JP2020101616A - Electronic device manufacturing method and glass substrate - Google Patents

Electronic device manufacturing method and glass substrate Download PDF

Info

Publication number
JP2020101616A
JP2020101616A JP2018238443A JP2018238443A JP2020101616A JP 2020101616 A JP2020101616 A JP 2020101616A JP 2018238443 A JP2018238443 A JP 2018238443A JP 2018238443 A JP2018238443 A JP 2018238443A JP 2020101616 A JP2020101616 A JP 2020101616A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
protective film
electronic device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018238443A
Other languages
Japanese (ja)
Inventor
尚利 稲山
Naotoshi INAYAMA
尚利 稲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018238443A priority Critical patent/JP2020101616A/en
Priority to PCT/JP2019/045458 priority patent/WO2020129526A1/en
Priority to TW108143989A priority patent/TW202035330A/en
Publication of JP2020101616A publication Critical patent/JP2020101616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

To secure the strength of an electronic device by preventing or suppressing scratches on a surface of a glass substrate when the electronic device is manufactured.SOLUTION: A method for manufacturing an electronic device 1 having glass substrates GS1 and GS2 includes: a preparation step of preparing a glass substrate GS1 with a protection film 12, which protects one surface GS1b of the glass substrate GS1, formed on the one surface GS1b; and a manufacturing step of manufacturing the electronic device 1 using the glass substrate GS1. In the manufacturing step, the side on which the protection film 12 of the glass substrate GS1 is formed is supported to manufacture the electronic device 1.SELECTED DRAWING: Figure 1

Description

本発明は、電子デバイスの製造方法及びガラス基板に関し、特に製造時におけるガラス基板の強度低下を防止するための技術に関する。 The present invention relates to a method for manufacturing an electronic device and a glass substrate, and more particularly to a technique for preventing a decrease in strength of the glass substrate during manufacturing.

近年、省スペース化の観点から、液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイや薄膜電池、タッチパネル、有機EL照明といった各種電子デバイスが普及している。これらの電子デバイスでは、さらなる薄型化が要請される。この薄型化を推進するためには、電子デバイスに使用されるガラス基板を一層薄型化する必要がある。 In recent years, from the viewpoint of space saving, various electronic devices such as flat panel displays such as liquid crystal displays and organic EL displays, thin film batteries, touch panels, and organic EL lighting have become widespread. Further thinning is required for these electronic devices. In order to promote this thinning, it is necessary to further thin the glass substrate used for the electronic device.

ところが、上述のように電子デバイスを構成するガラス基板を薄くした場合、ガラス基板の強度が大幅に低下するため、落下による衝撃や押圧による曲げ荷重でガラス基板が起点となって電子デバイスが破損するおそれが高まるといった問題がある。 However, when the glass substrate constituting the electronic device is thinned as described above, the strength of the glass substrate is significantly reduced, and the electronic device is damaged by the bending load due to the impact or the pressure caused by the drop and the glass substrate as a starting point. There is a problem that the fear increases.

そこで、例えば特許文献1には、補強構造を設けた液晶ディスプレイパネルの製造方法が開示されている。この製造方法は、以下の手順で行われる。まず、二枚のガラス基板の互いに対向する一方の表面にそれぞれ所定の積層構造を形成した状態で、当該二枚のガラス基板を貼り合わせると共に、貼り合わせた二枚のガラス基板の間に液晶を封入することで、液晶ディスプレイパネルを形成する。然る後、液晶ディスプレイパネルの外側を指向する各ガラス基板の他方の表面に、シリコン系材料で形成されるハードコート層を形成することで、外側に補強構造を設けた液晶ディスプレイパネルを製造する。 Therefore, for example, Patent Document 1 discloses a method for manufacturing a liquid crystal display panel provided with a reinforcing structure. This manufacturing method is performed in the following procedure. First, in a state where a predetermined laminated structure is formed on one surface of each of the two glass substrates facing each other, the two glass substrates are bonded together, and a liquid crystal is applied between the bonded two glass substrates. The encapsulation forms a liquid crystal display panel. After that, by forming a hard coat layer made of a silicon-based material on the other surface of each glass substrate that faces the outside of the liquid crystal display panel, a liquid crystal display panel having a reinforcing structure on the outside is manufactured. ..

特開2008−262160号公報JP, 2008-262160, A

ここで、実際に電子デバイスの製造工程におけるガラス基板の強度低下の原因を調査したところ、ガラス基板の薄肉化だけでなく、その製造過程におけるガラス基板の取扱いに問題があることが判明した。液晶ディスプレイパネルの製造工程を例にとると、この種のガラス基板は、ガラス基板自体の加工を終えた後、液晶パネルを作製するための工程に向けて所定の搬送装置により下側の表面の少なくとも一部を支持された状態で搬送される。また、ガラス基板の貼り合わせ工程など当該ガラス基板を用いて液晶ディスプレイパネルを作製する工程においては、下側の表面を支持された状態でガラス基板の貼り合わせが行われる。そのため、搬送時又はパネル作製時に、ガラス基板の被支持面(下側の表面)とガラス基板を支持する部材等との間に擦れが生じ、この擦れに起因して被支持面に傷が付くことが判明した。これでは、たとえ特許文献1に記載の製造方法を適用したとしても、補強構造を設ける前にガラス基板の表面に傷が付くことが避けられないため、新たな対策が必要となる。 Here, as a result of actually investigating the cause of the strength decrease of the glass substrate in the manufacturing process of the electronic device, it was found that not only the thinning of the glass substrate but also the handling of the glass substrate in the manufacturing process is problematic. Taking the manufacturing process of a liquid crystal display panel as an example, this type of glass substrate has a lower surface of a lower surface with a predetermined transport device toward the process for manufacturing the liquid crystal panel after finishing the processing of the glass substrate itself. At least a part of the sheet is transported while being supported. Further, in a process of manufacturing a liquid crystal display panel using the glass substrate such as a process of bonding the glass substrate, the glass substrates are bonded with the lower surface being supported. Therefore, during transportation or panel production, rubbing occurs between the supported surface (lower surface) of the glass substrate and the member supporting the glass substrate, and the supported surface is scratched due to this rubbing. It has been found. In this case, even if the manufacturing method described in Patent Document 1 is applied, it is inevitable that the surface of the glass substrate is scratched before the reinforcing structure is provided, and therefore new measures are required.

以上の事情に鑑み、電子デバイスの製造時にガラス基板の表面に傷が付く事態を防止又は抑制して、電子デバイスの強度を確保することを、解決すべき技術課題とする。 In view of the above circumstances, it is a technical problem to be solved to prevent or suppress the situation where the surface of the glass substrate is scratched during the manufacturing of the electronic device and secure the strength of the electronic device.

前記課題の解決は、本発明に係る電子デバイスの製造方法により達成される。すなわち、この製造方法は、ガラス基板を準備する準備工程と、ガラス基板を用いて電子デバイスを作製する作製工程とを備えた電子デバイスの製造方法であって、準備工程で、ガラス基板として、一方の表面を保護する保護膜が形成されたガラス基板を準備し、作製工程で、ガラス基板の保護膜が形成された側を支持して電子デバイスを作製する点をもって特徴付けられる。 The solution to the above problem is achieved by the method for manufacturing an electronic device according to the present invention. That is, this manufacturing method is a method of manufacturing an electronic device including a preparatory step of preparing a glass substrate and a manufacturing step of manufacturing an electronic device using the glass substrate. Is characterized in that a glass substrate on which a protective film for protecting the surface of is protected is prepared, and an electronic device is manufactured by supporting a side of the glass substrate on which the protective film is formed in a manufacturing process.

このように、本発明に係る電子デバイスの製造方法では、予めガラス基板の一方の表面に、一方の表面を保護する保護膜が形成された保護膜付きガラス基板を準備すると共に、この保護膜付きガラス基板の保護膜が形成された側を支持して電子デバイスを作製するようにした。このようにすれば、ガラス基板の搬送時、又はガラス基板を用いた電子デバイスの作製工程時にガラス基板と支持部材との間に擦れが生じた場合であっても、保護膜によりガラス基板表面に傷が付くのを防止又は抑制することができる。よって、このガラス基板を有する電子デバイスの強度(例えば曲げ強度)を確保することが可能となる。 As described above, in the method for manufacturing an electronic device according to the present invention, a glass substrate with a protective film in which a protective film for protecting one surface is formed in advance on one surface of the glass substrate is prepared, and An electronic device was manufactured by supporting the side of the glass substrate on which the protective film was formed. By doing so, even when rubbing occurs between the glass substrate and the supporting member during the transportation of the glass substrate or during the manufacturing process of the electronic device using the glass substrate, the surface of the glass substrate is protected by the protective film. It is possible to prevent or suppress scratching. Therefore, it becomes possible to secure the strength (for example, bending strength) of the electronic device having this glass substrate.

