JP2020095979A - 固体酸化物形燃料電池モジュール - Google Patents

固体酸化物形燃料電池モジュール Download PDF

Info

Publication number
JP2020095979A
JP2020095979A JP2020046325A JP2020046325A JP2020095979A JP 2020095979 A JP2020095979 A JP 2020095979A JP 2020046325 A JP2020046325 A JP 2020046325A JP 2020046325 A JP2020046325 A JP 2020046325A JP 2020095979 A JP2020095979 A JP 2020095979A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
fuel cell
heat
module container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020046325A
Other languages
English (en)
Other versions
JP6882568B2 (ja
Inventor
文雄 坪井
Fumio Tsuboi
文雄 坪井
昌之 川村
Masayuki Kawamura
昌之 川村
陽祐 赤木
Yosuke Akagi
陽祐 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura SOFC Technology Co Ltd
Original Assignee
Morimura SOFC Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura SOFC Technology Co Ltd filed Critical Morimura SOFC Technology Co Ltd
Priority to JP2020046325A priority Critical patent/JP6882568B2/ja
Publication of JP2020095979A publication Critical patent/JP2020095979A/ja
Application granted granted Critical
Publication of JP6882568B2 publication Critical patent/JP6882568B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】モジュール容器外壁に設けられた断熱材の寸法バラツキによる放熱を抑え、従来よりも高い断熱性能を保有する固体酸化物形燃料電池モジュールを提供する。【解決手段】直方体状のモジュール容器と、モジュール容器の内部に酸化剤ガスと燃料ガスにより発電する複数の燃料電池セルと、を備えた固体酸化物形燃料電池モジュールにおいて、モジュール容器のそれぞれの外壁面に対応して設けられ、板状の複数の第1断熱材と、固体酸化物形燃料電池モジュールの最外壁を構成し、第1断熱材を補強する部材と、を備え、モジュール容器の上面視において、第1断熱材は製造上で生じる第1断熱材の寸法のバラツキによって第1断熱材間に隙間が生じないようにモジュール容器の外壁面に接して設置されているとともに、部材は外圧によって第1断熱材の寸法のバラツキを吸収する寸法バラツキ吸収部材である。【選択図】図6

Description

本発明は、内部に燃料電池セルを備えた燃料電池モジュールを包囲する断熱材に関し、特に固体酸化物形燃料電池モジュールに関する。
次世代のクリーンな発電装置として、発電効率の高い燃料電池と、この燃料電池を稼動するための補機類とを備えた燃料電池装置の開発が活発化している。燃料電池としては、固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)、アルカリ電解質形燃料電池(AFC)、直接形燃料電池(DFC)等が知られている。
特にSOFCは、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を設け、一方の側に燃料ガス、他方の側に空気や酸素等の酸素含有ガスを供給することで高温で動作する燃料電池である。一般的に、固体酸化物形燃料電池へ供給する燃料ガスは都市ガスや天然ガスを改質して生成する。都市ガス等を燃料ガスへ変換する燃料改質器は高温で加熱する必要があるが、SOFCの動作温度は約700〜1000℃と、他の燃料電池と比較して高温状態での運転となるため、その排気ガスを使って燃料改質器の加熱を行うことができる。つまり、SOFCは別途外部から燃料改質器を加熱するための熱を与える必要がなく、高いエネルギー効率を得ることができるという利点を有する。
ところで、内部に固体酸化物形燃料電池セルを収容した燃料電池モジュール(以下、モジュール容器と呼ぶこともある)では、その内部に収容された燃料電池セルは高温で作動するものであるため、モジュール容器外に熱を放出してしまうと、モジュール容器の内部の温度が低下してしまい、エネルギー効率が低下してしまう。このことから、燃料電池モジュールは、モジュール容器外部へ熱を放出することによって引き起こしてしまうエネルギー効率の低下を防止するために、燃料電池モジュール容器の外壁面を断熱材で覆い、動作中の燃料電池モジュールから熱が散逸することを抑制することが求められる。
例えば特許文献1では、複数の燃料電池セルを内部に収容した直方体形状のモジュール容器に対して、上面視において対向するモジュール容器の何れか2辺側の板状の断熱材で他の2辺側の板状の断熱材を挟むように、モジュール容器の周囲に断熱材を密接させて覆うことでジュール容器から熱が散逸することを抑制するものが開示されている(特許文献1の図3参照)。
また、モジュール容器外壁面に配設された断熱材の外壁面を金属板等の非変形部材によって包囲することによって断熱材を補強し、組み立てや輸送の際などに生じる断熱材の破損を抑制することが一般的に知られている。
特開2014−229518号
このように、高温動作で稼動する燃料電池装置に用いる断熱材は、燃料電池装置のエネルギー効率を最大化する点において重要な機能を果たすものである。このため、断熱材の設置の際に生じたわずかな隙間であっても放熱パスを形成してしまうことになり、エネルギー効率は低下してしまう。ここで、断熱材は例えば生成した断熱部材をウォータージェット等により所望の寸法に切断加工する。しかし、板状に切断される断熱材は、その製造バラツキにより断熱材の実寸値には夫々寸法バラツキが生じてしまうことは避けられない。そこで、一般的には寸法公差が設定され、許容範囲内での誤差を当然含むものとして取り扱われている。断熱材の配置は、モジュール容器に密着させた接触配置することが断熱性能の観点から望ましいが、このような断熱材を複数配置してモジュール容器周囲を覆う場合には、モジュール容器と接して配置しながら、さらに各断熱材どうしを当接させてモジュール容器の周囲を完全に覆うことは事実上困難であった。
すなわち、特許文献1の構成では、上面視において対向するモジュール容器の何れか2辺側の断熱材が他の2辺側の断熱材を挟むように設けられているため、モジュール容器の上面視において、挟まれた2辺側の各断熱材の寸法バラツキによって、断熱材の接触部には微小な隙間が生じることとなってしまう。
そのため、モジュール容器の熱が断熱材の寸法バラツキにより生じた隙間から逃げてしまうことによって、不要な放熱が生じてエネルギー効率の低下に繋がってしまうことが問題となる。
また、断熱材間の隙間をなくすための方法として、一つの断熱材をモジュール容器外壁面の形状に合わせて成形することによって、複数の断熱材間で生じてしまう隙間からの放熱を防ぐことが考えられる。しかしこの場合、モジュール容器外壁の形状に合わせた加工が困難であることやコストが高くなってしまうことから現実的ではない。
以上のことから、本発明は上記の課題を解決し、モジュール容器外壁に設けられた断熱材の寸法バラツキによる放熱を抑え、従来よりも高い断熱性能を保有する固体酸化物形燃料電池モジュールを提供することを目的とする。
そこで、本明細書で開示する発明の構成の一態様として、直方体状のモジュール容器と、燃料電池セルと、を備えた固体酸化物形燃料電池モジュールにおいて、モジュール容器のそれぞれの外壁面に対応して設けられ、板状の複数の第1断熱材と、固体酸化物形燃料電池モジュールの最外壁を構成し、第1断熱材を補強する部材と、を備え、モジュール容器の上面視において、第1断熱材は製造上で生じる第1断熱材の寸法のバラツキによって第1断熱材間に隙間が生じないように複数の第1断熱材はモジュール容器外壁面の4辺に接して囲むように設けられており、モジュール容器の外壁面の4辺のうちの何れか1辺である第1辺に位置する第1断熱材は長辺側がモジュール容器外壁面と接しており、第1辺に隣接する第2辺に位置する第1断熱材は短辺側が第1辺の第1断熱材の長辺側と接しており、第2辺に隣接する第3辺の第1断熱材の短辺側は第2辺に位置する第1断熱材の長辺側と接しており、第3辺及び第1辺に隣接する第4辺の第1断熱材の短辺側は第3辺の第1断熱材の長辺側と接しており、第3辺及び第1辺に隣接する第4辺の第1断熱材の長辺側は第1辺の第1断熱材の短辺側と接するようにモジュール容器の周囲に設けられモジュール容器の外壁面に接して設置されているとともに、部材は外圧によって第1断熱材の寸法のバラツキを吸収する寸法バラツキ吸収部材であることが好ましい。
なお、本件発明において「板状」とは、直方体状であることを指し、直方体状のモジュール容器に密接させるものであるため少なくともモジュール容器に接する面は平坦であることを要するものである。但し、その長さや厚みは適宜設計するものであり、また各種配管や各種センサ、着火装置等の引き出しのためにくりぬく開孔があるものを除外するものではない。
また、本件発明において「製造上生じる寸法のバラツキ」とは、第1断熱材の寸法についての設計値あるいは製造目標値と実際に加工された実寸値との間に生じる差を指すものである。また、製造上規定された製造誤差や寸法許容値、寸法公差などは、「製造上生じる寸法のバラツキ」の存在を推認するものである。
ここで、直方体形状のモジュール容器を板状の第1断熱材で覆う際には、モジュール容器の上面視において、第1断熱材間に隙間が生じないように配置することによって、寸法バラツキの影響をモジュール容器外壁面に配置した第1断熱材の外周側に集めることができ、第1断熱材の寸法バラツキにより生じる隙間からの放熱を抑制することができる。その一方で、第1断熱材外周側に寸法バラツキによる影響を集めたため、第1断熱材外壁面をさらに金属板等の非変形部材によって覆った場合には、第1断熱材外周に生じた寸法差の部分と非変形部材の内壁面との間に空間が生じてしまう。つまり、第1断熱材間の隙間を形成させないようにすることによって断熱性能は向上するが、第1断熱材の接触部からは微量に放熱してしまうため、接触部の先に空間が形成されてしまうと放熱空間として機能してしまうという新たな課題が生じてしまう。
