本発明に係る除湿機能付き熱交換形換気装置は、室内の空気を室外に排出するための排気風路を流通する排気流と、室外の空気を室内へ給気するための給気風路を流通する給気流との間で熱交換する熱交換形換気装置と、給気流に対して除湿する除湿装置と、を備える。除湿装置は、圧縮機と放熱器と膨張器と吸熱器とを含んで構成される冷凍サイクルと、吸熱器と放熱器との間に配置され、第一流路を流れる空気と第二流路を流れる空気との間で熱交換する熱交換器と、を含む。除湿装置は、給気風路から熱交換後の給気流が導入されるとともに、排気風路から排気流が導入されるように構成される。除湿装置に導入された給気流の一部分は、吸熱器、熱交換器の第一流路、放熱器の順に流通した後に、給気風路に導出され、除湿装置に導入された給気流の他の部分は、熱交換器の第二流路、放熱器の順に流通した後に、給気風路に導出される。除湿装置に導入された排気流は、放熱器を流通した後に、排気風路に導出されることを特徴とするものである。
こうした構成によれば、除湿装置における放熱器の冷却(排熱)に必要なエネルギーを、熱交換形換気装置からの排気流(除湿を必要する夏季において、給気流よりも温度が低い排気流)によって得ることができるため、除湿後の空気(給気流)の温度上昇を抑制することができる。この結果、冷凍サイクルと熱交換器とを組み合わせた除湿装置を適用した場合でも、除湿に伴って生じる温度上昇が抑制された給気流を送風することができる。つまり、除湿に伴って生じる温度上昇が抑制された給気流を送風可能な除湿機能付き熱交換形換気装置とすることができる。
また、除湿装置に導入される排気流は、熱交換前の排気流である構成としてもよい。
こうした構成によれば、熱交換後の排気流よりも温度が低い熱交換前の排気流を用いるので、より効果的に放熱器を冷却することができるため、除湿後の空気(給気流)の温度上昇をさらに抑制することができる。
また、除湿装置に導入される排気流は、熱交換前の排気流と熱交換後の排気流を合流させた排気流である構成としてもよい。
こうした構成によれば、熱交換前の排気流と熱交換後の排気流を合流させるので、熱交換後の排気流よりも温度を低下させた状態で、除湿装置に導入する排気流の風量を増やすことができる。このため、効果的に放熱器の冷却が可能となり、除湿後の空気(給気流)の温度上昇を抑制することができる。
また、本発明に係る除湿機能付き熱交換形換気装置では、放熱器は、第一放熱器と、第一放熱器とは異なる第二放熱器とを有し、膨張器は、第一膨張器と、第一膨張器とは異なる第二膨張器とを有する。冷凍サイクルは、圧縮機、第一放熱器、第一膨張器、第二放熱器、第二膨張器、吸熱器の順に連結して構成される。熱交換器は、吸熱器と第二放熱器との間に配置される。除湿装置に導入された給気流の一部分は、吸熱器、熱交換器の第一流路、第二放熱器の順に流通した後に、給気風路に導出される。除湿装置に導入された給気流の他の部分は、熱交換器の第二流路、第二放熱器の順に流通した後に、給気風路に導出される。除湿装置に導入された排気流は、第一放熱器を流通した後に、排気風路に導出される構成としてもよい。
こうした構成によれば、第一膨張器によって冷凍サイクル内の冷媒(排気流によって冷却された第一放熱器から導入される冷媒)を減圧することで、第二放熱器に導入される冷媒の温度を第一放熱器に導入される冷媒の温度よりも低下させることができるので、給気流と第二放熱器とを熱交換した場合の給気流の温度上昇を抑制することができる。つまり、除湿に伴って生じる温度上昇が抑制された給気流を送風可能な除湿機能付き熱交換形換気装置とすることができる。
また、熱交換器の第二流路と第二放熱器との間に、第二流路を流れる空気を増減させる空気流量調整部を備えた構成としてもよい。
こうした構成によれば、第一流路を流通する気流の風量と第二流路を流通する気流の風量の比率を可変にすることができる。このため、第一流路を流通する気流の風量を、第二流路を流通する気流の風量よりも多くすることで、第二放熱器に流通する空気の温度を効果的に下げることができ、除湿効果を高めることができる。
以下、本発明を実施するための形態について添付図面を参照して説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本発明に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。