また、本発明に係る電子デバイスの製造方法において、保護膜は、ガラス基板よりも低い静摩擦係数を示す低摩擦膜であってもよい。 Further, in the method for manufacturing an electronic device according to the present invention, the protective film may be a low friction film having a static friction coefficient lower than that of the glass substrate.

このように、保護膜を、ガラス基板よりも低い静摩擦係数を示す低摩擦膜とすることによって、搬送時又はパネル作製時にガラス基板をより滑り易くすることができる。よって、ガラス基板に傷が付くのをより効果的に抑制することが可能となる。 Thus, by forming the protective film as a low-friction film having a lower coefficient of static friction than that of the glass substrate, the glass substrate can be made more slippery during transportation or panel production. Therefore, it is possible to more effectively prevent the glass substrate from being scratched.

また、保護膜が低摩擦膜である場合、本発明に係る電子デバイスの製造方法において、低摩擦膜の静摩擦係数が、0.42以下であってもよい。 When the protective film is a low-friction film, in the method for manufacturing an electronic device according to the present invention, the low-friction film may have a coefficient of static friction of 0.42 or less.

具体的に、静摩擦係数が0.42以下の保護膜(低摩擦膜)を用いることによって、ガラス基板表面と相手面との十分な滑りを確保することができるので、ガラス基板の表面に傷が付くのを十分に抑制して電子デバイスに必要な強度を確保することが可能となる。なお、前述の静摩擦係数は、ガラス基板に成膜した保護膜と、三共理化学株式会社製ラッピングフィルムLWFS−30#4000との間の静摩擦係数を、JIS K 7125:1999に準拠して測定した値を指すものとする。 Specifically, by using a protective film (low-friction film) having a coefficient of static friction of 0.42 or less, sufficient slip between the glass substrate surface and the mating surface can be secured, so that the surface of the glass substrate is not scratched. It is possible to sufficiently suppress the attachment and secure the strength required for the electronic device. The above-mentioned static friction coefficient is a value obtained by measuring the static friction coefficient between the protective film formed on the glass substrate and the wrapping film LWFS-30#4000 manufactured by Sankyo Rikagaku Co., Ltd. according to JIS K 7125:1999. Shall be pointed out.

また、前記課題の解決は、本発明に係るガラス基板によっても達成される。すなわち、このガラス基板は、電子デバイス用のガラス基板であって、非保証面に、非保証面を保護する保護膜が形成されている点をもって特徴付けられる。 The solution to the above-mentioned problems can also be achieved by the glass substrate according to the present invention. That is, this glass substrate is a glass substrate for an electronic device and is characterized in that a protective film for protecting the non-guaranteed surface is formed on the non-guaranteed surface.

このように、本発明に係るガラス基板では、その非保証面に、非保証面を保護する保護膜を形成した。通常、この種のガラス基板においては、所要の品質を保証すべき面(保証面)をなるべく非接触状態としてガラス基板の搬送、加工等の各工程が行われる。この場合、保証面の裏側に位置する非保証面が搬送時又は加工等の各工程時における被接触面となる。よって、この非保証面を保護膜で保護したガラス基板であれば、ガラス基板の搬送時、又は電子デバイスの作製工程時にガラス基板の非保証面とこの非保証面に接触する部材との間に擦れが生じた場合であっても、保護膜によりガラス基板表面に傷が付くのを防止又は抑制することができる。よって、このガラス基板を有する電子デバイスの強度を確保することが可能となる。 Thus, in the glass substrate according to the present invention, the protective film for protecting the non-guaranteed surface was formed on the non-guaranteed surface. Usually, in this type of glass substrate, each process such as transportation and processing of the glass substrate is performed with the surface (guarantee surface) for which the required quality is to be guaranteed being as non-contact as possible. In this case, the non-guaranteed surface located on the back side of the guaranteed surface becomes the contacted surface at the time of each step such as transportation or processing. Therefore, in the case of a glass substrate whose non-guaranteed surface is protected by a protective film, it is provided between the non-guaranteed surface of the glass substrate and the member in contact with the non-guaranteed surface during the transportation of the glass substrate or the manufacturing process of the electronic device. Even when rubbing occurs, the protective film can prevent or suppress scratches on the surface of the glass substrate. Therefore, it becomes possible to secure the strength of the electronic device having this glass substrate.

以上に述べたように、本発明に係る電子デバイスの製造方法及びガラス基板によれば、電子デバイスの製造時にガラス基板の表面に傷が付く事態を防止又は抑制して、電子デバイスの強度を確保することが可能となる。 As described above, according to the method for manufacturing an electronic device and the glass substrate according to the present invention, it is possible to prevent or suppress the situation where the surface of the glass substrate is scratched during the manufacturing of the electronic device, and secure the strength of the electronic device. It becomes possible to do.

本発明の一実施形態に係る液晶ディスプレイパネルの断面図である。1 is a cross-sectional view of a liquid crystal display panel according to an exemplary embodiment of the present invention. 図1に示す液晶ディスプレイパネルの製造方法の手順を示すフローチャートである。3 is a flowchart showing a procedure of a method for manufacturing the liquid crystal display panel shown in FIG. 1. 図2に示す準備工程の手順を示すフローチャートである。3 is a flowchart showing the procedure of the preparation process shown in FIG. 2. 図2に示す準備工程に用意される(a)第一マザーガラスと、(b)第二マザーガラスの斜視図である。FIG. 3 is a perspective view of (a) first mother glass and (b) second mother glass prepared in the preparation step shown in FIG. 2. 保護膜を形成した第一マザーガラスの斜視図である。It is a perspective view of the 1st mother glass which formed the protective film. 図2に示す作製工程の手順を示すフローチャートである。3 is a flowchart showing a procedure of a manufacturing process shown in FIG. 2. 図6に示す組立て工程に用意される(a)第一マザーガラスを含む第一積層体と、(b)第二マザーガラスを含む第二積層体の斜視図である。It is a perspective view of the 1st laminated body containing the (a) 1st mother glass and the 2nd laminated body containing the (b) 2nd mother glass prepared for the assembly process shown in FIG. 図7に示す(a)第一積層体の断面図と、(b)第二積層体の断面図である。It is sectional drawing of the (a) 1st laminated body shown in FIG. 7, and sectional drawing of the (b) 2nd laminated body. (a)(b)ともに図6に示す組立て工程の一例を示す断面図である。7A and 7B are cross-sectional views showing an example of the assembling process shown in FIG. 6. 組立て工程で得られた液晶ディスプレイパネルの集合体の斜視図である。It is a perspective view of the assembly of the liquid crystal display panel obtained by the assembly process. 切り出し工程の一例を示す斜視図である。It is a perspective view which shows an example of a cutting process.

以下、本発明の一実施形態を説明する。 An embodiment of the present invention will be described below.

図1は、本発明の適用対象となる電子デバイスの一例としての液晶ディスプレイパネル1を示している。この液晶ディスプレイパネル1は、第一ガラス基板GS1と、第二ガラス基板GS2と、スペーサSPと、第一ガラス基板GS1と第二ガラス基板GS2との間に配設される液晶層2と、第一ガラス基板GS1と液晶層2との間に配設される第一積層部3と、第二ガラス基板GS2と液晶層2との間に配設される第二積層部4とを備える。 FIG. 1 shows a liquid crystal display panel 1 as an example of an electronic device to which the present invention is applied. The liquid crystal display panel 1 includes a first glass substrate GS1, a second glass substrate GS2, a spacer SP, a liquid crystal layer 2 arranged between the first glass substrate GS1 and the second glass substrate GS2, A first laminated portion 3 arranged between the one glass substrate GS1 and the liquid crystal layer 2 and a second laminated portion 4 arranged between the second glass substrate GS2 and the liquid crystal layer 2.