そこで、このように構成された本件発明によれば、各第1断熱材の寸法バラツキがモジュール容器外壁面に配置された第1断熱材の外周側に生じるように第1断熱材を配置するとともに、さらにその第1断熱材の外壁面で外圧によって各第1断熱材の寸法バラツキに合わせて第1断熱材外壁面に配置された寸法バラツキ吸収部材を変形させている。この寸法バラツキ吸収部材の変形は、第1断熱材の形状に合わせて密接して変形する、すなわちバラツキを吸収するように変形する。それにより、寸法バラツキの影響のためにモジュール第1断熱材外周と第1断熱材外壁との間に形成される放熱空間を埋めることができ、第1断熱材の外壁面と寸法バラツキ吸収部材との間には放熱空間が形成させず、確実に放熱を抑制することが可能になる。
また、一般的に断熱材は脆く、割れや欠けが生じた断熱材は、その部分から放熱してしまい、通常と比較して断熱性能が低下してしまう。本件発明によれば、モジュール容器外壁面に配置された第1断熱材の外周側を寸法バラツキ吸収部材が覆うように設けられているため、第1断熱材を保護することが可能となり、輸送や組み立ての際の取り扱い等による第1断熱材の割れ・欠けを防ぎ、不要な放熱を防ぐことができる。
また、本明細書で開示する発明の構成の一態様として、寸法バラツキ吸収部材は第2断熱材であることが好ましい。
このように構成された本件発明によれば、寸法バラツキ吸収部材は断熱材であるため、寸法バラツキによってモジュール容器外壁側に配置された第1断熱材の外周側に生じてしまう放熱空間を断熱材で埋めることができる。したがって、空間形成による放熱を抑制しつつ、第1断熱材と第2断熱材とによる2重構造とすることで、さらに断熱性能を向上させることができる。
また、本明細書で開示する発明の構成の一態様として、寸法バラツキ吸収部材は、固定部材によって外方から第1断熱材に固定されており、固定部材は外圧を与えることが好ましい。
このように構成された本件発明によれば、固定部材はモジュール容器に配置された第1断熱材外壁に設けられた寸法バラツキ吸収部材同士を固定しながら外圧を常に寸法バラツキ吸収部材に与え続けることができる。そのため、時間経過とともに放熱空間が形成されることはなく、永続的な断熱性能の維持及び向上が可能となる。
また、本明細書で開示する発明の構成の一態様として、モジュール容器の上面視において、複数の第1断熱材はモジュール容器外壁面の4辺に接して囲むように設けられており、モジュール容器の外壁面の4辺のうちの何れか1辺である第1辺に位置する第1断熱材は長辺側がモジュール容器外壁面と接しており、第1辺に隣接する第2辺に位置する第1断熱材は短辺側が第1辺の第1断熱材の長辺側と接しており、第2辺に隣接する第3辺の第1断熱材の短辺側は第2辺に位置する第1断熱材の長辺側と接しており、第3辺及び第1辺に隣接する第4辺の第1断熱材の短辺側は第1辺の長辺側と接するようにモジュール容器の周囲に設けられ、板状に形成された寸法バラツキ吸収部材は4辺に対応して第1断熱材に接するように、且つ端部が各第1断熱材の短辺側に位置するように複数設けられ、固定部材は寸法バラツキ吸収部材の端部に設けられていることが好ましい。
ここで、各第1断熱材同士の間で隙間が生じないように直方体形状のモジュール容器配置された場合、モジュール容器上面視において、それぞれの板状の第1断熱材の短辺側がモジュール容器の角部に位置することとなる。つまり、その端部と対向する短辺は他の第1断熱材の長辺と隙間を生じさせないように接しているため、第1断熱材の寸法バラツキの影響は長辺と接していない短辺側の端部に生じることとなる。
このように構成された本件発明によれば、配置された第1断熱材の寸法バラツキの影響が第1断熱材外周側に位置する短辺近傍で生じることとなり、寸法バラツキ吸収部材に外圧をかける固定部材を上記短辺近傍に位置するように構成している。すなわち、寸法バラツキの影響が生じる部分の近傍で外圧をかけることができるため、寸法バラツキ吸収部材が寸法バラツキに応じた形状へ変形することを促進し、放熱空間を形成させないため、燃料電池モジュールの断熱性能を向上させることができる。さらに、最外表面を構成する寸法バラツキ吸収部材の端部では放熱が起こりやすい場所であるが、端部で接する各寸法バラツキ吸収部材の端部同士をお互いに密着変形させながら固定することができるため、固定と放熱抑制とを両立し、モジュール容器の断熱性能を向上させることができる。
また、本明細書で開示する発明の構成の一態様として、固定部材は寸法バラツキ吸収部材と面接触するように、屈曲した1つの部材で構成されており、各寸法バラツキ吸収部材の端部同士が接触する角部に沿って延在する線形形状であることが好ましい。
このように構成された本件発明によれば、寸法バラツキ吸収部材を面で圧迫することができるため、圧迫方向とは垂直な方向の寸法バラツキ吸収部材の変形量を多くすることが可能になり、放熱空間の部分へ寸法バラツキ吸収部材の変形を促進することができる。さらに、線形形状であるため、接触する2つの寸法バラツキ吸収部材の接触部分全体を一つの部材で固定することができ、上記効果を接触部全体で奏することが可能となる。
また、本明細書で開示する発明の構成の一態様として、固定部材と、固定部材により固定される寸法バラツキ吸収部材の端部との間には変形許容空間が形成されていることが好ましい。
このように構成された本件発明によれば、寸法バラツキ吸収部材の端部のみから圧力を加えた場合、寸法バラツキ吸収部材の中央側が第1断熱材と離間するように変形してしまい、寸法バラツキ吸収部材の内壁面と第1断熱材の外壁面との間に放熱空間を形成してしまう恐れがある。そのため、あえて、第1断熱材端部の変形を許容する変形許容空間を寸法バラツキ吸収部材の端部よりも外側に設けて放熱空間を形成させないように構成することで、断熱性能を向上させることができる。
また、本明細書で開示する発明の構成の一態様として、第2断熱材は第1断熱材と同じ材料で構成され、第1断熱材よりも密度が小さいことが好ましい。
このように構成された本件発明によれば、断熱材において、材料が同じであれば、密度が異なっても同程度の断熱性能を有することができるため、第1断熱材と同じ断熱性能を有しながら、変形しやすく寸法バラツキを吸収することができるように寸法バラツキ吸収部材を構成することができる。
また、本明細書で開示する発明の構成の一態様として、寸法バラツキ吸収部材は、断熱材料の周囲がガラスクロスで被覆されているものであることが好ましい。
このように構成された本件発明によれば、寸法バラツキ吸収部材は変形のために圧力が加えられることとなるが、ガラスクロスが断熱材料の外表面を保護することで断熱材料の欠損をシートが防ぐことが可能となり、寸法バラツキ吸収部材(第2断熱材)の破損に起因した断熱性能の低下を抑制することができる。
また、断熱材料をガラスクロスで被覆することで断熱材の剛性を高めることができるため、第1断熱材の補強部材として別途金属板などの非変形部材を用いることが不要となり、断熱材の機能を兼備した安価な固体酸化物形燃料電池モジュールの最外壁として構成することができる。さらに断熱材料をガラスクロスで被覆した断熱材はパネルとして取り扱いが簡易なため、固体酸化物形燃料電池モジュールの製造時における作業性や組み立て性が向上する。
本発明によれば、断熱材間からの放熱を抑制することに加えて、それに対して新たに発生する放熱をも抑制することによって、モジュール容器からの放熱を抑制して断熱性能を向上させモジュール容器内部のエネルギーを効率的に利用できる燃料電池モジュールを実現することができる。
本発明の一実施形態による燃料電池モジュールの概念図を示したものである。 本発明の一実施形態による寸法バラツキ吸収部材と固定部材によって最外表面が構成された燃料電池モジュールを示す斜視図である。 本発明の一実施形態による寸法バラツキ吸収部材の配置を示す説明図である。 本発明の一実施形態による固定部材の配置を示す説明図である。 本発明の一実施形態による第1断熱材の配置を示す図2のI−I線に沿った上面視断面図である。 本発明の一実施形態によるI−I線に沿った上面視からの部分断面図である。(A)と(B)とで2パターンの寸法バラツキと寸法バラツキ吸収部材との関係を示している。 本発明の一実施例による固体酸化物形燃料電池装置を示す全体構成図である。 本発明の一実施例による固体酸化物形燃料電池装置の寸法バラツキ吸収部材を取り外した燃料電池モジュールを示す正面断面図である。 本発明の一実施例による図8のIII-III線に沿った断面図である。 本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールから断熱材及び寸法バラツキ吸収部材を取り外した状態の斜視図である。 本発明の一実施例による固体酸化物形燃料電池の燃料電池セルユニットを示す部分断面図である。 本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールにおけるガスの流れの説明するための、燃料電池モジュールを示す側面断面図である。 本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールにおけるガスの流れの説明するための、図8のIII-III線に沿った燃料電池モジュールの正面断面図である。 本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールの上部の部分断面図である。
つぎに、図1から図6を参照して、本発明の一実施形態による固体酸化物形燃料電池セルを収容した燃料電池モジュールについて説明する。
図1は本発明の一実施形態による固体酸化物形燃料電池装置を構成する燃料電池モジュール1002の簡易概念図を示している。燃料電池モジュール1002はモジュール容器1007を備え、このモジュール容器1007の外部には第1断熱材1001、寸法バラツキ吸収部材(部材)1000の順に配置されている。モジュール容器1007の内部は密閉空間であり、モジュール容器1007の下方部分である発電室1011には、燃料ガスと酸化剤ガス(以下では適宜「発電用空気」又は「空気」と呼ぶ。)とにより発電反応を行う燃料電池セル1006が配置されている。この例では、モジュール容器1007には128本の燃料電池セル1006が収容され、燃料電池セル1006の全てが直列接続されている。
モジュール容器1007内部の発電室1011の上方には、燃焼部としての燃焼室1012が形成され、この燃焼室1012で、発電反応に使用されなかった残余の燃料ガスと残余の空気とが燃焼し、排気ガス(言い換えると燃焼ガス)を生成するようになっている。また、この燃焼室1012の上方には、燃料ガスを生成する改質器1009が配置され、上記した残余ガスの燃焼熱によって改質器1009を改質反応が可能な温度となるように加熱している。
また、モジュール容器1007の内部には、上方に燃料電池セル1006を備えたマニホールド1008が発電室1011の下方に設けられている。燃料ガスは改質器1009とマニホールド1008とを繋ぐ燃料供給配管1013からマニホールド1008へと流入し、流入した燃料ガスは上方の燃料電池セル1006に均等に分配される。
