JP2020088357A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2020088357A
JP2020088357A JP2018225966A JP2018225966A JP2020088357A JP 2020088357 A JP2020088357 A JP 2020088357A JP 2018225966 A JP2018225966 A JP 2018225966A JP 2018225966 A JP2018225966 A JP 2018225966A JP 2020088357 A JP2020088357 A JP 2020088357A
Authority
JP
Japan
Prior art keywords
flow passage
heat exchanger
outer layer
plate
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018225966A
Other languages
Japanese (ja)
Inventor
齋藤 学
Manabu Saito
学 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP2018225966A priority Critical patent/JP2020088357A/en
Publication of JP2020088357A publication Critical patent/JP2020088357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a heat exchanger capable of bringing the current velocity of heat transfer medium, flowing through a duct formed by multiple open holes, close to uniform current velocity in the lamination direction of the laminate, in a configuration including a laminate formed by laminating multiple layers in which multiple open holes are formed.SOLUTION: A heat exchanger 20 includes a case 22 provided with an inlet and an outlet, a lamination core 30 received in the case 22, where multiple layers in which multiple open holes are formed are laminated, and a duct 28 for introducing cooling medium L in a direction from the inlet toward the outlet is formed by the open holes, and a lid 26 and a bottom 24B sandwiching the lamination core 30 from the lamination direction so as to close the multiple open holes formed in the outermost layer. The duct 28 is formed of a first outer layer passage part 56 and a second outer layer passage part 58 formed of the lid, the bottom and the open holes in the outermost layer, and a general passage part 60 formed of the open holes of the intermediate layers, and the lamination core 30 is configured so that the flow passage area of the first outer layer passage part 56 becomes smaller than that of the general passage part 60.SELECTED DRAWING: Figure 7

Description

本発明は、熱交換器に関する。 The present invention relates to heat exchangers.

特許文献1には、冷媒が流れるケース内に積層コアを収めたヒートシンクが開示されている。この積層コアは、複数の貫通孔によって、第1方向に沿って直線状に延び、第1方向と直交する方向に間隔をあけて設けられる複数の縦リブと、第1方向に間隔をあけて設けられ、上記直交する方向に隣接する縦リブ同士を連結する横リブと、が形成された複数の打ち抜き板を、互いの縦リブ同士を重ねつつ、互いの横リブ同士が第1方向に間隔をあけて配置されるように積層して形成されている。 Patent Document 1 discloses a heat sink in which a laminated core is housed in a case in which a refrigerant flows. The laminated core has a plurality of through-holes extending linearly along the first direction and having a plurality of vertical ribs provided at intervals in a direction orthogonal to the first direction and at intervals in the first direction. A plurality of punched plates provided with lateral ribs that connect the vertical ribs adjacent to each other in the orthogonal direction are formed, and the vertical ribs are overlapped with each other while the horizontal ribs are spaced in the first direction. It is formed by stacking so as to be spaced apart.

特許第6026808号公報Japanese Patent No. 6026808

特許文献1では、各打ち抜き板の第1方向と直交する方向に隣接する縦リブ間に位置する貫通孔によって、冷却水が流れる流路が形成されている。この流路を流れる冷却水は、各打ち抜き板に形成された複数の横リブによって積層方向に分流と合流を繰り返しながら積層方向に攪拌される。ここで、特許文献1では、同じ板厚の打ち抜き板を積層して積層コアを形成しているため、流路のうち、積層方向で最外層の打ち抜き板の貫通孔とケース壁面との間に形成される外層流路部における流路面積が、最外層の打ち抜き板を除く隣接する打ち抜き板の貫通孔によって形成される一般流路部の流路面積と同じ面積とされている。しかし、一般流路部から積層方向外側へ分岐する外層流路部に流れ込む冷却水の流量は、一般流路部を流れる冷却水の流量よりも少ない。このため、冷却水の流速が一般流路部よりも外層流路部で遅くなるという課題がある。 In Patent Document 1, a flow path through which cooling water flows is formed by a through hole located between adjacent vertical ribs in a direction orthogonal to the first direction of each punched plate. The cooling water flowing through this flow path is agitated in the stacking direction by repeatedly dividing and merging in the stacking direction by a plurality of horizontal ribs formed on each punched plate. Here, in Patent Document 1, since the punched plates having the same plate thickness are laminated to form the laminated core, between the through holes of the outermost punched plate and the case wall surface in the laminating direction in the flow path. The flow passage area in the formed outer layer flow passage portion is the same as the flow passage area of the general flow passage portion formed by the through holes of the adjacent punched plates excluding the outermost punched plate. However, the flow rate of the cooling water flowing from the general flow channel portion to the outer layer flow channel portion branching outward in the stacking direction is smaller than the flow rate of the cooling water flowing in the general flow channel portion. Therefore, there is a problem that the flow velocity of the cooling water becomes slower in the outer layer flow passage than in the general flow passage.