以下、本発明の実施の形態について図面を参照しながら説明する。
(前提例)
まず、図1、図2を参照して、本発明の実施の形態の前提例となる熱交換形換気装置について説明する。図1は、本発明の前提例に係る熱交換形換気装置の住宅における設置状態を示す模式図である。図2は、本発明の前提例に係る熱交換形換気装置の構成を示す模式図である。
図1において、家1の屋内に熱交換形換気装置10が設置されている。熱交換形換気装置10は、屋内の空気と屋外の空気とを熱交換しながら換気する装置である。
図1に示す通り、排気流2は、黒色矢印のごとく、熱交換形換気装置10を介して屋外に放出される。排気流2は、屋内から屋外に排出される空気の流れである。また、給気流3は、白色矢印のごとく、熱交換形換気装置10を介して室内に取り入れられる。給気流3は、屋外から屋内に取り込まれる空気の流れである。例えば、日本の冬季を挙げると、排気流2は20〜25℃であるのに対して、給気流3は氷点下に達することもある。熱交換形換気装置10は、換気を行うとともに、この換気時に、排気流2の熱を給気流3へと伝達し、不用な熱の放出を抑制している。
熱交換形換気装置10は、図2に示す通り、本体ケース11、熱交換素子12、排気ファン13、内気口14、排気口15、給気ファン16、外気口17、給気口18、排気風路4、給気風路5を備えている。本体ケース11は、熱交換形換気装置10の外枠である。本体ケース11の外周には、内気口14、排気口15、外気口17、給気口18が形成されている。内気口14は、排気流2を熱交換形換気装置10に吸い込む吸込口である。排気口15は、排気流2を熱交換形換気装置10から屋外に吐き出す吐出口である。外気口17は、給気流3を熱交換形換気装置10に吸い込む吸込口である。給気口18は、給気流3を熱交換形換気装置10から屋内に吐き出す吐出口である。
本体ケース11の内部には、熱交換素子12、排気ファン13、給気ファン16が取り付けられている。また、本体ケース11の内部には、排気風路4、給気風路5が構成されている。熱交換素子12は、排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換(顕熱と潜熱)を行うための部材である。排気ファン13は、排気流2を内気口14から吸い込み、排気口15から吐出するための送風機である。給気ファン16は、給気流3を外気口17から吸い込み、給気口18から吐出するための送風機である。排気風路4は、内気口14と排気口15とを連通する風路である。給気風路5は、外気口17と給気口18とを連通する風路である。排気ファン13により吸い込まれた排気流2は、排気風路4内の熱交換素子12、排気ファン13を経由し、排気口15から屋外へと排出される。また、給気ファン16により吸い込まれた給気流3は、給気風路5内の熱交換素子12、給気ファン16を経由し、給気口18から屋内へと供給される。
熱交換形換気装置10は、熱交換換気を行う場合には、熱交換素子12の排気ファン13および給気ファン16を動作させ、熱交換素子12において排気風路4を流通する排気流2と、給気風路5を流通する給気流3との間で熱交換を行う。これにより、熱交換形換気装置10は、換気を行う際に、室外に放出する排気流2の熱を室内に取り入れる給気流3へと伝達し、不要な熱の放出を抑制し、室内に熱を回収する。この結果、冬季においては、換気を行う際に、屋外の温度が低い空気によって屋内の温度低下を抑制することができる。一方、夏季においては、換気を行う際に、屋外の温度が高い空気によって屋内の温度上昇を抑制することができる。
(実施の形態1)
次に、図3を参照して、本実施の形態1に係る除湿機能付き熱交換形換気装置について説明する。図3は、本発明の実施の形態1に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。なお、図3以降の各模式図では、排気風路4および給気風路5を、熱交換形換気装置10内の排気流2および給気流3の流れ(黒矢印)と兼用して表記している。
本実施の形態1に係る除湿機能付き熱交換形換気装置50は、図3に示すように、前提例に係る熱交換形換気装置10に対して、除湿機能を付与する手段としての除湿装置30を連結した構成を有している。