第一ガラス基板GS1及び第二ガラス基板GS2の形状は、本実施形態では矩形状であるが、もちろんこの形状には限定されない。各ガラス基板GS1,GS2の材質としては、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、化学強化ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。各ガラス基板GS1,GS2として無アルカリガラスを使用することで、化学的に安定なガラスとすることができる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 The shapes of the first glass substrate GS1 and the second glass substrate GS2 are rectangular in the present embodiment, but of course, are not limited to this shape. As a material for each of the glass substrates GS1 and GS2, silicate glass or silica glass is used, preferably borosilicate glass, soda lime glass, aluminosilicate glass, or chemically strengthened glass, and most preferably alkali-free glass. Is used. By using non-alkali glass as the glass substrates GS1 and GS2, chemically stable glass can be obtained. Here, the non-alkali glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass in which the weight ratio of the alkali components is 3000 ppm or less. is there. The weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.

各ガラス基板GS1,GS2は、公知のフロート法、ロールアウト法、スロットダウンドロー法、リドロー法等により成形できるが、オーバーフローダウンドロー法によって成形されていることが好ましい。 Each of the glass substrates GS1 and GS2 can be formed by a known float method, roll-out method, slot down draw method, redraw method, or the like, but is preferably formed by the overflow down draw method.

各ガラス基板GS1,GS2の厚みは、1000μm以下とされ、好ましくは10μm以上でかつ700μm以下であり、より好ましくは20μm以上でかつ500μm以下であり、最も好ましくは200μm以上でかつ500μm以下である。 The thickness of each glass substrate GS1, GS2 is set to 1000 μm or less, preferably 10 μm or more and 700 μm or less, more preferably 20 μm or more and 500 μm or less, and most preferably 200 μm or more and 500 μm or less.

第一積層部3は、第一ガラス基板GS1の内側表面GS1a(ここでいう内側とは、液晶ディスプレイパネル1の内側を意味する。)に形成されるもので、例えば透明導電膜TCFにより構成される第一電極層5(画素電極)と、第一電極層5上に積層される第一配向膜6とで構成される。 The first laminated portion 3 is formed on the inner surface GS1a of the first glass substrate GS1 (the inner side here means the inner side of the liquid crystal display panel 1), and is made of, for example, a transparent conductive film TCF. And a first alignment film 6 laminated on the first electrode layer 5.

第一電極層5(透明導電膜TCF)の材質としては、透光性及び導電性を有するものであれば、特に限定されない。第一電極層5は、例えば、インジウムドープスズ酸化物(ITO)、フッ素ドープスズ酸化物(FTO)、インジウム亜鉛酸化物(IZO)、アルミニウムドープ亜鉛酸化物(AZO)等で形成される。 The material of the first electrode layer 5 (transparent conductive film TCF) is not particularly limited as long as it has translucency and conductivity. The first electrode layer 5 is formed of, for example, indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), or the like.

第一配向膜6は、例えばラビング処理で微小な溝部が形成されたポリイミド膜その他の材料により形成される透明膜である。液晶層2に含まれる液晶分子は、第一配向膜6の作用によりプレチルト角で配向され得る。 The first alignment film 6 is a transparent film formed of, for example, a polyimide film or other material in which minute grooves are formed by rubbing. The liquid crystal molecules included in the liquid crystal layer 2 can be aligned at a pretilt angle by the action of the first alignment film 6.

第二積層部4は、第二ガラス基板GS2の内側表面GS2aに形成されるもので、例えばカラーフィルタ層7と、透明導電膜TCFにより構成される第二電極層8(対向電極)と、第二配向膜9とで構成される。カラーフィルタ層7は、ブラックマトリクス及び複数の着色画素により形成される。第二電極層8の材質、厚み及びシート抵抗は、第一電極層5と同様である。第二配向膜9の構成、材質及び厚みは、第一配向膜6と同様である。 The second laminated portion 4 is formed on the inner surface GS2a of the second glass substrate GS2, and includes, for example, a color filter layer 7, a second electrode layer 8 (counter electrode) composed of a transparent conductive film TCF, and It is composed of two alignment films 9. The color filter layer 7 is formed of a black matrix and a plurality of colored pixels. The material, thickness and sheet resistance of the second electrode layer 8 are the same as those of the first electrode layer 5. The configuration, material and thickness of the second alignment film 9 are the same as those of the first alignment film 6.

シール部Sは、液晶層2の周囲を取り囲むように枠形状に形成されるシール部材である。ここでシール部Sは、UV硬化樹脂や熱硬化性樹脂などのシール材により形成されるが、もちろんこれら何れかの材質には限定されない。また、スペーサSPは、例えば球状であり、樹脂もしくはシリカからなる。このスペーサSPが、液晶層2に分散するように配置されることにより、第一ガラス基板GS1と第二ガラス基板GS2の間隔が一定に維持される。 The seal portion S is a frame-shaped seal member that surrounds the liquid crystal layer 2. Here, the seal portion S is formed of a sealing material such as a UV curable resin or a thermosetting resin, but it is not limited to any of these materials, of course. The spacer SP has, for example, a spherical shape and is made of resin or silica. By disposing the spacers SP so as to be dispersed in the liquid crystal layer 2, the distance between the first glass substrate GS1 and the second glass substrate GS2 is maintained constant.

液晶層2は、ネマティック液晶等により構成される。液晶層2は、第一ガラス基板GS1、第二ガラス基板GS2、及びシール部Sにより区画される空間に形成される。 The liquid crystal layer 2 is made of nematic liquid crystal or the like. The liquid crystal layer 2 is formed in a space defined by the first glass substrate GS1, the second glass substrate GS2, and the seal portion S.

第一ガラス基板GS1の最も外側には、第一偏光板10が配設されると共に、第二ガラス基板GS2の最も外側には、第二偏光板11が配設される。なお、図示は省略するが、これら偏光板10,11に加え、位相差板が配設されてもよい。 The first polarizing plate 10 is arranged on the outermost side of the first glass substrate GS1, and the second polarizing plate 11 is arranged on the outermost side of the second glass substrate GS2. Although not shown, a retardation plate may be provided in addition to these polarizing plates 10 and 11.

また、本実施形態では、第一ガラス基板GS1の、第一電極層5が形成される側とは反対側の表面(すなわち外側表面GS1b)に、この外側表面GS1bを保護する保護膜12が形成されている。この場合、保護膜12は第一ガラス基板GS1と第一偏光板10との間に配設される。 In addition, in the present embodiment, the protective film 12 that protects the outer surface GS1b is formed on the surface of the first glass substrate GS1 opposite to the side on which the first electrode layer 5 is formed (that is, the outer surface GS1b). Has been done. In this case, the protective film 12 is arranged between the first glass substrate GS1 and the first polarizing plate 10.

ここで保護膜12は、第一ガラス基板GS1よりも低い摩擦係数(静摩擦係数、動摩擦係数)を示すように構成されている(低摩擦膜)。具体的にはガラスよりも低摩擦係数の材料で形成される。 Here, the protective film 12 is configured to have a friction coefficient (static friction coefficient, dynamic friction coefficient) lower than that of the first glass substrate GS1 (low friction film). Specifically, it is formed of a material having a coefficient of friction lower than that of glass.

ここで、上記構成の保護膜12(特に低摩擦膜の場合)を摩擦係数の面から選定する場合、例えば保護膜12の静摩擦係数が0.42以下を示すのがよく、0.35以下を示すことが好ましく、0.30以下を示すことがさらに好ましい。このような摩擦係数を示す材料として、フッ素系材料を例示することができる。 Here, when the protective film 12 (especially in the case of a low friction film) having the above structure is selected from the viewpoint of the coefficient of friction, for example, the static friction coefficient of the protective film 12 should be 0.42 or less, and 0.35 or less. It is preferable to show, and it is more preferable to show 0.30 or less. As a material showing such a friction coefficient, a fluorine-based material can be exemplified.

一方、上記構成の保護膜12を特性、性能の面から選定する場合、例えば保護膜12は、機能性膜であってもよい。ここでいう、機能性膜には、保護膜12を形成してなるガラス基板GS1に対して、例えば反射防止機能(AR)や、指紋等の汚れ防止機能(AF)、ぎらつき防止(防眩)機能(AG)、赤外線カット機能(IR)、導電性付与機能、コールドミラー機能、紫外線カット機能(UV)など、種々の性能を付与する薄膜が含まれる。このうち、例えば成膜効率の観点からは、スプレーによる成膜が可能な汚れ防止機能を有する薄膜(防汚膜)が好適である。 On the other hand, when the protective film 12 having the above structure is selected in terms of characteristics and performance, the protective film 12 may be a functional film, for example. The functional film referred to here is, for example, an antireflection function (AR), a fingerprint antifouling function (AF), a glare prevention (antiglare) with respect to the glass substrate GS1 on which the protective film 12 is formed. ) Function (AG), infrared ray cutting function (IR), conductivity imparting function, cold mirror function, ultraviolet ray cutting function (UV), and the like are included in the thin film. Among them, from the viewpoint of film formation efficiency, for example, a thin film (antifouling film) having a stain prevention function capable of forming a film by spraying is preferable.

