレン部62はセンサ表面22aに対して設けられている。メンブレン部62は、センサ凹部61の底面を形成している。メンブレン部62のうちセンサ凹部61の底面を形成している部分は、センサ凹部61にとっての底部になっている。センサ凹部61は、センサ裏面22bがセンサ表面22a側に向けて凹むことで形成されている。センサ凹部61の開口部はセンサ裏面22bに設けられている。メンブレン部62は、流量をセンシングするセンシング部になっている。
流量センサ22は、センサ基板65及びセンサ膜部66を有している。センサ基板65は、流量センサ22の母材であり、シリコン等の半導体材料により板状に形成されている。センサ基板65は、一面である基板表面65aと、基板表面65aとは反対の基板裏面65bとを有している。センサ基板65には、センサ基板65を幅方向Xに貫通する貫通孔が形成されており、この貫通孔によりセンサ凹部61が形成されている。なお、センサ基板65には、貫通孔ではなく、センサ凹部61を形成する凹部が形成されていてもよい。この場合、センサ凹部61の底面はメンブレン部62により形成されるのではなく、センサ基板65の凹部の底面により形成されることになる。
センサ膜部66は、センサ基板65の基板表面65aに重ねられており、基板表面65aに沿って膜状に延びている。流量センサ22においては、センサ表面22aがセンサ膜部66により形成され、センサ裏面22bがセンサ基板65により形成されている。この場合、センサ裏面22bは、センサ基板65の基板裏面65bになっている。
センサ膜部66は、絶縁層や導電層、保護層など複数の層を有しており、多層構造になっている。これらは、いずれも膜状に形成されており、基板表面65aに沿って延びている。センサ膜部66は、配線や抵抗体などの配線パターンを有しており、この配線パターンは導電層により形成されている。
流量センサ22においては、ウェットエッチングによりセンサ基板65の一部を加工することでセンサ凹部61が形成されている。流量センサ22の製造工程においては、シリコン窒化膜等のマスクをセンサ基板65の基板裏面65bに装着し、エッチング液を用いてセンサ膜部66が露出するまで基板裏面65bに対して異方性エッチングを行う。なお、センサ基板65に対してドライエッチング加工を行うことでセンサ凹部61を形成してもよい。
センサSA50は、空気の流量を検出する流量検出回路を有しており、この流量検出回路の少なくとも一部が流量センサ22に含まれている。図13に示すように、センサSA50は、流量検出回路に含まれる回路素子として、発熱抵抗体71、測温抵抗体72,73、傍熱抵抗体74、を有している。これら抵抗体71〜74は、流量センサ22に含まれており、センサ膜部66の導電層により形成されている。この場合、センサ膜部66が抵抗体71〜74を有しており、これら抵抗体71〜74は導電層の配線パターンに含まれている。なお、図13においては、抵抗体71〜74を含む配線パターンをドットハッチングで図示している。また、流量検出回路を、空気の流量を計測する流量計測部と称することもできる。
発熱抵抗体71は、発熱抵抗体71への通電に伴って熱を発生させる抵抗素子である。発熱抵抗体71は、発熱することでセンサ膜部66を加熱し、ヒータ部に相当する。測温抵抗体72,73は、センサ膜部66の温度を検出するための抵抗素子であり、温度検出部に相当する。測温抵抗体72,73の抵抗値は、センサ膜部66の温度に応じて変化する。流量検出回路においては、測温抵抗体72,73の抵抗値を用いてセンサ膜部66の温度を検出する。流量検出回路は、発熱抵抗体71によりセンサ膜部66及び測温抵抗体72,73の温度を上昇させ、計測流路32にて空気の流れが生じた場合に、測温抵抗体72,73による検出温度の変化態様を用いて空気流量や流れの向きを検出する。
発熱抵抗体71は、高さ方向Y及び奥行き方向Zのそれぞれについてメンブレン部62のほぼ中央に配置されている。発熱抵抗体71は、全体として高さ方向Yに延びる長方形状に形成されている。発熱抵抗体71の中心線CL1は、発熱抵抗体71の中心CO1を通り、高さ方向Yに直線状に延びている。この中心線CL1は、メンブレン部62の中心を通っている。発熱抵抗体71は、メンブレン部62の周縁部から内側に離間した位置に配置されている。発熱抵抗体71においては、中心CO1に対する離間距離が、モールド先端側の端部とモールド基端側の端部とで同じになっている。
測温抵抗体72,73は、いずれも全体として高さ方向Yに延びる長方形状に形成されており、奥行き方向Zに並べられている。これら測温抵抗体72,73の間に発熱抵抗体71が設けられている。測温抵抗体72,73のうち、上流測温抵抗体72は、発熱抵抗体71からモールド上流側に離間した位置に設けられている。下流測温抵抗体73は、発熱抵抗体71からモールド下流側に離間した位置に設けられている。上流測温抵抗体72の中心線CL2及び下流測温抵抗体73の中心線CL3は、いずれも発熱抵抗体71の中心線CL1に平行に直線状に延びている。発熱抵抗体71は、奥行き方向Zにおいて上流測温抵抗体72と下流測温抵抗体73との中間位置に設けられている。
なお、本実施形態のセンサSA50については、図10において、モールド上流面55c側をモールド上流側と称し、モールド下流面55d側をモールド下流側と称する。また、モールド先端面55a側をモールド先端側と称し、モールド基端面55b側をモールド基端側と称する。
図13の説明に戻り、傍熱抵抗体74は、発熱抵抗体71の温度を検出するための抵抗素子である。傍熱抵抗体74は、発熱抵抗体71の周縁部に沿って延びている。傍熱抵抗体74の抵抗値は、発熱抵抗体71の温度に応じて変化する。流量検出回路においては、傍熱抵抗体74の抵抗値を用いて発熱抵抗体71の温度を検出する。
センサSA50は、発熱配線75、測温配線76,77を有している。これら配線75〜77は、抵抗体71〜74と同様に、センサ膜部66の配線パターンに含まれている。発熱配線75は、発熱抵抗体71からモールド基端側に向けて高さ方向Yに延びている。上流測温配線76は、上流測温抵抗体72からモールド先端側に向けて高さ方向Yに延びている。下流測温配線77は、下流測温抵抗体73からモールド先端側に向けて高さ方向Yに延びている。
図14、図15に示すように、計測流路32の中心線CL4は、計測入口35の中心CO2と計測出口36の中心CO3とを通り、計測流路32に沿って直線状に延びている。センサSA50は、計測流路32において計測入口35と計測出口36との間に設けられている。センサSA50は、計測入口35から上流側に離間した位置であって、計測出口36から上流側に離間した位置に設けられている。なお、図14、図15においては、計測流路32のうちSA挿入孔107の内部空間を除いた領域の中心線を中心線CL4として図示している。
図15〜図17に示すように、ハウジング21は、計測流路32を形成する形成面として、計測床面101、計測天井面102、表計測壁面103、裏計測壁面104を有している。これら計測床面101、計測天井面102、表計測壁面103及び裏計測壁面104は、いずれも計測流路32の中心線CL4に沿って延びている。計測床面101、計測天井面102、表計測壁面103及び裏計測壁面104は、計測流路32のうち奥行き方向Zに延びている部分を形成している。なお、計測床面101が床面に相当し、表計測壁面103が表壁面に相当し、裏計測壁面104が裏壁面に相当する。幅方向Xが、表壁面と裏壁面とが並んだ表裏方向に相当する。
計測床面101及び計測天井面102は、表計測壁面103と裏計測壁面104との間に設けられている。計測床面101は、センサSA50のモールド先端面55aに対向しており、奥行き方向Zに真っ直ぐに延びている。計測天井面102は、高さ方向Yにおいて中心線CL4を介して計測床面101とは反対側に設けられている。ハウジング21において計測天井面102を形成する部分には、センサSA50が挿入されたSA挿入孔107が設けられている。このSA挿入孔107は、センサSA50によって閉鎖されている。計測流路32には、SA挿入孔107の内部空間のうちセンサSA50とハウジング21との隙間も含まれている。
表計測壁面103と裏計測壁面104とは、計測床面101や計測天井面102を介して互いに対向する一対の壁面である。表計測壁面103は、センサSA50のモールド表面55eに対向しており、計測床面101のエアフロ表側の端部からハウジング基端側に向けて延びている。特に、表計測壁面103は、センサSA50の流量センサ22に対向している。裏計測壁面104は、センサSA50のモールド裏面55fに対向しており、計測床面101のエアフロ裏側の端部からハウジング基端側に向けて延びている。なお、図16、図17においては、センサSA50の内部構造について図示を簡略化し、モールド部55及び流量センサ22の図示にとどめている。
ハウジング21は、表絞り部111及び裏絞り部112を有している。これら絞り部111,112は、計測流路32の断面積が計測入口35等の上流から流量センサ22に向けて徐々に小さくなるように計測流路32を徐々に絞っている。また、絞り部111,112は、断面積が流量センサ22から計測出口36等の下流から流量センサ22に向けて徐々に小さくなるように計測流路32を徐々に絞っている。なお、計測流路32については、中心線CL4に直交する領域の面積を断面積と称しており、この断面積を流路面積と称することもできる。
表絞り部111は、表計測壁面103の一部が裏計測壁面104に向けて突出した凸部である。裏絞り部112は、裏計測壁面104の一部が表計測壁面103に向けて突出した凸部である。表絞り部111と裏絞り部112とは、高さ方向Yに並べられており、高さ方向Yにおいて互いに対向している。これら絞り部111,112は、計測天井面102と計測床面101とにかけ渡されている。絞り部111,112は、幅方向Xでの表計測壁面103と裏計測壁面104との離間距離である計測幅寸法W1(図17参照)を上流から流量センサ22に向けて徐々に小さくしている。また、絞り部111,112は、計測幅寸法W1を下流から流量センサ22に向けて徐々に小さくしている。
絞り部111,112は、計測流路32において上流側から流量センサ22に向けて中心線CL4に徐々に近づいている。計測流路32においては、幅方向Xでの絞り部111,112と中心線CL4との離間距離W2,W3が、上流から流量センサ22に向けて徐々に小さくなっている。また、絞り部111,112は、計測流路32において下流側から流量センサ22に向けて中心線CL4に徐々に近づいている。計測流路32においては、幅方向Xでの絞り部111,112と中心線CL4との離間距離W2,W3が、下流から流量センサ22に向けて徐々に小さくなっている。
絞り部111,112においては、中心線CL4に最も接近した部分が頂部111a,112aになっている。この場合、絞り部111,112においては、中心線CL4との離間距離W2,W3が頂部111a,112aにおいて最も小さくなっている。頂部111a,112aのうち、表頂部111aが表絞り部111の頂部であり、裏頂部112aが裏絞り部112の頂部である。表頂部111aと裏頂部112aとは幅方向Xに並べられており、互いに対向している。
流量センサ22は、表絞り部111と裏絞り部112との間に設けられている。具体的には、流量センサ22の発熱抵抗体71の中心CO1が表頂部111aと裏頂部112aとの間に設けられている。発熱抵抗体71について、中心CO1を通り、中心線CL1に直交し且つ幅方向Xに延びる直線状の仮想線を中心線CL5と称すると、表頂部111a及び裏頂部112aはいずれもこの中心線CL5上に配置されている。この場合、発熱抵抗体71の中心CO1と表頂部111aとが幅方向Xに並べられており、発熱抵抗体71の中心CO1と表頂部111aとが幅方向Xにおいて互いに対向している。