本発明は、上記事実を考慮して、複数の貫通孔が形成された複数の層が積層されて形成された積層体を備える構成において、複数の貫通孔によって形成された流路を流れる熱媒体の流速を積層体の積層方向で均一に近づけられる熱交換器を提供することを課題とする。 In view of the above facts, the present invention provides a heat medium that flows in a flow path formed by a plurality of through holes in a configuration including a laminated body formed by laminating a plurality of layers in which a plurality of through holes are formed. It is an object of the present invention to provide a heat exchanger capable of making the flow velocity of (1) uniform in the stacking direction of the stack.

本発明の第1態様の熱交換器は、熱媒体が流入する入口及び前記熱媒体が流出する出口が設けられたケースと、前記ケースに収められ、複数の貫通孔が形成された複数の層が積層され、かつ前記入口から前記出口に向かう方向に前記熱媒体を導く流路が前記貫通孔によって形成された積層体と、前記積層体を構成する前記複数の層のうち、積層方向の最外層に形成された前記複数の貫通孔を塞ぐようにして前記積層体を前記積層方向から挟む一対の壁部と、を備え、前記流路は、前記壁部と前記最外層の前記貫通孔とによって形成された外層流路部と、前記最外層よりも前記積層方向内側に位置する中間層同士の前記貫通孔で形成された一般流路部とで形成されており、前記積層体は、前記積層方向の一方側の前記外層流路部の流路面積が前記一般流路部の流路面積よりも小さくなるように構成されている。 The heat exchanger according to the first aspect of the present invention includes a case having an inlet through which a heat medium flows in and an outlet through which the heat medium flows out, and a plurality of layers housed in the case and having a plurality of through holes formed therein. Of the plurality of layers constituting the laminated body and the laminated body in which a flow path for guiding the heat medium in the direction from the inlet to the outlet is formed by the through hole, A pair of wall portions sandwiching the stacked body from the stacking direction so as to close the plurality of through holes formed in an outer layer, and the flow path includes the wall portion and the through hole of the outermost layer. The outer layer flow path portion formed by, and the general flow path portion formed by the through holes of the intermediate layers located on the inner side in the stacking direction with respect to the outermost layer, the laminated body, The flow passage area of the outer layer flow passage portion on one side in the stacking direction is configured to be smaller than the flow passage area of the general flow passage portion.

第1態様の熱交換器では、熱媒体が入口からケース内に流入し、ケースに収められた積層体に形成された流路を通って、出口からケース外に流出する。このとき、ケースに接するように配置された熱交換対象とケース内を流れる熱媒体との間で、ケースを介して熱交換が行われる。 In the heat exchanger of the first aspect, the heat medium flows into the case from the inlet, passes through the flow path formed in the stack housed in the case, and flows out of the case from the outlet. At this time, heat exchange is performed via the case between the heat exchange target arranged in contact with the case and the heat medium flowing in the case.