あるいは、上記構成の保護膜12を材質の面から選定する場合、保護膜12は、有機材で形成された薄膜(有機膜)であってもよいし、SiO2、Nb25、SiNx、ITOなどの無機材で形成された薄膜(無機膜)であってもよい。 Alternatively, when the protective film 12 having the above structure is selected in terms of material, the protective film 12 may be a thin film (organic film) made of an organic material, or may be SiO 2 , Nb 2 O 5 , SiN x. It may be a thin film (inorganic film) formed of an inorganic material such as ITO.

以下、上記構成の液晶ディスプレイパネル1を製造する方法について説明する。図2に示すように、本実施形態に係る液晶ディスプレイパネル1の製造方法は、所定のガラス基板を準備する準備工程S1と、上記所定のガラス基板を用いて液晶ディスプレイパネル1を作製する作製工程S2とを備える。 Hereinafter, a method for manufacturing the liquid crystal display panel 1 having the above structure will be described. As shown in FIG. 2, the manufacturing method of the liquid crystal display panel 1 according to the present embodiment includes a preparing step S1 of preparing a predetermined glass substrate and a manufacturing step of manufacturing the liquid crystal display panel 1 using the predetermined glass substrate. And S2.

(S1)準備工程
準備工程S1は、図3に示すように、第一及び第二マザーガラスGM1,GM2を取得する取得工程S3と、取得した各マザーガラスGM1,GM2の少なくとも一方(本実施形態では第一マザーガラスGM1)に保護膜12を形成する保護膜形成工程S4とを有する。
(S1) Preparation Step As shown in FIG. 3, the preparation step S1 includes an acquisition step S3 for acquiring the first and second mother glasses GM1 and GM2 and at least one of the acquired mother glasses GM1 and GM2 (this embodiment. Then, there is a protective film forming step S4 of forming the protective film 12 on the first mother glass GM1).

(S3)マザーガラス取得工程
この工程では、所定形状並びに所定サイズの第一マザーガラスGM1(図4(a)を参照)及び第二マザーガラスGM2(図4(b)を参照)を取得する。ここで、第一及び第二マザーガラスGM1,GM2はともに、図1に示す第一及び第二ガラス基板GS1,GS2となるガラス基板である。言い換えると、図1に示す第一及び第二ガラス基板GS1,GS2は、貼り合された後(後述する組立て工程S6後)に、いわゆる多面取りによって第一及び第二マザーガラスGM1,GM2から切り出されたガラス基板である(図4(a)(b)中の一点鎖線で囲まれた領域を参照)。よって、各マザーガラスGM1,GM2の厚み寸法、材質(組成)、及び成形手段は、上述したガラス基板GS1,GS2の厚み寸法、材質、及び成形手段と基本的に同じになる。この場合、各マザーガラスGM1,GM2の一方の表面GM1a,GM2aに、第一及び第二積層部3,4がそれぞれ形成され、第一マザーガラスGM1の他方の表面GM1bに、保護膜12が形成される。なお、図4(a)(b)中の一点鎖線は、後述する切り出し工程S7における切断予定線である。図7〜図9中の一点鎖線も同じ切断予定線である。
(S3) Mother Glass Obtaining Step In this step, the first mother glass GM1 (see FIG. 4A) and the second mother glass GM2 (see FIG. 4B) having a predetermined shape and a predetermined size are obtained. Here, both the first and second mother glasses GM1 and GM2 are glass substrates to be the first and second glass substrates GS1 and GS2 shown in FIG. In other words, the first and second glass substrates GS1 and GS2 shown in FIG. 1 are cut out from the first and second mother glasses GM1 and GM2 by so-called multiple cutting after being bonded (after the assembling step S6 described later). Glass substrate (see the area surrounded by the alternate long and short dash line in FIGS. 4A and 4B). Therefore, the thickness dimension, material (composition), and molding means of each mother glass GM1, GM2 are basically the same as the thickness dimension, material, and molding means of the glass substrates GS1, GS2 described above. In this case, the first and second laminated portions 3 and 4 are respectively formed on one surface GM1a and GM2a of each mother glass GM1 and GM2, and the protective film 12 is formed on the other surface GM1b of the first mother glass GM1. To be done. The alternate long and short dash line in FIGS. 4A and 4B is a planned cutting line in the cutting step S7 described later. The dashed-dotted line in FIGS. 7 to 9 is also the same planned cutting line.

(S4)保護膜形成工程
この工程では、第一積層部3(図1を参照)が形成される第一マザーガラスGM1の一方の表面GM1aとは反対側の表面(他方の表面GM1b)に、保護膜12を形成する。ここで、保護膜12の形成手段は任意であり、保護膜12の種類に応じて公知の成膜手段が適宜選択され得る。例えば保護膜12を、AFコートなどの防汚膜で構成する場合、スプレー等の手段により他方の表面GM1bの全面に保護膜12を成膜する。これにより、図5に示すように、他方の表面GM1bに保護膜12が形成された状態の第一マザーガラスGM1(保護膜付きガラス基板)が得られる。ここで、第一マザーガラスGM1の他方の表面GM1bは、切り出し先となる第一ガラス基板GS1の外側表面GS1b(ここでいう外側とは、液晶ディスプレイパネル1の外側を意味する。)である。また、この外側表面GS1bは、非保証面でもある。
(S4) Protective Film Forming Step In this step, one surface GM1a of the first mother glass GM1 on which the first laminated portion 3 (see FIG. 1) is formed is opposite to the surface (other surface GM1b), The protective film 12 is formed. Here, the means for forming the protective film 12 is arbitrary, and a known film forming means can be appropriately selected according to the type of the protective film 12. For example, when the protective film 12 is formed of an antifouling film such as an AF coat, the protective film 12 is formed on the entire surface of the other surface GM1b by a method such as spraying. Thereby, as shown in FIG. 5, the first mother glass GM1 (glass substrate with a protective film) in which the protective film 12 is formed on the other surface GM1b is obtained. Here, the other surface GM1b of the first mother glass GM1 is an outer surface GS1b of the first glass substrate GS1 to be cut out (the outer side here means the outer side of the liquid crystal display panel 1). The outer surface GS1b is also a non-guaranteed surface.

(S2)作製工程
液晶ディスプレイパネル1の作製工程S2は、何れも製造関連処理工程としての積層部形成工程S5、組立て工程S6、及び切り出し工程S7を備える(図6を参照)。
(S2) Manufacturing Step The manufacturing step S2 of the liquid crystal display panel 1 includes a laminated portion forming step S5, an assembling step S6, and a cutting step S7, which are all manufacturing-related processing steps (see FIG. 6).

(S5)積層部形成工程
この工程では、保護膜12が形成された第一マザーガラスGM1の一方の表面GM1a側に第一積層部3を形成すると共に、第二マザーガラスGM2の一方の表面GM2aに第二積層部4を形成する(図7を参照)。本実施形態では、第一積層部3として、透明導電膜TCFで構成される第一電極層5と、第一配向膜6とが第一マザーガラスGM1の一方の表面GM1a上に形成される。また、第二積層部4として、カラーフィルタ層7と、透明導電膜TCFで構成される第二電極層8と、第二配向膜9とが第二マザーガラスGM2の一方の表面GM2a上に形成される。
(S5) Laminated portion forming step In this step, the first laminated portion 3 is formed on the one surface GM1a side of the first mother glass GM1 on which the protective film 12 is formed, and the one surface GM2a of the second mother glass GM2 is formed. The second laminated portion 4 is formed on the substrate (see FIG. 7). In the present embodiment, as the first laminated portion 3, the first electrode layer 5 formed of the transparent conductive film TCF and the first alignment film 6 are formed on the one surface GM1a of the first mother glass GM1. Further, as the second laminated portion 4, the color filter layer 7, the second electrode layer 8 formed of the transparent conductive film TCF, and the second alignment film 9 are formed on the one surface GM2a of the second mother glass GM2. To be done.