除湿装置30は、熱交換形換気装置10での熱交換後の給気流3の除湿を行うためのユニットである。除湿装置30は、圧縮機31と放熱器32と膨張器33と吸熱器34とを含んで構成される冷凍サイクルと、熱交換器35と、を備えている。そして、本実施の形態の冷凍サイクルは、圧縮機31と放熱器32と膨張器33と吸熱器34とをこの順序で環状に連結して構成されている。冷凍サイクルには、例えば、冷媒として代替フロン(HFC134a)が利用される。また、冷凍サイクルを構成する各機器の連結には、銅管がよく用いられ、溶接方式で連結される。
圧縮機31は、冷凍サイクルにおける低温・低圧の冷媒ガス(作動媒体ガス)を圧縮し、圧力を高めて高温化する機器である。本実施の形態では、圧縮機31は、冷媒ガスの温度を45℃程度にまで高温化している。
放熱器32は、圧縮機31によって高温・高圧となった冷媒ガスと空気(排気流2、給気流3)との間で熱交換することによって、熱を外部(冷凍サイクル外)に放出させる機器である。このとき、冷媒ガスは、高圧下で凝縮されて液化する。放熱器32では、導入される冷媒ガスの温度(45℃程度)が空気の温度より高いため、熱交換すると、空気は昇温され、冷媒ガスは冷却される。なお、放熱器32は、凝縮器ともいう。
膨張器33は、放熱器32によって液化した高圧の冷媒を減圧して元の低温・低圧の液体とする機器である。なお、膨張器33は、膨張弁ともいう。
吸熱器34は、膨張器33を流通した冷媒が空気から熱を奪って蒸発し、液状の冷媒を低温・低圧の冷媒ガスとする機器である。吸熱器34では、導入される冷媒の温度が空気の温度より低いため、熱交換すると、空気が冷却され、冷媒が昇温される。なお、吸熱器34は、蒸発器ともいう。
熱交換器35は、顕熱型の熱交換素子を備えた熱交換器である。熱交換器35は、従来の除湿装置100における熱交換器111(図9参照)と同様、吸熱器34と放熱器32との間の空間に配置されている。熱交換器35の内部には、所定の方向に空気が流れる第一流路36と、この第一流路36と略直交する方向に空気が流れる第二流路37と、を備える。第一流路36は、吸熱器34から導入される空気を、放熱器32に導出する流路である。第二流路37は、熱交換形換気装置10から導入された空気を、放熱器32に導出する流路である。そして、熱交換器35は、第一流路36を流れる空気と第二流路37を流れる空気との間で顕熱のみ交換する。
次に、熱交換形換気装置10と除湿装置30との間での気流(排気流2、給気流3)の流れについて図3を参照して説明する。なお、以下の説明では、熱交換後の気流(排気流2、給気流3)または風路(排気風路4、給気風路5)は、熱交換形換気装置10における熱交換素子12を通過した後の気流または風路を示し、熱交換前の気流または風路は、熱交換素子12を通過する前の気流をまたは風路を示すものとする。
図3に示すように、熱交換形換気装置10には、熱交換後の排気風路4に切替ダンパ40が設置され、熱交換後の給気風路5に切替ダンパ41が設置されている。切替ダンパ40は、排気風路4を流通する排気流2を屋外に流す状態と、排気風路4を流通する排気流2を除湿装置30に流す状態とを切り替えるためのダンパである。また、切替ダンパ41は、給気風路5を流通する給気流3を屋内に流す状態と、給気風路5を流通する給気流3を除湿装置30に流す状態とを切り替えるためのダンパである。
除湿機能付き熱交換形換気装置50では、各切替ダンパによって除湿装置30に気流が流れる状態とすることで、熱交換後の給気流3に対して除湿が実行される。除湿の詳細については後述する。なお、除湿の必要がない冬季などの場合には、各切替ダンパによって除湿装置30に気流が流れない状態とすることで、除湿装置30に起因した圧力損失の上昇が抑制され、除湿機能付き熱交換形換気装置50として、年間を通じての省エネルギーでの運転を実現することができる。
また、図3に示すように、除湿装置30には、内部に導入される熱交換後の給気流3を、2つの気流(第一給気流3a、第二給気流3b)に分割する分岐ダンパ42が設置されている。第一給気流3aは、吸熱器34に導入される気流であり、第二給気流3bは、熱交換器35に導入される気流である。分岐ダンパ42は、第二給気流3bが第一給気流3aよりも流れる空気の量が少なくなるように給気流3を分割している。ここで、第一給気流3aは、請求項の「除湿装置に導入された給気流の一部分」に相当し、第二給気流3bは、請求項の「除湿装置に導入された給気流の他の部分」に相当する。