上記熱交換器では、流路を構成する一般流路部と積層方向の一方側の外層流路部とにおいて、一般流路部から積層方向外側へ分岐する一方側の外層流路部に流れ込む熱媒体の流量が、一般流路部に流れ込む熱媒体の流量よりも少ない。このため、一方側の外層流路部の流路面積を一般流路部の流路面積よりも小さくしている。このような構成とすることで、一方側の外層流路部を流れる熱媒体の流速が速くなり、一方側の外層流路部を流れる熱媒体の流速が一般流路部を流れる熱媒体の流速に近づく。すなわち、熱媒体の流速が積層体の積層方向で均一に近づく。このような構成の熱交換器において、ケースの一方側の外層流路部に近い側に熱交換対象を接触させることで、熱交換対象と熱媒体との間の熱交換が効率よく行われる。 In the heat exchanger, in the general flow path portion forming the flow path and the outer layer flow path portion on one side in the stacking direction, heat flowing into the outer layer flow path portion on one side branching out from the general flow path portion to the outer side in the stacking direction. The flow rate of the medium is lower than the flow rate of the heat medium flowing into the general flow path section. Therefore, the flow passage area of the outer layer flow passage portion on one side is made smaller than the flow passage area of the general flow passage portion. With such a configuration, the flow velocity of the heat medium flowing through the outer layer flow passage on one side becomes faster, and the flow velocity of the heat medium flowing through the outer layer flow passage on the one side becomes faster than the flow velocity of the heat medium flowing through the general flow passage. Approach. That is, the flow velocity of the heat medium approaches uniform in the stacking direction of the stack. In the heat exchanger having such a configuration, the heat exchange target and the heat medium are efficiently exchanged by bringing the heat exchange target into contact with one side of the case near the outer layer flow passage.

本発明の第2態様の熱交換器は、第1態様の熱交換器において、前記積層体は、前記一方側の外層流路部の前記積層方向と直交する方向の幅が前記一般流路部の幅と同じで、前記一方側の外層流路部の前記積層方向の高さが前記一般流路部の高さよりも低い。 A heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the laminate has a width in the direction orthogonal to the laminating direction of the outer layer flow passage portion on the one side in the general flow passage portion. And the height of the outer layer flow passage on the one side in the stacking direction is lower than the height of the general flow passage.

第2態様の熱交換器では、積層方向の一方側の外層流路部の幅を一般流路部の幅と同じとし、一方側の外層流路部の高さを一般流路部の高さよりも低くてしている。これにより、例えば、一方側の外層流路部の幅と一般流路部の幅を異ならせる構成と比べて、一般流路部から一方側の外層流路部へ熱媒体がスムーズに流れ込むため、熱媒体の圧力損失を抑制できる。 In the heat exchanger of the second aspect, the width of the outer layer flow path portion on one side in the stacking direction is the same as the width of the general flow path portion, and the height of the outer layer flow path portion on one side is greater than the height of the general flow path portion. Is also low. Thereby, for example, as compared with the configuration in which the width of the outer layer channel portion on one side and the width of the general channel portion are different, the heat medium smoothly flows from the general channel portion to the outer layer channel portion on the one side, The pressure loss of the heat medium can be suppressed.

本発明の第3態様の熱交換器は、第1態様又は第2態様の熱交換器において、一対の前記壁部は、前記ケースの対向する壁である。 A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the first aspect or the second aspect, wherein the pair of the wall portions are opposite walls of the case.

第3態様の熱交換器では、積層体を積層方向で挟む一対の壁部をケースの対向する壁としていることから、熱交換器の部品点数を減らすことができる。 In the heat exchanger of the third aspect, since the pair of wall portions sandwiching the stack in the stacking direction are the opposing walls of the case, the number of parts of the heat exchanger can be reduced.

本発明の第4態様の熱交換器は、第1態様又は第2態様の熱交換器において、前記壁部は、板材であり、前記積層体は、一対の前記板材によって挟まれた状態で前記ケースに収められている。 A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to the first aspect or the second aspect, wherein the wall portion is a plate material, and the laminated body is sandwiched by a pair of the plate materials. It is contained in a case.

第4態様の熱交換器では、積層体が一対の壁部である一対の板材によって挟まれた状態でケースに収められている。このように積層体を一対の板材で挟んで一部品とすることで、製造における保管時に積層体の複数の貫通孔に異物が入り込むのを抑制しやすい。 In the heat exchanger of the fourth aspect, the stacked body is housed in the case in a state of being sandwiched by the pair of plate members which are the pair of wall portions. By sandwiching the laminated body with a pair of plate materials as one component in this manner, it is easy to prevent foreign matter from entering the plurality of through holes of the laminated body during storage during manufacturing.