ここで、第一マザーガラスGM1に対する第一積層部3の具体的な形成手順を述べると、まず保護膜12が形成された第一マザーガラスGM1の一方の表面GM1aに透明導電膜TCFを形成する。次に、透明導電膜TCF上にフォトレジスト(光感光性樹脂)を塗布してレジスト層を形成した後、レジスト層にフォトマスクを被せて紫外線などの光を照射することで、フォトマスクに形成された所定形状のパターンをレジスト層に転写する。然る後、例えばポジ型フォトレジストを用いた場合は、レジスト現像液を供給してレジスト層の露光部分を除去すると共に、エッチング処理を施すことにより、レジスト層及び透明導電膜TCFの不要部分を除去して、透明導電膜TCFにフォトマスクに対応したパターンを形成する。そして、透明導電膜TCF上に残存していたレジスト層を除去することにより、透明導電膜TCFによる所定の電極パターンを有する第一電極層5が形成される(図8(a)を参照)。この後、第一電極層5を被覆するように、第一配向膜6を形成することにより、第一電極層5が第一配向膜6で被覆されてなる第一積層部3が一方の表面GM1a上に形成された状態の第一マザーガラスGM1が得られる(図7(a)及び図8(a)を参照)。以後、この状態の第一マザーガラスGM1を第一積層体LM1とも称する。 Here, a specific procedure for forming the first laminated portion 3 on the first mother glass GM1 will be described. First, the transparent conductive film TCF is formed on the one surface GM1a of the first mother glass GM1 on which the protective film 12 is formed. .. Next, a photoresist (photosensitive resin) is applied on the transparent conductive film TCF to form a resist layer, and then the resist layer is covered with a photomask and irradiated with light such as ultraviolet rays to form a photomask. The formed pattern having the predetermined shape is transferred to the resist layer. After that, when a positive photoresist is used, for example, a resist developer is supplied to remove the exposed portion of the resist layer and an etching process is performed to remove unnecessary portions of the resist layer and the transparent conductive film TCF. After that, a pattern corresponding to the photomask is formed on the transparent conductive film TCF. Then, by removing the resist layer remaining on the transparent conductive film TCF, the first electrode layer 5 having a predetermined electrode pattern of the transparent conductive film TCF is formed (see FIG. 8A). After that, by forming the first alignment film 6 so as to cover the first electrode layer 5, the first laminated portion 3 formed by covering the first electrode layer 5 with the first alignment film 6 has one surface. The first mother glass GM1 formed on the GM1a is obtained (see FIGS. 7A and 8A). Hereinafter, the first mother glass GM1 in this state is also referred to as the first stacked body LM1.

また、第二マザーガラスGM2に対する第二積層部4の形成手順について述べると、まず第二マザーガラスGM2の一方の表面GM2aに、例えばブラックマトリクスを形成した後、カラーレジスト塗布工程、露光工程、現像・ベーキング工程を繰り返すことにより、複数色(RGB)に対応するカラーフィルタ層7を形成する。そしてカラーフィルタ層7の表面に透明導電膜TCFを形成した後、必要に応じて第一マザーガラスGM1と同様のパターニング処理を施すことにより、透明導電膜TCFによる所定の電極パターンを有する第2電極層8を形成する(各電極の延伸方向は第一電極層5と第二電極層8とで直交している)。この後、第二電極層8を被覆するように、第二配向膜9を形成することにより、第二電極層8が第二配向膜9で被覆されてなる第二積層部4が一方の表面GM2a上に形成された状態の第二マザーガラスGM2が得られる(図7(b)及び図8(b)を参照)。以後、この状態の第二マザーガラスGM2を第二積層体LM2とも称する。 The procedure for forming the second laminated portion 4 on the second mother glass GM2 will be described. First, for example, a black matrix is formed on one surface GM2a of the second mother glass GM2, and then a color resist coating step, an exposure step, and a development step are performed. The color filter layer 7 corresponding to a plurality of colors (RGB) is formed by repeating the baking process. Then, after forming the transparent conductive film TCF on the surface of the color filter layer 7, the second electrode having the predetermined electrode pattern by the transparent conductive film TCF is formed by performing the same patterning process as that of the first mother glass GM1 if necessary. The layer 8 is formed (the extending direction of each electrode is orthogonal to the first electrode layer 5 and the second electrode layer 8). After that, by forming the second alignment film 9 so as to cover the second electrode layer 8, the second laminated portion 4 formed by covering the second electrode layer 8 with the second alignment film 9 has one surface. The second mother glass GM2 formed on the GM2a is obtained (see FIGS. 7B and 8B). Hereinafter, the second mother glass GM2 in this state is also referred to as the second laminated body LM2.

なお、液晶ディスプレイパネル1が単純マトリクス駆動型でなく、アクティブマトリクス駆動型である場合には、第一電極層5に、ソース電極、ゲート電極、ドレイン電極、絶縁層、スイッチング素子(TFT等)がフォトリソグラフィその他の方法により形成される。 When the liquid crystal display panel 1 is of the active matrix driving type rather than the simple matrix driving type, the first electrode layer 5 has a source electrode, a gate electrode, a drain electrode, an insulating layer, a switching element (TFT, etc.). It is formed by photolithography or another method.

また、透明導電膜TCFの形成手段は任意であり、例えばスパッタリング法、蒸着法、CVD法等の公知の成膜法により形成することが可能である。また、形成可能な透明導電膜TCFの種類も任意であり、その一例としてITO膜を挙げることができる。 Further, the transparent conductive film TCF can be formed by any means and can be formed by a known film forming method such as a sputtering method, a vapor deposition method, a CVD method or the like. Further, the type of the transparent conductive film TCF that can be formed is arbitrary, and an example thereof is an ITO film.

また、第一及び第二配向膜6,9の形成手段も任意であり、例えばスピンコート法等の公知の手段により形成することが可能である。また、各配向膜6,9に対してラビング処理を施してもよい。このラビング処理により、図示は省略するが、各配向膜6,9の表面に無数の微小な溝部が形成される。 Further, the means for forming the first and second alignment films 6 and 9 is also arbitrary, and can be formed by a known means such as a spin coating method. Further, rubbing treatment may be applied to each of the alignment films 6 and 9. By this rubbing treatment, although not shown, innumerable minute groove portions are formed on the surfaces of the respective alignment films 6 and 9.

(S6)組立て工程
この工程では、液晶ディスプレイパネル1の集合体13を組立てる。まず図9(a)に示すように、第一積層体LM1と第二積層体LM2とを対向させると共に、これら積層体LM1,LM2の間に、シール部Sを形成するシール材とスペーサSPを供給する。本実施形態では、平面視した状態でシール部Sが格子状をなすように、シール部Sを形成するシール材を予め第一積層体LM1の第一配向膜6上に塗布しておく(図9(a)を参照)。シール部Sで囲まれる複数の領域、すなわち液晶層2が形成される空間(図1を参照)となる複数の領域に液晶を充填すると共にスペーサSPを分散させておく。この際、第一積層体LM1を第二積層体LM2よりも下方に配置すると共に、第一配向膜6と第二配向膜9とが対向するように第一積層体LM1と第二積層体LM2を配置する。これにより、第一積層体LM1の最も下側には保護膜12が配置された状態となる。なお、シール材Sは、切断予定線の箇所に塗布しない態様となってもよい。換言すると、シール材Sを幅方向(図9の紙面の左右方向)で分割構造とし、分割されたシール材S同士の間を空間とすればよい。
(S6) Assembly Step In this step, the assembly 13 of the liquid crystal display panel 1 is assembled. First, as shown in FIG. 9A, the first laminated body LM1 and the second laminated body LM2 are opposed to each other, and a sealing material and a spacer SP forming a seal portion S are provided between the laminated bodies LM1 and LM2. Supply. In the present embodiment, the sealing material forming the sealing portion S is applied in advance on the first alignment film 6 of the first stacked body LM1 so that the sealing portion S has a lattice shape in a plan view (see FIG. 9(a)). A plurality of regions surrounded by the seal portion S, that is, a plurality of regions serving as spaces (see FIG. 1) in which the liquid crystal layer 2 is formed is filled with liquid crystal and the spacers SP are dispersed. At this time, the first stacked body LM1 is arranged below the second stacked body LM2, and the first stacked body LM1 and the second stacked body LM2 are arranged so that the first alignment film 6 and the second alignment film 9 face each other. To place. As a result, the protective film 12 is placed on the lowermost side of the first stacked body LM1. Note that the sealing material S may not be applied on the planned cutting line. In other words, the sealing material S may have a divided structure in the width direction (left and right direction of the paper surface of FIG. 9), and the space between the divided sealing materials S may be used.

