JP2020097231A - Method for controlling vacuum lamination apparatus, method for preventing molding failure from occurring in vacuum lamination apparatus, and vacuum lamination apparatus - Google Patents

Method for controlling vacuum lamination apparatus, method for preventing molding failure from occurring in vacuum lamination apparatus, and vacuum lamination apparatus Download PDF

Info

Publication number
JP2020097231A
JP2020097231A JP2019221888A JP2019221888A JP2020097231A JP 2020097231 A JP2020097231 A JP 2020097231A JP 2019221888 A JP2019221888 A JP 2019221888A JP 2019221888 A JP2019221888 A JP 2019221888A JP 2020097231 A JP2020097231 A JP 2020097231A
Authority
JP
Japan
Prior art keywords
vacuum
chamber
vacuum pump
laminating apparatus
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019221888A
Other languages
Japanese (ja)
Other versions
JP6938104B2 (en
Inventor
山本 隆幸
Takayuki Yamamoto
隆幸 山本
新之介 岡田
Shinnosuke Okada
新之介 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiki Seisakusho KK
Original Assignee
Meiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiki Seisakusho KK filed Critical Meiki Seisakusho KK
Publication of JP2020097231A publication Critical patent/JP2020097231A/en
Application granted granted Critical
Publication of JP6938104B2 publication Critical patent/JP6938104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a method for controlling a vacuum lamination apparatus, a method for preventing a molding failure from occurring in the vacuum lamination apparatus, and the vacuum lamination apparatus, capable of eliminating a factor for the occurrence of positional deviations to prevent the positional deviations from occurring in a lamination-molded product when the product is molded in a chamber of the vacuum lamination apparatus.SOLUTION: A method for controlling a vacuum lamination apparatus 11 includes pressurizing a lamination-molded product M by swelling or projecting an elastic film 15 or an elastic plate in a chamber C, wherein the elastic film or elastic plate is provided on at least one of an upper board 12 and a lower board 13, the upper board 12 and the lower board 13 being closed to form the chamber C capable of vacuum suction with a vacuum pump 14. In the method for controlling the vacuum lamination apparatus, the rotational frequency of the vacuum pump 14 at the start of vacuum suction in the chamber C is made smaller in rotational frequency than the rotational frequency of the vacuum pump 14 after a lapse of a predetermined time period after the chamber is closed or during the pressurization step, to prevent positional deviations from occurring in the lamination-molded product M within the chamber C.SELECTED DRAWING: Figure 4

Description

本発明は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の制御方法、真空積層装置の成形不良防止方法、および真空積層装置に関するものである。 According to the present invention, an upper plate and a lower plate are closed to form a chamber that can be vacuum-sucked by a vacuum pump, and an elastic film body or an elastic plate provided on at least one of the plates is bulged into the chamber. The present invention relates to a method for controlling a vacuum laminating apparatus that projects and presses a laminated molded article, a method for preventing defective molding of the vacuum laminating apparatus, and a vacuum laminating apparatus.

従来、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置としては特許文献1に記載されたものが知られている。そして前記特許文献1の請求項2には、真空ポンプは回転数を制御可能なインバータにより制御されることが記載されている。 Conventionally, an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber. As a vacuum laminating apparatus for pressurizing a laminated molded article by using the one described in Patent Document 1, there is known. Then, claim 2 of Patent Document 1 describes that the vacuum pump is controlled by an inverter capable of controlling the number of revolutions.

また前記特許文献1の明細書の(0023)には、弾性膜体真空吸引工程t1の真空ポンプの制御として、「真空センサ27による検出値が低真空状態のときはモータ22の操作量(回転数)も相対的に低く、高真空となるにつれてモータ22の操作量(回転数)が相対的に高くなるように制御カーブが予め定められている。」と記載されている。更に(0027)には、真空チャンバ内真空工程t2として、「弾性膜体真空吸引工程t1と同様に、真空チャンバ内真空工程t2についても当初は、図3に示されるように、真空ポンプ14はオープンループ制御により制御される。そして多段階制御のうちの最初の真空設定1の真空設定値(これに限定されないが一例として40hPa)が近づいて切換圧力pPaが検出されると、真空ポンプ14の制御は、クローズドループ制御(フィードフォーワード制御を含む)に切替えられる。」と記載されている。そして前記制御は(図3)、(図4)にも記載されている。 In addition, (0023) in the specification of the above-mentioned Patent Document 1 describes that when the detection value of the vacuum sensor 27 is in a low vacuum state, the operation amount (rotation amount of the motor 22 is The control curve is predetermined so that the operation amount (rotation speed) of the motor 22 becomes relatively high as the vacuum becomes high.” Further, in (0027), as the vacuum chamber internal vacuum step t2, “The vacuum chamber internal vacuum step t2 is initially set to the vacuum pump 14 as shown in FIG. 3 similarly to the elastic film vacuum suction step t1. When the switching pressure pPa is detected when the vacuum set value of the first vacuum setting 1 in the multi-step control (40hPa as an example, but not limited to this) is approached, the vacuum pump 14 is controlled. The control is switched to the closed loop control (including the feedforward control)." And the said control is also described in (FIG. 3) and (FIG. 4).

特開2014−18984号公報(請求項1、請求項2、0023、0027、図2、図3、図4)JP, 2014-18984, A (claim 1, claim 2, 0023, 0027, Drawing 2, Drawing 3, and Drawing 4).

ところで真空積層装置においては、チャンバ内に載置された積層成形品が成形時に位置ずれしてしまうという問題があり当初はその原因が不明であった。出願人は、この問題について検証した結果、いくつかの原因があることが判明した。そしてとりわけチャンバ形成後に真空ポンプにより真空吸引を開始時の問題が大きい要因であることを突き止めた。一方特許文献1は、成形時の真空度の制御を中心とするものであり、図4にはポンプの回転数が変更されていくことも記載されているが、チャンバ内に載置された積層成形品が成形時に位置ずれ防止を課題とすることやその対策については何ら記載されていない。 By the way, in the vacuum laminating apparatus, there is a problem that the laminated molded article placed in the chamber is misaligned during molding, and its cause was initially unknown. Applicants have examined this issue and have determined that it has several causes. Then, in particular, it was found that the problem at the time of starting vacuum suction by the vacuum pump after forming the chamber is a major factor. On the other hand, Patent Document 1 focuses on controlling the degree of vacuum at the time of molding, and although FIG. 4 also describes that the rotational speed of the pump is changed, the stacking placed in the chamber There is no description about the problem that the molded product has the problem of preventing the positional deviation during molding and its countermeasure.

そこで本発明は、真空積層装置のチャンバ内における成形時の積層成形品の位置ずれを防止するため位置ずれ発生の要因を解消することができる真空積層装置の制御装置、真空積層装置の成形不良防止方法、および真空積層装置を提供することを目的とする。 In view of this, the present invention is directed to a control device for a vacuum laminating apparatus capable of eliminating the cause of positional deviation in order to prevent positional deviation of a laminated molded product during molding in the chamber of the vacuum laminating apparatus, and prevention of defective molding of the vacuum laminating apparatus. A method and a vacuum laminating apparatus are provided.

本発明の請求項1に記載の真空積層装置の制御方法は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の制御方法において、チャンバ内での積層成形品の位置ずれを防止するために、チャンバ内の真空吸引開始時の真空ポンプの回転数を、チャンバ閉鎖後所定時間経過以降または加圧工程の真空ポンプの回転数よりも低回転数とすることを特徴とする。 In the method for controlling a vacuum laminating apparatus according to claim 1 of the present invention, an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic member provided on at least one of the plates. In a method for controlling a vacuum laminating apparatus, in which a film body or an elastic plate is bulged or projected into the chamber to press the laminated molded article, a vacuum in the chamber is used to prevent displacement of the laminated molded article in the chamber. The number of rotations of the vacuum pump at the start of suction is set to be lower than the number of rotations of the vacuum pump after a predetermined time has elapsed after closing the chamber or in the pressurizing step.

本発明の請求項2に記載の真空積層装置の制御方法は、請求項1において、連続成形中は真空ポンプを常時回転駆動させ、チャンバ閉鎖後の真空吸引開始時を含む初期真空吸引時のみ真空ポンプの回転数を低回転数とすることを特徴とする。 According to a second aspect of the present invention, in the method for controlling a vacuum laminating apparatus according to the first aspect, the vacuum pump is constantly driven to rotate during continuous molding, and vacuum is generated only during initial vacuum suction including start of vacuum suction after chamber closing. The pump is characterized in that the rotation speed is low.

本発明の請求項3に記載の真空積層装置の制御方法は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の成形不良防止方法において、チャンバ内での積層成形品の位置ずれを防止するために、チャンバ内の初期真空吸引時の少なくとも一部の真空度の制御を、複数段階の異なる目標真空度を設け時間経過とともに異なる目標真空度に向けてクローズドループ制御することを特徴とする。 According to a third aspect of the present invention, there is provided a method for controlling a vacuum laminating apparatus, wherein an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic member provided on at least one of the plates. In a method of preventing a molding defect of a vacuum laminating apparatus in which a film body or an elastic plate is bulged or projected into the chamber to press the laminated molded product, in order to prevent displacement of the laminated molded product in the chamber, The control of at least a part of the vacuum degree at the time of the initial vacuum suction is performed by providing a plurality of stages of different target vacuum degrees and performing closed loop control toward the different target vacuum degrees over time.

本発明の請求項4に記載の真空積層装置の制御方法は、請求項3において、前記初期真空吸引時における少なくとも一部の真空度のクローズドループ制御に用いる制御ゲインと、前記初期真空吸引時以外の真空化工程または加圧工程においてクローズドループ制御に用いる真空度の制御ゲインを異なる値とすることを特徴とする。 The vacuum stacking apparatus control method according to claim 4 of the present invention is the method according to claim 3, wherein a control gain used for closed loop control of at least a part of the vacuum degree at the time of the initial vacuum suction and a time other than the time of the initial vacuum suction are used. In the vacuuming process or the pressurizing process, the control gain of the vacuum degree used for the closed loop control is set to different values.

本発明の請求項5に記載の真空積層装置は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、チャンバ内での積層成形品の位置ずれを防止するために、真空ポンプからチャンバに連通される通路に緩真空吸引通路を設け、少なくともチャンバ閉鎖後の真空吸引開始時には前記緩真空吸引通路を介してチャンバ内の真空吸引を行うことを特徴とする。 According to a fifth aspect of the present invention, in the vacuum laminating apparatus, an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic film body provided on at least one of the plates. In a vacuum laminating apparatus that presses a laminated molded product by bulging or projecting an elastic plate into the chamber, in order to prevent displacement of the laminated molded product in the chamber, a passage communicating from the vacuum pump to the chamber is provided. A gentle vacuum suction passage is provided, and at least when vacuum suction is started after the chamber is closed, vacuum suction in the chamber is performed through the gentle vacuum suction passage.