図8、図14に示すように、ハウジング21はSA収容領域150を有している。SA収容領域150は、バイパス流路30よりもハウジング基端側に設けられており、センサSA50の一部を収容している。SA収容領域150には、センサSA50の少なくともモールド基端面55bが収容されている。計測流路32とSA収容領域150とは高さ方向Yに並べられている。センサSA50は、計測流路32とSA収容領域150との境界部を高さ方向Yに跨ぐ位置に配置されている。計測流路32には、センサSA50の少なくともモールド先端面55a及び流量センサ22が収容されている。なお、SA収容領域150が収容領域に相当する。
ハウジング21は、第1ハウジング部151及び第2ハウジング部152を有している。これらハウジング部151,152は、互いに組み付けられて一体化されており、この状態でハウジング21を形成している。第1ハウジング部151はSA収容領域150を形成している。第1ハウジング部151は、SA収容領域150に加えてバイパス流路30を形成している。第1ハウジング部151の内面は、ハウジング21の内面として、SA収容領域150やバイパス流路30を形成している。
図14、図15に示すように、計測流路32は、計測入口35と計測出口36との間の部分が流量センサ22に向けて膨らむように曲がっており、全体としてU字状になっている。計測流路32においては、計測入口35と計測出口36とが奥行き方向Zに並んでいる。この場合、奥行き方向Zが並び方向に相当し、高さ方向Yが奥行き方向Zに直交している。計測流路32においては、計測入口35と計測出口36との間の部分が、ハウジング基端側に向けて高さ方向Yに膨らむように曲がっている。
ハウジング21の内面は、外計測曲がり面401、内計測曲がり面402を有している。外計測曲がり面401及び内計測曲がり面402は、計測流路32の中心線CL4に沿って延びている。ハウジング21の内面は、これら外計測曲がり面401及び内計測曲がり面402に加えて、上述したように表計測壁面103及び裏計測壁面104を有している。外計測曲がり面401と内計測曲がり面402とは、幅方向Xに直交する方向Y,Zに並べられており、表計測壁面103及び裏計測壁面104を介して対向している。
外計測曲がり面401は、計測流路32を曲がりの外側から形成しており、計測流路32や流量センサ22の外周側に設けられている。外計測曲がり面401は、計測入口35と計測出口36とにかけ渡されている。外計測曲がり面401は、計測入口35と計測出口36との間の部分が全体として流量センサ22側に凹むように凹状に曲がっている。外計測曲がり面401には、計測天井面102が含まれており、SA挿入孔107が設けられている。
内計測曲がり面402は、計測流路32を曲がりの内側から形成しており、計測流路32の内周側に設けられている。内計測曲がり面402は、計測入口35と計測出口36とにかけ渡されている。内計測曲がり面402は、計測入口35と計測出口36との間の部分が全体として流量センサ22側に膨らむように曲がっている。内計測曲がり面402は、外計測曲がり面401とは反対側に向けて凹んだ部分を有しておらず、その全体が外計測曲がり面401に向けて膨らむように凸状に曲がっている。内計測曲がり面402には、計測床面101が含まれている。
図15に示すように、計測流路32は、センサ路405、上流曲がり路406、下流曲がり路407を有している。センサ路405は、計測流路32において流量センサ22が設けられた部分である。センサ路405は、奥行き方向Zに真っ直ぐに延びており、フランジ部27の角度設定面27aに平行に主流方向に延びている。上流曲がり路406と下流曲がり路407とは奥行き方向Zに並べられており、センサ路405は、上流曲がり路406と下流曲がり路407との間に設けられ、これら曲がり路406,407を接続している。
ハウジング21においてセンサ路405を形成する面には、計測床面101の少なくとも一部が含まれている。本実施形態では、奥行き方向Zでのセンサ路405の長さ寸法が計測床面101によって規定されている。具体的には、センサ路405の上流端部に計測床面101の上流端部が含まれており、センサ路405の下流端部に計測床面101の下流端部が含まれている。この場合、奥行き方向Zでのセンサ路405の長さ寸法は計測床面101の長さ寸法と同じになっている。また、ハウジング21においてセンサ路405を形成する面には、計測床面101の少なくとも一部に加えて、計測天井面102の一部や、表計測壁面103の一部、裏計測壁面104の一部が含まれている。本実施形態では、計測床面101が奥行き方向Zに真っ直ぐに延びており、このように計測床面101が真っ直ぐに延びていることをセンサ路405が真っ直ぐに延びていると称する。
上流曲がり路406は、計測流路32においてセンサ路405から計測入口35に向けて延びており、センサ路405と計測入口35との間に設けられている。上流曲がり路406は、ハウジング21においてセンサ路405から計測入口35に向けて延びるように曲がっている。上流曲がり路406においては、その下流端部がセンサ路405に向けて奥行き方向Zに開放されている一方で、その上流端部が計測入口35に向けて高さ方向Yに開放されている。このように、上流曲がり路406においては、上流端部の開放向きと下流端部の開放向きとが交差しており、この交差角度は例えば90度になっている。上流曲がり路406の内面には、表計測壁面103の一部や裏計測壁面104の一部が含まれている。
下流曲がり路407は、計測流路32においてセンサ路405から計測出口36に向けて延びており、センサ路405と計測出口36との間に設けられている。下流曲がり路407は、ハウジング21においてセンサ路405から計測出口36に向けて延びるように曲がっている。下流曲がり路407においては、その上流端部がセンサ路405に向けて奥行き方向Zに開放されている一方で、その下流端部が計測出口36に向けて高さ方向Yに開放されている。このように、下流曲がり路407においては、上流曲がり路406と同様に、上流端部の開放向きと下流端部の開放向きとが交差しており、この交差角度は例えば90度になっている。下流曲がり路407の内面には、表計測壁面103の一部や裏計測壁面104の一部が含まれている。
計測流路32においては、センサ路405が検出計測路353に含まれている。上流曲がり路406は、案内計測路352と検出計測路353との境界部を高さ方向Yに跨ぐ位置に設けられている。この場合、上流曲がり路406は、案内計測路352の一部と検出計測路353の一部を有している。下流曲がり路407は、検出計測路353と排出計測路354との境界部を高さ方向Yに跨ぐ位置に設けられている。この場合、検出計測路353の一部と排出計測路354の一部とを有している。
ハウジング21の内面は、上流曲がり路406を形成する面として、上流外曲がり面411、上流内曲がり面415を有している。上流外曲がり面411は、上流曲がり路406を曲がりの外側から形成しており、上流曲がり路406の外周側に設けられている。上流外曲がり面411は、計測流路32の中心線CL4に沿って凹むように延びており、この中心線CL4に沿って連続的に曲がるように湾曲している。上流外曲がり面411は、上流曲がり路406の上流端部と下流端部とにかけ渡されており、上流外湾曲面に相当する。
上流内曲がり面415は、上流曲がり路406を曲がりの内側から形成しており、上流曲がり路406の内周側に設けられている。上流内曲がり面415は、計測流路32の中心線CL4に沿って凹むように延びており、この中心線CL4に沿って連続的に曲がるように湾曲している。上流内曲がり面415は、上流曲がり路406の上流端部と下流端部とにかけ渡されており、上流内湾曲面に相当する。なお、ハウジング21の内面は、上流曲がり路406を形成する面として、上流外曲がり面411、上流内曲がり面415に加えて、表計測壁面103の一部と裏計測壁面104の一部とを有している。
ハウジング21の内面は、下流曲がり路407を形成する面として、下流外曲がり面421、下流内曲がり面425を有している。下流外曲がり面421は、下流曲がり路407を曲がりの外側から形成しており、下流曲がり路407の外周側に設けられている。下流外曲がり面421は、計測流路32の中心線CL4に沿って延びており、この中心線CL4に沿って所定角度で折れ曲がっている。下流外曲がり面421の折れ曲がり角度は、例えば90度になっている。
下流外曲がり面421は、下流外横面422、下流外縦面423、下流外入隅部424を有している。下流外横面422は、下流曲がり路407の上流端部から下流側に向けて奥行き方向Zに真っ直ぐに延びている。下流外縦面423は、下流曲がり路407の下流端部から上流側に向けて高さ方向Yに真っ直ぐに延びている。下流外横面422と下流外縦面423とは、互いに接続されており、互いに内向きに入り合った部分として入隅部分である下流外入隅部424を形成している。下流外入隅部424は、下流外曲がり面421がほぼ直角に折れ曲がった形状を形成している。
下流内曲がり面425は、下流曲がり路407を曲がりの内側から形成しており、下流曲がり路407の内周側に設けられている。下流内曲がり面425は、計測流路32の中心線CL4に沿って膨らむように延びており、この中心線CL4に沿って連続的に曲がるように湾曲している。下流内曲がり面425は、下流曲がり路407の上流端部と下流端部とにかけ渡されており、下流内湾曲面に相当する。なお、ハウジング21の内面は、下流曲がり路407を形成する面として、下流外曲がり面421、下流内曲がり面425に加えて、表計測壁面103の一部と裏計測壁面104の一部とを有している。
計測流路32において、外計測曲がり面401には、上流外曲がり面411及び下流外曲がり面421が含まれている。これら上流外曲がり面411及び下流外曲がり面421のそれぞれには、計測天井面102の一部が含まれている。また、内計測曲がり面402には、上述した計測床面101に加えて、上流内曲がり面415及び下流内曲がり面425が含まれている。
計測流路32においては、計測流路32を拡張する側への下流内曲がり面425の突出度合いが、計測流路32を拡張する側への上流内曲がり面415の突出度合いよりも小さくなっている。具体的には、計測流路32の中心線CL4が延びる方向において、下流内曲がり面425の長さ寸法が上流内曲がり面415の長さ寸法よりも大きくなっている。この場合、下流内曲がり面425の曲率半径R32が上流内曲がり面415の曲率半径R31よりも大きくなっている。すなわち、R32>R31の関係が成り立っている。換言すれば、下流内曲がり面425の曲がりが上流内曲がり面415の曲がりよりもゆるい状態になっている。
計測流路32においては、計測流路32を拡張する側への下流外曲がり面421の凹み度合いが、計測流路32を拡張する側への上流外曲がり面411の凹み度合いよりも大きくなっている。具体的には、下流外曲がり面421が直角に折れ曲がっているのに対して、上流外曲がり面411は湾曲している。この場合、計測流路32の中心線CL4が延びる方向において、下流外曲がり面421において折れ曲がった部分の長さ寸法は、非常に小さい値であり、上流外曲がり面411の長さ寸法よりも小さくなっている。ここで、下流外曲がり面421において折れ曲がった部分について曲率半径を算出できるとすると、この曲率半径は、ほぼゼロであり、上流外曲がり面411の曲率半径R33よりも小さくなっている。この場合、下流外曲がり面421の曲がりが上流外曲がり面411の曲がりよりもきつい状態になっている。