除湿装置30では、分割された給気流3のうち第一給気流3aは、吸熱器34、熱交換器35の第一流路36、放熱器32の順に流通した後に、熱交換形換気装置10における熱交換後の給気風路5に導出される。一方、第二給気流3bは、熱交換器35の第二流路37、放熱器32の順に流通した後に、熱交換後の給気風路5に導出される。本実施の形態では、除湿装置30は、放熱器32を流通した第一給気流3aと、放熱器32を流通した第二給気流3bとを合流させた後に、熱交換後の給気風路5に導出するように構成されている。
一方、除湿装置30に導入された排気流2は、放熱器32を流通した後に、熱交換形換気装置10における熱交換後の排気風路4に導出される。つまり、本実施の形態では、除湿装置30は、熱交換形換気装置10から導入される排気流2によって放熱器32が冷却されるように構成されている。
次に、本実施の形態1に係る除湿機能付き熱交換形換気装置50の除湿の動作について説明する。
まず、除湿機能付き熱交換形換気装置50を運転することによって、排気ファン13と給気ファン16が駆動し、熱交換形換気装置10の内部には、排気風路4を流通する排気流2と、給気風路5を流通する給気流3とが生じる。
例えば、夏季において、排気流2は、エアコンなどによって快適な温度湿度に空調された屋内の空気であり、給気流3は、高温多湿の屋外の空気である。
排気流2と給気流3とは、熱交換形換気装置10の内部で顕熱と潜熱が交換される。この際、高温多湿の給気流3から排気流2に水分が移動するため、給気流3の水分が除去される。つまり、熱交換形換気装置10の内部での全熱交換によって、給気流3に対する除湿(第一除湿)がなされる。
次に、熱交換後の給気流3は、除湿装置30に導入されて除湿される。具体的には、除湿装置30に導入された給気流3のうち第一給気流3aは、吸熱器34によって冷却される。これにより、第一給気流3aの温度が露点温度以下となり、第一給気流3aが結露するので、第一給気流3aの水分が除去される。つまり、吸熱器34を流通することによって、第一給気流3aに対する除湿(第二除湿)がなされる。
加えて、除湿装置30に導入された給気流3のうち残りの第二給気流3bは、熱交換器35の第二流路37に流入し、第一流路36内の吸熱器34で冷却された第一給気流3aと熱交換される。これにより、第二流路37内の第二給気流3bが冷却されて結露するので、第二給気流3bの水分が除去される。つまり、熱交換器35で顕熱交換することによって、第二給気流3bに対する除湿(第三除湿)がなされる。
つまり、除湿機能付き熱交換形換気装置50は、熱交換形換気装置10と吸熱器34と熱交換器35との各機器による除湿(第一除湿〜第三除湿)によって、屋外の高温多湿の給気流3から水分を除去し、その際、必要な除湿量を確保している。
さらに、除湿機能付き熱交換形換気装置50における除湿装置30は、熱交換形換気装置10の排気風路4から排気流2を導入し、導入された排気流2が放熱器32を流通する構成となっている。放熱器32では、導入された排気流2によって、吸熱器34において吸熱されるエネルギーと、圧縮機31において冷凍サイクル内の冷媒を循環させるためのエネルギーとに相当する熱量が排熱され、放熱器32から熱を奪った排気流2は排気風路4に導出されてそのまま屋外に排出される。つまり、放熱器32は、導入された排気流2によって冷却される。そして、この結果として、放熱器32を流通することに伴う給気流3(第一給気流3a、第二給気流3b)の温度上昇が抑制される。
本実施の形態1に係る除湿機能付き熱交換形換気装置50によれば、除湿装置30における放熱器32の冷却(排熱)に必要なエネルギーを、熱交換形換気装置10からの排気流2(除湿を必要する夏季において、給気流3よりも温度が低い排気流2)によって得ることができるため、除湿後の空気(給気流3)の温度上昇を抑制することができる。冷凍サイクルと熱交換器35とを組み合わせた除湿装置30を適用した場合でも、除湿に伴って生じる温度上昇が抑制された給気流を送風することができる。つまり、除湿に伴って生じる温度上昇が抑制された給気流を送風可能な除湿機能付き熱交換形換気装置50とすることができる。
(実施の形態2)
本発明の実施の形態2に係る除湿機能付き熱交換形換気装置50aは、熱交換形換気装置10における熱交換前の排気流2の一部が除湿装置30に導入されるように構成されている点で実施の形態1と異なる。これ以外の除湿機能付き熱交換形換気装置50aの構成は、実施の形態1に係る除湿機能付き熱交換形換気装置50と同様である。以下、実施の形態1で説明済みの内容は再度の説明を適宜省略し、実施の形態1と異なる点を主に説明する。