本発明の請求項6に記載の真空積層装置は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、チャンバ内での積層成形品の位置ずれを防止するために、真空ポンプからチャンバに連通される通路の少なくとも一部に多孔質体からなる通路としたことを特徴とする。 According to a sixth aspect of the present invention, in the vacuum laminating apparatus, an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic film body provided on at least one of the plates. In a vacuum laminating apparatus that presses a laminated molded product by bulging or projecting an elastic plate into the chamber, in order to prevent displacement of the laminated molded product in the chamber, a passage of a passage communicated with the chamber from the vacuum pump is provided. It is characterized in that the passage is made of a porous body at least in part.

本発明の請求項7に記載の真空積層装置は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、チャンバ内での積層成形品の位置ずれを防止するために、真空積層装置の前工程で静電気力により積層成形品と搬送材の吸着を行うことを特徴とする。 In the vacuum laminating apparatus according to claim 7 of the present invention, the upper plate and the lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic film body provided on at least one of the plates. In a vacuum laminating apparatus that bulges or projects an elastic plate into the chamber to press the laminated molded article, in order to prevent displacement of the laminated molded article in the chamber, electrostatic force is applied in the previous step of the vacuum laminating apparatus. It is characterized in that the laminated molded product and the conveying material are adsorbed.

本発明の真空積層装置の制御方法は、上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の制御方法において、チャンバ内での積層成形品の位置ずれを防止するために、チャンバ内の真空吸引開始時の真空ポンプの回転数を、チャンバ閉鎖後所定時間経過以降の真空ポンプの回転数よりも低回転数とするので、成形時の積層成形品の位置ずれを防止することができる。また本発明の真空積層装置の成形不良防止方法や真空積層装置も同様の効果を備える。 A control method for a vacuum laminating apparatus according to the present invention is configured such that an upper plate and a lower plate are closed to form a chamber capable of vacuum suction by a vacuum pump, and an elastic film body or an elastic plate provided on at least one of the plates is provided. In a method for controlling a vacuum laminating apparatus for bulging or projecting into a chamber to press a laminated molded product, in order to prevent displacement of the laminated molded product in the chamber, a vacuum pump at the time of starting vacuum suction in the chamber Since the number of revolutions is set to be lower than the number of revolutions of the vacuum pump after a lapse of a predetermined time after closing the chamber, it is possible to prevent the displacement of the laminated molded product during the molding. Further, the method for preventing defective molding of the vacuum laminating apparatus and the vacuum laminating apparatus of the present invention have the same effect.

本実施形態の真空積層装置の概略説明図である。It is a schematic explanatory drawing of the vacuum laminating apparatus of this embodiment. 図1におけるA-A線の矢視図であって上盤の下面を示す図である。FIG. 2 is a view taken along the line AA in FIG. 1 and shows the lower surface of the upper plate. 本実施形態の真空積層装置の成形不良防止方法を示すフローチャート図である。It is a flowchart figure which shows the molding failure prevention method of the vacuum laminating apparatus of this embodiment. 本実施形態の真空積層装置の制御方法を示す図である。It is a figure which shows the control method of the vacuum laminating apparatus of this embodiment. 別の実施形態の真空積層装置の概略説明図である。It is a schematic explanatory drawing of the vacuum laminating apparatus of another embodiment. 更に別の実施形態の真空積層装置の概略説明図である。It is a schematic explanatory drawing of the vacuum lamination apparatus of another embodiment. 更に別の実施形態の真空積層装置の制御方法の特徴部分を示す図である。It is a figure which shows the characteristic part of the control method of the vacuum lamination apparatus of another embodiment. 従来の真空積層装置の制御方法を示す図である。It is a figure which shows the control method of the conventional vacuum laminating apparatus.

本実施形態の真空積層装置11について、図1、図2を参照して説明する。本実施形態の真空積層装置11は、上盤12と下盤13とが閉鎖されて真空ポンプ14により真空吸引可能なチャンバCが形成され、少なくともいずれか一方の盤に設けられた弾性膜体15または弾性板を前記チャンバC内に膨出または突出させて積層材と被積層材(これらを総称して成形前、成形後ともに積層成形品Mと称す)を加圧するものである。 The vacuum laminating apparatus 11 of this embodiment will be described with reference to FIGS. 1 and 2. In the vacuum laminating apparatus 11 of the present embodiment, the upper plate 12 and the lower plate 13 are closed to form a chamber C capable of vacuum suction by the vacuum pump 14, and an elastic film body 15 provided on at least one of the plates. Alternatively, the elastic plate is bulged or protruded into the chamber C to press the laminated material and the laminated material (these are collectively referred to as the laminated molded product M both before and after molding).

より具体的には、上盤12に対して下盤13が相対向して設けられており、図示しない油圧シリンダにより上盤12に対して下盤13が近接離間移動可能となっている。(なお連続成形時の上盤12に対する下盤13の型開量は僅かであるので、連続成形時の型開時に上盤12と下盤13の間に形成された間隙から目視により、チャンバC内の積層成形品Mの位置などを確認することはほぼ不可能である。)そして下盤13が前記油圧シリンダにより上昇され上盤12と下盤13が閉鎖された際に、真空ポンプ14に連通可能であって所定容積のチャンバCが形成されるようになっている。なおチャンバCを形成するための上盤12や下盤13の動作については他の方式でもよい。そして上盤12の下面と下盤13の上面の中央には加熱可能な熱板16と熱板17がそれぞれ取付けられている。下盤13の上面のうちの周辺部分の熱板17が設けられていない部分と、熱板17の上面を覆う形で弾性膜体15(シリコンゴム等の耐熱ゴムからなるダイアフラム)が取付けられている。そして弾性膜体15に周囲の部分の上側には、枠状の側壁部18が固定され、弾性膜体15は側壁部18と下盤13との間に挟まれて固定されている。また前記側壁部18の上面の上盤12と対向する面にはOリング挿入用の溝がチャンバCを取り囲むように形成され、溝にはシール部材であるOリング19が挿入されている。 More specifically, the lower plate 13 is provided so as to face the upper plate 12, and the lower plate 13 can be moved toward and away from the upper plate 12 by a hydraulic cylinder (not shown). (Note that since the die opening amount of the lower plate 13 relative to the upper plate 12 during the continuous forming is small, the chamber C can be visually observed from the gap formed between the upper plate 12 and the lower plate 13 during the mold opening during the continuous forming. It is almost impossible to confirm the position and the like of the laminated molded product M in the inside.) When the lower plate 13 is lifted by the hydraulic cylinder and the upper plate 12 and the lower plate 13 are closed, the vacuum pump 14 A chamber C which can communicate with each other and has a predetermined volume is formed. Other methods may be used for the operation of the upper plate 12 and the lower plate 13 for forming the chamber C. A heat plate 16 and a heat plate 17 capable of heating are attached to the lower surface of the upper plate 12 and the center of the upper surface of the lower plate 13, respectively. An elastic film body 15 (diaphragm made of heat-resistant rubber such as silicon rubber) is attached so as to cover the peripheral portion of the upper surface of the lower plate 13 where the heat plate 17 is not provided and the upper surface of the heat plate 17. There is. A frame-shaped side wall portion 18 is fixed to the elastic film body 15 above the peripheral portion, and the elastic film body 15 is sandwiched and fixed between the side wall portion 18 and the lower plate 13. An O-ring insertion groove is formed on the upper surface of the side wall portion 18 facing the upper plate 12 so as to surround the chamber C, and an O-ring 19 as a sealing member is inserted in the groove.

上盤12についても下盤13側の側壁部18と対向する所定幅の周辺部分には、当接部12aが設けられている。そして当接部12aにおける下盤13側と対向する面が、Oリング19との当接面となっている。従って上盤12と下盤13が当接された際に、側壁部18と当接部12aが当接されて外気から密閉可能なチャンバCが形成される。また上盤12の熱板16の表面(下面)にもシリコンゴム等の耐熱ゴムからなる弾性板20が貼着されている。図1、図2に示されるように弾性板20が貼着される熱板16と当接部12aの間の溝状の部分がチャンバC内を吸引するため真空ポンプ14に接続される管路24に連通される吸引開口部39となっている。吸引開口部39もまたチャンバCを取り囲むように形成されている。なお吸引開口部が設けられる位置は、下盤13側の弾性膜体15と側壁部18の間や、側壁部18内に設けてもよい。また本実施形態では下盤13の弾性膜体15のみがチャンバC内に膨出されるようになっているが、上盤12に膜体の裏面側に加圧空気を供給可能な弾性膜体を設け、上盤12側の弾性膜体だけがチャンバC内に膨出されるようにしてもよく、上盤12と下盤13にそれぞれ設けた弾性膜体がチャンバC内に膨出されるようにしてもよい。 Also in the upper board 12, a contact portion 12a is provided in a peripheral portion of a predetermined width facing the side wall portion 18 on the lower board 13 side. The surface of the contact portion 12a facing the lower plate 13 side is the contact surface with the O-ring 19. Therefore, when the upper plate 12 and the lower plate 13 are brought into contact with each other, the side wall portion 18 and the contact portion 12a are brought into contact with each other to form the chamber C which can be sealed from the outside air. An elastic plate 20 made of heat resistant rubber such as silicon rubber is also attached to the surface (lower surface) of the heat plate 16 of the upper plate 12. As shown in FIGS. 1 and 2, the groove-shaped portion between the heat plate 16 to which the elastic plate 20 is attached and the contact portion 12a is connected to the vacuum pump 14 for sucking the inside of the chamber C. The suction opening 39 communicates with 24. The suction opening 39 is also formed so as to surround the chamber C. The position where the suction opening is provided may be provided between the elastic film body 15 and the side wall portion 18 on the lower plate 13 side or inside the side wall portion 18. Further, in the present embodiment, only the elastic film body 15 of the lower plate 13 is designed to bulge into the chamber C, but an elastic film body capable of supplying pressurized air to the back surface side of the film body is provided on the upper plate 12. Only the elastic film bodies on the upper plate 12 side may be bulged into the chamber C, or the elastic film bodies provided on the upper plate 12 and the lower plate 13 may be bulged into the chamber C. Good.