上流曲がり路406においては、計測流路32を拡張する側への上流外曲がり面411の凹み度合いが、計測流路32を拡張する側への上流内曲がり面415の突出度合いよりも小さくなっている。具体的には、計測流路32の中心線CL4が延びる方向において、上流外曲がり面411の長さ寸法が、上流内曲がり面415の長さ寸法よりも大きくなっている。この場合、上流外曲がり面411の曲率半径R33は、上流内曲がり面415の曲率半径R31よりも大きくなっている。すなわち、R33>R31の関係が成り立っている。
下流曲がり路407においては、計測流路32を拡張する側への下流外曲がり面421の凹み度合いが、計測流路32を拡張する側への下流内曲がり面425の突出度合いよりも大きくなっている。具体的には、計測流路32の中心線CL4が延びる方向において、下流外曲がり面421の長さ寸法が、下流内曲がり面425の長さ寸法よりも小さくなっている。この場合、下流外曲がり面421の曲率半径R34が、下流内曲がり面425の曲率半径R32よりも小さくなっている。すなわち、R34<R32の関係が成り立っている。
下流曲がり路407においては、下流外曲がり面421の凹み度合いが下流内曲がり面425の突出度合いよりも大きくなっていることで、計測流路32の断面積において下流曲がり路407の断面積が極力大きくなっている。具体的には、計測流路32の中心線CL4及び幅方向Xの両方に直交する方向において、下流外曲がり面421と下流内曲がり面425との離間距離L35bが、上流外曲がり面411と上流内曲がり面415との離間距離L35aよりも大きくなっている。すなわち、L35b>L35aの関係が成り立っている。
下流外曲がり面421と下流内曲がり面425との離間距離L35bは、下流曲がり路407において下流外曲がり面421と下流内曲がり面425とが最も離間した部分での離間距離である。下流外曲がり面421と下流内曲がり面425とが最も離間した部分は、例えば下流外曲がり面421の下流外入隅部424と下流内曲がり面425の中央部分とが対向する部分である。また、上流外曲がり面411と上流内曲がり面415との離間距離L35aは、上流曲がり路406において上流外曲がり面411と上流内曲がり面415とが最も離間した部分での離間距離である。上流外曲がり面411と上流内曲がり面415とが最も離間した部分は、例えば上流外曲がり面411の中央部分と上流内曲がり面415の中央部分とが対向する部分である。
計測流路32について、流量センサ22を通り、奥行き方向Zに延びる仮想の直線として並び線CL31を想定する。並び線CL31は、流量センサ22の発熱抵抗体71の中心CO1を通り、発熱抵抗体71の中心線CL1,CL5のいずれにも直交している。並び線CL31については、奥行き方向Zが上流曲がり路406と下流曲がり路407との並び方向に相当する。センサ路405においては、並び線CL31と計測流路32の中心線CL4とが平行に延びている。並び線CL31は、ハウジング21の角度設定面27aに平行に延びている。
並び線CL31は、センサ路405、上流曲がり路406、下流曲がり路407のそれぞれを通っており、上流外曲がり面411及び下流外曲がり面421のそれぞれに交差している。下流外曲がり面421においては、下流外縦面423に並び線CL31が交差している。センサ路405は並び線CL31に沿って真っ直ぐに延びている。並び線CL31上において、流量センサ22と下流外曲がり面421との離間距離L31bは、流量センサ22と上流外曲がり面411との離間距離L31aよりも大きくなっている。すなわち、L31b>L31aの関係が成り立っている。このように、流量センサ22は上流外曲がり面411寄りの位置に設けられている。なお、離間距離L31a,L31bは、発熱抵抗体71の中心線CL5までの距離としている。
センサSA50においては、センサ支持部51が上流外曲がり面411寄りの位置に設けられていることで、流量センサ22が上流外曲がり面411寄りの位置に設けられている。並び線CL31上において、センサ支持部51と下流外曲がり面421との離間距離L32bは、センサ支持部51と上流外曲がり面411との離間距離L32aよりも大きくなっている。すなわち、L32b>L32aの関係が成り立っている。なお、計測流路32では、並び線CL31上でない部分においても、奥行き方向Zでのセンサ支持部51と上流外曲がり面411との離間距離が、奥行き方向Zでのセンサ支持部51と下流外曲がり面421との離間距離よりも大きくなっている。
センサ路405は、上流外曲がり面411と下流外曲がり面421との間において、上流外曲がり面411寄りの位置に設けられている。この場合、並び線L31上において、センサ路405と下流外曲がり面421との離間距離L33bは、センサ路405と上流外曲がり面411との離間距離L33aよりも大きくなっている。すなわち、L33b>L33aの関係が成り立っている。
流量センサ22は、センサ路405において上流曲がり路406寄りの位置に設けられている。この場合、並び線L31上において、流量センサ22と下流曲がり路407との離間距離L34bは、流量センサ22と上流曲がり路406との離間距離L34aよりも大きくなっている。すなわち、L34b>L34aの関係が成り立っている。これら離間距離L34aと離間距離L34bとの和が奥行き方向Zでのセンサ路405の長さ寸法になっている。
上述したように、ハウジング21は、図16、図17に示す絞り部111,112を有している。これら絞り部111,112は、計測壁面103,104に設けられており、計測壁面103,104の一部を形成している。
表計測壁面103は、表絞り面431、表拡張面432、表絞り上流面433、表拡張下流面434を有している。表絞り面431及び表拡張面432は、表絞り部111により形成されており、表絞り部111の外面に含まれている。すなわち、表絞り部111が表絞り面431及び表拡張面432を有している。表絞り部111においては、表絞り面431が表頂部111aから上流曲がり路406に向けて奥行き方向Zに延びており、表拡張面432が表頂部111aから下流曲がり路407に向けて奥行き方向Zに延びている。表頂部111aは、表絞り面431と表拡張面432との境界部である。
表絞り面431は、検出計測路353において計測流路32の中心線CL4に対して傾斜しており、上流外曲がり面411側を向いている。表絞り面431は、計測入口35から流量センサ22に向けて計測流路32を徐々に縮小して絞っている。計測流路32の断面積は、表絞り面431の上流端部から表頂部111aに向けて徐々に小さくなっている。表絞り面431は、その上流端部と下流端部との間の部分が計測流路32の中心線CL4に向けて膨らむように湾曲している。
表拡張面432は、検出計測路353において計測流路32の中心線CL4に対して傾斜しており、下流外曲がり面421側を向いている。表拡張面432は、流量センサ22側から計測出口36に向けて計測流路32を徐々に拡張している。計測流路32の断面積は、表頂部111aから表拡張面432の下流端部に向けて徐々に大きくなっている。表拡張面432は、その上流端部と下流端部との間の部分が計測流路32の中心線CL4に向けて膨らむように湾曲している。
表絞り上流面433は、表絞り面431の上流端部から計測入口35に向けて、並び線CL31に平行に真っ直ぐに延びている。表絞り上流面433は、上流曲がり路406において上流外曲がり面411と表絞り面431との間に設けられており、これら上流外曲がり面411と表絞り面431とにかけ渡されている。表拡張下流面434は、表拡張面432の下流端部から計測出口36に向けて、並び線CL31に平行に真っ直ぐに延びている。表拡張下流面434は、下流曲がり路407において下流外曲がり面421と表拡張面432との間に設けられており、これら下流外曲がり面421と表拡張面432とにかけ渡されている。表絞り上流面433と表拡張下流面434とは奥行き方向Zに並べられており、幅方向Xの位置が重複していることで面一になっている。
裏計測壁面104は、裏絞り面441、裏拡張面442、裏絞り上流面443、裏拡張下流面444を有している。裏絞り面441及び裏拡張面442は、裏絞り部112により形成されており、裏絞り部112の外面に含まれている。すなわち、裏絞り部112が裏絞り面441及び裏拡張面442を有している。裏絞り部112においては、裏絞り面441が裏頂部112aから上流曲がり路406に向けて奥行き方向Zに延びており、裏拡張面442が裏頂部112aから下流曲がり路407に向けて奥行き方向Zに延びている。裏頂部112aは、裏絞り面441と裏拡張面442との境界部である。
裏絞り面441は、検出計測路353において計測流路32の中心線CL4に対して傾斜しており、上流外曲がり面411側を向いている。裏絞り面441は、計測入口35から流量センサ22に向けて計測流路32を徐々に縮小して絞っている。計測流路32の断面積は、裏絞り面441の上流端部から裏頂部112aに向けて徐々に小さくなっている。裏絞り面441は、その上流端部と下流端部との間の部分が計測流路32の中心線CL4に向けて膨らむように湾曲している。
裏拡張面442は、検出計測路353において計測流路32の中心線CL4に対して傾斜しており、下流外曲がり面421側を向いている。裏拡張面442は、流量センサ22側から計測出口36に向けて計測流路32を徐々に拡張している。計測流路32の断面積は、裏頂部112aから裏拡張面442の下流端部に向けて徐々に大きくなっている。裏拡張面442は、その上流端部と下流端部との間の部分が計測流路32の中心線CL4に向けて膨らむように湾曲している。
裏絞り上流面443は、裏絞り面441の上流端部から計測入口35に向けて、並び線CL31に平行に真っ直ぐに延びている。裏絞り上流面443は、上流曲がり路406において上流外曲がり面411と表絞り面431との間に設けられており、これら上流外曲がり面411と表絞り面431とにかけ渡されている。裏拡張下流面444は、裏拡張面442の下流端部から計測出口36に向けて、並び線CL31に平行に真っ直ぐに延びている。裏拡張下流面444は、下流曲がり路407において下流外曲がり面421と裏拡張面442との間に設けられており、これら下流外曲がり面421と裏拡張面442とにかけ渡されている。裏絞り上流面443と裏拡張下流面444とは奥行き方向Zに並べられており、幅方向Xの位置が重複していることで面一になっている。
なお、絞り部111,112が計測絞り部に相当する。また、表絞り面431及び裏絞り面441が計測絞り面に相当し、表拡張面432及び裏拡張面442が計測拡張面に相当する。上述したように、発熱抵抗体71の中心CO1と表頂部111aと裏頂部112aとは幅方向Xに並べられており、発熱抵抗体71の中心線CL5上には、表頂部111a及び裏頂部112aが配置されている。
並び線CL31が延びる奥行き方向Zにおいて、表絞り部111の長さ寸法W31aと、裏絞り部112の長さ寸法W31bとは同じになっている。表絞り部111においては、奥行き方向Zでの表絞り面431の長さ寸法W32aが、奥行き方向Zでの表拡張面432の長さ寸法W33aよりも小さくなっている。すなわち、W32a<W33aの関係が成り立っている。裏絞り部112においては、奥行き方向Zでの裏絞り面441の長さ寸法W32bが、奥行き方向Zでの裏拡張面442の長さ寸法W33bよりも小さくなっている。すなわち、W32b<W33bの関係が成り立っている。絞り部111,112においては、表絞り面431の長さ寸法W32aと裏絞り面441の長さ寸法W32bとが同じになっており、表拡張面432の長さ寸法W33aと裏拡張面442の長さ寸法W33bとが同じになっている。