本発明の第5態様の熱交換器は、第1態様〜第4態様のいずれか一態様の熱交換器において、前記積層体は、前記ケースに接する熱交換対象に近い側に前記一方側の外層流路部が位置するようにして前記ケースに収められており、前記積層体の前記熱交換対象から遠い側に位置する前記積層方向の他方側の前記外層流路部の流路面積が前記一般流路部の流路面積と同じである。 A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any one of the first aspect to the fourth aspect, wherein the laminate has one of the one side on a side close to a heat exchange target in contact with the case. The outer layer channel portion is housed in the case so as to be positioned, and the channel area of the outer layer channel portion on the other side in the stacking direction located on the side far from the heat exchange target of the laminate is It is the same as the flow passage area of the general flow passage portion.

第5態様の熱交換器では、ケースの一方側の外層流路部に近い側に熱交換対象が接触するため、熱交換対象と熱媒体との間の熱交換が効率よく行われる。一方、積層体の熱交換対象から遠い側に位置する積層方向の他方側の外層流路部においては、一般流路部よりも熱媒体の流速が遅くても、熱交換性能へ与える影響が少ない。このため、他方側の外層流路部の流路面積と一般流路部の流路面積を同じ流路面積として、積層方向の他方側の最外層と中間層を共通化することで製造コストの上昇を抑制できる。 In the heat exchanger of the fifth aspect, the heat exchange target comes into contact with the side closer to the outer layer flow passage on one side of the case, so that the heat exchange between the heat exchange target and the heat medium is efficiently performed. On the other hand, in the outer layer flow path portion on the other side in the stacking direction, which is located farther from the heat exchange target of the laminate, even if the flow velocity of the heat medium is slower than that of the general flow path portion, it has little effect on the heat exchange performance. .. For this reason, the manufacturing cost can be reduced by making the outermost flow path area and the general flow path area of the other side flow path area on the other side the same, and by sharing the outermost layer and the intermediate layer on the other side in the stacking direction. The rise can be suppressed.

本発明の第6態様の熱交換器は、第1態様〜第5態様のいずれか一態様の熱交換器において、前記層は、前記複数の貫通孔が形成された板材によって形成されており、前記積層体は、前記積層方向の一方側の前記最外層を形成する板材の厚みが前記中間層を形成する板材の厚みよりも薄い。 A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first aspect to the fifth aspect, in which the layer is formed of a plate material in which the plurality of through holes are formed, In the laminated body, the thickness of the plate material forming the outermost layer on one side in the stacking direction is smaller than the thickness of the plate material forming the intermediate layer.

第6態様の熱交換器では、積層体において、一方側の最外層を形成する板材の厚みを、中間層を形成する板材の厚みよりも薄くするという簡単な構成で、一方側の外層流路部の流路面積を一般流路部の流路面積よりも小さくすることができる。すなわち、上記熱交換器は、上記のような簡単な構成で熱交換性能を向上させることが可能となる。 In the heat exchanger of the sixth aspect, in the laminated body, the thickness of the plate material forming the outermost layer on one side is made thinner than the thickness of the plate material forming the intermediate layer, and the outer layer flow passage on one side is formed. The flow passage area of the general flow passage portion can be made smaller than that of the general flow passage portion. That is, the heat exchanger can improve the heat exchange performance with the simple configuration as described above.

本発明の第7態様の熱交換器は、第6態様の熱交換器において、前記積層体は、同形状の前記板材が互いに表裏逆向きに積層されて形成されている。 A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to the sixth aspect, wherein the laminated body is formed by laminating the plate members having the same shape in opposite directions.

第7態様の熱交換器では、同形状(板厚を除く)の複数の板材が互いに表裏逆向きに積層されて積層体が形成されるため、例えば、異なる形状の複数の板材が積層されて積層体が形成される構成と比べて、部品点数を低減できる。これにより、製造コストの上昇を抑制できる。 In the heat exchanger of the seventh aspect, since a plurality of plate materials having the same shape (excluding plate thickness) are laminated in the opposite directions to each other to form a laminated body, for example, a plurality of plate materials having different shapes are laminated. The number of components can be reduced as compared with the configuration in which the laminated body is formed. This can suppress an increase in manufacturing cost.