次にチャンバC内を真空吸引する真空吸引機構と弾性膜体15を作動させる加圧機構について説明する。真空積層装置11には、上盤12と下盤13の間に形成されたチャンバC内を真空吸引可能な真空ポンプ14が設けられている。本実施形態で使用される真空ポンプ14は、インバータ21から周波数がモータ22(三相交流式誘導モータ)へ送られることにより、モータ22の回転数が変更制御されるものである。なお回転数を制御可能な真空ポンプ14のモータは、インバータ21により回転数が制御されるものに限定されず、一例としてサーボモータにより回転数が制御されるもの等でもよい。また本実施形態では真空ポンプ14は、スクリュ式のドライポンプが使用される。しかしルーツ式のドライポンプを用いたものでもよく、他の種類の真空ポンプであってもよい。また真空ポンプの数についても限定されない。 Next, a vacuum suction mechanism that vacuum-sucks the inside of the chamber C and a pressure mechanism that operates the elastic film body 15 will be described. The vacuum laminating apparatus 11 is provided with a vacuum pump 14 capable of vacuum suctioning the inside of the chamber C formed between the upper plate 12 and the lower plate 13. In the vacuum pump 14 used in this embodiment, the rotation frequency of the motor 22 is changed and controlled by sending a frequency from the inverter 21 to the motor 22 (three-phase AC induction motor). The motor of the vacuum pump 14 whose rotation speed can be controlled is not limited to the one whose rotation speed is controlled by the inverter 21, and may be, for example, a servo motor whose rotation speed is controlled. Further, in this embodiment, the vacuum pump 14 is a screw type dry pump. However, a roots type dry pump may be used, or another type of vacuum pump may be used. Also, the number of vacuum pumps is not limited.

真空ポンプ14からは、チャンバCに向けて管路23が設けられており、管路23は前記したように上盤内の管路24を経て吸引開口部39に接続されている。そして管路23の途中には該管路23を開閉可能な三方切換弁25が設けられている。そして三方切換弁25におけるチャンバCと連通可能なもう一方のポート(大気に連通される側)にはチャンバC内を真空破壊する際に使用されるサイレンサ26が取付けられている。 A pipe line 23 is provided from the vacuum pump 14 toward the chamber C, and the pipe line 23 is connected to the suction opening 39 via the pipe line 24 in the upper plate as described above. A three-way switching valve 25 capable of opening and closing the pipeline 23 is provided in the middle of the pipeline 23. A silencer 26, which is used when vacuum breaking the inside of the chamber C, is attached to the other port (the side that communicates with the atmosphere) of the three-way switching valve 25 that can communicate with the chamber C.

また管路23には、チャンバC内を含めて真空度を測定する真空センサ27が設けられている。そして真空センサ27は真空積層装置11の制御装置37に接続されている。本実施形態の制御装置37については、真空ポンプ14の回転数の制御の他、真空積層装置11の各制御を行う。また管路23から分岐して、下盤13の弾性膜体15の下方に向けて管路28が分岐している。そして管路28には該管路28を開閉可能な三方切換弁29が設けられている。 A vacuum sensor 27 for measuring the degree of vacuum in the chamber C is provided in the conduit 23. The vacuum sensor 27 is connected to the control device 37 of the vacuum laminating apparatus 11. Regarding the control device 37 of the present embodiment, in addition to controlling the rotation speed of the vacuum pump 14, each control of the vacuum laminating device 11 is performed. Further, a pipe 28 branches off from the pipe 23 and extends downward of the elastic film body 15 of the lower plate 13. The pipe 28 is provided with a three-way switching valve 29 capable of opening and closing the pipe 28.

真空積層装置11には、チャンバC内で弾性膜体15を膨出させるために弾性膜体15の下方に加圧空気を送るための加圧機構のコンプレッサ30が設けられている。そしてコンプレッサ30に接続される管路31は、前記の真空ポンプ14からの管路28と合流して、下盤13の連通孔38に接続されている。また管路31には該管路31を開閉可能な開閉弁32が設けられている。更に管路31または三方切換弁29よりも連通孔38側の管路28には空気圧センサ33が設けられている。更に管路31から大気へ連通される管路34が分岐され、管路34の途中に該は管路34を開閉する開閉弁35が設けられ、管路34の端部にはサイレンサ36が取付けられている。なお真空積層装置11の真空機構または加圧機構については、三方切換弁25,29の使用に替えて開閉弁を使用するなど、上記に限定されない。また真空センサを設ける位置や数もチャンバC内と弾性膜体15の側とに別個に設けるなどしてもよく限定されない。 The vacuum laminating apparatus 11 is provided with a compressor 30 as a pressurizing mechanism for sending pressurized air below the elastic film body 15 to swell the elastic film body 15 in the chamber C. The conduit 31 connected to the compressor 30 merges with the conduit 28 from the vacuum pump 14 and is connected to the communication hole 38 of the lower plate 13. Further, an opening/closing valve 32 capable of opening/closing the pipeline 31 is provided in the pipeline 31. Further, an air pressure sensor 33 is provided on the pipe line 31 or the pipe line 28 closer to the communication hole 38 than the three-way switching valve 29. Further, a pipeline 34 communicating with the atmosphere from the pipeline 31 is branched, an opening/closing valve 35 for opening and closing the pipeline 34 is provided in the middle of the pipeline 34, and a silencer 36 is attached to an end of the pipeline 34. Has been. Note that the vacuum mechanism or the pressurizing mechanism of the vacuum laminating apparatus 11 is not limited to the above, such as using on-off valves instead of using the three-way switching valves 25 and 29. Further, the position and number of the vacuum sensors may be provided separately in the chamber C and on the elastic film body 15 side, and there is no limitation.

また本発明にとって弾性膜体15を膨出させる加圧機構についても上記に限定されない。真空状態のチャンバCに対して、弾性膜体15の下方に常圧の大気を送ることによっても相対的な圧力差により弾性膜体15を膨出させて加圧を行うことができる。また真空積層装置についても上記に限定されず、平滑なプレス板に貼着された弾性板を油圧シリンダやサーボモータ等により前記チャンバ内に突出させて他の弾性板との間で積層成形品を加圧するものでもよい。 Further, for the present invention, the pressing mechanism for bulging the elastic film body 15 is not limited to the above. It is also possible to swell and pressurize the elastic film body 15 due to a relative pressure difference by sending atmospheric air to the chamber C in a vacuum state below the elastic film body 15. Also, the vacuum laminating apparatus is not limited to the above, and an elastic plate attached to a smooth press plate is projected into the chamber by a hydraulic cylinder, a servomotor, or the like to form a laminated molded product with another elastic plate. It may be pressurized.

次に真空積層装置11の搬送機構について説明する。図1において真空積層装置11の一側側には搬送材である下側のキャリアフィルムFの巻き出しロール(図示せず)と搬送材である上側のキャリアフィルムFの巻き出しロール(図示せず)が設けられている。これら巻き出しロールはフィルムにテンションがかけられるようにトルクモータ等を備えている。また真空積層装置11の他側側には図示しない下側のキャリアフィルムFの巻き取りロール(図示せず)と上側のキャリアフィルムFの巻き取りロール(図示せず)が設けられている。これら巻き取りロールは精度よくフィルム送りが行えるようにサーボモータ等を備えている。なお別の移動装置によりキャリアフィルムを移動させてもよい。そして真空積層装置の一側側の下側のキャリアフィルムに対して積層成形品Mの載置ステージが備えられ、真空積層装置の他側側の下側のキャリアフィルムに対して積層成形品Mの搬出ステージが備えられている。 Next, the transport mechanism of the vacuum laminating apparatus 11 will be described. In FIG. 1, one side of the vacuum laminating apparatus 11 is an unwinding roll (not shown) of the lower carrier film F, which is a carrier, and an unrolling roll (not shown) of the upper carrier film F, which is a carrier. ) Is provided. These unwinding rolls are equipped with a torque motor or the like so that tension can be applied to the film. Further, on the other side of the vacuum laminating apparatus 11, there are provided a lower roll of the carrier film F (not shown) (not shown) and a higher roll of the carrier film F (not shown). These take-up rolls are equipped with a servo motor or the like so that the film can be fed with high precision. The carrier film may be moved by another moving device. A mounting stage for the laminated molded article M is provided on the lower side carrier film on one side of the vacuum laminating apparatus, and the mounting stage for the laminated molded article M is provided on the lower side carrier film on the other side of the vacuum laminating apparatus. A carry-out stage is provided.

次に真空積層装置11の制御方法と成形不良防止方法について図3、図4、図8により説明する。そして真空積層装置11による積層成形品Mの積層成形は、バッチ式により行われ、真空状態のチャンバC内で弾性膜体15を膨出させてキャリアフィルムF上の積層成形品の積層成形が行われる。通常は下側のキャリアフィルム上の積層成形品Mの上に上側のキャリアフィルムが重ねられた状態で積層成形が行われ、積層成形品Mのフィルムなどの溶融した樹脂等が真空積層装置11の弾性板20等に付着しないようになっている。ただし上側のキャリアフィルムFは必須ではなく下側のキャリアフィルムFの上に積層成形品Mと一定長さごとに切断されたカバーフィルムを載置してもよい。 Next, the control method of the vacuum laminating apparatus 11 and the molding failure prevention method will be described with reference to FIGS. 3, 4, and 8. Then, the laminated molding of the laminated molded article M by the vacuum laminating apparatus 11 is performed in a batch system, and the elastic film body 15 is bulged in the chamber C in a vacuum state to laminate the laminated molded article on the carrier film F. Be seen. Usually, the laminated molding is performed in a state where the upper carrier film is overlaid on the laminated molded product M on the lower carrier film, and molten resin or the like of the film of the laminated molded product M is stored in the vacuum laminating apparatus 11. It does not adhere to the elastic plate 20 or the like. However, the upper carrier film F is not essential, and the laminated molded product M and the cover film cut at a constant length may be placed on the lower carrier film F.

キャリアフィルムFの種類については限定されないが、樹脂材料はポリエチレンテレフタレートやポリエステルからなる。本実施形態で使用されるキャリアフィルムFはユニチカ株式会社製のPTH25という表面が粗面加工(エンボス加工)されたキャリアフィルムである。表面が粗面加工されたキャリアフィルムのほうが積層成形品Mとの摩擦係数が大きく積層成形品Mの位置ずれを引き起こしにくい。 The type of the carrier film F is not limited, but the resin material is polyethylene terephthalate or polyester. The carrier film F used in this embodiment is a carrier film PTH25 manufactured by Unitika Ltd., the surface of which is roughened (embossed). A carrier film having a roughened surface has a larger coefficient of friction with the laminated molded product M and is less likely to cause displacement of the laminated molded product M.

真空積層装置11で成形される積層成形品Mは回路基板や半導体ウエハなどであり、これに限定されるものではないが、凹凸のある被積層材と各種フィルムが重ねられ積層成形品Mを積層するものが多い。一般的には積層成形品MはキャリアフィルムFの上に直接載置されるが、ビルドアップ基板等では積層されるフィルムを介して基板が載置されるものでもよい。またボンディングテープ付のウエアリング等の載置具にウエハ等の積層成形品Mが載せられてキャリアフィルムF上や弾性膜体15上に載置されるものでもよい。その場合は載置具を含めたものが本発明の積層成形品に相当する。 The laminated molded product M molded by the vacuum laminating apparatus 11 is a circuit board, a semiconductor wafer, or the like, but is not limited to this, and a laminated molded product M is laminated by stacking unevenly laminated materials and various films. There are many things to do. Generally, the laminated molded product M is directly placed on the carrier film F, but in a build-up substrate or the like, the substrate may be placed via a film to be laminated. Alternatively, the laminated molded product M such as a wafer may be placed on a placing tool such as a wear ring with a bonding tape and placed on the carrier film F or the elastic film body 15. In that case, the one including the mounting tool corresponds to the laminated molded article of the present invention.