さらに、モジュール容器1007は周囲を第1断熱材1001により覆われており、燃料電池モジュール1002内部の熱が、外部へ発散するのを抑制している。その第1断熱材1001内であって、モジュール容器1007の上方には、蒸発器1010が配設されている。蒸発器1010は、供給された水と排気ガスとの間で熱交換を行うことによって、水を蒸発させて水蒸気を生成し、この水蒸気と原燃料ガスとの混合ガス(以下では「燃料ガス」と呼ぶこともある。)をモジュール容器1007内の改質器1009に供給する。なお、本実施形態ではモジュール容器1007の上方に蒸発器1010を配置しているがこれに限るものではない。
つぎに、図2〜図4を参照しながら本発明の一実施形態について説明する。図2は、本発明の一実施形態による燃料電池モジュール1002の全体斜視図である。さらに、図3及び図4は寸法バラツキ吸収部材1000と固定部材1004とで構成される燃料電池モジュール1002の簡易分解図を示している。なお、ここでは、水、燃料ガス、発電用空気、温度センサ等の配管の図示は省略している。
図2に示すように燃料電池モジュール1002の最外壁は寸法バラツキ吸収部材1000と固定部材1004によって構成されており、下面をトレー1005によって覆われている。
図3に示すように、モジュール容器1007の上下面、左右、正背面の6面全面にヒュームドシリカを含有する板状(以下では直方体状と呼ぶこともある)の第1断熱材1001が配置されている。ここで、第1断熱材1001は、高圧に加圧されて高速に噴出される水流によって加工(ウォータージェット加工)されて板状に形成されている。これらの第1断熱材1001は製造上の誤差や寸法許容量の設定によりそれぞれの寸法値にはバラツキが生じることとなる。詳しくは後述するが、モジュール容器1007の左右・正背面に配置された第1断熱材1001において、第1断熱材1001の寸法バラツキの影響がモジュール容器1007に設けられた第1断熱材1001の外周側に生じるように配置されている。
ところで、一般的に断熱材は脆く、燃料電池モジュール1002の組み立ての際などに割れや欠けが発生しやすく、割れや欠けが生じた断熱材は、その部分から放熱してしまい、通常と比較して断熱性能が低下してしまう。本発明の一実施形態においては、図3に示すように第1断熱材1001の外表面において、全面に寸法バラツキ吸収部材1000が周囲を覆うように設けられている。これにより、第1断熱材1001が輸送や組み立ての際の取り扱い等により、割れや欠けが生じることを防いでいる。
また、寸法バラツキ吸収部材1000は断熱材料1000aが熱伝導性の低いガラスクロス1000b(繊維状のガラスを織り込んでシート状に加工したもの)によって周囲が覆われたもので第2断熱材として機能する(図6参照)。断熱材料1000aは第1断熱材1001と同様にヒュームドシリカを含有する板状の断熱材であるが、第1断熱材1001よりも密度が小さく構成されているため、同程度の断熱性能を持ちながら圧力に対して変形しやすいという特性を有する。
上述のように、断熱材料1000aは圧力に対して変形しやすく構成されているが、断熱材料1000aはシート状のガラスクロス1000bで周囲が覆われていることによって寸法バラツキ吸収部材1000として構成されている。このため、断熱材料1000aに圧力がかけられたとしてもガラスクロス1000bによって保護されているため、金属板などの非変形部材で周囲を覆わずとも断熱材料1000aの割れ欠けを抑制することができる。
さらに、図3、図4を参照すると、寸法バラツキ吸収部材1000の端部は曲率を有するように形成されている。これにより、第1断熱材1001の外壁面に寸法バラツキ吸収部材1000を配置させる際には、寸法バラツキ吸収部材1000は端部同士で接触することになるため、端部の曲率同士が受け部として機能して、固定する前の寸法バラツキ吸収部材1000の位置決めが容易となる。
このように、4つの寸法バラツキ吸収部材1000は各々が端部で接触しているが、その接触部を覆うように、8つの固定部材1004によってこれらの寸法バラツキ吸収部材1000が第1断熱材1007に固定されている。この固定部材1004は断面形状がL字で且つ、線形形状に形成されているため、直方体状のモジュール容器1007において、何れか2つの寸法バラツキ吸収部材1000の接触部全体を一つの固定部材1004によって固定することができる。なお、本発明の一実施形態における固定部材1004にはネジ穴が設けられており、ネジ固定されることによって第1断熱材1001に固定されているが、これに限るものではない。
ここで、モジュール容器1007の下面に配置された寸法バラツキ吸収部材1000の外表面側には、金属板によって構成され端部が上方に折り曲げられたトレー1005が配置されており、トレー1005は図3に示すように下面の周囲4辺が折り曲げられて立ち上がり、下面全体を覆うように形成されている。
つぎに、図5及び図6を参照しながら本実施形態について説明する。図5は図2におけるI-I断面のz方向からの上面視断面図である。また、図6は図2のI-I断面のz方向からの上面視部分断面図を示しており、(A)と(B)の2パターンの寸法バラツキ吸収部材1000のそれぞれの変形について示すものである。
図5を参照すると、内部に燃料電池セル1006を収容したモジュール容器1007の外周4辺には第1断熱材1001が配置されている。その第1断熱材1001のさらに外壁には4辺に対応して寸法バラツキ吸収部材1000が設けられている。なお、モジュール容器1007の内部構造の詳細については実施例にて後述するため、ここでの説明は省略する。
ここで、図5に示すように、直方体状のモジュール容器1007は4辺のうちの第1辺側の第1断熱材(第1辺の第1断熱材1001a)、第2辺側の第1断熱材(第2辺の第1断熱材1001b)、第3辺側の第1断熱材(第3辺の第1断熱材1001c)、第4辺側の第1断熱材(第4辺の第1断熱材1001d)によって、上記4辺を覆うように板状の第1断熱材1001がモジュール容器1007の外壁に配置されている。
これらの第1断熱材1001は、それぞれの寸法バラツキの影響が、モジュール容器1007の外壁面に配置された第1断熱材1001の外周側に生じるように構成されている。これを図5を参照しながら詳述すると、第1断熱材1001は長辺と短辺を有しており、第1辺の第1断熱材1001aはモジュール容器1007の外壁面と長辺で接するように設けられており、第2辺の第1断熱材1001bは短辺側が第1辺の第1断熱材1001aの長辺側と接するように設けられており、第3辺の第1断熱材1001cの短辺側は第2辺の第1断熱材1001bの長辺側と接しており、第4辺の第1断熱材1001dは短辺側が第3辺の第1断熱材1001cの長辺側と接するように、モジュール容器1007の外壁に接しながら周囲を覆うように配置されている。すなわち、各々の第1断熱材1001はモジュール容器1007に接しつつ、断熱材接触部1014で密接することとなる。
このように配置することによって、第1辺の第1断熱材1001a、第2辺の第1断熱材1001b、第3辺の第1断熱材1001c、第4辺の第1断熱材1001dはモジュール容器1007に接しながら、各第1断熱1001に寸法バラツキがあったとしてもお互いの接する部分(断熱材接触部1014)には隙間が生じることはなく、モジュール容器1007壁面からの放熱を抑制し、断熱性能を向上させることができる。
なお、本発明の一実施形態では、直方体形状のモジュール容器1007の上面視おいて、モジュール容器1007外壁面の4面を接して囲むように第1断熱材1001がそれぞれ4つ設けられているが、モジュール容器の外壁面の4辺のうちの何れか1辺に位置する板状の第1断熱材1001を複数層で構成し、その外方に寸法バラツキ吸収部材1000を配置してもよい。第1断熱材1001を複数層とすることにより、汎用の薄型の断熱材を重ねあわせて構成することによるコストの低減や、異なる断熱材を重ね合わせて構成することで断熱性能の調整などを図ることができる。
つぎに、第1断熱材1001の外壁に配置された寸法バラツキ吸収部材1000について、図5及び図6を参照しながら説明する。
図6は図2のI-I線に沿った断面を上面視したもので、第1断熱材1001の寸法のバラツキによって断熱材間に隙間が生じないようにモジュール容器1007の外壁面に接して設置された第1断熱材1001のうち、第2辺の第1断熱材1001bと第3辺の第1断熱材1001cの接触する断熱材接触部1014の部分断面図を示したものである。図6(A)は板状に形成された第2辺の第1断熱材1001bの長辺(y方向)が設計値寸法よりも小さい場合、又は第3辺の第1断熱材1001cの短辺(y方向)が設計値寸法よりも大きい場合を示している。図6(B)は板状に形成された第2辺の第1断熱材1001bの長辺(y方向)が設計値寸法よりも大きい場合、又は第3辺の第1断熱材1001cが短辺(y方向)が設計値寸法よりも小さい場合を示している。なお、本実施形態では、第2辺の第1断熱材1001bと第3辺の第1断熱材との断熱材接触部1014を例に挙げて説明するが、この部分に限るものではない。また、図6ではモジュール容器1007の内部及び、トレー1005の図示は省略している。
さらに、寸法バラツキ吸収部材1000は断熱材料1000aとガラスクロス1000bによって構成されており、第2断熱材1000としての機能も保有している。そのため、寸法バラツキ吸収部材1000を燃料電池モジュール1002の最外壁として構成しながら、第1断熱材1001とあわせて2層の断熱材として構成される。
つぎに、図6(A)及び(B)を参照すると、断熱材接触部1014は隙間が生じないように配置されているが、その一方で、モジュール容器1007の外壁側に配置した第2辺の第1断熱材1001bと第3辺の第1断熱材1001cと外周側は第1断熱材1001の寸法バラツキによって、図6の点線領域に示す放熱空間1015が形成される。
ここで、断熱材接触部1014に隙間が生じないように配置されることにより、燃料電池モジュール1002としての断熱効果は向上するものの、第1断熱材1001の壁面の熱伝導を完全に遮断することは困難であり、断熱材接触部1014の先に放熱空間1015が形成されると熱が逃げる空間として機能してしまう。
そこで、本発明の一実施形態によれば、第1断熱材1001の外壁に設けられた寸法バラツキ吸収部材1000が放熱空間1015を埋めるため、金属板などの非変形部材では生じてしまう熱の逃げ場を形成させることはなく、燃料電池モジュール1002の断熱性能を向上させることができる。
これに対して、図6を参照すると、第2辺の第1断熱材1001bと第3辺の第1断熱材1001cとの寸法バラツキによってそれらの外周は面一にならないが、第1断熱材1001の外壁には、固定部材1004からの外圧によってモジュール容器1007側に圧迫されることにより、寸法バラツキ吸収部材1000が変形し、各第1断熱材1001の寸法バラツキを吸収することができる。