表絞り部111は、奥行き方向Zにおいて上流曲がり路406寄りの位置に設けられている。この場合、並び線CL31上において、表絞り部111と上流外曲がり面411との離間距離W34aが、表絞り部111と下流外曲がり面421との離間距離W35aよりも大きくなっている。すなわち、W34a>W35aの関係が成り立っている。裏絞り部112は、表絞り部111と同様に、奥行き方向Zにおいて上流曲がり路406寄りの位置に設けられている。この場合、並び線CL31上において、裏絞り部112と上流外曲がり面411との離間距離W34bが、裏絞り部112と下流外曲がり面421との離間距離W35bよりも大きくなっている。すなわち、W34b>W35bの関係が成り立っている。
上流外曲がり面411と絞り部111,112との位置関係としては、離間距離W34aと離間距離W34bとが同じになっている。下流外曲がり面421と絞り部111,112との位置関係としては、離間距離W35aと離間距離W35bとが同じになっている。
計測流路32においては、表計測壁面103と裏計測壁面104との計測幅寸法W1(図16参照)が位置によって異なっている。この計測幅寸法W1は、センサ路405と上流曲がり路406と下流曲がり路407とで異なっており、これらセンサ路405、上流曲がり路406及び下流曲がり路407のそれぞれにおいても均一にはなっていない。ただし、上流曲がり路406での表絞り上流面433と裏絞り上流面443との離間距離D34は、下流曲がり路407での表拡張下流面434と裏拡張下流面444との離間距離D38と同じになっている。
センサ支持部51は、上流曲がり路406において表絞り上流面433と裏絞り上流面443との中央位置に設けられている。ここで、センサSA50の中心線CL32を想定する。この中心線CL32は、発熱抵抗体71の中心線CL5上において幅方向Xでのセンサ支持部51の中心を通り、中心線CL5に直交し且つ奥行き方向Zに延びる直線状の仮想線である。また、この中心線CL32は、並び線CL31と平行に延びている。この場合、上流曲がり路406においては、中心線CL32と表絞り上流面433との離間距離D31aが、中心線CL32と裏絞り上流面443との離間距離D31bと同じになっている。
センサ支持部51は、下流曲がり路407においても表拡張下流面434と裏拡張下流面444との中央位置に設けられている。下流曲がり路407においては、中心線CL32と表拡張下流面434との離間距離D35aが、中心線CL32と裏拡張下流面444との離間距離D35bと同じになっている。また、表計測壁面103とセンサ支持部51との位置関係としては、離間距離D31aと離間距離D35aとが同じになっている。裏計測壁面104とセンサ支持部51との位置関係としては、離間距離D31bと離間距離D35bとが同じになっている。
表計測壁面103においては、表絞り上流面433と表拡張下流面434とが面一になっているため、上流曲がり路406での表絞り部111の突出寸法と下流曲がり路407での表絞り部111の突出寸法とが同じになっている。具体的には、表絞り上流面433に対する表頂部111aの突出寸法D32aと、表拡張下流面434に対する表頂部111aの突出寸法D36aとが同じになっている。
表絞り上流面433に対する表絞り面431の突出寸法は、表絞り上流面433から表頂部111aに向けて徐々に増加している。この増加率が表絞り上流面433から表頂部111aに向けて徐々に増加していることで、表絞り面431が湾曲面になっている。表拡張下流面434に対する表拡張面432の突出寸法は、表頂部111aから表拡張下流面434に向けて徐々に減少している。この減少率が表頂部111aから表拡張下流面434に向けて徐々に増加していることで、表拡張面432が湾曲面になっている。
上述したように、表絞り部111においては、表拡張面432の長さ寸法W33aが表絞り面431の長さ寸法W32aよりも大きくなっている。この場合、表頂部111aから表拡張下流面434に向けた表拡張面432の突出寸法の減少率が、表絞り上流面433から表頂部111aに向けた表絞り面431の突出寸法の増加率よりも小さくなっている。表絞り面431と表拡張面432とは連続した湾曲面になっており、表頂部111aにおいて表絞り面431の接線及び表拡張面432の接線は、いずれも並び線CL31に平行に延びている。
裏計測壁面104においては、裏絞り上流面443と裏拡張下流面444とが面一になっているため、上流曲がり路406での裏絞り部112の突出寸法と下流曲がり路407での裏絞り部112の突出寸法とが同じになっている。具体的には、裏絞り上流面443に対する裏頂部112aの突出寸法D32bと、裏拡張下流面444に対する裏頂部112aの突出寸法D36bとが同じになっている。
裏絞り上流面443に対する裏絞り面441の突出寸法は、裏絞り上流面443から裏頂部112aに向けて徐々に増加している。この増加率が裏絞り上流面443から裏頂部112aに向けて徐々に増加していることで、裏絞り面441が湾曲面になっている。裏拡張下流面444に対する裏拡張面442の突出寸法は、裏頂部112aから裏拡張下流面444に向けて徐々に減少している。この減少率が裏頂部112aから裏拡張下流面444に向けて徐々に増加していることで、裏拡張面442が湾曲面になっている。
上述したように、裏絞り部112においては、裏拡張面442の長さ寸法W33bが裏絞り面441の長さ寸法W32bよりも大きくなっている。この場合、裏頂部112aから裏拡張下流面444に向けた裏拡張面442の突出寸法の減少率が、裏絞り上流面443から裏頂部112aに向けた裏絞り面441の突出寸法の増加率よりも小さくなっている。裏絞り面441と裏拡張面442とは連続した湾曲面になっており、裏頂部112aにおいて裏絞り面441の接線及び裏拡張面442の接線は、いずれも並び線CL31に平行に延びている。
センサ支持部51は、上流曲がり路406及び下流曲がり路407において表計測壁面103と裏計測壁面104との中央位置に設けられているのに対して、センサ路405においては表計測壁面103寄りの位置に設けられている。これは、表計測壁面103での表絞り部111の突出寸法が、裏計測壁面104での裏絞り部112の突出寸法よりも大きいためである。具体的には、表絞り上流面433及び表拡張下流面434に対する表頂部111aの突出寸法D32a,D36aが、裏絞り上流面443及び裏拡張下流面444に対する裏頂部112aの突出寸法D32b,D36bよりも大きくなっている。これにより、センサ支持部51の中心線CL32と表頂部111aとの離間距離D33aが、中心線CL32と裏頂部112aとの離間距離D33bよりも小さくなっている。
ハウジング21は計測仕切部451を有している。計測仕切部451は、奥行き方向Zにおいて案内計測路352と排出計測路354との間に設けられており、これら案内計測路352と排出計測路354とを仕切っている。また、計測仕切部451は、高さ方向Yにおいて通過流路31や分岐計測路351と検出計測路353との間に設けられており、これら通過流路31や分岐計測路351と通過流路31とを仕切っている。計測仕切部451は、幅方向Xにおいて表計測壁面103と裏計測壁面104とにかけ渡されており、内計測曲がり面402を形成している。計測仕切部451の外面には、計測床面101や上流内曲がり面415、下流内曲がり面425等の内計測曲がり面402が含まれている。
絞り部111,112は、計測仕切部451から計測天井面102に向けて延びている。絞り部111,112は、奥行き方向Zにおいて計測仕切部451から上流外曲がり面411側及び下流外曲がり面421側のいずれにもはみ出していない。奥行き方向Zにおいて、計測仕切部451の幅寸法は、絞り部111,112の長さ寸法W31a,W31bと同じ又はそれよりも小さくなっている。絞り部111,112は、上流曲がり路406と下流曲がり路407との間に設けられている。本実施形態では、絞り部111,112の上流端部が上流曲がり路406に設けられ、下流端部が下流曲がり路407に設けられているが、この構成についても、絞り部111,112が上流曲がり路406と下流曲がり路407との間に設けられている、とする。
図4〜図7に示すように、通過入口33はハウジング上流面21cに設けられており、吸気通路12での上流側に向けて開放されている。このため、吸気通路12を主流方向に流れる主流が通過入口33に流れ込みやすくなっている。通過出口34はハウジング下流面21dに設けられており、吸気通路12での下流側に向けて開放されている。このため、通過出口34から流れ出る空気は、吸気通路12において主流と共に下流に向けて流れやすくなっている。
計測出口36は、ハウジング表面21e及びハウジング裏面21fのそれぞれに設けられている。ハウジング表面21e及びハウジング裏面21fは並び線CL31に沿って延びており、計測出口36は、並び線CL31に直交する直交方向に向けて開放されている。このため、吸気通路12を主流方向に流れる主流は計測出口36に流れ込みにくくなっており、計測出口36から流れ出る空気は、吸気通路12において主流と共に下流に向けて流れやすくなっている。また、吸気通路12において主流が計測出口36の近くを通過すると、計測流路32内にて計測出口36の近くにある空気が主流に引っ張られるような状態になって、計測出口36から空気が流れ出しやすくなる。これにより、計測流路32内の空気が計測出口36から流れ出しやすくなる。なお、幅方向Xが直交方向に相当する。 次に、計測流路32を流れる空気の流れ態様について説明する。
図15に示すように、通過流路31から計測入口35を通って計測流路32に流れ込んだ空気には、外計測曲がり面401に沿って進む外曲がり流AF31と、内計測曲がり面402に沿って進む内曲がり流AF32とが含まれている。上述したように、計測流路32においては、外計測曲がり面401が全体として凹むように曲がっているため、外曲がり流AF31は、外計測曲がり面401に沿って進みやすくなっている。内計測曲がり面402が全体として膨らむように曲がっているため、内曲がり流AF32は、内計測曲がり面402に沿って進みやすくなっている。また、外計測曲がり面401及び内計測曲がり面402が幅方向Xに直交する方向に曲がっているのに対して、絞り部111,112は計測流路32を幅方向Xに絞っている。したがって、計測流路32では、外曲がり流AF31と内曲がり流AF32とが混じり合うように気流の乱れが発生する、ということが生じにくくなっている。
計測流路32において上流曲がり路406に到達した外曲がり流AF31は、上流外曲がり面411に沿って流れることで向きを変える。この場合、上流外曲がり面411の曲がりが下流外曲がり面421の曲がりよりもゆるくなっている構成により、上流外曲がり面411の曲がりが十分にゆるくなっているため、外曲がり流AF31に渦等の乱れが生じにくくなっている。
図17に示すように、計測流路32を流れる気流には、センサ支持部51と表絞り面431との間に流れ込んでいく表寄り流AF33と、センサ支持部51と裏絞り面441との間に流れ込んでいく裏寄り流AF34とが含まれている。なお、曲がり流AF31,AF32のうち、表計測壁面103に沿って流れて絞り部111,112に到達した空気が表寄り流AF33に含まれやすく、裏計測壁面104に沿って流れて絞り部111,112に到達した空気が裏寄り流AF34に含まれやすい。