この状態から、例えば、第一積層体LM1を上昇させて第二積層体LM2に接近させることによって、スペーサSPを双方の積層体LM1,LM2で挟持すると共に、予め第一積層体LM1上に塗布しておいたシール部Sのシール材を第二積層体LM2に接触させる(図9(b)を参照)。ここで、シール材を固化させることで(例えばシール材にUV硬化樹脂を用いる場合、紫外線を照射して硬化させることで)各積層体LM1,LM2の間にシール部Sが形成されると共に、シール材と接触する各積層体LM1,LM2がシール部Sに接着固定される。これにより、シール部Sを介して第一積層体LM1と第二積層体LM2とが相互に貼り合された状態となる。 From this state, for example, by raising the first stacked body LM1 to approach the second stacked body LM2, the spacer SP is sandwiched between both the stacked bodies LM1 and LM2, and is applied in advance on the first stacked body LM1. The sealing material of the seal portion S that has been set is brought into contact with the second stacked body LM2 (see FIG. 9B). Here, by solidifying the sealing material (for example, when a UV curable resin is used for the sealing material, by irradiating and curing with ultraviolet rays), the sealing portion S is formed between the stacked bodies LM1 and LM2, and The laminated bodies LM1 and LM2 that come into contact with the sealing material are adhesively fixed to the seal portion S. As a result, the first stacked body LM1 and the second stacked body LM2 are bonded to each other via the seal portion S.

また、平面視した状態でシール部Sが格子状をなすように、シール材を塗布しておくことにより、第一積層体LM1と第二積層体LM2とを相互に貼り合わせた状態では、第一積層体LM1と第二積層体LM2、及びシール部Sとで囲まれた領域に、複数の液晶層2が形成される(図9(b)を参照)。このようにして、第一積層体LM1と第二積層体LM2との間に複数の液晶層2を形成してなる液晶ディスプレイパネル1の集合体13が組立てられる(図10を参照)。 Further, by applying the sealing material so that the seal portion S has a lattice shape in a plan view, in the state where the first stacked body LM1 and the second stacked body LM2 are bonded to each other, A plurality of liquid crystal layers 2 are formed in a region surrounded by the one stacked body LM1, the second stacked body LM2, and the seal portion S (see FIG. 9B). In this way, the assembly 13 of the liquid crystal display panel 1 including the plurality of liquid crystal layers 2 formed between the first stacked body LM1 and the second stacked body LM2 is assembled (see FIG. 10).

このような組立て工程S6では、第一積層体LM1は、例えば、第一積層体LM1の搬入及び搬出を行う搬送装置のローラや、第一積層体LM1を上昇させるための昇降部材等によって下方から支持される。 In such an assembling step S6, the first stacked body LM1 is fed from below by, for example, the rollers of the transport device for loading and unloading the first stacked body LM1 and the elevating member for raising the first stacked body LM1. Supported.

(S7)切り出し工程
その後、集合体13を所定の切断予定線(例えば図7〜図9の一点鎖線で示す切断予定線)に沿って切断することにより、一対のガラス基板GS1,GS2を互いに貼り合わせてなる複数の液晶ディスプレイパネル1の基体1aが切り出される(図11を参照)。然る後、基体1aの両面に偏光板10,11を固定し、必要な電子部品等を装着することにより、図1に示す液晶ディスプレイパネル1が作製される。
(S7) Cutting Step After that, the pair of glass substrates GS1 and GS2 are attached to each other by cutting the assembly 13 along a predetermined planned cutting line (for example, a planned cutting line shown by a dashed line in FIGS. 7 to 9). The substrates 1a of the plurality of liquid crystal display panels 1 that are combined are cut out (see FIG. 11). After that, the polarizing plates 10 and 11 are fixed on both surfaces of the base body 1a, and necessary electronic parts and the like are mounted, so that the liquid crystal display panel 1 shown in FIG. 1 is manufactured.

以上の説明から分かるように、本発明に係る電子デバイスの製造方法では、作製工程S2の実施時以前に、保護膜付きガラス基板(保護膜12が形成された第一マザーガラスGM1)を準備しておき、このガラス基板の保護膜12が形成された側を支持された状態で、液晶ディスプレイパネル1を作製する。これにより、例えば、第一マザーガラスGM1に積層部を形成する工程や、第一マザーガラスGM1を用いた液晶ディスプレイパネル1の組立て工程S6時、液晶ディスプレイパネル1の集合体13を切断予定戦に沿って切断する時に、第一マザーガラスGM1側と各種支持部材との間に擦れが生じた場合であっても、保護膜12により第一マザーガラスGM1の表面に傷が付くのを防止又は抑制することができる。よって、この第一マザーガラスGM1を切り出してなる第一ガラス基板GS1を有する液晶ディスプレイパネル1の強度を確保することが可能となる。 As can be seen from the above description, in the method for manufacturing an electronic device according to the present invention, the glass substrate with the protective film (the first mother glass GM1 on which the protective film 12 is formed) is prepared before the production step S2. The liquid crystal display panel 1 is manufactured while the side of the glass substrate on which the protective film 12 is formed is supported. As a result, for example, during the step of forming a laminated portion on the first mother glass GM1 or the assembling step S6 of the liquid crystal display panel 1 using the first mother glass GM1, the assembly 13 of the liquid crystal display panel 1 is scheduled to be cut. Even when the first mother glass GM1 side and various supporting members are rubbed when cut along, the protective film 12 prevents or suppresses the surface of the first mother glass GM1 from being scratched. can do. Therefore, it becomes possible to secure the strength of the liquid crystal display panel 1 having the first glass substrate GS1 obtained by cutting out the first mother glass GM1.

また、本実施形態のように、第一積層体LM1(第一マザーガラスGM1)が搬送装置のローラで支持されて搬送される場合においては、ローラと第一マザーガラスGM1側との間の摩擦は避けられないが、上述のように、第一マザーガラスGM1の支持側(他方の表面GM1b側)に保護膜12を形成しておくことで、位置決め停止時の擦れにより第一マザーガラスGM1に傷が付くのを防止又は抑制することが可能となる。 Further, when the first laminated body LM1 (first mother glass GM1) is supported and conveyed by the rollers of the conveying device as in the present embodiment, the friction between the rollers and the first mother glass GM1 side. However, as described above, by forming the protective film 12 on the support side (the other surface GM1b side) of the first mother glass GM1, the first mother glass GM1 is rubbed by rubbing when positioning is stopped. It is possible to prevent or suppress scratching.

以上、本発明の一実施形態を説明したが、本発明に係る電子デバイスの製造方法及びガラス基板は上記例示の形態には限定されない。当該製造方法及びガラス基板は、本発明の範囲内で種々の形態をとることが可能である。 Although one embodiment of the present invention has been described above, the method for manufacturing an electronic device and the glass substrate according to the present invention are not limited to the above-described exemplary embodiments. The manufacturing method and the glass substrate can take various forms within the scope of the present invention.

例えば上記実施形態では、保護膜12を第一マザーガラスGM1の他方の表面GM1bの全面に形成した場合を例示したが、もちろんこれには限られない。組立て工程S6でのローラや昇降部材、積層部形成工程S5での第一マザーガラスGM1を支持する部材の支持形態、それらの工程の間を搬送する際に第一マザーガラスGM1を支持する部材の支持形態等に応じて、他方の表面GM1bの所定の一部に保護膜12を形成することも可能である。 For example, in the above-described embodiment, the case where the protective film 12 is formed on the entire surface of the other surface GM1b of the first mother glass GM1 has been exemplified, but the present invention is not limited to this. Of the rollers and the lifting members in the assembling step S6, the supporting form of the members that support the first mother glass GM1 in the laminated portion forming step S5, and the members that support the first mother glass GM1 when conveying between those steps. It is also possible to form the protective film 12 on a predetermined part of the other surface GM1b depending on the support form and the like.