本発明の実施の形態2に係る除湿機能付き熱交換形換気装置50aについて、図4を参照して説明する。図4は、本発明の実施の形態2に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。
図4に示すように、熱交換形換気装置10には、熱交換前の排気流2を、2つの気流(第一排気流2a、第二排気流2b)に分割する分岐ダンパ43が設置されている。第一排気流2aは、熱交換素子12に導入される気流であり、第二排気流2bは、除湿装置30に導入される気流である。なお、分岐ダンパ43は、第二排気流2bが第一排気流2aよりも流れる空気の量が少なくなるように排気流2を分割している。
熱交換形換気装置10では、分割された排気流2のうち第一排気流2aは、熱交換素子12を流通した後に、排気風路4(図2の排気口15)から屋外に排出される。一方、第二排気流2bは、除湿装置30の放熱器32を流通した後に、熱交換後の排気風路4に導出される。本実施の形態では、熱交換形換気装置10は、熱交換素子12によって熱交換した第一排気流2aと、除湿装置30の放熱器32を流通した第二排気流2bとを合流させた後に、屋外に排出するように構成されている。
本実施の形態2に係る除湿機能付き熱交換形換気装置50aによれば、夏季において、熱交換後の排気流2(第一排気流2a)よりも温度が低い熱交換前の排気流2(第二排気流2b)が除湿装置30に導入されるので、より効果的に放熱器32を冷却することができる。このため、除湿後の空気(給気流3)の温度上昇をさらに抑制することができる。
(実施の形態3)
本発明の実施の形態3に係る除湿機能付き熱交換形換気装置50bは、熱交換形換気装置10における熱交換後の排気流2に対して熱交換前の排気流2の一部を混合させた上で除湿装置30に導入するように構成されている点で実施の形態1、2と異なる。これ以外の除湿機能付き熱交換形換気装置50bの構成は、実施の形態1に係る除湿機能付き熱交換形換気装置50または実施の形態2に係る除湿機能付き熱交換形換気装置50aと同様である。以下、実施の形態1、2で説明済みの内容は再度の説明を適宜省略し、実施の形態1、2と異なる点を主に説明する。
本発明の実施の形態3に係る除湿機能付き熱交換形換気装置50bについて、図5を参照して説明する。図5は、本発明の実施の形態3に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。
図5に示すように、熱交換形換気装置10には、実施の形態1と同様、熱交換後の排気風路4に切替ダンパ40が設置されている。また、熱交換形換気装置10には、実施の形態2と同様、熱交換前の排気流2を、第一排気流2aと第二排気流2bとに分割する分岐ダンパ43が設置されている。
熱交換形換気装置10では、分割された排気流2のうち第一排気流2aは、熱交換素子12を流通した後に、排気風路4の切替ダンパ40を介して除湿装置30に導出される。その際、第一排気流2aには、熱交換素子12をバイパスして流通してきた第二排気流2bが混合される。つまり、除湿装置30には、熱交換後の第一排気流2aと熱交換前の第二排気流2bとが混合された排気流2が導入される。そして、除湿装置30に導入された排気流2は、放熱器32を流通した後に、熱交換形換気装置10における熱交換後の排気風路4に導出される。
本実施の形態3に係る除湿機能付き熱交換形換気装置50bによれば、熱交換後の第一排気流2aに対して熱交換前の第二排気流2bを合流させるので、熱交換後の第一排気流2aよりも温度を低下させた状態で、除湿装置30に導入する排気流2(混合した排気流)の風量を増やすことができる。このため、効果的に放熱器32の冷却が可能となり、除湿後の空気(給気流)の温度上昇を抑制することができる。
(実施の形態4)
本発明の実施の形態4に係る除湿機能付き熱交換形換気装置50cは、除湿装置30aの冷凍サイクルを構成する放熱器および膨張器が2段構成となっている点で実施の形態3と異なる。これ以外の除湿機能付き熱交換形換気装置50cの構成は、実施の形態3に係る除湿機能付き熱交換形換気装置50bと同様である。以下、実施の形態3で説明済みの内容は再度の説明を適宜省略し、実施の形態3と異なる点を主に説明する。