これらの積層成形品Mのうち特に重量が軽いものは成形時にキャリアフィルムF上で位置ずれを起こすやすい。積層成形品Mの重量については、何g以下であると位置ずれを起こし、何g以上では位置ずれを起こさないという境界値は無いが、ここでは一般的な6インチウエハの重量である25g以下のものが位置ずれを起こす可能性が高いので25g以下を軽量と定義する。また積層成形品Mの裏面の形状や摩擦係数も位置ずれに影響を及ぼす。また1個の積層成形品MがチャンバCのセンターにキャリアフィルムFを介して停止・位置決めされ成形されるものよりも、複数の積層成形品Mが前記センター以外の位置で停止・位置決めされ成形されるもののほうが位置ずれを起こしやすい。そして成形時に積層成形品MがチャンバC内のキャリアフィルム上の載置位置(成形位置)から位置ずれし、極端な場合はキャリアフィルムF上から側方にはみ出してしまうと良好な加圧ができないため成形不良となる。 Among these laminated molded products M, those having a particularly light weight are likely to cause positional deviation on the carrier film F during molding. Regarding the weight of the laminated molded product M, there is no boundary value that the position shift occurs when the weight is less than or equal to g and the position shift does not occur when the weight is greater than or equal to the weight, but here, the weight of a general 6-inch wafer is 25 g or less. Since there is a high possibility that the object will be displaced, a weight of 25 g or less is defined as lightweight. Further, the shape of the back surface of the laminated molded article M and the coefficient of friction also affect the positional deviation. Further, a plurality of laminated molded products M are stopped and positioned and molded at positions other than the center rather than one laminated molded product M that is stopped and positioned in the center of the chamber C via the carrier film F. Things are more likely to be misaligned. When the laminated molded product M is displaced from the mounting position (molding position) on the carrier film in the chamber C during molding, and in an extreme case, it protrudes laterally from the carrier film F, it is not possible to apply good pressure. As a result, the molding becomes defective.

前記成形時の積層成形品MがキャリアフィルムF上の載置位置から位置ずれを起こす主な原因については、(1)キャリアフィルムFの移動停止時の位置ずれ、(2)チャンバ真空吸引開始時の位置ずれ、(3)チャンバ高真空化時(加圧前)の位置ずれ、(4)弾性膜体15の膨出時の位置ずれの可能性が考えられる。この点について位置ずれの原因の把握方法について図3のフローチャート図を参照して説明する。 The main causes of displacement of the laminated molded product M from the mounting position on the carrier film F at the time of molding are (1) displacement when the movement of the carrier film F is stopped, (2) when chamber vacuum suction is started. It is conceivable that there is a positional shift of (3) when the chamber is in a high vacuum (before pressurization), and (4) a positional shift when the elastic film body 15 is bulged. Regarding this point, a method of grasping the cause of the positional deviation will be described with reference to the flowchart of FIG.

まずは従来技術である図8のように1成形サイクルの間は真空ポンプ14の回転数を同じ高回転領域にして積層成形を行う(S1)。そして成形後に真空積層装置11から取り出される積層成形品Mに位置ずれ不良が見られるかを複数回調べる(S2)。この段階で位置ずれ異常が見られない場合(S2=N)は、位置ずれ不良は無いとして検証は終了する。また位置ずれ異常が見られる場合(S2=Y)は次に、手動モード等により、キャリアフィルムFを移動させて該キャリアフィルムF上の積層成形品Mを真空積層装置11の開放されたチャンバC内の成形位置まで移動させ停止させた段階で成形を中止する(S3)。そして前記停止状態で、真空積層装置11の上盤12等を退避位置まで開放し、積層成形品Mの位置ずれが発生しているかどうかを複数回確認する(S4)。この段階で位置ずれがあった場合(S4=Y)は、キャリアフィルムFの移動速度(特に停止時の加速度)を低下させるなどの対策を行い、再度、停止時に位置ずれが発生しているかを確認し、この段階での位置ずれを無くす。なお当初からキャリアフィルムFの移動速度はある程度制限して設定されているので、この段階での位置ずれはあまり多くはない。 First, as shown in FIG. 8 which is a conventional technique, during one molding cycle, the number of revolutions of the vacuum pump 14 is set to the same high rotation region to perform the lamination molding (S1). Then, it is checked a plurality of times whether the misalignment defect is observed in the laminated molded product M taken out from the vacuum laminating apparatus 11 after the molding (S2). If no misregistration is found at this stage (S2=N), it is determined that there is no misalignment and the verification ends. Further, when the positional deviation abnormality is observed (S2=Y), the carrier film F is moved by the manual mode or the like to move the laminated molded product M on the carrier film F to the opened chamber C of the vacuum laminating apparatus 11. The molding is stopped at the stage where it is moved to the inside molding position and stopped (S3). Then, in the stopped state, the upper plate 12 of the vacuum laminating apparatus 11 is opened to the retracted position, and it is checked a plurality of times whether or not the positional displacement of the laminated molded product M has occurred (S4). If there is misalignment at this stage (S4=Y), measures such as reducing the moving speed of the carrier film F (in particular, acceleration at the time of stopping) are taken, and again it is checked whether the misalignment occurs at the time of stopping. Check and eliminate the misalignment at this stage. Since the moving speed of the carrier film F is set to some extent from the beginning, the positional deviation at this stage is not so large.

一方、キャリアフィルムFの移動時および停止時に積層成形品Mの位置ずれの発生がないとき(キャリアフィルム移動停止の対策がされて位置ずれの発生が無くなった場合も含む)(S4=N)は、次に下盤13を上昇させてチャンバCを形成し、前記したように真空ポンプ14を高領域回転数で回転させたままチャンバC内の真空吸引を開始する。そして所定の短時間経過または所定の中間真空度に到達するまでの時間(前記を総称して初期真空吸引時という)が終了した時点で、弾性膜体15による加圧は行わず、ゆっくりとチャンバC内の真空度を下げて常圧に戻して成形を停止する。そして真空積層装置11の上盤12等を開放する(S6)。そして初期真空吸引後のキャリアフィルム上の積層成形品Mが位置ずれを起こしているかどうか、できれば複数回確認する(S7)。そして前記においてキャリアフィルムF上の積層成形品Mの位置ずれが確認された場合(S7=Y)は、初期真空吸引時のチャンバC内に発生した気流の影響が疑われるので、次に前記初期真空吸引時の真空ポンプ14の回転数を低回転領域(例えば2000min-1)にして、再び(S6)(S7)のステップを行う。(または成形完了まで成形を行い積層成形品Mの位置ずれが解消されているかを確認してもよいが位置ずれがあれば(S6,S7)を行う必要がある。)そしてまた初期真空吸引時の真空ポンプ14の回転を高回転領域(高回転数)から低回転領域(低回転数)に切換える対策を行ったことにより積層成形品Mの位置ずれが解消されていたら本発明を実施していることが確認できる。 On the other hand, when there is no displacement of the laminated molded article M when the carrier film F is moved or stopped (including the case where the displacement of the carrier film F is eliminated by the measure to stop the movement of the carrier film) (S4=N), Then, the lower plate 13 is raised to form the chamber C, and as described above, the vacuum suction in the chamber C is started while the vacuum pump 14 is rotated at the high rotation speed. Then, at the time when a predetermined short time elapses or a time until the predetermined intermediate vacuum degree is reached (these are collectively referred to as initial vacuum suction time), the elastic film body 15 does not pressurize, and the chamber slowly moves. The degree of vacuum in C is reduced to normal pressure and the molding is stopped. Then, the upper plate 12 of the vacuum laminating apparatus 11 is opened (S6). Then, whether or not the laminated molded product M on the carrier film after the initial vacuum suction is displaced is checked, if possible, a plurality of times (S7). When the displacement of the laminated molded product M on the carrier film F is confirmed (S7=Y) in the above, the influence of the air flow generated in the chamber C at the time of initial vacuum suction is suspected. The number of rotations of the vacuum pump 14 at the time of vacuum suction is set to a low rotation range (for example, 2000 min-1), and the steps of (S6) and (S7) are performed again. (Alternatively, it is possible to perform molding until the completion of molding to check whether the positional deviation of the laminated molded product M has been resolved, but if there is positional deviation, it is necessary to perform (S6, S7).) If the displacement of the laminated molded article M is eliminated by taking measures to switch the rotation of the vacuum pump 14 from the high rotation area (high rotation speed) to the low rotation area (low rotation speed), the present invention is implemented. Can be confirmed.

初期真空吸引後の積層成形品Mの位置ずれの発生がないとき(初期真空吸引時の真空ポンプ14の回転数を低回転領域に変更する対策をした結果、位置ずれが無くなった場合も含む)(S7=N)は、弾性膜体15による加圧時(特に加圧開始時の膨出による)に位置ずれが発生している公算が高いので、弾性膜体15に初期に送り込む加圧エアの圧力を低くして加圧カーブを緩くするなどの対策を行う(S9)。そして再度連続成形を行い積層成形品Mの位置ずれを確認する(S2) When there is no displacement of the laminated molded product M after the initial vacuum suction (including the case where the displacement has disappeared as a result of taking measures to change the rotation speed of the vacuum pump 14 during the initial vacuum suction to a low rotation region) Since (S7=N) is highly likely to cause a positional deviation during pressurization by the elastic film body 15 (especially due to swelling at the start of pressurization), the pressurized air initially sent to the elastic film body 15 is used. The pressure is reduced to make the pressurizing curve looser (S9). Then, continuous molding is performed again to confirm the positional deviation of the laminated molded product M (S2).

なお真空化工程におけるチャンバC内が高真空化時(成形時の真空度に近づける真空化)の位置ずれの可能性も考えられなくはないが、検証の結果では、高真空化時の積層成形品Mの位置ずれの発生は確認できなかったので、図3のフローチャートからは除外している。このように本発明ではどの段階で積層成形品の位置ずれが発生しているか原因を突き止め対策を行うことができる。 It should be noted that there is a possibility that the chamber C in the vacuuming process may be misaligned during high vacuuming (vacuuming that approaches the vacuum level during molding), but the results of verification show that laminated molding during high vacuuming is performed. Since it was not possible to confirm the occurrence of displacement of the product M, it is excluded from the flowchart of FIG. As described above, in the present invention, it is possible to find out the cause of the positional deviation of the laminated molded product at which stage and take a countermeasure.