センサ支持部51の表側については、表絞り面431の絞り度合いが表頂部111aに向けて徐々に大きくなっているように、表寄り流AF33の整流効果が表頂部111aに向けて徐々に大きくなっている。しかも、表頂部111aの突出寸法D32a,D36aが裏頂部112aの突出寸法D32b,D36bよりも大きくなっていることで、表絞り面431の整流効果が十分に高められている。これらのことにより、表絞り面431とセンサ支持部51とにより十分に整流された状態の表寄り流AF33が流量センサ22に到達するため、流量センサ22による流量の検出精度が高くなりやすい。
表寄り流AF33は、表頂部111aに向けて徐々に加速されていく。そして、表寄り流AF33は、表絞り部111とセンサ支持部51との間の領域が表拡張面432により拡張されていることに起因して、表頂部111aとセンサ支持部51との間から噴流として吹き出されるようにして下流曲がり路407に向けて進む。ここで、表拡張面432とセンサ支持部51との間の領域が急激に拡張されていると、表寄り流AF33が表拡張面432から剥離することなどにより渦等の乱れが生じやすくなることが懸念される。これに対して、表拡張面432の長さ寸法W33aが表絞り面431の長さ寸法W32aよりも大きくなっている構成により、表拡張面432とセンサ支持部51との間の領域が緩やかに拡張されている。このため、表拡張面432からの表寄り流AF33の剥離が生じにくく、表頂部111aよりも下流側において渦流等の乱れが生じにくくなっている。
センサ支持部51の裏側については、裏絞り面441の絞り度合が裏頂部112aに向けて徐々に大きくなっていることで、裏寄り流AF34の整流効果が裏頂部112aに向けて徐々に大きくなっている。この場合、裏絞り面441とセンサ支持部51とにより十分に整流された状態の裏寄り流AF34が裏頂部112aに到達するため、この裏寄り流AF34は、裏頂部112aを通過した後にも乱れにくい。
裏寄り流AF34は、裏頂部112aに向けて徐々に加速されていく。そして、裏寄り流AF34は、裏絞り部112とセンサ支持部51との間の領域が裏拡張面442により拡張されていることに起因して、裏頂部112aとセンサ支持部51との間から噴流として吹き出されるようにして下流曲がり路407に向けて進む。ここで、裏拡張面442とセンサ支持部51との間の領域が急激に拡張されていると、裏寄り流AF34が裏拡張面442から剥離することなどにより渦等の乱れが生じやすくなることが懸念される。これに対して、裏拡張面442の長さ寸法W33bが裏絞り面441の長さ寸法W32bよりも大きくなっている構成により、裏拡張面442とセンサ支持部51との間の領域が緩やかに拡張されている。このため、裏拡張面442からの裏寄り流AF34の剥離が生じにくく、裏頂部112aよりも下流側において渦流等の乱れが生じにくくなっている。
表寄り流AF33と裏寄り流AF34とは、センサ支持部51を通過した後にセンサ路405や下流曲がり路407にて合流すると考えられる。例えば、裏寄り流AF34の流れが乱れていると、センサ支持部51よりも下流側において気流の乱れが生じ、表寄り流AF33が表絞り部111とセンサ支持部51との間を通過しにくくなりやすい。この場合、流量センサ22を通過する表寄り流AF33の流量や流速が不足して、流量センサ22による流量の検出精度が低下することが懸念される。これに対して、本実施形態では、裏寄り流AF34が裏絞り部112により整流されるため、センサ支持部51を通過した裏寄り流AF34が乱れていることでセンサ支持部51よりも下流側において気流の乱れが生じるということが抑制される。
表寄り流AF33及び裏寄り流AF34が、センサ支持部51と絞り部111,112との間から下流曲がり路407に向けて吹き出された場合、これら寄り流AF33,AF34は、並び線CL31に沿って下流外曲がり面421に向けて順流として進む。寄り流AF33,AF34が下流外曲がり面421に当たった場合、この寄り流AF33,AF34は、下流外曲がり面421にて跳ね返って流量センサ22側に戻る向きに計測流路32を逆流することが懸念される。特に、下流外縦面423に当たった場合には、寄り流AF33,AF34が並び線CL31に沿って流量センサ22に向けて逆流しやすいと考えられる。逆流が順流に抗して流量センサ22に到達した場合には、流量センサ22が検出する空気の流れの向きが実際の流れとは逆になるなど、流量センサ22の検出精度が低下してしまう。また、逆流が流量センサ22に到達しなくても、逆流によって順流が流れにくくなることで、流量センサ22の検出流量が実際の流量よりも小さくなるなど、流量センサ22の検出精度が低下してしまう。
これに対して、本実施形態では、流量センサ22が下流外曲がり面421よりも上流外曲がり面411に近い位置に設けられていることで、流量センサ22が下流外曲がり面421から極力離れた位置にある。この構成では、センサ支持部51と絞り部111,112との間から吹き出された寄り流AF33,AF34が下流外曲がり面421に到達するまでにこの寄り流AF33,AF34の勢いが低下しやすい。このため、寄り流AF33,AF34が下流外曲がり面421にて跳ね返って逆流になったとしても、この逆流の勢いがなくて流量センサ22までは到達しにくい。また、流量センサ22が下流外曲がり面421から離れているほど、逆流が流量センサ22に到達するまでの距離も長くなるため、逆流が流量センサ22に到達することが確実に抑制される。
流量センサ22を通る仮想線を並び線CL31としているため、表寄り流AF33のうち流量センサ22を通過した空気は並び線CL31に沿って流れやすい。このため、並び線CL31上での流量センサ22と下流外曲がり面421との離間距離L31bを極力大きくすることで、表寄り流AF33のうち流量センサ22を通過した空気が下流外曲がり面421に到達するまでの距離を極力大きくできる。ここで、本実施形態のように、並び線CL31が下流外縦面423を通っている構成では、流量センサ22を通過した空気が下流外縦面423に当たって跳ね返ると、そのまま流量センサ22に戻るように逆流しやすいと考えられる。このため、並び線CL31が下流外縦面423を通っている構成では、並び線CL31での流量センサ22と下流外曲がり面421との離間距離L31bを極力大きい値にすることは、流量センサ22に逆流が到達しにくくする上で効果的である。
ここまで説明した本実施形態によれば、並び線CL31上において、流量センサ22と下流外曲がり面421との離間距離L31bが、流量センサ22と上流外曲がり面411との離間距離L31aよりも大きくなっている。この構成では、上流外曲がり面411と下流外曲がり面421との間において、流量センサ22を下流外曲がり面421から極力離れた位置に配置することができる。このため、仮に、計測流路32において流量センサ22を通過した空気が下流外曲がり面421に当たって流量センサ22側に戻る向きに逆流したとしても、その逆流が流量センサ22に届きにくくなっている。また、逆流に伴う気流の乱れが下流曲がり路407にて生じたとしても、この乱れが流量センサ22に届きにくくなっている。したがって、流量センサ22による流量検出の精度低下を抑制できる。この結果、エアフロメータ20による流量の計測精度を高めることができる。
ここで、流量センサ22と下流外曲がり面421との離間距離L31bを極力大きくするには、検出計測路353を奥行き方向Zに伸ばすことなどにより下流外曲がり面421を流量センサ22から離間させる方法が考えられる。ところが、この方法では、ハウジング21が奥行き方向Zに大型化することが懸念される。この場合、吸気通路12での空気の流れがハウジング21によって乱れ、流量センサ22の検出精度が低下しやすくなる。また、この場合、ハウジング21の成型に必要な樹脂材料が増加し、ハウジング21の製造コストが増加しやすくなる。
これに対して、本実施形態では、検出計測路353での流量センサ22の位置を上流外曲がり面411寄りの位置に設定することで、流量センサ22と下流外曲がり面421との離間距離L31bを極力大きくしているため、ハウジング21の大型化を回避できる。この場合、吸気通路12での空気の流れがハウジング21によって乱れるということが生じにくくなるため、流量センサ22の検出精度を高めることができる。また、この場合、ハウジング21の成型に必要な樹脂材料を低減しやすくなるため、ハウジング21を製造する際のコスト増加を抑制できる。
本実施形態によれば、流量センサ22が設置されたセンサ路405が並び線CL31に沿って延びている。この構成では、流量センサ22に沿って流れる空気が並び線CL31に沿って真っ直ぐに進みやすくなるため、流量センサ22周辺において気流の乱れが生じにくくなる。この場合、流量センサ22周辺での空気の流速が安定しやすくなるため、流量センサ22の検出精度を高めることができる。しかも、流量センサ22が下流外曲がり面421から極力離れた位置に配置されていることで、下流曲がり路407での気流の乱れが流量センサ22に付与されにくくなっているため、流量センサ22周辺での気流の乱れをより確実に抑制できる。この場合、流量センサ22周辺での空気の流速が更に安定しやすくなるため、流量センサ22の検出精度を更に高めることができる。
本実施形態によれば、並び線CL31に沿って延びているセンサ路405において、流量センサ22が下流曲がり路407よりも上流曲がり路406に近い位置に設けられている。この構成では、センサ路405において、流量センサ22周辺での空気の乱れを抑制し且つ空気の流速を安定化させた上で、流量センサ22を下流外曲がり面421から極力離れた位置に配置できる。
本実施形態によれば、並び線CL31上において、センサ支持部51が下流曲がり路407よりも上流外曲がり面411に近い位置に設けられている。この構成では、センサ支持部51を下流曲がり路407から極力離れた位置に配置することができるため、下流曲がり路407に流れ込んだ気流がセンサ支持部51の存在によって乱れやすくなってしまうということを抑制できる。
本実施形態によれば、並び線CL31が下流外曲がり面421の下流外縦面423を通っている。この構成では、下流外縦面423が下流曲がり路407の下流端部から上流側に向けて真っ直ぐに延びていることに起因して、下流外曲がり面421のうち最も流量センサ22から遠い部分を並び線CL31が通っていることになる。このように、流量センサ22を通った空気が下流外曲がり面421に到達するまでに要する距離を極力大きくすることで、流量センサ22を通った空気が下流外曲がり面421で跳ね返って逆流として流量センサ22まで戻るということを確実に抑制できる。
本実施形態によれば、下流内曲がり面425が湾曲しているため、下流曲がり路407において下流外曲がり面421と下流内曲がり面425との離間距離L35bを極力大きくできる。この構成では、下流内曲がり面425が湾曲していることで下流曲がり路407の断面積が極力大きくされていることで、下流曲がり路407の容積が極力大きくなっている。このため、仮に下流外曲がり面421での空気の跳ね返り等により下流曲がり路407にて気流の乱れが生じたとしても、この乱れごと下流曲がり路407の空気が計測出口36に向けて流れやすくなっている。したがって、下流曲がり路407から流量センサ22に逆流が到達するということをより確実に抑制できる。
本実施形態によれば、計測流路32を徐々に絞った後に徐々に拡張する絞り部111,112が、上流曲がり路406の上流端部と下流曲がり路407の下流端部との間に設けられている。この構成では、絞り部111,112を通過した空気が噴流として下流曲がり路407に向けて勢いよく吹き出され、下流外曲がり面421にて跳ね返りやすくなることが懸念される。このため、下流外曲がり面421にて跳ね返った空気が流量センサ22に到達することを抑制する上で、流量センサ22を下流外曲がり面421から極力離間した位置に設けることは効果的である。