本発明の実施の形態4に係る除湿機能付き熱交換形換気装置50aについて、図6を参照して説明する。図6は、本発明の実施の形態4に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。
図6に示すように、除湿機能付き熱交換形換気装置50cにおける除湿装置30aは、放熱器32として、第一放熱器32aと、第一放熱器32aとは異なる第二放熱器32bとを有する。また、除湿装置30aは、膨張器33として、第一膨張器33aと、第一膨張器33aとは異なる第二膨張器33bとを有する。そして、除湿装置30aにおける冷凍サイクルは、圧縮機31、第一放熱器32a、第一膨張器33a、第二放熱器32b、第二膨張器33b、吸熱器34の順に連結して構成される。さらに、熱交換器35は、従来の熱交換器111(図9参照)と同様、吸熱器34と第二放熱器32bとの間に配置される。
本実施の形態での圧縮機31は、実施の形態1での圧縮機31とは異なり、冷媒ガスの温度を50℃程度にまで高温化して第一放熱器32aに導入している。
第一放熱器32aは、除湿装置30aに導入された排気流2(熱交換後の第一排気流2aと熱交換前の第二排気流2bとを混合した排気流)との間で熱交換することによって、熱を外部(冷凍サイクル外)に放出させる機器である。また、第二放熱器32bは、除湿装置30aに導入された給気流3(第一給気流3a、第二給気流3b)との間で熱交換することによって、熱を外部(冷凍サイクル外)に放出される機器である。
ここで、第一放熱器32aに導入される冷媒の温度は、50℃程度となるように圧縮機31によって調整され、第二放熱器32bに導入される冷媒の温度は、27℃程度となるように第一膨張器33aによって調整されている。
詳細は後述するが、第一膨張器33aは、第一放熱器32aから導入される高圧の気液二相冷媒(ガス状態の冷媒と液状態の冷媒とが混在した状態の冷媒)を、減圧して所定の温度(例えば、屋内温度である27℃程度)・中圧の二相冷媒とする機器である。また、第二膨張器33bは、第二放熱器32bから導入される中圧の過冷却液冷媒を、減圧して低温・低圧の気液二相冷媒とする機器である。
そして、除湿装置30aに導入された第一給気流3aは、吸熱器34、熱交換器35の第一流路36、第二放熱器32bの順に流通した後に、給気風路5に導出される。一方、除湿装置30aに導入された第二給気流3bは、熱交換器35の第二流路37、第二放熱器32bの順に流通した後に、給気風路5に導出される。また、除湿装置30aに導入された排気流2(熱交換後の第一排気流2aと熱交換前の第二排気流2bとを混合した排気流)は、第一放熱器32aを流通した後に、排気風路4に導出される。
次に、除湿機能付き熱交換形換気装置50cにおける除湿装置30aの冷凍サイクルの動作について図7を用いて説明する。図7は、本発明の実施の形態4に係る除湿機能付き熱交換形換気装置の除湿運転時のモリエル線図である。ここで、縦軸は冷媒の圧力であり、横軸は冷媒の比エンタルピーである。また、図7の領域S1は、過熱蒸気域(冷媒が過熱蒸気として存在する領域)であり、領域S2は、湿り蒸気域(冷媒が湿り蒸気として存在する領域)であり、領域S3は、過冷却液域(冷媒が過冷却液として存在する領域)である。さらに、図7の曲線S4は、飽和蒸気線(領域S1と領域S2との分界線)と飽和液線(領域S2と領域S3との分界線)とが臨界点(図示せず)を挟んで構成された曲線である。
まず、図7に示すように、除湿装置30aでは、圧縮機31から高温高圧のガス冷媒が吐出され、第一放熱器32aに流入する(図7の点A)。
そして、第一放熱器32aに流入したガス冷媒は、除湿装置30aに導入される排気流2と熱交換することにより、吐出温度より冷却されたガス冷媒または乾き度(ガスの割合)の高い気液二相冷媒に凝縮し、第一放熱器32aを流出する(図7の点B)。一方、第一放熱器32aによって温度上昇した排気流2は、熱交換後の排気風路4に導出されて屋外に排出される。
そして、第一放熱器32aを流出したガス冷媒または気液二相冷媒は、第一膨張器33aによって高圧から中圧に減圧され、凝縮温度は所定の温度(屋内温度)に低下して、第二放熱器32bに流入する(図7の点C)。