上記の検証の結果では、成形時の積層成形品の位置ずれは真空ポンプ14によりチャンバC内を初期真空吸引時に発生する比率がかなり高いことが判明した。その理由としては初期真空吸引時にチャンバC内に気流が発生することと、それに伴うキャリアフィルムFのバタつきが考えられる。また気流やキャリアフィルムFのバタつきの影響は積層成形品Mの重量が軽量である場合や吸引開口部39の近く(センター以外)に載置された場合により発生しやすい。 As a result of the above verification, it has been found that the positional deviation of the laminated molded product at the time of molding is considerably high at the time of initial vacuum suction in the chamber C by the vacuum pump 14. The reason for this is considered to be that an air flow is generated in the chamber C during the initial vacuum suction, and the flapping of the carrier film F accompanying it. In addition, the influence of air flow and flapping of the carrier film F is likely to occur when the weight of the laminated molded product M is light or when it is placed near the suction opening 39 (other than the center).

次に前記の積層成形品Mの位置ずれの対策を行った真空積層装置11の制御方法について、特に真空吸引機構の真空ポンプ14の作動とチャンバC内の真空化を中心に説明する。図4に示されるように真空積層装置11の連続成形中は真空ポンプ14を常時回転駆動させている。真空ポンプ14は、運転と停止を繰り返すと潤滑油の逆流などにより故障の原因となるからである。真空積層装置11の下盤13が下方に型開きされ、チャンバCが開放された状態で、巻き出しロールと巻き取りロール間にわたされたキャリアフィルムFの載置ステージに載置されていた未成形の積層成形品Mの真空積層装置11内へ搬入されキャリアフィルムFを介して載置される。また同時に真空積層装置11で成形が完了した積層成形品Mが真空積層装置11から外部の搬出ステージへ移動される。 Next, a control method of the vacuum laminating apparatus 11 which has taken measures against the positional deviation of the above-mentioned laminated molded product M will be described particularly focusing on the operation of the vacuum pump 14 of the vacuum suction mechanism and the vacuuming of the chamber C. As shown in FIG. 4, during continuous molding of the vacuum laminating apparatus 11, the vacuum pump 14 is constantly driven to rotate. This is because if the vacuum pump 14 is repeatedly operated and stopped, it may cause a failure due to backflow of lubricating oil or the like. The lower platen 13 of the vacuum laminating apparatus 11 is opened downwardly and the chamber C is opened, and the carrier film F placed between the take-up roll and the take-up roll has not been placed on the stage. The molded laminated molded product M is carried into the vacuum laminating apparatus 11 and placed via the carrier film F. At the same time, the laminated molded product M, which has been molded by the vacuum laminating apparatus 11, is moved from the vacuum laminating apparatus 11 to an external carry-out stage.

この際、真空積層装置11の真空吸引機構は、三方切換弁25を閉として真空ポンプ14とチャンバCの間を閉鎖した状態で、三方切換弁29を開として真空ポンプ14と弾性膜体15の下方の間を連通させる。そして弾性膜体15の下方の熱板17との間の部分を真空吸引する。熱板17と弾性膜体15を密着させて弾性膜体15に熱を伝達するために真空ポンプ14の回転数は高回転領域(真空ポンプにより回転数は異なりこれに限定されるものではないが本実施形態では最高回転数の6,000mim-1)であることが望ましい。 At this time, the vacuum suction mechanism of the vacuum laminating apparatus 11 opens the three-way switching valve 29 and closes the vacuum pump 14 and the chamber C by closing the three-way switching valve 25 to close the vacuum pump 14 and the elastic film body 15. Make communication between the lower parts. Then, the portion between the elastic film body 15 and the lower heating plate 17 is vacuumed. In order to bring the heat plate 17 and the elastic film body 15 into close contact with each other to transfer heat to the elastic film body 15, the rotation speed of the vacuum pump 14 is in a high rotation range (the rotation speed is different depending on the vacuum pump, but is not limited to this). In the present embodiment, it is desirable that the maximum rotation speed be 6,000 mim-1).

次に積層成形品Mの真空積層装置11への搬入が完了後に、下盤13が上昇されて上盤12と下盤13の間にOリング19により外周がシールされたチャンバCが形成される(この際まではチャンバC内は当然大気圧である)と、次にチャンバC内の真空化工程を開始する。チャンバC内の真空吸引に関しては三方切換弁29を閉として真空ポンプ14と弾性膜体15の下方の間の管路28を閉鎖し、次に三方切換弁25を開として真空ポンプ14とチャンバCの間の管路23、24を連通させる。このチャンバ閉鎖後の真空吸引開始時から所定時間について本願では初期真空吸引時と称する。チャンバを閉鎖したばかりのチャンバCは未だ常圧であるから、チャンバC内の大気が管路23,24内に流入し、真空ポンプ14側に設けられている真空センサ27の検出値は、一旦上昇する。その際にチャンバC内では空気移動とともに気流が発生する。 Next, after the loading of the laminated molded product M into the vacuum laminating apparatus 11 is completed, the lower platen 13 is raised to form a chamber C between the upper platen 12 and the lower platen 13 the outer periphery of which is sealed by an O-ring 19. (Until this time, the pressure in the chamber C is, of course, atmospheric pressure), and then the vacuuming process in the chamber C is started. Regarding the vacuum suction in the chamber C, the three-way switching valve 29 is closed to close the conduit 28 between the vacuum pump 14 and the lower part of the elastic film body 15, and then the three-way switching valve 25 is opened to open the vacuum pump 14 and the chamber C. The conduits 23 and 24 between the two are connected. A predetermined time from the start of vacuum suction after the chamber is closed is referred to as initial vacuum suction in the present application. Since the chamber C, which has just closed the chamber, is still at normal pressure, the atmosphere in the chamber C flows into the pipelines 23 and 24, and the detected value of the vacuum sensor 27 provided on the vacuum pump 14 side is once. Rise. At that time, an air flow is generated in the chamber C as the air moves.

この初期真空吸引時の真空ポンプ14の回転数を低回転領域(これに限定されるものではないが本実施形態では2,000mim-1)に低下させる。低下させるタイミングは真空ポンプ14とチャンバCの連通(三方切換弁25開)させた真空吸引開始時と同時でもよく、僅かに直前(例えば数秒前以内)でもよい。チャンバC内に急激な気流が発生しない限度においてチャンバCの連通直後(例えば0.03秒後)でも真空ポンプ14の回転数を低回転領域に低下させるものでも構わないが、それらも真空吸引開始)時に(略同時)に真空ポンプ14の回転を低回転領域にするという範囲に含まれる。なおこの真空ポンプ14を低回転領域で作動させる際の回転数は、加圧工程等での真空ポンプ14を高回転領域で作動させる際の回転数に対して、一例として10%〜50%とすることが好ましい。また初期真空吸引時にチャンバCの真空度とは関係なく真空ポンプ14の回転数を制御するものにおいて、真空ポンプ14の回転数が徐々に高回転になるようにスロープ制御するものや回転数が多段階で高回転になるように多段制御するものであってもよい。 The rotation speed of the vacuum pump 14 at the time of this initial vacuum suction is reduced to a low rotation region (though not limited to this, 2,000 mim-1 in this embodiment). The timing of lowering may be the same as the start of vacuum suction when the communication between the vacuum pump 14 and the chamber C (three-way switching valve 25 is opened) is started, or may be slightly before (for example, within a few seconds). Immediately after the communication of the chamber C (for example, after 0.03 seconds), the number of rotations of the vacuum pump 14 may be reduced to a low rotation region as long as a rapid air flow is not generated in the chamber C, but they also start vacuum suction. ) At the same time (approximately at the same time), the rotation of the vacuum pump 14 is included in the range of low rotation. The rotation speed when operating the vacuum pump 14 in the low rotation region is, for example, 10% to 50% with respect to the rotation speed when operating the vacuum pump 14 in the high rotation region in the pressurizing step or the like. Preferably. Further, in the case of controlling the number of rotations of the vacuum pump 14 regardless of the degree of vacuum of the chamber C at the time of initial vacuum suction, there are many cases where slope control is performed so that the number of rotations of the vacuum pump 14 gradually becomes high and the number of rotations is large. Multi-stage control may be performed so that the rotation speed is high at each stage.

そして所定時間、真空ポンプ14を低回転領域で回転させ、チャンバC内の初期真空吸引を行う。その結果、常時高回転省域で真空ポンプ14を回転、または特許文献1のように2段階に真空度を制御するものであっても最初の真空度を目指して真空ポンプ14を作動させるものとの比較において、チャンバC内における吸引開口部39に向けての気流は相対的に弱いものとなる。その結果、気流によるキャリアフィルムFのバタつきが抑制される。または下側のキャリアフィルムFと上側のキャリアフィルムFの間から積層成形品Mの吸出しが抑制される。真空ポンプ14を低回転領域で回転させるチャンバ閉鎖後の所定時間は、これに限定されるものではないが、0.3秒ないし5.0秒が望ましい。真空化工程において真空ポンプ14を低回転領域で回転させる時間をある程度長くし成形可能な真空度にまで到達する時間が僅かに長くなったとしても、並行してチャンバC内における積層成形品Mを輻射熱等により加熱する時間も必要なのでトータルの成形時間としてはそれほど長くならない場合が殆どである。ただし余りに低回転領域での初期真空吸引時間が長くなり過ぎると、成形可能な真空度に到達するのが遅くなり、成形サイクルが長くなってしまう。 Then, the vacuum pump 14 is rotated in the low rotation region for a predetermined time to perform the initial vacuum suction in the chamber C. As a result, the vacuum pump 14 is always rotated in a high rotation saving area, or even if the vacuum degree is controlled in two stages as in Patent Document 1, the vacuum pump 14 is operated aiming at the first degree of vacuum. In comparison, the airflow toward the suction opening 39 in the chamber C is relatively weak. As a result, flapping of the carrier film F due to the air flow is suppressed. Alternatively, suction of the laminated molded article M is suppressed from between the lower carrier film F and the upper carrier film F. The predetermined time after closing the chamber for rotating the vacuum pump 14 in the low rotation region is not limited to this, but is preferably 0.3 to 5.0 seconds. Even if the time for rotating the vacuum pump 14 in the low rotation region is lengthened to some extent in the vacuuming process and the time required to reach a vacuum degree at which molding is possible becomes slightly longer, the laminated molded product M in the chamber C is concurrently processed. In most cases, the total molding time does not become so long because it requires heating time by radiant heat or the like. However, if the initial vacuum suction time in the low rotation region is too long, the vacuum level at which molding can be performed is delayed and the molding cycle becomes long.

そして真空化工程においてチャンバ閉鎖後所定時間経過以降は、真空ポンプ14の回転数をそれ以前と同じ高回転領域(一例として6,000min-1)とし、チャンバC内の真空吸引を加速継続する。なお前記チャンバ閉鎖後所定時間経過以降は、チャンバC内はある程度減圧(中真空度まで減圧)されているので、真空ポンプ14の回転数を高回転領域に変更してもチャンバC内に強い気流は発生しない。その結果、キャリアフィルムFのバタつき等による積層成形品Mの位置ずれはほぼ発生しない。 Then, in the vacuuming process, after a lapse of a predetermined time after the chamber is closed, the rotation speed of the vacuum pump 14 is set to the same high rotation region as before (6,000 min-1 as an example), and the vacuum suction in the chamber C is continued to be accelerated. After the elapse of a predetermined time after the chamber is closed, the chamber C is depressurized to some extent (depressurized to a medium vacuum degree). Therefore, even if the number of revolutions of the vacuum pump 14 is changed to a high revolution region, a strong air flow in the chamber C occurs. Does not occur. As a result, the displacement of the laminated molded product M due to the flapping of the carrier film F or the like hardly occurs.