また、上記実施形態では、支持部材としての昇降部材を上昇させて第一積層体LM1を第二積層体LM2に接近させる場合を例示したが、例えば下方から支持された状態の第一積層体LM1に対して上方から第二積層体LM2を下降させてスペーサSPを挟持してもかまわない。要は、第一積層体LM1と第二積層体LM2の相対移動によりスペーサSPを挟持可能な限りにおいて、その移動形態は任意である。 Further, in the above-described embodiment, the case where the elevating member as the support member is raised to bring the first stacked body LM1 closer to the second stacked body LM2 is illustrated, but the first stacked body LM1 in a state of being supported from below, for example. On the other hand, the second stacked body LM2 may be lowered from above to sandwich the spacer SP. In short, the movement form is arbitrary as long as the spacer SP can be sandwiched by the relative movement of the first stacked body LM1 and the second stacked body LM2.

また、上記実施形態では、準備工程S1で第一マザーガラスGM1のみに保護膜12を形成した場合を例示したが、もちろん双方のマザーガラスGM1,GM2に保護膜12を形成してもよい。 Further, in the above-described embodiment, the case where the protective film 12 is formed only on the first mother glass GM1 in the preparation step S1 is illustrated, but it goes without saying that the protective film 12 may be formed on both mother glasses GM1 and GM2.

また、上記実施形態では、一方のマザーガラスGM1に保護膜12を形成すると共に、双方のマザーガラスGM1,GM2に第一及び第二積層部3,4を形成して第一及び第二積層体LM1,LM2を形成し、作製した積層体LM1,LM2同士を貼り合わせて液晶ディスプレイパネル1の集合体13を作製した後、切り出しを行って液晶ディスプレイパネル1を得る手順を例示したが、もちろんこれ以外の手順を踏むことも可能である。例えば図示は省略するが、最初に各マザーガラスGM1,GM2を各ガラス基板GS1,GS2に切り出した後、各ガラス基板GS1,GS2に対して積層部形成工程S5と組立て工程S6を実施してもよい。この場合、切り出しの前後何れの段階で保護膜12を形成してもかまわない。 Further, in the above embodiment, the protective film 12 is formed on one mother glass GM1, and the first and second laminated portions 3 and 4 are formed on both mother glasses GM1 and GM2 to form the first and second laminated bodies. The procedure for obtaining the liquid crystal display panel 1 by forming the LM1 and LM2 and then laminating the produced laminated bodies LM1 and LM2 to each other to produce the assembly 13 of the liquid crystal display panel 1 is illustrated. It is also possible to take steps other than. For example, although not shown, even if the mother glasses GM1 and GM2 are first cut into the glass substrates GS1 and GS2, the laminated portion forming step S5 and the assembling step S6 are performed on the glass substrates GS1 and GS2. Good. In this case, the protective film 12 may be formed before or after cutting.

また、上記実施形態では、準備工程S1でマザーガラスに保護膜12を形成し、作製工程S2で保護膜12を再度形成しない場合を例示したが、必要に応じ、作製工程S2に保護膜12を再度形成する工程を設けてもよい。 In the above embodiment, the case where the protective film 12 is formed on the mother glass in the preparation step S1 and the protective film 12 is not formed again in the preparation step S2 has been described as an example, but the protection film 12 may be formed in the preparation step S2 if necessary. A step of forming again may be provided.

また、上記実施形態では、各マザーガラスGM1,GM2として矩形状をなす枚葉状のガラス基板を例示したが、もちろんこれ以外の形態をなすマザーガラスGM1,GM2に保護膜12を形成することも可能である。例えば図示は省略するが、巻取り可能な程度に薄肉のガラス基板(ガラスフィルム)をマザーガラスとして、このガラスフィルムに保護膜12を形成してもよい。この場合、ガラスフィルムに対する保護膜12の形成工程は、いわゆるロール・ツー・ロール方式で供給されるガラスフィルムの一方の表面に対して連続的に成膜処理を施すことにより行うことができる。保護膜12を連続的に形成した後は、切断して、積層部形成工程S5、組立て工程S6を順に実施すればよい。 In addition, in the above-described embodiment, a rectangular single-wafer glass substrate is illustrated as each of the mother glasses GM1 and GM2, but it is of course possible to form the protective film 12 on the mother glasses GM1 and GM2 having other forms. Is. For example, although not shown, a glass substrate (glass film) that is thin enough to be wound up may be used as mother glass, and the protective film 12 may be formed on this glass film. In this case, the step of forming the protective film 12 on the glass film can be performed by continuously performing a film forming process on one surface of the glass film supplied by a so-called roll-to-roll method. After the protective film 12 is continuously formed, the protective film 12 may be cut and the laminated portion forming step S5 and the assembling step S6 may be sequentially performed.

また、以上の説明では、電子デバイスとして液晶ディスプレイパネル1を作製する場合を例示したが、もちろん他の電子デバイスを製造する場合にも本発明を適用することは可能である。例えば図示は省略するが、電子デバイスとして有機EL照明(素子)やタッチパネルを作製する場合に本発明を適用することも可能である。 Further, in the above description, the case where the liquid crystal display panel 1 is manufactured as an electronic device is illustrated, but the present invention can be applied to the case of manufacturing other electronic devices. For example, although not shown, the present invention can be applied to the case of manufacturing an organic EL lighting (element) or a touch panel as an electronic device.

以下、本発明の有用性を立証するための実験内容について説明する。 The contents of the experiment for demonstrating the usefulness of the present invention will be described below.

本実施例では、ガラス基板として、日本電気硝子株式会社製OA−11 0.5tを用意し、保護膜用の材料として、AFコート剤であるダイキン工業株式会社製オプツールUF503とスリーエムジャパン株式会社製Novec72DEとの混合液を使用した。上記ガラス基板を洗浄した後、上記混合液をガラス基板にスプレー塗布し、ふき取った後、常温乾燥、次いで150℃で30分の熱処理を実施することで、ガラス基板の表面に保護膜としてのAFコートを形成した状態のガラス基板を得た。このガラス基板と、三共理化学株式会社製ラッピングフィルムLWFS−30#4000の間の静摩擦係数を、JIS K 7125:1999に準拠して測定したところ、0.26であった。 In the present example, OA-11 0.5t manufactured by Nippon Electric Glass Co., Ltd. was prepared as a glass substrate, and as a material for the protective film, AF tool, Daikin Industries Co., Ltd. OPTOOL UF503 and 3M Japan Co., Ltd. A mixture with Novec 72DE was used. After the glass substrate is washed, the mixed solution is spray-coated on the glass substrate, wiped off, dried at room temperature, and then heat-treated at 150° C. for 30 minutes to perform AF as a protective film on the surface of the glass substrate. A glass substrate with a coat formed was obtained. The static friction coefficient between the glass substrate and the wrapping film LWFS-30#4000 manufactured by Sankyo Rikagaku Co., Ltd. was measured according to JIS K 7125:1999, and it was 0.26.

これに対して、上記ガラス基板に何らの保護膜を形成しないもの(上記ガラス基板)を用意した。このガラス基板の静摩擦係数を、上述の方法で測定したところ、0.59であった。 On the other hand, a glass substrate having no protective film formed thereon (the glass substrate) was prepared. When the coefficient of static friction of this glass substrate was measured by the above-mentioned method, it was 0.59.

保護膜付きのガラス基板(実施例)と、保護膜無しのガラス基板(比較例)に対して、製造時に生じる傷を再現する目的で、加傷試験を行った。加傷試験は、三共理化学株式会社製ラッピングフィルムLWFS−30#4000を各ガラス基板の表面に擦り付けることで行った。保護膜付きのガラス基板については、保護膜が形成された側に上記ラッピングフィルムを擦り付けることで加傷試験を行った。この際の条件は、面荷重500g、移動速度3m/min、擦り回数10往復とした。加傷後の保護膜付きガラス基板を実施例1とした。また、加傷後の保護膜無しのガラス基板を比較例1とした。 A scratch test was performed on a glass substrate with a protective film (Example) and a glass substrate without a protective film (Comparative Example) for the purpose of reproducing scratches generated during manufacturing. The scratch test was performed by rubbing a wrapping film LWFS-30#4000 manufactured by Sankyo Rikagaku Co., Ltd. on the surface of each glass substrate. For the glass substrate with the protective film, a scratch test was conducted by rubbing the above wrapping film on the side on which the protective film was formed. The conditions at this time were a surface load of 500 g, a moving speed of 3 m/min, and a rubbing frequency of 10 reciprocations. The glass substrate with a protective film after scratching was set as Example 1. In addition, a glass substrate without a protective film after scratching was used as Comparative Example 1.