本実施形態によれば、絞り部111,112においては、拡張面432,442の長さ寸法W33a,W33bが絞り面431,441の長さ寸法W32aよりも大きくなっている。この構成では、計測流路32の急激な拡張によって気流の剥離などの乱れが生じないように、拡張面432,442による計測流路32の拡張度合いや拡張率が穏やかになっている。これにより、絞り部111,112を通過した空気によって下流曲がり路407での流れが乱れるということを抑制できる。
本実施形態によれば、絞り部111,112が下流外曲がり面421よりも上流外曲がり面411に近い位置に設けられている。この構成では、上流外曲がり面411と下流外曲がり面421との間において、絞り部111,112を下流外曲がり面421から極力離れた位置に配置することができる。このため、ハウジング21を大型化させることなく、絞り部111,112を通過した空気が下流外曲がり面421に当たる勢いを低減させることができる。
本実施形態によれば、表計測壁面103と裏計測壁面104とが上流曲がり路406を挟んで対向しており、これら計測壁面103,104に絞り部111,112が設けられている。この構成では、上流曲がり路406にて空気が曲がる向きと、絞り部111,112によって空気が絞られる向きとがほぼ直交している。このため、上流外曲がり面411に沿って流れる外曲がり流AF31等の気流と、上流内曲がり面415に沿って流れる内曲がり流AF32等の気流とが、絞り部111,112を通過する際に混じり合うようにして乱れが発生する、ということが生じにくい。したがって、絞り部111,112による気流の整流効果を高めることができる。
本実施形態によれば、上流外曲がり面411が湾曲している。この構成では、外計測曲がり面401に沿って流れる外曲がり流AF31等の気流の向きが上流外曲がり面411によって徐々に変わるため、上流外曲がり面411に沿って流れる気流が乱れにくくなっている。このため、流量センサ22に到達する外曲がり流AF31等の空気が乱れにくく、下流曲がり路407に向けて吹き出される空気も乱れにくい。
本実施形態によれば、計測流路32に沿って延びる内計測曲がり面402が全体として流量センサ22に向けて膨らむように曲がっている。この構成では、内計測曲がり面402に凹部が形成されていないため、内計測曲がり面402に沿って流れる内曲がり流AF32等の空気が凹部に入り込んで渦等の乱れが生じるということが生じにくくなっている。このため、流量センサ22に到達する内曲がり流AF32等の空気が乱れにくく、下流曲がり路407に向けて吹き出される空気も乱れにくい。
本実施形態によれば、ハウジング21の外面のうちハウジング表面21e及びハウジング裏面21fに計測出口36が設けられている。この構成では、吸気通路12においてハウジング表面21eやハウジング裏面21fに沿って計測出口36に沿って空気が流れると、この空気に引っ張られるようにして計測流路32内の空気が計測出口36から流れ出す、という事象が生じやすくなっている。このため、仮に下流曲がり路407において空気の跳ね返り等によって気流の乱れが生じても、吸気通路12においてハウジング21の外部を流れる空気を利用して、気流の乱れごと下流曲がり路407から計測出口36に向けて空気が流れやすくできる。
本実施形態によれば、センサSA50においては、モールド表面55e及びモールド裏面55fがいずれも樹脂製のモールド部55により形成されている。この構成では、モールド表面55eやモールド裏面55fの滑らかさを管理しやすいため、これらモールド表面55eやモールド裏面55fに沿って流れる空気に剥離や乱れが生じにくくなっている。
(第2実施形態)
上記第1実施形態では、下流外曲がり面421が下流外入隅部424を有していたが、第2実施形態では、下流外曲がり面421が湾曲した部分を有している。本実施形態において、第1実施形態での図面と同一符号を付した構成部品及び説明しない構成は、上記第1実施形態と同様であり、同様の作用効果を奏するものである。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図18に示すように、下流外曲がり面421が下流外横面422及び下流外縦面423に加えて下流外湾曲面461を有する構成とする。下流外湾曲面461は、計測流路32の中心線CL4に沿って膨らむように延びており、この中心線CL4に沿って連続的に曲がるように湾曲している。下流外湾曲面461は、中心線CL4が延びる方向において下流外横面422と下流外縦面423との間に設けられており、これら下流外横面422と下流外縦面423とを接続している。
下流外湾曲面461の曲率半径R34は、上流外曲がり面411の曲率半径R33よりも小さくなっている。このため、上記第1実施形態と同様に、下流外曲がり面421の曲がりは上流外曲がり面411の曲がりよりもきつい状態になっている。一方で、下流外湾曲面461の曲率半径R34は、下流内曲がり面425の曲率半径R32よりも大きくなっている。このため、下流外曲がり面421の曲がりは下流内曲がり面425の曲がりよりもゆるい状態になっている。
並び線CL31は、下流外曲がり面421において下流外縦面423ではなく下流外湾曲面461を通っている。この構成では、流量センサ22を通過して並び線CL31に沿って進んだ空気は、下流外湾曲面461に当たることで向きが変わり、下流曲がり路407の下流側に向けて進みやすくなる。
本変形例によれば、下流外曲がり面421が下流外湾曲面461を有しているため、センサ支持部51と絞り部111,112との間から下流曲がり路407に向けて吹き出された空気が下流外湾曲面461に沿って流れやすくなる。この場合、流量センサ22を通過した空気が下流曲がり路407にてとどまりにくくなるため、流量センサ22を通過する空気の流量や流速が低下するということを抑制できる。
(第3実施形態)
上記第1実施形態では、絞り部111,112において絞り面431,441及び拡張面432,442が膨らむように湾曲していたが、第3実施形態では、絞り面431,441や拡張面432,442が湾曲していない。本実施形態において、第1実施形態での図面と同一符号を付した構成部品及び説明しない構成は、上記第1実施形態と同様であり、同様の作用効果を奏するものである。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図19に示すように、絞り部111,112において、絞り面431,441が頂部111a,112aから上流側に向けて真っ直ぐに延び、拡張面432,442が頂部111a,112aから下流側に向けて真っ直ぐに延びた構成とする。絞り面431,441は、計測流路32の上流側を向くように並び線CL31に対して傾斜しており、拡張面432,442は、計測流路32の下流側を向くように並び線CL31に対して傾斜している。絞り面431,441の突出寸法の増加率は、絞り上流面433,443から頂部111a,112aに向けて均一になっている。また、拡張面432,442の突出寸法の減少率は、頂部111a,112aから拡張下流面434,444に向けて均一になっている。
絞り部111,112は、並び線CL1に沿って延びた先端面を有しており、これら先端面が頂部111a,112aになっている。奥行き方向Zでの頂部111a,112aの中心は、発熱抵抗体71の中心線CL5よりも下流曲がり路407寄りの位置に配置されている。
本変形例によれば、表絞り面431や裏絞り面441が真っ直ぐに延びているため、これら絞り面431,441による気流の整流効果を高めることができる。また、表拡張面432や裏拡張面442が真っ直ぐに延びているため、流量センサ22の検出精度を低下させない程度に、これら拡張面432,442からの気流の剥離が生じることなどにより気流が乱れやすくなっている。この場合、センサ支持部51と拡張面432,442との間から下流曲がり路407に向けて噴流として吹き出される空気の勢いを弱めることができる。このため、噴流が下流外曲がり面421で跳ね返って逆流として流量センサ22まで戻るということを抑制できる。
(他の実施形態)
以上、本開示による複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
変形例1として、下流外曲がり面421全体が下流外湾曲面になっていてもよい。例えば、上記第2実施形態において、下流外曲がり面421は、下流外湾曲面461を有している一方で、下流外横面422及び下流外縦面423の少なくとも一方を有していなくてもよい。例えば、下流外曲がり面421が下流外横面422及び下流外縦面423の両方を有していない構成とする。この構成では、下流外湾曲面461が下流曲がり路407の上流端部と下流端部とにかけ渡されている。この場合、下流外曲がり面421の全体が下流外湾曲面461になっており、下流外曲がり面421が下流外湾曲面に相当する。
変形例2として、上流外曲がり面411は、上流曲がり路406の上流端部から真っ直ぐに延びた上流外縦面と、上流曲がり路406の下流端部から真っ直ぐに延びた上流外横面と、のうち少なくとも一方を有していてもよい。この構成では、上流外曲がり面411の全体が上流外湾曲面になっているのではなく、上流外曲がり面411が、上流外縦面及び上流外横面の少なくとも一方に加えて、上流外湾曲面を有していることになる。例えば、上流外曲がり面411が上流外縦面及び上流外湾曲面を有している構成では、並び線CL31が上流外縦面を通っていてもよい。また、上流外曲がり面411においては、上流外縦面と上流外横面とが互いに内向きに入り合った入隅部分として上流外入隅部が形成されていてもよい。
変形例3として、上流内曲がり面415は、上流曲がり路406の上流端部から真っ直ぐに延びた上流内縦面と、上流曲がり路406の下流端部から真っ直ぐに延びた上流内横面と、のうち少なくとも一方を有していてもよい。この構成では、上流内曲がり面415の全体が上流内湾曲面になっているのではなく、上流内曲がり面415が、上流内縦面及び上流内横面の少なくとも一方に加えて、上流内湾曲面を有していることになる。また、上流内曲がり面415においては、上流内縦面と上流内横面とが外向きに出合った出隅部分として上流内出隅部が形成されていてもよい。
変形例4として、下流内曲がり面425は、下流曲がり路407の上流端部から真っ直ぐに延びた下流内縦面と、下流曲がり路407の下流端部から真っ直ぐに延びた下流内横面と、のうち少なくとも一方を有していてもよい。この構成では、下流内曲がり面425の全体が下流内湾曲面になっているのではなく、下流内曲がり面425が、下流内縦面及び下流内横面の少なくとも一方に加えて、下流内湾曲面を有していることになる。また、下流内曲がり面425においては、下流内縦面と下流内横面とが外向きに出合った出隅部分として下流内出隅部が形成されていてもよい。
変形例5として、外曲がり面411,421や内曲がり面415,425は、並び線CL31に対して傾斜した傾斜面を少なくとも1つ有していることで、連続的ではなく段階的に曲がっていてもよい。例えば、下流外曲がり面421が並び線CL31に対して傾斜した方向に真っ直ぐに延びた傾斜面として下流外傾斜面を有している構成とする。この構成では、下流外横面422と下流外縦面423との接続部分が下流外傾斜面により面取りされた状態になっており、下流外曲がり面421が下流外入隅部424を有していない。また、計測流路32の中心線CL4に沿って下流外傾斜面が複数並べられていてもよく、この構成では、下流外曲がり面421が複数の下流外傾斜面により段階的に曲がった形状になる。