つぎに、寸法バラツキ吸収部材1000、第1断熱材1001及び固定部材1004の配置関係について図5及び図6を参照しながら説明する。図6に示すように、それぞれの寸法バラツキ吸収部材1000の端部を、モジュール容器1007に配置された第2辺の第1断熱材1001bと第3辺の第1断熱材1001cとで構成される外周の角部に配置し、寸法バラツキ吸収部材1000の端部を固定部材1004によって密接させつつ第2辺の第1断熱材1001b及び第3辺の第1断熱材1001cに固定している。
ここで、断熱材接触部1014の近傍では寸法バラツキによって外周側の形状が面一ではなくなり、これが放熱空間1015を形成する要因となる。そのため、断熱材接触部1014の近傍となる、モジュール容器1007外壁に配置された第1断熱材1001の外周の角部に寸法バラツキ吸収部材1000の端部を配置し、さらに外圧を加える固定部材1004を配置することによって、寸法バラツキに合わせた変形を促進し放熱空間1015を形成させない。
さらに、固定部材1004はL字に形成されているため、板状に形成された寸法バラツキ吸収部材1000が固定部材1004と面接触している。これにより、寸法バラツキ吸収部材1001を面圧することができるため、圧迫方向(図の太字実線矢印方向)に対して略垂直な方向(図6の細字実線矢印方向)に圧力が逃げていく、すなわち放熱空間1015への変形量を多くする、ことが可能になり、第1断熱材1001の寸法バラツキの吸収を促進することができる。
また、図6に示すように寸法バラツキ吸収部材1000は第2断熱材1000aをガラスクロス1000bで覆うことによって構成される。すなわち、断熱性能を有する寸法バラツキ吸収部材1000が放熱空間1015を埋めることに加えて、第1断熱材1001とあわせて2層の断熱材をモジュール容器1007の外方に備えることなり、高い断熱性能を実現することができる。
図6(A)では、放熱空間1015が第2辺の第1断熱材1001bの短辺側に形成されることになるが、固定部材1016の圧力によって、その近傍に生じている放熱空間1015を埋めるように寸法バラツキ吸収部材1000が変形していく。また、図6(B)では放熱空間1015が第3辺の第1断熱材1001cの長辺側に形成されることになるが、固定部材1014が放熱空間1015へ向かう変形を促進するため、確実に放熱空間1015を形成させずに、断熱性能を向上させることができる。
さらに固定部材1014は固定と同時に圧力を寸法バラツキ吸収部材1000にかけ続けることになるため、時間経過とともに寸法バラツキ吸収部材1000が第1断熱材1001から離間して放熱空間1015を形成することがない。
また、本発明の一実施形態によれば、寸法バラツキ吸収部材1000の端部同士を接触させた上で、固定部材1004によってモジュール容器1007側に圧迫しているため(図6の太字実線矢印)、放熱空間1015を埋める方向に加えて、他方の寸法バラツキ吸収部材1000の端部に向かうように変形する。それにより、各々の寸法バラツキ吸収部材1000がお互いの端部を潰しあうように密着し(図6の太字実線を参照)、寸法バラツキ吸収部材1000の端部からの熱の放出を抑制し、断熱性能を向上させることができる。
さらに、寸法バラツキ吸収部材1000の端部は曲率を有しており、寸法バラツキ吸収部材1000の短辺方向の長さをdとすると、端部のRを半分の0.5dとなるように形成している。このように構成することで、図6(A)、(B)のどちらの寸法バラツキに対しても寸法バラツキ吸収部材1000の過不足が生じることを防ぎ、確実に放熱空間1015を埋めるように変形させることが可能になる。
一方で、寸法バラツキ吸収部材1000は固定部材1004によって端部から圧迫されるため、寸法バラツキ吸収部材1000は端部から中央の方向への変形が促進されることになる。図6を参照して説明すると、第2辺の第1断熱材1001bは端部からy方向、第3辺の第1断熱材1001cは端部からx方向に向かう変形が促進されることになる。そのため、過剰に寸法バラツキ吸収部材1000の中央側に変形することによって寸法バラツキ吸収部材1000が盛り上がり、第1断熱材1001から離間してしまうことで放熱空間1015を形成してしまうことが考えられる。
そのため、図6の一点鎖線領域に示すように、あえて寸法バラツキ吸収部材1000の端部外表面と固定部材1004の内壁面との間に、寸法バラツキ吸収部材1000の端部方向への変形を許容する変形許容空間1016を形成している。つまり、固定部材1004の外圧によって、寸法バラツキ吸収部材1000は端部から放熱空間1015に向かって変形が促進されることになるが、寸法バラツキ吸収部材1000の端部方向への変形を許容して過剰に中央側に変形しないようにしている。これにより、寸法バラツキ吸収部材1000が中央側に変形しすぎて放熱空間1015を形成しないように構成することができる。また、本発明の一実施形態において、第2辺の第1断熱材1001bと第3辺の第1断熱材1001cの端部との密着を促進するため、燃料電池モジュール1002角部での放熱を効果的に抑制することができる。
以上のことから、本発明の一実施形態によれば、第1断熱材接触部1014に隙間を形成しないように配置することで、隙間からの放熱を抑制しつつ、さらに、第1断熱材1001の外壁面には寸法バラツキ吸収部材1000によって、第1断熱材1000の外周側に生じる寸法バラツキを吸収するため、放熱空間1015を形成することはないため、燃料電池モジュール容器1007からの放熱を抑制し、燃料電池モジュール1002の断熱性能を向上させた固体酸化物形燃料電池モジュールを実現することができる。
次に、図7〜図14を参照して、本発明の一実施例を説明する。
図7は、本発明の一実施例による固体酸化物形燃料電池装置(SOFC)を示す全体構成図である。図7に示すように、本発明の一実施例による固体酸化物形燃料電池装置(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、燃料電池モジュール2の最外壁を構成する寸法バラツキ吸収部材6を備え、この寸法バラツキ吸収部材6の内部には、板状の第1断熱材7を介して金属製のモジュール容器8が内蔵されている。この密閉空間であるモジュール容器8の下方部分である発電室10には、燃料ガスと酸化剤ガス(以下では適宜「発電用空気」又は「空気」と呼ぶ。)とにより発電反応を行う燃料電池セル集合体12が収容置されている。この燃料電池セル集合体12は、複数の燃料電池セルユニット16(図11参照)が直列接続されて構成されている。この例では、燃料電池セル集合体12は、128本の燃料電池セルユニット16を有する。
燃料電池モジュール2のモジュール容器8の発電室10の上方には、燃焼部としての燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった(発電に寄与しなかった)残余の燃料ガスと残余の空気とが燃焼し、排気ガス(言い換えると燃焼ガス)を生成するようになっている。さらに、モジュール容器8は第1断熱材7により覆われており、燃料電池モジュール2内部の熱が、外気へ発散するのを抑制している。また、この燃焼室18の上方には、燃料ガスを改質する改質器120が配置され、残余ガスの燃焼熱によって改質器120を改質反応が可能な温度となるように加熱している。
ここで、直方体形状のモジュール容器8のそれぞれの壁面に対応して第1断熱材7が設けられている。ここでの図示は省略するが、第1断熱材7はモジュール容器8の上面視において、第1断熱材8は製造上で生じる第1断熱材8の寸法のバラツキによって第1断熱材8間に隙間が生じないようにモジュール容器8の外壁面に接して設置されている。そのため、モジュール容器8の外壁面を覆っている第1断熱材8の外周側に、寸法バラツキの影響が生じることとなる。
また、第1断熱材8の外周側には、それぞれの第1断熱材8に対応して、外圧を受けることによって変形する寸法バラツキ吸収部材6が配置されており、図示しない固定部材によって端部同士が密接し、第1断熱材8に固定されている。この寸法バラツキ吸収部材8は固定部材(図示せず)からの外圧により、上述した第1断熱材8の寸法バラツキを吸収する。この寸法バラツキ吸収部材6は、第1断熱材7と同じ断熱材料をガラスクロスで覆うことによって構成されており、第2断熱材としての機能も有する。
さらに、寸法バラツキ吸収部材6内においてモジュール容器8の上方には、蒸発器140が第1断熱材7内に設けられている。蒸発器140は、供給された水と排気ガスとの間で熱交換を行うことによって、水を蒸発させて水蒸気を生成し、この水蒸気と原燃料ガスとの混合ガス(以下では「燃料ガス」と呼ぶこともある。)をモジュール容器8内の改質器120に供給する。
次に、補機ユニット4は、燃料電池モジュール2からの排気中に含まれる水分を結露させた水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の原料ガスの供給減である燃料供給源30から供給された燃料を遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)と、電源喪失時において、燃料流量調整ユニット38から流出する燃料ガスを遮断するバルブ39を備えている。さらに、補機ユニット4は、空気供給源40から供給される空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器120に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
なお、本実施例では、装置の起動時に改質器120内において、部分酸化改質反応(POX)のみが生じるPOX工程から、部分酸化改質反応(POX)と水蒸気改質反応(SR)が混在したオートサーマル改質反応(ATR)が生じるATR工程を経て、水蒸気改質反応のみが生じるSR工程が行われるように構成してもよいし、POX工程を省略してATR工程からSR工程に移行されるように構成してもよいし、POX工程及びATR工程を省略してSR工程のみが行われるように構成してもよい。なお、SR工程のみが行われる構成では、改質用空気流量調整ユニット44は不要である。
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、図8乃至図10を参照して、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールの構造について説明する。図8は、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールを示す側面断面図であり、図9は、図8のIII-III線に沿った断面図であり、図10は、モジュール容器及び空気通路カバーの分解斜視図である。
図8及び図9に示すように、燃料電池モジュール2は、第1断熱材7で覆われたモジュール容器8の内部に設けられた燃料電池セル集合体12及び改質器120を有すると共に、モジュール容器8の外部で且つ第1断熱材7内に設けられた蒸発器140を有する。なお、ここでは寸法バラツキ吸収部材6の図示及び説明を省略する。