そして、第二放熱器32bに流入すした所定の温度・中圧の気液二相冷媒は、除湿後の給気流3(第一給気流3a、第二給気流3b)と熱交換することにより、乾き度の低い気液二相冷媒または過冷却液冷媒に凝縮し、第二放熱器32bを流出する(図7の点D)。一方、除湿装置30aに導入される給気流3(特に吸熱器34と熱交換した第一給気流3a)は、第二放熱器32bとの熱交換によって、所定の温度(屋内温度)にまで上昇した後に、給気風路5に導出され、屋内に吹き出す。より正確には、第二放熱器32bを流通した給気流3は、第二放熱器32bに導入された給気流3の温度と第二放熱器32bに導入された冷媒の温度との間の温度となって吹き出される。
そして、第二放熱器32bを流出した過冷却液冷媒は、第二膨張器33bにより減圧され、気液二相冷媒となり、吸熱器34に流入する(図7の点E)。
吸熱器34に流入した気液二相冷媒は、除湿前の第一給気流3aと熱交換することにより、気液二相冷媒は乾き度の高い冷媒またはガス冷媒となり、吸熱器34を流出する(図7の点F)。一方、吸熱器34により冷却された第一給気流3aは、露点温度より低い空気となるため結露し、第一給気流3aの水分を除くことができる。吸熱器34を流出したガス冷媒は圧縮機31に吸入される。
このような冷凍サイクルでは、第一膨張器33aによって冷媒を中圧に減圧することで、第二放熱器32bによって上昇する給気流3の温度を所定の温度(屋内温度)に調整することができる。このため、除湿装置30aは、給気流3と第二放熱器32bとを熱交換しても給気流3の温度上昇を所定の温度程度とすることができる。
より詳細に説明する。本実施の形態1の放熱器32では、放熱器32を流通する給気流3は、放熱器32に導入される冷媒(温度:45℃程度)との間で熱交換を行うので、放熱器32を流通した給気流3は、最高45℃程度にまで昇温されて吹き出される。一方、本実施の形態の第二放熱器32bでは、第二放熱器32bに導入される給気流3は、第二放熱器32bに導入される冷媒(温度:27℃程度)との間で熱交換を行うので、第二放熱器32bを流通した給気流3は、最高27℃程度にまで昇温されて吹き出される。つまり、第一膨張器33aによって冷媒温度を所定の温度(27℃程度)に調整することで、それと熱交換する給気流3は所定の温度(屋内温度)よりも高い温度にはならない。
ここで、本実施の形態の除湿装置30aは、第一放熱器32aによって、吸熱器34において吸熱されるエネルギーと、圧縮機31において冷凍サイクル内の冷媒を循環させるためのエネルギーとに相当する熱量の大部分が排熱されるように調整している。これにより、第二放熱器32bによって排熱する熱量を減少させ、第二放熱器32bに導入される冷媒の温度を27℃程度に下げることを可能にしている。
本実施の形態4に係る除湿機能付き熱交換形換気装置50cによれば、第一膨張器33aによって冷凍サイクル内の冷媒(排気流2によって冷却された第一放熱器32aから導入される冷媒)を減圧することで、第二放熱器32bの温度を第一放熱器32aの温度よりも低下させることができるので、給気流3と第二放熱器32bとを熱交換した場合の給気流3の温度上昇を抑制することができる。つまり、除湿に伴って生じる温度上昇が抑制された給気流を送風可能な除湿機能付き熱交換形換気装置50cとすることができる。
(実施の形態5)
本発明の実施の形態5に係る除湿機能付き熱交換形換気装置50dは、除湿装置30における熱交換器35と放熱器32との間に補助ファン38を設置されている点で実施の形態1と異なる。これ以外の除湿機能付き熱交換形換気装置50dの構成は、実施の形態1に係る除湿機能付き熱交換形換気装置50と同様である。以下、実施の形態1で説明済みの内容は再度の説明を適宜省略し、実施の形態1と異なる点を主に説明する。
本発明の実施の形態5に係る除湿機能付き熱交換形換気装置50dについて、図8を参照して説明する。図8は、本発明の実施の形態5に係る除湿機能付き熱交換形換気装置の構成を示す模式図である。
図8に示すように、除湿機能付き熱交換形換気装置50dにおける除湿装置30aは、熱交換器35の第二流路37と放熱器32との間を連通する風路内に補助ファン38が設置されている。補助ファン38は、分岐ダンパ42に加えて、第二流路37に流れる空気(第二給気流3b)の量を増減させるための機器である。なお、補助ファン38および分岐ダンパ42は、請求項の「空気量調整部」に相当する。