変形例6として、下流外曲がり面421の凹み度合いが上流外曲がり面411の凹み度合いよりも大きい構成は、曲率半径に関係なく実現されていてもよい。例えば、下流外曲がり面421全体が下流外湾曲面であり、上流外曲がり面411全体が上流外湾曲面であり、下流外曲がり面421の曲率半径R34が上流外曲がり面411の曲率半径R33よりも大きい構成を想定する。この構成でも、計測流路32の中心線CL4が延びる方向において、下流外曲がり面421の長さ寸法が上流外曲がり面411の長さ寸法よりも小さければ、下流外曲がり面421の凹み度合いが上流外曲がり面411の凹み度合いよりも大きくなっている。
変形例7として、センサ路405においては、少なくとも計測床面101が並び線CL31に沿って真っ直ぐに延びていればよい。また、センサ路405の上流端部に流量センサ22の上流端部が設けられていてもよく、センサ路405の下流端部に流量センサ22の下流端部が設けられていてもよい。例えば、奥行き方向Zにおいてセンサ路405の長さ寸法と流量センサ22の長さ寸法とが同じになっていてもよい。
変形例8として、奥行き方向Zにおいて、上流外曲がり面411の下流端部が上流内曲がり面415の下流端部よりも流量センサ22に近い位置に設けられていてもよい。この場合、センサ路405の上流端部は、上流内曲がり面415の下流端部ではなく、上流外曲がり面411の下流端部により規定されることになる。また、奥行き方向Zにおいて、下流外曲がり面421の上流端部が下流内曲がり面425の上流端部よりも流量センサ22に近い位置に設けられていてもよい。この場合、センサ路405の下流端部は、下流内曲がり面425の上流端部ではなく、下流外曲がり面421の上流端部により規定されることになる。
変形例9として、並び線CL31は、流量センサ22を通っていればよい。並び線CL31は、例えば、発熱抵抗体71の中心CO1でなくても発熱抵抗体71の一部を通っていればよい。また、並び線CL31は、メンブレン部62の中心や一部を通っていてもよく、流量センサ22の中心や一部を通っていてもよい。さらに、並び線CL31は、上流曲がり路406と下流曲がり路407との並び方向に延びていれば、ハウジング21の角度設定面27aや、奥行き方向Z、主流方向に対して傾斜していてもよい。
変形例10として、並び線CL31上において、流量センサ22が下流外曲がり面421よりも上流外曲がり面411に近い位置に配置されていれば、センサ支持部51は下流外曲がり面421よりも上流外曲がり面411に近い位置に配置されていなくてもよい。この場合、センサ支持部51において、並び線CL31上では、流量センサ22がモールド下流面55dよりもモールド上流面55cに近い位置に配置されている。
変形例11として、並び線CL31上において、流量センサ22は、下流外曲がり面421よりも上流外曲がり面411に近い位置に配置されていれば、センサ路405の下流端部よりも上流端部に近い位置に配置されていなくてもよい。この場合、並び線CL31上において、下流曲がり路407の上流端部と下流外曲がり面421との離間距離が、上流曲がり路406の下流端部と上流外曲がり面411との離間距離よりも大きくなっている。
変形例12として、計測流路32においては、上流曲がり路406と下流曲がり路407とがセンサ路405に対して反対向きに曲がっていてもよい。例えば、上流曲がり路406及び下流曲がり路407がいずれもセンサ路405からハウジング先端側に向けて延びるのではなく、一方がハウジング先端側に向けて延び、他方がハウジング基端側に向けて延びた構成とする。仮に、上流曲がり路406がセンサ路405からハウジング先端側に向けて延び、下流曲がり路407がセンサ路405からハウジング基端側に向けて延びていれば、下流外曲がり面421は、計測床面101ではなく計測天井面102から延びることになる。また、下流内曲がり面425は、計測天井面102ではなく計測床面101から延びることになる。
変形例13として、計測絞り部の計測絞り面及び計測拡張面のうち一方だけが真っ直ぐに延びていてもよい。例えば、上記第3実施形態において、表絞り面431、表拡張面432、裏絞り面441及び裏拡張面442の少なくとも1つが真っ直ぐに延びていてもよい。また、表頂部111aや裏頂部112aは、膨らむように湾曲していてもよく、凹むように湾曲していてもよい。
変形例14として、絞り部111,112の形状や大きさは上記第1実施形態の構成とは異なっていてもよい。例えば、絞り部111,112において、絞り面431,441の長さ寸法W32a,W32bが拡張面432,442の長さ寸法W33a,W33bよりも小さくなくてもよい。また、表絞り上流面433と表拡張下流面434とが面一になっていなくてもよい。この場合、表絞り上流面433からの表絞り面431の突出寸法と、表拡張下流面434からの表拡張面432の突出寸法とが異なる。裏絞り部112についても、表絞り部111と同様に、裏絞り上流面443と裏拡張下流面444とが面一になっていなくてもよい。この場合、裏絞り上流面443からの裏絞り面441の突出寸法と、裏拡張下流面444からの裏拡張面442の突出寸法とが異なる。
変形例15として、表絞り部111と裏絞り部112とで形状や大きさが異なっていてもよい。例えば、表絞り部111の長さ寸法W31aが裏絞り部112の長さ寸法W31bよりも大きくなっていてもよく、小さくなっていてもよい。表絞り面431の長さ寸法W32aが裏絞り面441の長さ寸法W32bよりも大きくなっていてもよく、小さくなっていてもよい。また、表拡張面432の長さ寸法W33aが裏拡張面442の長さ寸法W33bよりも大きくなっていてもよく、小さくなっていてもよい。表頂部111aの突出寸法D32a,D36aが裏頂部112aの突出寸法D32b,D36bと同じ又はそれよりも小さくなっていてもよい。
変形例16として、絞り部111,112は、奥行き方向Zにおいて計測仕切部451から外側にはみ出していてもよい。また、絞り部111,112は、上流曲がり路406や下流曲がり路407の内部に入り込まない位置に設けられていてもよい。例えば、絞り部111,112がセンサ路405、上流曲がり路406及び下流曲がり路407のうちセンサ路405だけに設けられた構成とする。さらに、絞り部111,112は、計測天井面102と計測床面101とにかけ渡されていなくてもよい。例えば、絞り部111,112が計測天井面102及び計測床面101のうち一方だけから延びた構成とする。また、絞り部111,112が計測天井面102及び計測床面101の間において、これら計測天井面102及び計測床面101のいずれからも離間した位置に設けられた構成とする。
変形例17として、絞り部111,112等の計測絞り部は、計測流路32において表計測壁面103、裏計測壁面104、外計測曲がり面401及び内計測曲がり面402の少なくとも1つに設けられていればよい。例えば、表絞り部111及び裏絞り部112の少なくとも一方が設けられた構成とする。また、計測壁面103,104及び計測曲がり面401,402のそれぞれに計測絞り部が設けられた構成とする。
変形例18として、計測流路32において表頂部111aと裏頂部112aとは、幅方向Xに並べられていなくてもよい。例えば、頂部111a,112aのうち表頂部111aだけが発熱抵抗体71の中心線CL5上に配置されていてもよい。この場合、裏頂部112aは、中心線CL5に対して高さ方向Y及び奥行き方向Zの少なくとも一方にずれた位置に配置されていることになる。
変形例19として、表絞り部111の表頂部111aは、発熱抵抗体71の中心線CL5上に配置されていなくてもよい。例えば、表頂部111aが、発熱抵抗体71の一部と幅方向Xに並び、発熱抵抗体71の一部と対向していればよい。また、表頂部111aが、メンブレン部62の一部と幅方向Xに並び、メンブレン部62の一部と対向していればよい。さらに、表頂部111aが、流量センサ22の一部と幅方向Xに並び、流量センサ22の一部と対向していればよい。
変形例20として、下流外曲がり面421の凹み度合いは上流外曲がり面411の凹み度合いよりも大きくなくてもよい。
変形例21として、吸入空気の流量とは異なる物理量を検出する物理量センサが計測流路に設けられていてもよい。計測流路に設けられる物理量センサとしては、流量センサ22の他に、温度を検出する検出部や、湿度を検出する検出部、圧力を検出する検出部などが挙げられる。これら検出部は、検出ユニットとしてのセンサSA50に搭載されていてもよく、センサSA50とは別体として設けられていてもよい。
変形例22として、エアフロメータ20は通過流路31を有していなくてもよい。すなわち、バイパス流路30は分岐していなくてもよい。例えば、計測流路32の計測入口35がハウジング21の外面に設けられた構成とする。この構成では、計測入口35からハウジング21の内部に流れ込んだ空気の全てが計測出口36から流出する。
20…物理量計測装置としてのエアフロメータ、21…ハウジング、22…物理量センサとしての流量センサ、32…計測流路、35…計測入口、36…計測出口、51…センサ支持部、103…計測壁面及び壁面としての表計測壁面、104…計測壁面及び壁面としての裏計測壁面、111…計測絞り部としての表絞り部、112…計測絞り部としての裏絞り部、402…内計測曲がり面、405…センサ路、406…上流曲がり路、407…下流曲がり路、411…上流外湾曲面としての上流外曲がり面、421…下流外曲がり面、423…下流外縦面、425…下流内湾曲面としての下流内曲がり面、431…計測絞り面としての表絞り面、432…計測拡張面としての表拡張面、441…計測絞り面としての裏絞り面、442…計測拡張面としての裏拡張面、X…直交方向としての幅方向、CL31…並び線、L31a,L31b,L32a,L32b,L34a,L34b…離間距離、W32a,W32b,W33a,W33b…長さ寸法、W34a,W34b,W35a,W35b…離間距離、X…直交方向としての幅方向、Z…並び方向としての奥行き方向。

Claims (14)

  1. 流体の物理量を計測する物理量計測装置(20)であって、
    前記流体が流入する計測入口(35)と、前記計測入口から流入した前記流体が流出する計測出口(36)とを有する計測流路(32)と、
    前記計測流路に設けられ、前記流体の物理量を検出する物理量センサ(22)と、
    前記計測流路を形成しているハウジング(21)と、
    を備え、
    前記計測流路は、
    前記物理量センサが設けられたセンサ路(405)と、
    前記計測流路において前記センサ路と前記計測入口との間に設けられ、前記ハウジングにおいて前記センサ路から前記計測入口に向けて延びるように曲がっている上流曲がり路(406)と、
    前記計測流路において前記センサ路と前記計測出口との間に設けられ、前記ハウジングにおいて前記センサ路から前記計測出口に向けて延びるように曲がっている下流曲がり路(407)と、
    を有しており、
    前記ハウジングの内面は、
    前記上流曲がり路を曲がりの外側から形成する上流外曲がり面(411)と、
    前記下流曲がり路を曲がりの外側から形成する下流外曲がり面(421)と、
    を有しており、
    前記物理量センサを通り且つ前記上流曲がり路と前記下流曲がり路との並び方向(Z)に延びた仮想の直線として並び線(CL31)を想定し、
    前記並び線上での前記下流外曲がり面と前記物理量センサとの離間距離(L31b)が、前記並び線上での前記上流外曲がり面と前記物理量センサとの離間距離(L31a)よりも大きい、物理量計測装置。
  2. 前記センサ路は前記並び線に沿って延びている、請求項1に記載の物理量計測装置。