まず、モジュール容器8は、図10に示すように、略矩形の天板8a,底板8c,これらの長手方向(図8の左右方向)に延びる辺同士を連結する対向する一対の側板8bからなる筒状体と、この筒状体の長手方向の両端部の2つの対向する開口部を塞ぎ、天板8a及び底板8cの幅方向(図9の左右方向)に延びる辺同士を連結する閉鎖側板8d,8eからなる。
モジュール容器8は、空気通路カバー160によって天板8a及び側板8bが覆われている。空気通路カバー160は、天板160aと、対向する一対の側板160bとを有する。天板160aの略中央部分には、排気管171を貫通させるための開口部167が設けられている。天板160aと天板8aとの間、及び、側板160bと側板8bとの間は、所定の距離だけ離間した状態となっている。これにより、モジュール容器8の外側と第1断熱材7との間、具体的にはモジュール容器8の天板8a及び側板8bと、空気通路カバー160の天板160a及び側板160bとの間には、天板160a及び側板160bの外面に沿って、酸化剤ガス供給通路としての空気通路161a,161bが形成されている(図9参照)。
モジュール容器8の側板8bの下部には、複数の貫通孔である吹出口8fが設けられている(図10参照)。発電用空気は、空気通路カバー160の天板160aのうち、モジュール容器8の閉鎖側板8e側の略中央部には、空気通路161aに連通する空気供給口160c(図8参照)が形成されている。発電用空気導入管74は、空気供給口160cに接続されており、発電用空気導入管74から導入された空気は流路方向調整部164を介して空気通路161a内に供給される(図8、図10参照)。そして、発電用空気は、空気通路161a,161bを通って、吹出口8fから燃料電池セル集合体12に向けて発電室10内に噴射される(図9、図10参照)。
また、空気通路161a,161bの内部には、熱交換促進部材としてのプレートフィン162が設けられている(図9参照)。プレートフィン162は、モジュール容器8の天板8aと空気通路カバー160の天板160aの間で長手方向及び幅方向に延びるように水平方向に設けられた水平部162aと、モジュール容器8の側板8bと空気通路カバー160の側板160bとの間であって、且つ、燃料電池セルユニット16よりも上方の位置に長手方向及び鉛直方向に延びるように設けられた鉛直部162bとを含む。水平部162aは短手方向中央側の端部が、空気通路カバー160の天板160aに形成された空気供給口160cの近傍まで延出している。
また、鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18から輻射熱を受けることができる部分と略等しい高さまで延出している。具体的には、鉛直部162bの下端は、後述する蓄熱手段として機能する燃料電池セルユニット16の上端付近、より具体的には内側電極端子86の高さに位置している。
プレートフィン162は、一枚のプレートフィンが天板8aの縁近傍において折り曲げられて形成され、水平部162a及び鉛直部162bは連続した一部材として構成されている。なお、本実施例では、水平部162a及び鉛直部162bは、一枚のプレートフィンが天板8aを折り曲げて構成しているが、必ずしもこのように構成する必要はない。例えば、二枚のプレートフィンを溶接等で接続して水平部162a及び鉛直部162bを構成してもよく、水平部162aと鉛直部162bとが、熱を伝達可能なように連続する一部材として構成されていればよい。
空気通路161a,161bを流れる発電用空気は、特にプレートフィン162を通過する際に、これらプレートフィン162の内側のモジュール容器8内(具体的には天板8a,側板8bに沿って設けられた排気通路)を通過する排気ガスとの間で熱交換を行い、加熱されることとなる。このようなことから、空気通路161a,161bにおいてプレートフィン162が設けられた部分は、熱交換器(熱交換部)として機能する。なお、プレートフィン162の水平部162aが設けられた部分が主たる熱交換器部分を構成し、プレートフィン162の鉛直部162bが設けられた部分が従たる熱交換器部分を構成する。
つぎに、蒸発器140は、モジュール容器8の天板8a上で水平方向に延びるように固定されている。また、蒸発器140とモジュール容器8との間には、これらの隙間を埋めるように板状に形成された第1断熱材断熱材7が配置されている(図8及び図9参照)。
具体的には、蒸発器140は、長手方向(図8の左右方向)の一側端側に、水及び原燃料ガス(改質用空気を含めてもよい)を供給する燃料供給配管63と、排気ガスを排出するための排気ガス排出管82(図9参照)とが連結され、長手方向の他側端側に、排気管171の上端部が連結されている。排気管171は、空気通路カバー160の天板160aに形成された開口部167を貫通して下方へ延び、モジュール容器8の天板8a上に形成された排気口111に連結されている。排気口111は、モジュール容器8内の燃焼室18で生成された排気ガスをモジュール容器8の外へ排出する開口部であり、モジュール容器8の上面視略矩形の天板8aのほぼ中央部に形成されている。
また、蒸発器140は、図8及び図9に示すように、上面視で略矩形の蒸発器ケース141を有している。この蒸発器ケース141は、2つの高さの低い有底矩形筒状の上側ケース142と下側ケース143とを、これらの間に中間板144を挟んだ状態で接合して形成されている。
したがって、蒸発器ケース141は、上下方向に二層構造となっており、下層部分には、排気管171から供給された排気ガスが通過する排気通路部140Aが形成され、上層部分には、燃料供給配管63から供給された水を蒸発させて水蒸気を生成する蒸発部140Bと、蒸発部140Bで生成された水蒸気と燃料供給配管63から供給された原燃料ガスとを混合させる混合部140Cが設けられている。
図8及び図9に示すように、蒸発部140B及び混合部140Cは、複数の連通孔(スリット)145aが形成された仕切り板145により蒸発器140を仕切った空間にて形成されている。また、蒸発部140B内には、アルミナボール(図示せず)が充填されている。
また、排気通路部140Aは、同様に複数の連通孔を有する2つの仕切り板146,147により排気ガスの上流側から下流側にかけて3つの空間に仕切られている。そして、2番目の空間に燃焼触媒(図示せず)が充填されている。すなわち、本実施例の蒸発器140は、上下方向の二層構造のうちの下層構造に燃焼触媒器を含んでいる。
このような蒸発器140では、蒸発部140B内の水と排気通路部140Aを通過する排気ガスとの間で熱交換が行われ、排気ガスの熱により蒸発部140B内の水が蒸発して、水蒸気が生成されることとなる。また、混合部140C内の混合ガスと排気通路部140Aを通過する排気ガスとの間で熱交換が行われ、排気ガスの熱により混合ガスが昇温されることとなる。
さらに、図8に示すように、混合部140Cには、改質器120に混合ガスを供給するための混合ガス供給管112が接続されている。この混合ガス供給管112は、排気管171の内部を通過するように配置されており、一端が中間板144に形成された開口144aに連結され、他端が改質器120の天面に形成された混合ガス供給口120aに連結されている。混合ガス供給管112は、排気通路部140A内,排気管171内を通過してモジュール容器8内まで鉛直下方に延び、そこで略90°屈曲されて天板8aに沿って水平方向に延びた後、下方へ略90°屈曲されて改質器120に連結されている。
つぎに、改質器120は、燃焼室18の上方でモジュール容器8の長手方向に沿って水平方向に延びるように配置され、モジュール容器8の天板8aとの間に排気ガス誘導部材130を介して所定距離隔てられて状態で、天板8aに対して固定されている。改質器120は、上面視で外形略矩形であるが、中央部に貫通孔120bが形成された環状構造体であり、上側ケース121と下側ケース122とが接合された筐体を有している。この貫通孔120bは、天板8aに形成された排気口111と上面視で重なるように位置し、好ましくは、貫通孔120bの中央位置に排気口111が形成される。
改質器120の長手方向の一端側(モジュール容器8の閉鎖側板8e側)では、上側ケース121に設けられた混合ガス供給口120aに混合ガス供給管112が連結されており、他端側(閉鎖側板8d側)では、燃料ガス供給管64が下側ケース122に、脱硫器36まで延びる水添脱硫器用水素取出管65が上側ケース121にそれぞれ連結されている。したがって、改質器120は、混合ガス供給管112から混合ガス(つまり水蒸気が混合された原燃料ガス(改質用空気を含めてもよい))を受け取り、内部で混合ガスを改質し、燃料ガス供給管64及び水添脱硫器用水素取出管65から改質後のガス(即ち、燃料ガス)を排出するように構成されている。
改質器120は、その内部空間が2つの仕切り板123a,123bによって3つの空間に仕切られることにより、改質器120内に、混合ガス供給管112からの混合ガスを受入れる混合ガス受入部120Aと、混合ガスを改質するための改質触媒(図示せず)が充填された改質部120Bと、改質部120Bを通過したガスを排出するガス排出部120Cと、が形成されている(図8参照)。改質部120Bは、仕切り板123a,123bに挟まれた空間であり、この空間に改質触媒が保持されている。混合ガス及び改質後の燃料ガスは、仕切り板123a,123bに設けられた複数の連通孔(スリット)を通って移動可能となっている。また、改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
混合ガス受入部120Aには、蒸発器140から混合ガス供給管112を介して供給された混合ガスが混合ガス供給口120aを通して噴出される。この混合ガスは、混合ガス受入部120A内で拡張されて噴出速度が低下し、仕切り板123aを通過して改質部120Bに供給される。
改質部120Bでは、低速で移動する混合ガスが改質触媒により燃料ガスに改質され、この燃料ガスが仕切り板123bを通過してガス排出部120Cに供給される。
ガス排出部120Cでは、燃料ガスが燃料ガス供給管64、及び、水添脱硫器用水素取出管65へ排出される。
燃料ガス供給通路としての燃料ガス供給管64は、モジュール容器8内を閉鎖側板8dに沿って下方へ延び、底板8c付近で略90°屈曲されて水平方向に延びて、燃料電池セル集合体12の下方に形成されたマニホールド66内へ入り、更にマニホールド66内で逆側の閉鎖側板8e付近まで水平方向に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、燃料ガスがマニホールド66内に供給される。このマニホールド66の上方には、燃料電池セルユニット16を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。また、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
排気ガス誘導部材130は、改質器120と天板8aとの間でモジュール容器8の長手方向に沿って水平方向に延びるように配置されている。排気ガス誘導部材130は、上下方向に所定距離だけ離間された下部誘導板131及び上部誘導板132と、これらの長手方向の両端辺が取り付けられる連結板133,134とを備えている(図8,図9参照)。上部誘導板132は、幅方向の両端部が下方に向けて折り曲げられ、下部誘導板131に連結されている。連結板133,134は、上端部が天板8aに連結され、下端部が改質器120に連結されており、これにより、排気ガス誘導部材130及び改質器120を天板8aに固定している。