なお本実施形態では所定時間が経過すると真空ポンプ14の回転数を切換えているが、チャンバC内または管路23,24,28の真空度を測定して真空ポンプ14の回転数を切換えるようにしてもよい。この際低回転領域の真空ポンプ14のモータの制御について特に限定しないが、真空ポンプ14のモータがインバータ制御のモータ等の場合はオープンループ制御により回転数を制御してもよく、サーボモータ等の場合はクローズドループ制御により回転数の制御をしてもよい。また図4の実施形態では初期真空吸引時はオープンループ制御またはクローズドループ制御によりスロープ状に真空度が上昇するように制御しているが、クローズドループ制御により段階的に真空度を上昇させるものでもよい。 In the present embodiment, the rotation speed of the vacuum pump 14 is switched after a predetermined time has passed. However, the rotation speed of the vacuum pump 14 is switched by measuring the degree of vacuum in the chamber C or the pipelines 23, 24, 28. May be. At this time, the control of the motor of the vacuum pump 14 in the low rotation region is not particularly limited, but when the motor of the vacuum pump 14 is an inverter-controlled motor or the like, the rotation speed may be controlled by open loop control, such as a servo motor. In this case, the rotation speed may be controlled by closed loop control. Further, in the embodiment of FIG. 4, the vacuum degree is controlled to increase in a slope shape by the open loop control or the closed loop control at the time of initial vacuum suction, but the vacuum degree may be increased stepwise by the closed loop control. Good.

具体的にはチャンバC内の真空吸引開始時からの所定時間経過するまでの初期真空吸引時の真空度の制御を、複数段階の異なる目標真空度を設け時間経過とともに異なる目標真空度に向けてクローズドループ制御する。図7は、更に別の実施形態の真空積層装置の制御方法の特徴部分である真空チャンバCの初期吸引時の制御を拡大した図である。 Specifically, the control of the degree of vacuum at the time of initial vacuum suction from the start of the vacuum suction in the chamber C to the different target degree of vacuum with the passage of time is performed by providing different target degree of vacuum at a plurality of stages. Closed loop control. FIG. 7 is an enlarged view of control at the time of initial suction of the vacuum chamber C, which is a characteristic part of the control method of the vacuum stacking apparatus according to still another embodiment.

三方切換弁25が切換えられて真空ポンプ14とチャンバC内が連通されて行われる初期真空吸引時の開始期間Aは、真空チャンバC内の大気が管路23内に流入するので真空センサ26により検出される真空度V1は一旦上昇する。本実施形態では開始期間Aの間、真空ポンプ14は、所定の真空度V2となるまで予め設定された固定的な回転数Rにより回転駆動される。この際の真空ポンプ14の回転数R1は、真空吸引によりチャンバC内に風が発生しない回転数R1が設定される。次に真空センサ26の値が所定の真空度V2となると、チャンバC内が目標真空度となるように予め設定されたスロープ時間Sの間だけスロープ制御が行われる。 During the initial period A during the initial vacuum suction performed by switching the three-way switching valve 25 and connecting the vacuum pump 14 and the inside of the chamber C, the atmosphere in the vacuum chamber C flows into the pipe line 23, so that the vacuum sensor 26 is used. The detected vacuum degree V1 once rises. In the present embodiment, during the start period A, the vacuum pump 14 is rotationally driven by a preset fixed rotation speed R until the vacuum degree V2 reaches a predetermined vacuum degree V2. At this time, the rotation speed R1 of the vacuum pump 14 is set to a rotation speed R1 at which air is not generated in the chamber C by vacuum suction. Next, when the value of the vacuum sensor 26 reaches the predetermined vacuum degree V2, the slope control is performed only for the slope time S preset so that the inside of the chamber C reaches the target vacuum degree.

スロープ制御では、スロープ時間Sの時間軸に対応して複数段階の制御段Tが設定されている。前記制御段Tは、一例として0.01秒ないし1秒、好ましくは0.1秒ないし0.5秒といった時間で次の段に移るように設けられている。そして前記各制御段Tごとに後の制御段Tになるほど徐々に真空度を高くした目標真空度が設定されている。そして実際のスロープ制御が開始されると、チャンバC内の真空度Vが次の制御段Tの目標真空度となるようにクローズドループ制御が行われる。より具体的には、真空チャンバC内の真空度は真空センサ27により検出されて制御装置37に送られる。そして前記制御装置37において実測された真空度と目標真空度の差分から次の真空ポンプ14の回転数の指令値が生成され、真空ポンプ14の回転数R2のクローズドループ制御が行われる。 In the slope control, a plurality of control stages T are set corresponding to the time axis of the slope time S. The control stage T is provided so as to move to the next stage in a time of, for example, 0.01 second to 1 second, preferably 0.1 second to 0.5 second. Then, for each control stage T, a target vacuum degree is set in which the vacuum degree is gradually increased toward the subsequent control stage T. When the actual slope control is started, the closed loop control is performed so that the vacuum degree V in the chamber C becomes the target vacuum degree of the next control stage T. More specifically, the degree of vacuum in the vacuum chamber C is detected by the vacuum sensor 27 and sent to the control device 37. Then, a command value for the next rotation speed of the vacuum pump 14 is generated from the difference between the actually measured vacuum degree and the target vacuum degree in the controller 37, and the closed loop control of the rotation speed R2 of the vacuum pump 14 is performed.

このため図7においてスロープ制御時の回転数R2で示されるように回転数は急激に上昇せず、それに伴う初期真空吸引時の急激なチャンバC内の真空度の変化やそれに伴う風の発生が回避される。そしてスロープ時間Sの終了時に目標の真空度V4に到達するとスロープ制御は終了する。なおこの複数段階の異なる目標真空度を設け時間経過とともに前記異なる目標真空度に向けてクローズドループ制御する制御は、上記したように初期真空吸引時の真空度の制御のうち前半の少なくとも一部で行われるものであればよい。また真空度Vは滑らかに上昇制御されるもの以外に多段階に上昇制御されるものでもよい。 Therefore, as shown by the rotation speed R2 at the time of slope control in FIG. 7, the rotation speed does not rise sharply, which causes a sudden change in the vacuum degree in the chamber C at the time of initial vacuum suction and the accompanying generation of wind. Avoided. When the target vacuum degree V4 is reached at the end of the slope time S, the slope control ends. It should be noted that the control for providing closed loop control toward the different target vacuum degree over time by providing different target vacuum degrees in a plurality of stages is at least a part of the first half of the control of the vacuum degree during the initial vacuum suction as described above. Anything can be done. Further, the degree of vacuum V may be controlled to be increased in multiple stages other than that which is smoothly controlled to be increased.

また図7の実施形態では、初期真空吸引時において真空度のクローズドループ制御に用いる制御ゲインと、前記初期真空吸引時以外の真空化工程または加圧工程においてクローズドループ制御に用いる真空度の制御ゲインを異なる値とすることを特徴としている。より具体的には初期真空吸引時の積分ゲインに対する比例ゲインの比率は、初期真空吸引時以外の真空化工程または加圧工程の初期真空吸引時の積分ゲインに対する比例ゲインの比率よりも高く設定されている。このことにより初期真空吸引時は真空度を急上昇させない範囲の中で真空ポンプの応答性を良好にすることが期待できる。また初期真空吸引時以外の真空化工程または加圧工程の比例ゲインに対する積分ゲインの比率は、初期真空吸引時の比例ゲインに対する積分ゲインの比率よりも高く設定されている。このことにより初期真空吸引時以外の真空化工程または加圧工程では真空ポンプを安定して回転させることが期待できる。 In the embodiment of FIG. 7, the control gain used for closed-loop control of the vacuum degree at the time of initial vacuum suction and the control gain of the vacuum degree used for closed-loop control at the vacuuming step or the pressurizing step other than the initial vacuum suction. Is characterized by different values. More specifically, the ratio of the proportional gain to the integral gain at the time of initial vacuum suction is set to be higher than the ratio of the proportional gain to the integral gain at the time of initial vacuum suction in a vacuuming process or a pressurization process other than during initial vacuum suction. ing. This can be expected to improve the responsiveness of the vacuum pump within the range in which the degree of vacuum does not rise sharply during the initial vacuum suction. Further, the ratio of the integral gain to the proportional gain in the vacuuming process or the pressurizing process other than the initial vacuum suction is set higher than the ratio of the integral gain to the proportional gain in the initial vacuum suction. Therefore, it can be expected that the vacuum pump can be stably rotated in the vacuuming process or the pressurizing process other than the initial vacuum suction.

そして図4の実施形態、図7の実施形態ともに、真空化工程の後半で真空ポンプ14を高回転領域で回転させチャンバC内が所定の真空度に到達すると、真空化工程から加圧工程に移行し、開閉弁32を開として、コンプレッサ30と弾性膜体15の下方を連通する。そのことにより弾性膜体15の下方に加圧空気が供給され、弾性膜体15がチャンバC内に膨出され、キャリアフィルムF上の積層成形品Mが前記弾性膜体15と上盤12の弾性板20との間で所定時間押圧され積層成形がされる。この積層成形の間も真空ポンプ14は高回転領域で回転される。 In both the embodiment shown in FIG. 4 and the embodiment shown in FIG. 7, when the vacuum pump 14 is rotated in the high rotation region in the latter half of the vacuuming process and the inside of the chamber C reaches a predetermined vacuum degree, the vacuuming process is changed to the pressurizing process. After the transition, the on-off valve 32 is opened and the compressor 30 and the lower part of the elastic film body 15 are communicated with each other. As a result, pressurized air is supplied below the elastic film body 15, the elastic film body 15 is bulged into the chamber C, and the laminated molded product M on the carrier film F is separated from the elastic film body 15 and the upper plate 12. The elastic plate 20 and the elastic plate 20 are pressed for a predetermined period of time to perform laminated molding. The vacuum pump 14 is rotated in the high rotation region also during the lamination molding.