  3. 前記センサ路において、前記物理量センサと前記下流曲がり路との離間距離(L34b)は、前記物理量センサと前記上流曲がり路との離間距離(L34a)よりも大きい、請求項1又は2に記載の物理量計測装置。
  4. 前記計測流路において前記物理量センサを支持しているセンサ支持部(51)を備え、
    前記並び線上での前記下流外曲がり面と前記センサ支持部との離間距離(L32b)が、前記並び線上での前記上流外曲がり面と前記センサ支持部との離間距離(L32a)よりも大きい、請求項1〜3のいずれか1つに記載の物理量計測装置。
  5. 前記下流外曲がり面は、
    前記並び線が通る位置に設けられ、前記下流曲がり路の下流端部から上流側に向けて真っ直ぐに延びた下流外縦面(423)を有している、
    請求項1〜4のいずれか1つに記載の物理量計測装置。
  6. 前記ハウジングの内面は、
    前記下流曲がり路を曲がりの内側から形成する下流内曲がり面(425)を有しており、
    前記下流内曲がり面は、
    前記下流曲がり路に沿って湾曲した下流内湾曲面(425)を有している、請求項1〜5のいずれか1つに記載の物理量計測装置。
  7. 前記ハウジングは、
    前記計測入口側から前記物理量センサに向けて前記計測流路を徐々に縮小して絞っていき、且つ前記物理量センサ側から前記計測出口に向けて前記計測流路を徐々に拡張していく計測絞り部(111,112)を有しており、
    前記計測絞り部は、前記計測流路において前記上流曲がり路の上流端部と前記下流曲がり路の下流端部との間に設けられている、請求項1〜6のいずれか1つに記載の物理量計測装置。
  8. 前記計測絞り部は、
    前記ハウジングの前記内面を形成し、前記計測入口側から前記物理量センサに向けて前記計測流路を徐々に縮小して絞っていく計測絞り面(431,441)と、
    前記物理量センサ側から前記計測出口に向けて前記計測流路を徐々に拡張していく計測拡張面(432,442)と、
    を有しており、
    前記並び方向において、前記計測拡張面の長さ寸法(W33a,W33b)が前記計測絞り面の長さ寸法(W32a,W32b)よりも大きい、請求項7に記載の物理量計測装置。
  9. 前記計測拡張面は、前記物理量センサ側から前記計測出口に向けて真っ直ぐに向けて延びている、請求項8に記載の物理量計測装置。
  10. 前記並び線上での前記下流外曲がり面と前記計測絞り部との離間距離(W34a,W35a)は、前記並び線上での前記上流外曲がり面と前記計測絞り部との離間距離(W34b,W35b)よりも大きい、請求項7〜9のいずれか1つに記載の物理量計測装置。
  11. 前記ハウジングの内面は、
    前記計測流路を形成し、前記上流外曲がり面及び前記下流外曲がり面を挟んで対向する一対の計測壁面(103,104)を有しており、
    前記計測絞り部は、一対の前記計測壁面の少なくとも一方に設けられている、請求項7〜10のいずれか1つに記載の物理量計測装置。
  12. 前記上流外曲がり面は、
    前記上流曲がり路の上流端部と下流端部とにかけ渡され、前記上流曲がり路に沿って湾曲した上流外湾曲面(411)を有している、請求項1〜11のいずれか1つに記載の物理量計測装置。
  13. 前記ハウジングの内面は、
    前記計測入口と前記計測出口とにかけ渡された状態で前記物理量センサに向けて膨らむように曲がっており、前記計測流路を曲がりの内側から形成する内計測曲がり面(402)を有している、請求項1〜12のいずれか1つに記載の物理量計測装置。
  14. 前記ハウジングの内面は、
    前記計測流路を形成し、前記上流外曲がり面及び前記下流外曲がり面を挟んで対向する一対の壁面(103,104)を有しており、
    前記計測出口は、一対の前記壁面が並び且つ前記並び線に直交する直交方向(X)に前記計測流路を開放する向きで、一対の前記壁面の少なくとも一方に設けられている、請求項1〜13のいずれか1つに記載の物理量計測装置。
JP2018243415A 2018-02-07 2018-12-26 物理量計測装置 Pending JP2020106320A (ja)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2018243415A JP2020106320A (ja) 2018-12-26 2018-12-26 物理量計測装置
PCT/JP2019/003945 WO2019156042A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
PCT/JP2019/003953 WO2019156045A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
PCT/JP2019/003942 WO2019156041A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
DE112019000710.6T DE112019000710T5 (de) 2018-02-07 2019-02-05 Vorrichtung zur Messung einer physikalischen Größe
PCT/JP2019/003947 WO2019156044A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
PCT/JP2019/003960 WO2019156048A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
DE112019000711.4T DE112019000711T9 (de) 2018-02-07 2019-02-05 Vorrichtung zur Messung einer physikalischen Größe
DE112019000700.9T DE112019000700T5 (de) 2018-02-07 2019-02-05 Vorrichtung zur messung einer physikalischen grösse
PCT/JP2019/003955 WO2019156046A1 (ja) 2018-02-07 2019-02-05 物理量計測装置
DE112019000709.2T DE112019000709T5 (de) 2018-02-07 2019-02-05 Vorrichtung zur Messung einer physikalischen Größe
DE112019000706.8T DE112019000706T5 (de) 2018-02-07 2019-02-05 Vorrichtung zur Messung einer physikalischen Größe
DE112019000696.7T DE112019000696T5 (de) 2018-02-07 2019-02-05 Vorrichtung zur Messung einer physikalischen Größe
US16/985,496 US11480455B2 (en) 2018-02-07 2020-08-05 Physical quantity measurement device
US16/985,663 US11313709B2 (en) 2018-02-07 2020-08-05 Physical quantity measurement device for fluid with narrowed flow path
US16/985,322 US11300434B2 (en) 2018-02-07 2020-08-05 Physical quantity measurement device
US16/985,547 US11255709B2 (en) 2018-02-07 2020-08-05 Physical quantity measurement device having inlet with inclined ceiling
US16/985,359 US20200363249A1 (en) 2018-02-07 2020-08-05 Physical quantity measurement device
US16/985,416 US20200370937A1 (en) 2018-02-07 2020-08-05 Physical quantity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243415A JP2020106320A (ja) 2018-12-26 2018-12-26 物理量計測装置

Publications (1)

Publication Number Publication Date
JP2020106320A true JP2020106320A (ja) 2020-07-09

Family

ID=71450752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243415A Pending JP2020106320A (ja) 2018-02-07 2018-12-26 物理量計測装置

Country Status (1)

Country Link
JP (1) JP2020106320A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140753A (ja) * 2003-11-10 2005-06-02 Mitsubishi Electric Corp 内燃機関の吸入空気量測定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140753A (ja) * 2003-11-10 2005-06-02 Mitsubishi Electric Corp 内燃機関の吸入空気量測定装置

Similar Documents

Publication Publication Date Title
JP4412357B2 (ja) 空気流量測定装置
JP5183164B2 (ja) 流量測定装置
US7043978B2 (en) Airflow meter
JP5338864B2 (ja) 空気流量測定装置
JP6658660B2 (ja) 物理量計測装置
WO2019156048A1 (ja) 物理量計測装置
US8590368B2 (en) Airflow measuring device
JP6756296B2 (ja) 物理量計測装置
US8707771B2 (en) Airflow measuring device
JP4488030B2 (ja) 空気流量測定装置
JP2007298481A (ja) 流量測定装置
JP6756297B2 (ja) 物理量計測装置
JP5464294B2 (ja) 空気流量測定装置
WO2019156041A1 (ja) 物理量計測装置
JP2022084957A (ja) 物理量計測装置
JP6658659B2 (ja) 物理量計測装置
JP2020106320A (ja) 物理量計測装置
JP2020106427A (ja) 物理量計測装置
JP6641010B2 (ja) 熱式流量計
JP2014095619A (ja) 空気流量測定装置
JP2020106429A (ja) 物理量計測装置
JP2020106428A (ja) 物理量計測装置
JP2020106430A (ja) 物理量計測装置
JP2020106431A (ja) 物理量計測装置
JP2020098179A (ja) 物理量測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412