下部誘導板131は、幅方向(図9の左右方向)の中央部が下方に向けて突出する凸状段部131aが形成されている。一方、上部誘導板132は、下部誘導板131と同様に、幅方向の中央部が下方に向けて凹状となるように凹部132aが形成されている。凸状段部131aと凹部132aは、上下方向で並行して長手方向に延びている。混合ガス供給管112は、モジュール容器8内でこの凹部132a内を水平方向に延びた後、閉鎖側板8e付近で下方に向けて屈曲し、上部誘導板132及び下部誘導板131を貫通して、改質器120に連結されている。
排気ガス誘導部材130は、上部誘導板132、下部誘導板131、連結板133,134によって、断熱層として機能する内部空間であるガス溜135が形成されている。このガス溜135は、燃焼室18と流体連通している。すなわち、上部誘導板132、下部誘導板131、連結板133,134は、所定の隙間を形成するように連結されており、気密的には連結されていない。ガス溜135には、運転中に燃焼室18から排気ガスが流入したり、停止時に外部から空気が流入したりすることが可能となっているが、総じてガス溜135の内外間のガスの移動は緩やかである。
上部誘導板132は、天板8aと所定の上下方向距離を隔てて配置されており、上部誘導板132と天板8aとの間には、長手方向及び幅方向に沿って水平方向に延びる排気通路172が形成されている。この排気通路172は、モジュール容器8の天板8aを挟んで空気通路161aと並設されており、排気通路172内には、空気通路161a,161b内のプレートフィン162と同様なプレートフィン175が配置されている。このプレートフィン175は、プレートフィン162の水平部162aと上面視で略同一箇所に設けられており、天板8aを挟んで上下方向に対向している。空気通路161a及び排気通路172のうち、プレートフィン162,175が設けられた部分において、空気通路161aを流れる発電用空気と排気通路172を流れる排気ガスとの間で効率的な熱交換が行われて、排気ガスの熱により発電用空気が昇温されることとなる。
また、改質器120は、モジュール容器8の側板8bと所定の水平方向距離を隔てて配置されており、改質器120と側板8bとの間には、排気ガスを下方から上方へ通過させる排気通路173が形成されている。また、排気ガス誘導部材130も側板8bと所定の水平方向距離を隔てて配置されており、排気通路173は、排気ガス誘導部材130と側板8bとの間の通路を含んで天板8aまで延びている。排気通路173は、天板8aと側板8bとの角部に位置する排気ガス導入口172aで排気通路172と連通している。この排気ガス導入口172aは、モジュール容器8内で長手方向に延びている。
さらに、下部誘導板131は、改質器120の上側ケース121の天面から所定の上下方向距離を隔てて配置されており、下部誘導板131と上側ケース121との間、及び、改質器120の貫通孔120bは、貫通孔120bを下方から上方へ向けて通過した排気ガスを通過させる排気通路174を形成している。この排気通路174は、改質器120の上方で排気通路173と合流する。
つぎに、図11を参照して、燃料電池セルユニット16について説明する。
図11は、本発明の一実施例による固体酸化物形燃料電池の燃料電池セルユニットを示す部分断面図である。
図11に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の両端部にそれぞれ接続されたキャップである内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
燃料電池セル84の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路細管98が形成されている。
この燃料ガス流路細管98は、内側電極端子86の中心から燃料電池セル84の軸線方向に延びるように設けられた細長い細管である。このため、マニホールド66(図8参照)から、下側の内側電極端子86の燃料ガス流路細管98を通って燃料ガス流路88に流入する燃料ガスの流れには、所定の圧力損失が発生する。従って、下側の内側電極端子86の燃料ガス流路細管98は、流入側流路抵抗部として作用し、その流路抵抗は所定の値となるように設定されている。また、燃料ガス流路88から、上側の内側電極端子86の燃料ガス流路細管98を通って燃焼室18(図8参照)に流出する燃料ガスの流れにも所定の圧力損失が発生する。従って、上側の内側電極端子86の燃料ガス流路細管98は、流出側流路抵抗部として作用し、その流路抵抗は所定の値となるように設定されている。
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
少なくとも上方の内側電極端子86は、熱容量が大きく、蓄熱性の高い金属から形成されており、蓄熱手段として機能する。燃料電池セルユニット16の上方の燃焼室18で発生した熱は、上方の内側電極端子86で蓄熱され、これにより燃料電池セル84へ燃焼室18からの熱が直接伝わるのを抑止できる。また、このようにして蓄熱された内側電極端子86は熱源として機能し、蓄熱した熱を周囲に放出する。
燃料電池セル集合体12は、各燃料電池セルユニット16の燃料極である内側電極層90に取り付けられた内側電極端子86が、他の燃料電池セルユニット16の空気極である外側電極層92の外周面に電気的に接続されることにより、128本の燃料電池セルユニット16の全てが直列接続されて構成される。
つぎに、図12〜図14を参照して、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュール内のガス及び熱の流れについて説明する。
図12は、図8と同様の、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールを示す側面断面図であり、図13は、図9と同様の、図8のIII−III線に沿った断面図である。また、図14は、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールの上部の部分断面図である。
なお、図12及び図13は、それぞれ、図8及び図9中にガスの流れを示す矢印を新たに付加した図であり、説明の便宜上、第1断熱材7を取り除いた状態の図を示している。図中、実線矢印は燃料ガスの流れ、破線矢印は発電用空気の流れ、一点鎖線矢印は排気ガスの流れを示す。
図12に示すように、水及び原燃料ガス(燃料ガス)は、蒸発器140の長手方向の一端側に連結された燃料供給配管63から蒸発器140の上層に設けられた蒸発部140B内に供給される。蒸発部140Bに供給された水は、蒸発器140の下層に設けられた排気通路部140Aを流れる排気ガスにより加熱され水蒸気となる。この水蒸気と、燃料供給配管63から供給された原燃料ガスとが、蒸発部140B内を下流方向に流れて行き、混合部140C内で混合される。混合部140C内の混合ガスは、下層の排気通路部140Aを流れる排気ガスにより加熱される。
混合部140C内で形成された混合ガス(燃料ガス)は、混合ガス供給管112を通って、モジュール容器8内の改質器120に供給される。混合ガス供給管112は、排気通路部140A,排気管171,及び排気通路172を順に通過しているため、これらの通路を流れる排気ガスにより、混合ガス供給管112内の混合ガスは更に加熱される。
混合ガスは、改質器120内の混合ガス受入部120A内に流入し、ここから仕切り板123aを通過して改質部120Bに流入する。混合ガスは、改質部120Bにおいて改質されて燃料ガスとなる。こうして生成された燃料ガスは、仕切り板123bを通過して、ガス排出部120Cに流入する。
さらに、燃料ガスは、ガス排出部120Cから燃料ガス供給管64と水添脱硫器用水素取出管65とに分岐する。そして、燃料ガス供給管64に流入した燃料ガスは、燃料ガス供給管64の水平部64aに設けられた燃料供給孔64bからマニホールド66内に供給され、マニホールド66から各燃料電池セルユニット16内に供給される。
また、図12及び図13に示すように、発電用空気は、発電用空気導入管74から空気通路161aに供給される。発電用空気は、空気通路161a,161b内において、プレートフィン162を通過する際に、これらプレートフィン162の下部のモジュール容器8内に形成された排気通路172,173を通過する排気ガスとの間で効率的な熱交換を行い、加熱されることとなる。特に、排気通路172内には、空気通路161aのプレートフィン162に対応してプレートフィン175が設けられているので、発電用空気は、プレートフィン162とプレートフィン175とを介して、排気ガスとより効率的な熱交換を行う。
また、燃焼室18においてオフガスが燃焼されることにより、モジュール容器8の側板8bの燃料電池セルユニット16の上端部よりも上方の部分が輻射熱を受け、加熱される。そして、モジュール容器8の側板8bが加熱されることにより、この熱が空気通路161b内のプレートフィン162の鉛直部162bに伝達される。さらに、プレートフィン162の鉛直部162bに伝達された熱は水平部162aまで伝搬される。このため、空気通路161bの燃料電池セルユニット16の上端部よりも上方の部分でも空気が効率的に加熱される。この後、発電用空気は、モジュール容器8の側板8bの下部に設けられた複数の吹出口8fから燃料電池セル集合体12に向けて発電室10内に噴射される。
なお、本実施例では、燃料電池セル集合体12の側方部位には排気通路が形成されていないため、この部位において発電用空気と排気ガスとの間の熱交換は抑制される。したがって、燃料電池セル集合体12の側方部位において、空気通路161b内の発電用空気に上下方向の温度ムラが生じ難くなっている。
また、発電室10内で発電に利用されなかった燃料ガスは、図13に示すように、燃焼室18で燃焼されて排気ガス(燃焼ガス)となり、モジュール容器8内を上昇していく。具体的には、排気ガスは、排気通路173と排気通路174とに分岐して、改質器120の外側面とモジュール容器8の側板8bとの間、及び、改質器120の貫通孔120bから改質器120と排気ガス誘導部材130との間をそれぞれ通過する。このとき、排気通路174を通過する排気ガスは、改質器120の貫通孔120bの上方に配置された凸状段部131aによって幅方向に二分され、排気ガス誘導部材130の下部に留まることなく排気通路173に向けて誘導され、排気通路173を流れる排気ガスに素早く合流される。
また、図14に示すように、燃焼室18において発電室10内で発電に利用されなかった燃料ガスが燃焼されることにより、輻射熱が発生する。この輻射熱は、矢印Aで示すように、主に燃料電池セルユニット16の上端部(内側電極端子86)、及び、モジュール容器8の側板8bの燃料電池セルユニット16の上端部よりも上方の部分に放射され、これらの部分が輻射熱により加熱される。