そして加圧工程において所定の積層成形時間が経過すると、開閉弁32が閉鎖されて弾性膜体15の下方への加圧空気の供給が断たれる。そして開閉弁35が開放され、弾性膜体15の下方の加圧空気が大気に放出される。またほぼ同時に三方切換弁25を切換えて、チャンバC内を大気に連通させてチャンバCの真空破壊を行う。そしてチャンバC内が大気圧となると、下盤13を下降させ、チャンバCを開放する。そして上述のようにキャリアフィルムFを移動させて積層成形された積層成形品Mを真空積層装置11から取出す。またチャンバCが開放されると、開閉弁35を閉鎖し、三方切換弁25を閉、三方切換弁29を開として再び真空ポンプ14により弾性膜体15の下方の真空吸引を行う。この際の真空ポンプ14の回転数も高回転領域の同じ回転数で回転される。 Then, after a predetermined lamination molding time has elapsed in the pressurizing step, the on-off valve 32 is closed and the supply of the pressurized air below the elastic film body 15 is cut off. Then, the opening/closing valve 35 is opened, and the pressurized air below the elastic film body 15 is released to the atmosphere. At the same time, the three-way switching valve 25 is switched so that the inside of the chamber C is connected to the atmosphere and the chamber C is broken. When the inside of the chamber C becomes atmospheric pressure, the lower platen 13 is lowered and the chamber C is opened. Then, the carrier film F is moved as described above, and the laminated molded article M formed by lamination is taken out from the vacuum laminating apparatus 11. When the chamber C is opened, the on-off valve 35 is closed, the three-way switching valve 25 is closed, the three-way switching valve 29 is opened, and the vacuum pump 14 again performs vacuum suction below the elastic film body 15. At this time, the rotation speed of the vacuum pump 14 is also rotated at the same rotation speed in the high rotation region.

次に図5に示される別の実施形態の真空積層装置41について、図1の実施形態と同一部分は同一番号を使用して相違点を中心に説明する。図5の真空積層装置41の真空吸引を行う管路23、24は、真空ポンプ14を同じ高回転領域の回転数で作動され、チャンバCに連通されたとしても急速に真空吸引されない緩真空吸引管路となっている。より具体的には緩真空吸引管路は、その一部が多孔質金属、多孔質セラミック、耐熱性の多孔質樹脂や多孔質エラストマなどの多孔質体42となっている。多孔質体42は連続気孔が多く気孔率が高いものが望ましい。気孔率が高くても(一例として60%以上)、チャンバC形成後の初期真空吸引時にチャンバC内での急激な気流の発生を防止することができる。むしろ気孔率が低い(一例として20%以下)であるとチャンバCを所望の真空度に真空化する時間が長くなる畏れがある。 Next, the vacuum laminating apparatus 41 of another embodiment shown in FIG. 5 will be described focusing on the differences by using the same numbers for the same portions as the embodiment of FIG. The pipelines 23 and 24 for performing vacuum suction of the vacuum laminating apparatus 41 of FIG. 5 are operated by the vacuum pump 14 at the same rotation speed in a high rotation region, and even if the vacuum pump 14 is communicated with the chamber C, the vacuum suction is not performed rapidly. It is a pipeline. More specifically, a part of the gentle vacuum suction pipe line is a porous body 42 such as a porous metal, a porous ceramic, a heat-resistant porous resin, or a porous elastomer. The porous body 42 preferably has many continuous pores and a high porosity. Even if the porosity is high (for example, 60% or more), it is possible to prevent a rapid airflow from being generated in the chamber C during the initial vacuum suction after the formation of the chamber C. Rather, if the porosity is low (20% or less as an example), there is a fear that the time for evacuating the chamber C to a desired degree of vacuum will be long.

管路23、24において多孔質体42を設ける部分は、管路24の吸引開口部39の部分であってもよく盤面内または盤面外の管路23の一部の部分であってもよい。多孔質体42を吸引開口部39の部分かその近傍に設けることにより吸引される際の気流を細分化でき急激な気流の発生を防止することができる。その結果、成形時のキャリアフィルムF上での積層成形品Mの位置ずれの主要因を解消することができる。または管路23の内部に設けた多孔質体42を着脱可能とし、積層成形品Mが軽量物(例えば25グラム以下)であって成形時の位置ずれが発生する場合のみ多孔質体42を取り付けるようにしてもよい。 The portion of the conduits 23, 24 where the porous body 42 is provided may be the portion of the suction opening 39 of the conduit 24 or a part of the conduit 23 inside or outside the board surface. By providing the porous body 42 at the portion of the suction opening 39 or in the vicinity thereof, it is possible to subdivide the airflow when sucked and prevent a sudden airflow from being generated. As a result, it is possible to eliminate the main cause of positional deviation of the laminated molded product M on the carrier film F during molding. Alternatively, the porous body 42 provided inside the conduit 23 can be attached and detached, and the porous body 42 is attached only when the laminated molded product M is a lightweight product (for example, 25 grams or less) and a displacement occurs during molding. You may do it.

また緩真空吸引管路は、不織布等によるフィルタを取付けたものであってもよい。更には緩真空吸引管路は、真空レギュレータ等の装置を取付け、初期真空吸引時は真空吸引の程度を低下させるものでもよい。更に管路23は、切換バルブにより緩真空吸引通路と従来からの一般的な断面積が確保された真空吸引管路が切換えられるものでもよい。その場合チャンバC内の初期真空吸引時には多孔質体42やフィルタ等が設けられた緩真空吸引管路を介して吸引を行い、所定の真空度に到達または所定時間が経過したら切換バルブを切換えて断面積が確保された吸引通路から吸引を行うものでもよい。なお図5の実施形態とその応用形態についても初期真空吸引時に真空ポンプ14の回転数を低下させる制御を組み合わせてもよい。 Further, the gentle vacuum suction pipe line may have a filter made of non-woven fabric or the like attached thereto. Further, a device such as a vacuum regulator may be attached to the gentle vacuum suction pipe line to reduce the degree of vacuum suction during the initial vacuum suction. Further, the pipe line 23 may be such that a mild vacuum suction passage and a vacuum suction pipe passage having a conventional general cross-sectional area are switched by a switching valve. In that case, at the time of initial vacuum suction in the chamber C, suction is performed through a gentle vacuum suction pipe line provided with the porous body 42, a filter and the like, and the switching valve is switched when a predetermined vacuum degree is reached or a predetermined time has elapsed. The suction may be performed from a suction passage having a secured cross-sectional area. It should be noted that in the embodiment of FIG. 5 and its application, control for decreasing the rotation speed of the vacuum pump 14 at the time of initial vacuum suction may be combined.

次に図6に示される更に別の実施形態の真空積層装置51について、図1の実施形態と同一部分は同一番号を使用して相違点を中心に説明する。図6の真空積層装51では、真空積層装置51に積層成形品Mを搬送する前工程である載置位置52に静電気により積層成形品Mと搬送材である下キャリアフィルムFまたは上キャリアフィルムFの吸着を行う静電気付与装置53(静電チャック)が備えられている。ここで例えば下キャリアフィルムの下方から静電気付与装置53に電圧を印可することにより、下キャリアフィルムFには逆電圧が生じる。このことにより下キャリアフィルムFに対して積層成形品Mが静電気力により貼付られる。そしてまた下キャリアフィルムFに対して積層成形品Mの間には真空状態に近い状態が発生する。 Next, a vacuum laminating apparatus 51 of still another embodiment shown in FIG. 6 will be described focusing on different points by using the same numbers for the same parts as those of the embodiment of FIG. In the vacuum laminating apparatus 51 of FIG. 6, the laminated molded article M and the lower carrier film F or the upper carrier film F, which is a conveying material, are electrostatically charged to the mounting position 52 which is a pre-process for conveying the laminated molded article M to the vacuum laminating apparatus 51. Is provided with a static electricity applying device 53 (electrostatic chuck) for adsorbing. Here, for example, by applying a voltage to the static electricity imparting device 53 from below the lower carrier film, a reverse voltage is generated in the lower carrier film F. As a result, the laminated molded product M is attached to the lower carrier film F by electrostatic force. Further, a state close to a vacuum state occurs between the laminated molded article M and the lower carrier film F.

次に積層成形品Mを静電気付与装置53のある前工程の部分から真空積層装置51に移動させたとしても下キャリアフィルムFに対して積層成形品Mの間の静電気力または真空状態に近い状態はすぐには解消されない。従って下キャリアフィルムFに対する積層成形品Mの吸着状態は、積層成形品Mが真空積層装置51の内部に下キャリアフィルムFの移動とともに搬送され、チャンバCが形成され、真空吸引が開始されるまで持続される。そのため真空ポンプ14とチャンバCを連通させて真空吸引開始時の積層成形品Mの位置ずれが防止できる。本実施形態については真空吸引開始時の真空ポンプ14の回転数を低下させると、より一層確実に位置ずれの防止ができるが、積層成形品Mの種類によっては、真空ポンプ14の回転数は従来通りであっても位置ずれの防止ができる。 Next, even if the laminated molded article M is moved from the part of the previous step in which the static electricity imparting device 53 is present to the vacuum laminating apparatus 51, the electrostatic force between the laminated molded articles M with respect to the lower carrier film F or a state close to a vacuum state. Is not resolved immediately. Therefore, the adsorption state of the laminated molded product M to the lower carrier film F is maintained until the laminated molded product M is transported inside the vacuum laminating apparatus 51 along with the movement of the lower carrier film F, the chamber C is formed, and the vacuum suction is started. Be sustained. Therefore, the vacuum pump 14 and the chamber C can be communicated with each other to prevent the displacement of the laminated molded product M at the start of vacuum suction. In the present embodiment, if the rotation speed of the vacuum pump 14 at the start of vacuum suction is reduced, the positional deviation can be prevented more reliably. However, depending on the type of the laminated molded article M, the rotation speed of the vacuum pump 14 is the same as that of the conventional one. Positional deviation can be prevented even in the street.

なお真空積層装置51での積層成形後の後工程において、キャリアフィルムFから積層成形品Mの剥離が難しい場合は、後工程に除電装置を備え付けてもよい。また場合によって静電気付与装置53(静電チャック)は、真空積層装置51自体の例えば下盤13に設けてもよい。各例において静電気付与装置53(静電チャック)は、静電気の発生方法を工夫することにより、殆どの基板や半導体等の積層成形品Mに使用可能である。しかしながら静電気が積層成形品Mに影響を及ぼす場合は、この方法以外の方法により積層成形品Mの位置ずれ防止を行うことが望ましい。 When it is difficult to separate the laminated molded product M from the carrier film F in the post-process after the lamination molding in the vacuum laminating apparatus 51, a static eliminator may be provided in the post-process. In some cases, the static electricity imparting device 53 (electrostatic chuck) may be provided, for example, on the lower plate 13 of the vacuum laminating device 51 itself. In each example, the static electricity imparting device 53 (electrostatic chuck) can be used for most laminated molded articles M such as substrates and semiconductors by devising a method of generating static electricity. However, when static electricity affects the laminated molded product M, it is desirable to prevent the positional displacement of the laminated molded product M by a method other than this method.