補助ファン38は、羽根部と、羽根部を回転するモータ部を備えた構成を有する。補助ファン38は、羽根部の回転数を制御することにより、第二流路37に流れる空気(第二給気流3b)の風量を増減させることができる。つまり、補助ファン38によって、第一流路36を流通する第一給気流3aの風量と第二流路37を流通する第二給気流3bの風量の比率を可変にすることができる。
本実施の形態5に係る除湿機能付き熱交換形換気装置50dによれば、補助ファン38によって、第一流路36を流通する第一給気流3aの風量を、第二流路37を流通する第二給気流3bの風量よりも容易に多くすることができるので、第二流路37を流通する第二給気流3bの温度を効果的に下げることができ、第二給気流3bに対する除湿効果を高めることができる。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。
本実施の形態4に係る除湿機能付き熱交換形換気装置50cでは、第一膨張器33aとして、例えば、開閉によって冷凍サイクル内の冷媒循環量を増減させる冷媒開閉手段と、冷媒開閉手段を駆動する駆動手段と、を有する構成としてもよい。このようにすることで、駆動手段を駆動させ、冷媒開閉手段の開度を上げることにより、冷媒の減圧量を減らし、導入される給気流3の温度を上昇させることができる。一方、冷媒開閉手段の開度を下げることにより、冷媒の減圧量を増やし、導入される給気流3の温度を下降させることができる。つまり、こうした第一膨張器33aを適用することにより、冷媒の減圧量を制御できるため、第二放熱器32bにおける熱交換後の温度(上限の温度)を制御することができる。
また、本実施の形態4に係る除湿機能付き熱交換形換気装置50cでは、図6に示すように、冷媒開閉手段と駆動手段を有する第一膨張器33aに加え、熱交換前の排気流2の空気温度を検出する第一温度センサ44と、第二放熱器32bを流通した後の給気流3の空気温度を検出する第二温度センサ45と、第一膨張器33aを制御する第一制御部(図示せず)と、を有する構成としてもよい。第一制御部は、第一温度センサによって検出した温度に基づいて、第一膨張器33aの冷媒開閉手段を開閉させ、第二温度センサ45によって検出される温度が所定の温度範囲となるように駆動手段を制御する。特に、第一制御部は、第一温度センサ44での温度と比べて、第二温度センサ45での温度が高い場合には、冷媒開閉手段の開度を下げるように駆動手段を運転させ、冷媒の減圧量を増やし、給気流3の温度を下降させる。これにより、除湿機能付き熱交換形換気装置50cでは、第一温度センサ44(屋内から吸い込んだ熱交換前の排気流2)と同等の温度となる給気流3を給気することが可能となる。
さらには、第一制御部の制御方法を変更し、第一温度センサ44の温度と異なる温度となる給気流3を給気するようにしてもよい。屋内での利用者の快適性が損なわれない範囲であれば、夏季においては、第一温度センサ44の温度よりも低い温度となる給気流3を屋内に給気する。また、冬季においては、第一温度センサ44の温度よりも高い温度となる給気流3を屋内に給気する。これにより、熱交換換気をしつつ、利用者にとって快適な温度・湿度の給気流3を屋内に給気することができる。
また、本実施の形態5に係る除湿機能付き熱交換形換気装置50dでは、図8に示すように、熱交換前の給気流3の温湿度を検出する温湿度センサ46と、補助ファン38を制御する第二制御部(図示せず)と、を有する構成としてもよい。第二制御部は、温湿度センサ46によって検出した温度に基づいて、除湿装置30で必要な除湿量を算出する。そして、第二制御部は、その必要除湿量に合わせて、第一流路36を流通する第一給気流3aの風量と第二流路37を流通する第二給気流3bの風量の比率が所定の関係となるように補助ファン38を制御する。これにより、除湿機能付き熱交換形換気装置50dでは、第二流路37を流通する第二給気流3bに対する除湿を効率よく行うことができる。
また、本実施の形態1〜5に係る除湿機能付き熱交換形換気装置50、50a〜50dでは、熱交換器35として、顕熱型の熱交換素子を用いたが、顕熱型の熱交換素子としては、熱交換素子の第一流路36と第二流路37を構成する部材が撥水性(疎水性)を有することが好ましい。撥水性(疎水性)を有する部材としては、例えば、ポリプロピレン、ポリスチレン等の樹脂部材が用いられる。このようにすることで、熱交換素子の内部で発生した結露水が、熱交換素子の外部に流れ出やすくなるので、結露水に起因した熱交換器35の熱交換効率の低下を招くことなく、除湿することが可能となる。