モジュール容器8の側板8bの燃料電池セルユニット16の内側電極端子86は、蓄熱性が高い材料により構成されているため、燃焼室18で発生した熱を蓄熱する。そして、内側電極端子86は熱を蓄えると熱源として機能し、矢印Bで示すように、モジュール容器8の側板8bを介して、プレートフィン162の鉛直部162bを加熱する。鉛直部162bが加熱されると、その熱は矢印Cで示すように、水平部162aの空気供給口160c近傍まで伝達されるため、空気通路161a、161bの空気供給口160cから燃料電池セルユニット16の上端部よりも上方の部分で効率良く熱交換が行われる。
その後、排気ガスは、排気ガス導入口172aから排気通路172に流入する。排気通路172内では、排気ガスは、排気通路172を水平方向に流れていき、モジュール容器8の天板8aの中央に形成された排気口111から流出する。
なお、排気ガスが排気通路173を上方へ流れていく際に、空気通路161b内に設けられたプレートフィン162の鉛直部162bを介して、発電用空気と排気ガスとの間で熱交換が行われる。また、排気ガスが排気通路172を水平方向に流れていく際に、排気通路172内に設けられたプレートフィン175と、このプレートフィン175に対応して空気通路161a内に設けられたプレートフィン162の水平部162aとを介して、発電用空気と排気ガスとの間で効率的な熱交換が行われる。このようにして、排気ガスの熱により発電用空気が昇温される。
そして、排気口111から流出した排気ガスは、モジュール容器8の外部に設けられた排気管171を通過して蒸発器140の排気通路部140Aに流入し、排気通路部140Aを通過した後、蒸発器140から排気ガス排出管82へ排出される。排気ガスは、蒸発器140の排気通路部140Aを流れる際に、上述したように、蒸発器140の混合部140C内の混合ガス及び蒸発部140B内の水と熱交換を行う。
本実施例による固体酸化物形燃料電池装置1によれば以下の効果が奏される。
本実施例では、蒸発器140が第1断熱材7の内側、かつ、モジュール容器8の外に配置されている。これにより、排気通路172、173における排気ガスが蒸発器140により温度低下するのを防止し、短い熱交換距離であっても、排気通路172、173内の排気ガスと空気通路161内の空気との間で十分な熱交換を行うことができる。
また、本実施例では、プレートフィン162の鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18からの輻射熱を受けることができる部分と略等しい高さまで延出している。これにより、燃焼室18からの輻射熱がモジュール容器8の側板8bを介してプレートフィン162の鉛直部162bに伝達される。このため、空気通路161a、161bの燃料電池セル84よりも上方の部位で、空気が十分加熱されることとなり、空気通路161a、161bの燃料電池セル84に対応する高さにおいて温度ムラが生じるのを防止できる。
また、例えば、プレートフィン162の鉛直部162bの下端が改質器120と略等しい高さにおいて終端している場合には、モジュール容器8の側板8bの燃焼室18の側方に当たる部分では、排気ガスと空気との熱交換効率が低下する。このように燃焼室18の側方に当たる部分での熱交換効率が低下してしまうと、燃焼室18で発生した熱が燃料電池セルユニット16の上方に滞留してしまう。
これに対して、本実施例では、プレートフィン162の鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18からの輻射熱を受けることができる部分と略等しい高さまで延出している。これにより、モジュール容器8の燃焼室18の側方において排気ガスから空気へ交換が促進されるため、燃焼室18からの排熱が燃料電池セルユニット16の上方に滞留することを抑止し、より確実に温度ムラの発生を抑えることができる。
このようにして、本実施例によれば、燃料電池セル84よりも上方における排気ガスと空気との間の熱交換性能を向上することが可能となり、燃料電池セル84に温度ムラの影響を与えることなく燃料電池装置1の小型化を図ることができる。
また、本実施例では、プレートフィン162は、水平部162aと鉛直部162bとが一体に構成され、空気供給口160cの近傍から、燃焼室18からの輻射熱を受けることができる位置まで連続して設けられている。これにより、燃焼室18からモジュール容器8の側板8bに伝達された輻射熱がプレートフィン162の鉛直部162bに伝達され、さらに、この熱がプレートフィン162により空気供給口162cの近傍まで伝達されるため、短い熱交換距離でも十分に空気を加熱することができる。
本実施例では、燃料電池セル84の上端部には、熱容量が大きく、蓄熱性の高い金属から形成された内側電極端子86が設けられ、プレートフィン162の鉛直部162bの下端は、内側電極端子86と略等しい高さに位置している。これにより、内側電極端子86が燃焼室18からの熱を受けるため、燃焼室18により燃料電池セル84が直接加熱することを防止し、燃料電池セル84に上下方向の温度ムラが生じることを抑止できる。さらに、熱を蓄えた内側電極端子86が熱源として機能し、モジュール容器8の側板8bを介してプレートフィン162の鉛直部162bを加熱するため、空気通路161bの燃料電池セル84よりも上方の部位で、空気が十分加熱されることとなり、空気通路161bの燃料電池セル84に対応する高さにおいて温度ムラが生じるのを防止できる。
本発明にかかる固体酸化物形燃料電池装置は、モジュール容器の外方に第1断熱材を備えた固体酸化物形燃料電池装置において幅広く有用である。
なお、好ましい構成態様として、本発明を次のように構成することも可能である。
1. 直方体状のモジュール容器と、前記モジュール容器の内部に酸化剤ガスと燃料ガスにより発電する複数の燃料電池セルと、を備えた固体酸化物形燃料電池モジュールにおいて、
前記モジュール容器のそれぞれの外壁面に対応して設けられ、板状の複数の第1断熱材と、
前記固体酸化物形燃料電池モジュールの最外壁を構成し、前記第1断熱材を補強する部材と、
を備え、
前記モジュール容器の上面視において、前記第1断熱材は製造上で生じる前記第1断熱材の寸法のバラツキによって前記第1断熱材間に隙間が生じないように前記複数の第1断熱材は前記モジュール容器外壁面の4辺に接して囲むように設けられており、前記モジュール容器の外壁面の4辺のうちの何れか1辺である第1辺に位置する第1断熱材は長辺側が前記モジュール容器外壁面と接しており、前記第1辺に隣接する第2辺に位置する第1断熱材は短辺側が前記第1辺の第1断熱材の長辺側と接しており、前記第2辺に隣接する第3辺の第1断熱材の短辺側は前記第2辺に位置する第1断熱材の長辺側と接しており、前記第3辺及び前記第1辺に隣接する第4辺の第1断熱材の短辺側は前記第3辺の第1断熱材の長辺側と接しており、前記第3辺及び前記第1辺に隣接する第4辺の第1断熱材の長辺側は前記第1辺の第1断熱材の短辺側と接するように前記モジュール容器の周囲に設けられ、前記モジュール容器の外壁面に接して設置されているとともに、前記部材は外圧によって各前記第1断熱材の寸法のバラツキを吸収する寸法バラツキ吸収部材であることを特徴とする固体酸化物形燃料電池モジュール。
2. 前記寸法バラツキ吸収部材は第2断熱材であることを特徴とする上記1に記載の固体酸化物形燃料電池モジュール。
3. 前記寸法バラツキ吸収部材は、固定部材によって外方から前記第1断熱材に固定されており、前記固定部材は前記外圧を与えることを特徴とする上記2に記載の固体酸化物形燃料電池モジュール。
4. 前記モジュール容器の上面視において、
前記複数の第1断熱材は前記モジュール容器外壁面の4辺に接して囲むように設けられており、前記モジュール容器の外壁面の4辺のうちの何れか1辺である第1辺に位置する第1断熱材は長辺側が前記モジュール容器外壁面と接しており、前記第1辺に隣接する第2辺に位置する第1断熱材は短辺側が前記第1辺の第1断熱材の長辺側と接しており、前記第2辺に隣接する第3辺の第1断熱材の短辺側は前記第2辺に位置する第1断熱材の長辺側と接しており、前記第3辺及び前記第1辺に隣接する第4辺の第1断熱材の短辺側は前記第1辺の長辺側と接するように前記モジュール容器の周囲に設けられ、
板状に形成された前記寸法バラツキ吸収部材は前記4辺に対応して前記第1断熱材に接するように、且つ端部が各前記第1断熱材の短辺側に位置するように複数設けられ、
前記固定部材は前記寸法バラツキ吸収部材の端部に設けられていることを特徴とする上記3に記載の固体酸化物形燃料電池モジュール。
5. 前記固定部材は前記寸法バラツキ吸収部材と面接触するように、屈曲した1つの部材で構成されており、各前記寸法バラツキ吸収部材の端部同士が接触する角部に沿って延在する線形形状であることを特徴とする上記4に記載の固体酸化物形燃料電池モジュール。
6. 前記固定部材と、前記固定部材により固定される前記寸法バラツキ吸収部材の端部との間には変形許容空間が形成されていることを特徴とする上記5に記載の固体酸化物形燃料電池モジュール。
7. 前記第2断熱材は前記第1断熱材と同じ材料で構成され、前記第1断熱材よりも密度が小さいことを特徴とする上記2に記載の固体酸化物形燃料電池モジュール。
8. 前記寸法バラツキ吸収部材は、断熱材料の周囲がガラスクロスで被覆されているものであることを特徴とする上記6に記載の固体酸化物形燃料電池モジュール。
1 固体酸化物形燃料電池装置
2 燃料電池モジュール
4 補機ユニット
6 寸法バラツキ吸収部材(第2断熱材)
7 第1断熱材
8 モジュール容器
8a 天板
8b 側板
8c 底板
8d 閉鎖側板
8e 閉鎖側板
8f 吹出口
10 発電室
12 燃料電池セル集合体
16 燃料電池セルユニット
18 燃焼室
24 水供給源
26 純水タンク
28 水流量調整ユニット
30 燃料供給源
32 ガス遮断弁
36 脱硫器
38 燃料流量調整ユニット
39 バルブ
40 空気供給源
42 電磁弁
44 改質用空気流量調整ユニット
45 発電用空気流量調整ユニット
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
63 燃料供給配管
64 燃料ガス供給管
64a 水平部
64b 燃料供給孔
65 水添脱硫器用水素取出管
66 マニホールド
68 下支持板
74 発電用空気導入管
82 排気ガス排出管
83 点火装置
84 燃料電池セル
86 内側電極端子
88 燃料ガス流路
90 内側電極層
92 外側電極層
94 電解質層
96 シール材
98 燃料ガス流路細管
111 排気口
112 混合ガス供給管
120 改質器
120A 混合ガス受入部
120B 改質部
120C ガス排出部
120a 混合ガス供給口
120b 貫通孔
121 上側ケース
122 下側ケース
123a 仕切り板
123b 仕切り板
130 排気ガス誘導部材
131 下部誘導板
131a 凸状段部
132 上部誘導板
132a 凹部
133 連結板
134 連結板
135 ガス溜
140 蒸発器
140A 排気通路部
140B 蒸発部