上述した三種類のガラス基板(実施例、比較例)に対して、リングオンリング試験における破壊荷重を測定した。この際の条件は、ピストン側リングの径寸法12.5mm、支持側リングの径寸法25mm、ピストン側リングの下降速度0.5mm/sとした。上記加傷試験及びリングオンリング試験を各ガラス基板につき30枚ずつ実施し、測定した破壊荷重[N]の中央値を評価値とした。 Breaking loads in a ring-on-ring test were measured for the above-mentioned three types of glass substrates (Examples and Comparative Examples). The conditions at this time were a diameter of the piston side ring of 12.5 mm, a diameter of the support side ring of 25 mm, and a descending speed of the piston side ring of 0.5 mm/s. The above-mentioned scratch test and ring-on-ring test were carried out 30 times for each glass substrate, and the median value of the measured breaking load [N] was taken as the evaluation value.

試験結果を表1に示す。比較例の結果から、ガラス基板の表面に傷を付けると、破壊荷重は大幅に低下することが分かる。これに対して、実施例である保護膜付きのガラス基板の場合、加傷後のリングオンリング試験においても相対的に優れた破壊強度(破壊荷重)を示した。このことから、保護膜により製造時の傷が付きにくくなっており、これにより破壊強度の低下が抑制されるものと考えられる。

Figure 2020101616
The test results are shown in Table 1. From the results of the comparative example, it is understood that when the surface of the glass substrate is scratched, the breaking load is significantly reduced. On the other hand, in the case of the glass substrate with the protective film as the example, relatively excellent breaking strength (breaking load) was shown even in the ring-on-ring test after scratching. From this, it is considered that the protective film makes it difficult for scratches to be produced at the time of manufacturing, and thereby suppresses the decrease in breaking strength.
Figure 2020101616

1 液晶ディスプレイパネル
1a 液晶ディスプレイパネルの基体
2 液晶層
3,4 積層部
5,8 電極層
6,9 配向膜
7 カラーフィルタ層
10,11 偏光板
12 保護膜
13 液晶ディスプレイパネルの集合体
GM1,GM2 マザーガラス
GS1,GS2 ガラス基板
LM1,LM2 積層体
S1 準備工程
S2 作製工程
S3 取得工程
S4 保護膜形成工程
S5 積層部形成工程
S6 組立て工程
S7 切り出し工程
SP スペーサ
TCF 透明導電膜
1 Liquid Crystal Display Panel 1a Liquid Crystal Display Panel Substrate 2 Liquid Crystal Layers 3, 4 Laminated Parts 5, 8 Electrode Layers 6, 9 Alignment Film 7 Color Filter Layers 10, 11 Polarizing Plate 12 Protective Film 13 Liquid Crystal Display Panel Assembly GM1, GM2 Mother glass GS1, GS2 Glass substrate LM1, LM2 Laminated body S1 Preparation step S2 Preparation step S3 Acquisition step S4 Protective film formation step S5 Laminated part formation step S6 Assembly step S7 Cutting step SP Spacer TCF Transparent conductive film

Claims (4)

ガラス基板を準備する準備工程と、前記ガラス基板を用いて電子デバイスを作製する作製工程とを備えた電子デバイスの製造方法であって、
前記準備工程で、前記ガラス基板として、一方の表面を保護する保護膜が形成されたガラス基板を準備し、
前記作製工程で、前記ガラス基板の前記保護膜が形成された側を支持して前記電子デバイスを作製する、電子デバイスの製造方法。
A method of manufacturing an electronic device, comprising a preparatory step of preparing a glass substrate, and a manufacturing step of manufacturing an electronic device using the glass substrate,
In the preparing step, as the glass substrate, prepare a glass substrate on which a protective film for protecting one surface is formed,
A method of manufacturing an electronic device, comprising supporting the side of the glass substrate on which the protective film is formed in the manufacturing step to manufacture the electronic device.
前記保護膜は、前記ガラス基板よりも低い静摩擦係数を示す低摩擦膜である請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein the protective film is a low-friction film having a static friction coefficient lower than that of the glass substrate. 前記低摩擦膜の静摩擦係数が、0.42以下である請求項2に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 2, wherein the low friction film has a coefficient of static friction of 0.42 or less. 電子デバイス用のガラス基板であって、
非保証面に、前記非保証面を保護する保護膜が形成されているガラス基板。
A glass substrate for an electronic device,
A glass substrate having a protective film formed on the non-guaranteed surface to protect the non-guaranteed surface.
JP2018238443A 2018-12-20 2018-12-20 Electronic device manufacturing method and glass substrate Pending JP2020101616A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018238443A JP2020101616A (en) 2018-12-20 2018-12-20 Electronic device manufacturing method and glass substrate
PCT/JP2019/045458 WO2020129526A1 (en) 2018-12-20 2019-11-20 Electronic device production method and glass substrate
TW108143989A TW202035330A (en) 2018-12-20 2019-12-02 Electronic device production method and glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018238443A JP2020101616A (en) 2018-12-20 2018-12-20 Electronic device manufacturing method and glass substrate

Publications (1)

Publication Number Publication Date
JP2020101616A true JP2020101616A (en) 2020-07-02

Family

ID=71101264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018238443A Pending JP2020101616A (en) 2018-12-20 2018-12-20 Electronic device manufacturing method and glass substrate

Country Status (3)

Country Link
JP (1) JP2020101616A (en)
TW (1) TW202035330A (en)
WO (1) WO2020129526A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156921A (en) * 2000-11-21 2002-05-31 Casio Comput Co Ltd Display panel and its producing method
JP4529414B2 (en) * 2003-10-29 2010-08-25 セイコーエプソン株式会社 Method for manufacturing substrate for electro-optical device
DE102009050568A1 (en) * 2009-10-23 2011-04-28 Schott Ag Cover disk for a signaling system in railway areas and street area and for display- and traffic light device in traffic and scoreboard, comprises a substrate on which a coating is applied and which is a soda-lime glass disk
JP6431278B2 (en) * 2014-04-18 2018-11-28 株式会社ジャパンディスプレイ Substrate for display device
CN106573831B (en) * 2014-08-12 2020-04-21 康宁股份有限公司 Organic surface treatment for reducing electrostatic discharge of display glass
JP2018167524A (en) * 2017-03-30 2018-11-01 大日本印刷株式会社 Glass substrate protective film for solar cell module, and thin film type solar cell module using the same

Also Published As

Publication number Publication date
TW202035330A (en) 2020-10-01
WO2020129526A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US8907871B2 (en) Touch screen assemblies for electronic devices
US8787980B2 (en) Glass substrate of cover glass for portable electronic device, image display unit for portable electronic device, portable electronic device and method of manufacturing glass substrate of cover glass for portable electronic device
US11675234B2 (en) Display apparatus and method of manufacturing the same
JP2013190808A (en) Display element
JP2015506888A (en) Optoelectronic front plane board
US9250466B2 (en) Transreflective color filter and method for manufacturing the same and liquid crystal display device
WO2018000830A1 (en) Touch substrate and manufacturing method therefor, and touch display device
US20190243184A1 (en) Liquid crystal panel and method for manufacturing the same
US11586242B2 (en) Protection member for display device, display device including the same and method for fabricating protection member
TW200905262A (en) Color filter substrate and manufacturing thereof and liquid crystal display panel
US10048534B2 (en) Display device
JP6417616B2 (en) Handling of ultra-thin glass for display panels
WO2016119404A1 (en) Display device and manufacturing method therefor
WO2020129526A1 (en) Electronic device production method and glass substrate
US7867634B2 (en) ITO layer structure
KR101840356B1 (en) Liquid crystal display device and method of fabricating the same
JP2019155636A (en) Laminate, package body and display
CN114253024B (en) Preparation method of color film substrate and preparation method of liquid crystal display panel
CN102645784A (en) Semi transmission and semi reflection liquid crystal display panel and liquid crystal display
TWI385455B (en) Transflective pixel structure and display pane
JP2008129324A (en) Color filter and liquid crystal display device
KR101379746B1 (en) Laminated Structure of Liquid Crystal Display
KR102068171B1 (en) Liquid crystal display device and method of manufacturing the same
JP2002116433A (en) Liquid crystal display device, method for manufacturing the same and information communication appliance
JP2004053867A (en) Liquid crystal display