本発明については、一々列挙はしないが上記した実施形態のものに限定されず、上記した実施形態を掛け合わせたものや、当業者が本発明の趣旨を踏まえて変更を加えたものについても、適用されることは言うまでもないことである。本実施形態ではキャリアフィルム上の積層成形品Mの位置ずれ防止について記載したが、本発明はキャリアフィルムを介さずに積層成形品MをチャンバC内に載置されるものについても適用される。その場合、初期真空吸引時にキャリアフィルムのバタつきは発生しないが、積層成形品Mが非常に軽量であると特にセンター以外の載置位置の積層成形品Mに気流による位置ずれが発生する可能性がある。 The present invention is not listed one by one, but is not limited to the above-described embodiments, and those obtained by multiplying the above-described embodiments and those modified by those skilled in the art in view of the spirit of the present invention, It goes without saying that it applies. In the present embodiment, the prevention of the positional deviation of the laminated molded article M on the carrier film has been described, but the present invention is also applied to the case where the laminated molded article M is placed in the chamber C without the carrier film. In that case, fluttering of the carrier film does not occur at the time of initial vacuum suction, but if the laminated molded product M is extremely lightweight, there is a possibility that displacement will occur due to the air flow in the laminated molded product M at the mounting position other than the center. There is.

11,41,51 真空積層装置
12 上盤
13 下盤
14 真空ポンプ
15 弾性膜体
22 モータ
23,24 管路
27 真空センサ
37 制御装置
39 吸引開口部
42 多孔質体
53 静電気付与装置
C チャンバ
F 上キャリアフィルム、下キャリアフィルム(搬送材)
M 積層成形品
11, 41, 51 Vacuum stacking device 12 Upper plate 13 Lower plate 14 Vacuum pump 15 Elastic film body 22 Motor 23, 24 Pipe line 27 Vacuum sensor 37 Control device 39 Suction opening 42 Porous body 53 Static electricity imparting device C Chamber F upper Carrier film, lower carrier film (transport material)
M laminated molding

Claims (7)

上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の制御方法において、
チャンバ内での積層成形品の位置ずれを防止するために、
チャンバ内の真空吸引開始時の真空ポンプの回転数を、チャンバ閉鎖後所定時間経過以降または加圧工程の真空ポンプの回転数よりも低回転数とすることを特徴とする真空積層装置の制御方法。
A chamber capable of vacuum suction by a vacuum pump is formed by closing an upper plate and a lower plate, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber to be laminated. In the control method of the vacuum laminating apparatus for pressurizing the molded product,
In order to prevent displacement of the laminated molded product in the chamber,
A method for controlling a vacuum laminating apparatus, characterized in that the rotation speed of the vacuum pump at the start of vacuum suction in the chamber is set lower than the rotation speed of the vacuum pump after a predetermined time has elapsed after closing the chamber or in the pressurizing step. ..
連続成形中は真空ポンプを常時回転駆動させ、チャンバ閉鎖後の真空吸引開始時を含む初期真空吸引時のみ真空ポンプの回転数を低回転数とすることを特徴とする請求項1に記載の真空積層装置の制御方法。 The vacuum pump according to claim 1, wherein the vacuum pump is constantly driven during continuous molding, and the rotation speed of the vacuum pump is set to a low rotation speed only during initial vacuum suction including the start of vacuum suction after the chamber is closed. Laminating apparatus control method. 上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置の成形不良防止方法において、
チャンバ内での積層成形品の位置ずれを防止するために、
チャンバ内の初期真空吸引時の少なくとも一部の真空度の制御を、複数段階の異なる目標真空度を設け時間経過とともに前記異なる目標真空度に向けてクローズドループ制御することを特徴とする真空積層装置の制御方法。
A chamber capable of vacuum suction by a vacuum pump is formed by closing an upper plate and a lower plate, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber to be laminated. In a method for preventing defective molding of a vacuum laminating apparatus that pressurizes molded products,
In order to prevent displacement of the laminated molded product in the chamber,
A vacuum laminating apparatus characterized in that at least a part of the vacuum degree during initial vacuum suction in the chamber is controlled by closed loop control toward different target vacuum degrees with the lapse of time by providing a plurality of different target vacuum degrees. Control method.
前記初期真空吸引時における少なくとも一部の真空度のクローズドループ制御に用いる制御ゲインと、前記初期真空吸引時以外の真空化工程または加圧工程においてクローズドループ制御に用いる真空度の制御ゲインを異なる値とすることを特徴とする請求項3に記載の真空積層装置の制御方法。 The control gain used for closed loop control of at least a part of the vacuum degree at the time of the initial vacuum suction and the control gain of the vacuum degree used for closed loop control at the vacuuming step or the pressurization step other than the initial vacuum suction are different values. The method for controlling a vacuum laminating apparatus according to claim 3, wherein: 上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、
チャンバ内での積層成形品の位置ずれを防止するために、
真空ポンプからチャンバに連通される通路に緩真空吸引通路を設け、
少なくともチャンバ閉鎖後の真空吸引開始時には前記緩真空吸引通路を介してチャンバ内の真空吸引を行うことを特徴とする真空積層装置。
A chamber capable of vacuum suction by a vacuum pump is formed by closing an upper plate and a lower plate, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber to be laminated. In a vacuum laminating device that pressurizes molded products,
In order to prevent displacement of the laminated molded product in the chamber,
Provide a gentle vacuum suction passage in the passage that communicates from the vacuum pump to the chamber,
A vacuum stacking apparatus, wherein vacuum suction is performed in the chamber via the gentle vacuum suction passage at least when vacuum suction is started after the chamber is closed.
上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、
チャンバ内での積層成形品の位置ずれを防止するために、
真空ポンプからチャンバに連通される通路の少なくとも一部に多孔質体からなる通路としたことを特徴とする真空積層装置。
A chamber capable of vacuum suction by a vacuum pump is formed by closing an upper plate and a lower plate, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber to be laminated. In a vacuum laminating device that pressurizes molded products,
In order to prevent displacement of the laminated molded product in the chamber,
A vacuum laminating apparatus characterized in that at least a part of a passage communicating with a chamber from a vacuum pump is made of a porous body.
上盤と下盤とが閉鎖されて真空ポンプにより真空吸引可能なチャンバが形成され、少なくともいずれか一方の盤に設けられた弾性膜体または弾性板を前記チャンバ内に膨出または突出させて積層成形品を加圧する真空積層装置において、
チャンバ内での積層成形品の位置ずれを防止するために、
真空積層装置の前工程で静電気力により積層成形品と搬送材の吸着を行うことを特徴とする真空積層装置。
A chamber capable of vacuum suction by a vacuum pump is formed by closing an upper plate and a lower plate, and an elastic film body or an elastic plate provided on at least one of the plates is bulged or projected into the chamber to be laminated. In a vacuum laminating device that pressurizes molded products,
In order to prevent displacement of the laminated molded product in the chamber,
A vacuum laminating apparatus characterized in that a laminated molded product and a carrier material are attracted by electrostatic force in the preceding step of the vacuum laminating apparatus.
JP2019221888A 2018-12-14 2019-12-09 Control method of vacuum stacking device and vacuum stacking device Active JP6938104B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018234621 2018-12-14
JP2018234621 2018-12-14

Publications (2)

Publication Number Publication Date
JP2020097231A true JP2020097231A (en) 2020-06-25
JP6938104B2 JP6938104B2 (en) 2021-09-22

Family

ID=71106837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221888A Active JP6938104B2 (en) 2018-12-14 2019-12-09 Control method of vacuum stacking device and vacuum stacking device

Country Status (1)

Country Link
JP (1) JP6938104B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521260A (en) * 2021-03-18 2023-05-24 ゴンヤン アイティーティー シーオー.,エルティーディー. Vacuum forming machine with pre-blowing lower chamber
WO2023176130A1 (en) * 2022-03-16 2023-09-21 株式会社日本製鋼所 Laminate molding system and laminate molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138512A (en) * 1982-02-10 1983-08-17 Hitachi Cable Ltd Production of composite material
JP2003270609A (en) * 2002-03-19 2003-09-25 Fujitsu Ltd Apparatus for producing assembled substrate and method for producing assembled substrate
JP2014018984A (en) * 2012-07-13 2014-02-03 Meiki Co Ltd Vacuum lamination device, and method for controlling vacuum lamination device
JP2017001229A (en) * 2015-06-08 2017-01-05 ニッコー・マテリアルズ株式会社 Vacuum lamination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138512A (en) * 1982-02-10 1983-08-17 Hitachi Cable Ltd Production of composite material
JP2003270609A (en) * 2002-03-19 2003-09-25 Fujitsu Ltd Apparatus for producing assembled substrate and method for producing assembled substrate
JP2014018984A (en) * 2012-07-13 2014-02-03 Meiki Co Ltd Vacuum lamination device, and method for controlling vacuum lamination device
JP2017001229A (en) * 2015-06-08 2017-01-05 ニッコー・マテリアルズ株式会社 Vacuum lamination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023521260A (en) * 2021-03-18 2023-05-24 ゴンヤン アイティーティー シーオー.,エルティーディー. Vacuum forming machine with pre-blowing lower chamber
JP7370619B2 (en) 2021-03-18 2023-10-30 ゴンヤン アイティーティー シーオー.,エルティーディー. Vacuum forming machine with pre-blowing lower chamber
WO2023176130A1 (en) * 2022-03-16 2023-09-21 株式会社日本製鋼所 Laminate molding system and laminate molding method

Also Published As

Publication number Publication date
JP6938104B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6938104B2 (en) Control method of vacuum stacking device and vacuum stacking device
US4850806A (en) Controlled by-pass for a booster pump
JP7245768B2 (en) LAMINATE SYSTEM AND METHOD OF CONTROLLING THE LAMINATE SYSTEM
KR20060105658A (en) Applicator device
JP6368882B1 (en) Control method of gate valve
JP4926661B2 (en) Film-like resin laminating apparatus and film-like resin laminating method using the same
TWI698342B (en) Sheet sticking device and sticking method
JP2022050807A (en) Laminate molding system
JP2009252953A (en) Vacuum processing apparatus
JP4779004B2 (en) Vacuum suction device and molded product take-out machine equipped with vacuum suction device
JP5645226B2 (en) Vacuum lamination apparatus and control method of vacuum lamination apparatus
TWI790073B (en) Laminate forming system and lamination forming method
JP6759790B2 (en) Gate valve, vacuum processing device and control method of vacuum processing device
JP5153013B2 (en) Press apparatus and press method
JP6598521B2 (en) Vacuum lamination method
JP5004189B2 (en) Vacuum degree control mechanism and degree control method of vacuum chamber
JP2007319960A (en) Vacuum sucker, conveying apparatus and molded product ejector
JP4699644B2 (en) Bonding device and bonding method
JP2010207902A (en) Vacuum press apparatus and vacuum press method
US20110083788A1 (en) Substrate bonding apparatus and substrate bonding method
JP2003097428A (en) Vacuum pump controller
JPWO2009044469A1 (en) Tape bonding method and electronic component manufacturing method
JP7061598B2 (en) Mold removal system and molding removal method
CN115315346B (en) Microstructure manufacturing apparatus and microstructure manufacturing method
JP7002696B2 (en) Coating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210630

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6938104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150