140C 混合部
141 蒸発器ケース
142 上側ケース
143 下側ケース
144 中間板
144a 開口
145 仕切り板
146 仕切り板
160 空気通路カバー
160a 天板
160b 側板
160c 空気供給口
161a 空気通路
161b 空気通路
162 プレートフィン
162a 水平部
162b 鉛直部
163 プレートフィン
164 流路方向調整部
167 開口部
171 排気管
172 排気通路
173 排気通路
174 排気通路
175 プレートフィン
1000 寸法バラツキ吸収部材(部材)(第2断熱材)
1000a 断熱材料
1000b ガラスクロス
1001 第1断熱材
1001a 第1辺の第1断熱材
1001b 第2辺の第1断熱材
1001c 第3辺の第1断熱材
1001d 第4辺の第1断熱材
1002 燃料電池モジュール
1004 固定部材
1005 トレー
1006 燃料電池セル
1007 モジュール容器
1008 ガスマニホールド
1009 改質器
1010 蒸発器
1011 発電室
1013 燃料供給配管
1014 断熱材接触部
1015 放熱空間
1016 変形許容空間

Claims (8)

  1. 直方体状のモジュール容器と、燃料電池セルと、を備えた固体酸化物形燃料電池モジュールにおいて、
    前記モジュール容器のそれぞれの外壁面に対応して設けられ、板状の複数の第1断熱材と、
    前記固体酸化物形燃料電池モジュールの最外壁を構成し、前記第1断熱材を補強する部材と、
    を備え、
    前記モジュール容器の上面視において、前記第1断熱材は製造上で生じる前記第1断熱材の寸法のバラツキによって前記第1断熱材間に隙間が生じないように前記複数の第1断熱材は前記モジュール容器外壁面の4辺に接して囲むように設けられており、前記モジュール容器の外壁面の4辺のうちの何れか1辺である第1辺に位置する第1断熱材は長辺側が前記モジュール容器外壁面と接しており、前記第1辺に隣接する第2辺に位置する第1断熱材は短辺側が前記第1辺の第1断熱材の長辺側と接しており、前記第2辺に隣接する第3辺の第1断熱材の短辺側は前記第2辺に位置する第1断熱材の長辺側と接しており、前記第3辺及び前記第1辺に隣接する第4辺の第1断熱材の短辺側は前記第3辺の第1断熱材の長辺側と接しており、前記第3辺及び前記第1辺に隣接する第4辺の第1断熱材の長辺側は前記第1辺の第1断熱材の短辺側と接するように前記モジュール容器の周囲に設けられ、前記モジュール容器の外壁面に接して設置されているとともに、前記部材は外圧によって各前記第1断熱材の寸法のバラツキを吸収する寸法バラツキ吸収部材であることを特徴とする固体酸化物形燃料電池モジュール。
  2. 前記寸法バラツキ吸収部材は第2断熱材であることを特徴とする請求項1に記載の固体酸化物形燃料電池モジュール。
  3. 前記寸法バラツキ吸収部材は、固定部材によって外方から前記第1断熱材に固定されており、前記固定部材は前記外圧を与えることを特徴とする請求項2に記載の固体酸化物形燃料電池モジュール。
  4. 前記モジュール容器の上面視において、
    板状に形成された前記寸法バラツキ吸収部材は前記4辺に対応して前記第1断熱材に接するように、且つ端部が各前記第1断熱材の短辺側に位置するように複数設けられ、
    前記固定部材は前記寸法バラツキ吸収部材の端部に設けられていることを特徴とする請求項3に記載の固体酸化物形燃料電池モジュール。
  5. 前記固定部材は前記寸法バラツキ吸収部材と面接触するように、屈曲した1つの部材で構成されており、各前記寸法バラツキ吸収部材の端部同士が接触する角部に沿って延在する線形形状であることを特徴とする請求項4に記載の固体酸化物形燃料電池モジュール。
  6. 前記固定部材と、前記固定部材により固定される前記寸法バラツキ吸収部材の端部との間には変形許容空間が形成されていることを特徴とする請求項5に記載の固体酸化物形燃料電池モジュール。
  7. 前記第2断熱材は前記第1断熱材と同じ材料で構成され、前記第1断熱材よりも密度が小さいことを特徴とする請求項2に記載の固体酸化物形燃料電池モジュール。
  8. 前記寸法バラツキ吸収部材は、断熱材料の周囲がガラスクロスで被覆されているものであることを特徴とする請求項6に記載の固体酸化物形燃料電池モジュール。
JP2020046325A 2020-03-17 2020-03-17 固体酸化物形燃料電池モジュール Active JP6882568B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020046325A JP6882568B2 (ja) 2020-03-17 2020-03-17 固体酸化物形燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046325A JP6882568B2 (ja) 2020-03-17 2020-03-17 固体酸化物形燃料電池モジュール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015189025A Division JP2017063007A (ja) 2015-09-26 2015-09-26 固体酸化物形燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2020095979A true JP2020095979A (ja) 2020-06-18
JP6882568B2 JP6882568B2 (ja) 2021-06-02

Family

ID=71086441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046325A Active JP6882568B2 (ja) 2020-03-17 2020-03-17 固体酸化物形燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP6882568B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713734B1 (en) * 2023-02-01 2023-08-01 GM Global Technology Operations LLC Thermally conditioned noise / vibration attenuating fuel rail chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020887A (ja) * 2011-07-13 2013-01-31 Honda Motor Co Ltd 燃料電池スタック
JP2013201042A (ja) * 2012-03-26 2013-10-03 Toto Ltd 燃料電池ユニット
JP2015049966A (ja) * 2013-08-30 2015-03-16 Jx日鉱日石エネルギー株式会社 燃料電池
JP2015115217A (ja) * 2013-12-12 2015-06-22 Jx日鉱日石エネルギー株式会社 燃料電池装置
JP2016178073A (ja) * 2015-03-19 2016-10-06 Toto株式会社 固体酸化物形燃料電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020887A (ja) * 2011-07-13 2013-01-31 Honda Motor Co Ltd 燃料電池スタック
JP2013201042A (ja) * 2012-03-26 2013-10-03 Toto Ltd 燃料電池ユニット
JP2015049966A (ja) * 2013-08-30 2015-03-16 Jx日鉱日石エネルギー株式会社 燃料電池
JP2015115217A (ja) * 2013-12-12 2015-06-22 Jx日鉱日石エネルギー株式会社 燃料電池装置
JP2016178073A (ja) * 2015-03-19 2016-10-06 Toto株式会社 固体酸化物形燃料電池モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713734B1 (en) * 2023-02-01 2023-08-01 GM Global Technology Operations LLC Thermally conditioned noise / vibration attenuating fuel rail chamber

Also Published As

Publication number Publication date
JP6882568B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
US10224555B2 (en) Fuel cell
WO2017038782A1 (ja) 燃料電池モジュールおよび燃料電池装置
JP5495544B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP6817390B2 (ja) 固体酸化物形燃料電池モジュール
JP5224849B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP2020095979A (ja) 固体酸化物形燃料電池モジュール
JP5011685B2 (ja) 燃料電池およびそれを備えた燃料電池システム
JP5334513B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP6848104B2 (ja) 固体酸化物形燃料電池装置
JP2017063007A (ja) 固体酸化物形燃料電池モジュール
JP6865311B2 (ja) 固体酸化物形燃料電池装置
JP2022090193A (ja) 燃料電池モジュール
JP6771923B2 (ja) 固体酸化物形燃料電池装置
JP6601683B2 (ja) 固体酸化物形燃料電池装置
JP2016177905A (ja) 固体酸化物形燃料電池装置
JP6587203B2 (ja) 固体酸化物形燃料電池装置
JP6766241B2 (ja) 固体酸化物形燃料電池装置
JP6743261B2 (ja) 固体酸化物形燃料電池装置
JP6848101B2 (ja) 固体酸化物形燃料電池装置
JP6848100B2 (ja) 固体酸化物形燃料電池装置
JP6752929B2 (ja) 固体酸化物形燃料電池装置
JP6578586B2 (ja) 固体酸化物形燃料電池装置
JP6516162B2 (ja) 固体酸化物形燃料電池装置
JP2017183134A (ja) 固体酸化物形燃料電池装置
JP6768327B2 (ja) 固体酸化物形燃料電池装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6882568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250