本発明の第8態様の熱交換器は、第1態様〜第5態様のいずれか一態様の熱交換器において、前記積層方向の一方側の前記壁部には、前記最外層の前記複数の貫通孔に進入する突出部が設けられている。 A heat exchanger according to an eighth aspect of the present invention is the heat exchanger according to any one of the first aspect to the fifth aspect, wherein the wall portion on one side in the stacking direction has the plurality of outermost layers. A protrusion is provided to enter the through hole.

第8態様の熱交換器では、積層体における一方側の最外層の複数の貫通孔に、積層方向の一方側の壁部に設けられた突出部を進入させるという簡単な構成で、一方側の外層流路部の流路面積を一般流路部の流路面積よりも小さくすることができる。すなわち、上記熱交換器は、上記のような簡単な構成で熱交換性能を向上させることが可能となる。 In the heat exchanger of the eighth aspect, the simple configuration in which the protrusion provided on the wall portion on the one side in the stacking direction is inserted into the plurality of through holes of the outermost layer on the one side in the stacked body is used. The flow passage area of the outer layer flow passage portion can be made smaller than the flow passage area of the general flow passage portion. That is, the heat exchanger can improve the heat exchange performance with the simple configuration as described above.

以上説明したように、本発明によれば、複数の貫通孔が形成された複数の層が積層されて形成された積層体を備える構成において、複数の貫通孔によって形成された流路を流れる熱媒体の流速を積層体の積層方向で均一に近づけられる熱交換器を提供することができる。 As described above, according to the present invention, in a configuration including a stacked body formed by stacking a plurality of layers in which a plurality of through holes are formed, heat flowing in the flow path formed by the plurality of through holes It is possible to provide a heat exchanger in which the flow velocity of the medium can be made uniform in the stacking direction of the stack.

本発明の一実施形態に係る熱交換器の平面図である。It is a top view of the heat exchanger which concerns on one Embodiment of this invention. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 1. 図2の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG. 2. 図2の積層コアを形成する打ち抜き板の表面を示す平面図である。It is a top view which shows the surface of the punching board which forms the laminated core of FIG. 図4の打ち抜き板の裏面を示す平面図である。It is a top view which shows the back surface of the punching plate of FIG. 図2の積層コアの一部を拡大した拡大平面図である。FIG. 3 is an enlarged plan view in which a part of the laminated core of FIG. 2 is enlarged. 図3の7−7線断面図である。FIG. 7 is a sectional view taken along line 7-7 of FIG. 3. 図6の8−8線断面斜視図である。FIG. 8 is a sectional perspective view taken along line 8-8 of FIG. 6. 本発明のその他の実施形態に係る熱交換器に用いられる積層コアの断面図(図7に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 7) of the laminated core used for the heat exchanger which concerns on other embodiment of this invention. 本発明のその他の実施形態に係る熱交換器に用いられる積層コアの断面図(図7に対応する断面図)である。It is sectional drawing (sectional view corresponding to FIG. 7) of the laminated core used for the heat exchanger which concerns on other embodiment of this invention. 本発明のその他の実施形態に係る熱交換器に用いられる積層コアの断面斜視図(図8に対応する断面斜視図)である。It is a cross-sectional perspective view (cross-sectional perspective view corresponding to FIG. 8) of the laminated core used for the heat exchanger which concerns on other embodiment of this invention. 本発明のその他の実施形態に係る熱交換器に用いられる積層コアの断面斜視図(図8に対応する断面斜視図)である。It is a cross-sectional perspective view (cross-sectional perspective view corresponding to FIG. 8) of the laminated core used for the heat exchanger which concerns on other embodiment of this invention. 本発明のその他の実施形態に係る熱交換器に用いられる積層コアの断面斜視図(図7に対応する断面図)である。FIG. 8 is a sectional perspective view (a sectional view corresponding to FIG. 7) of a laminated core used in a heat exchanger according to another embodiment of the present invention. 実施例及び比較例の圧力損失と熱伝達係数を示すグラフである。It is a graph which shows the pressure loss and heat transfer coefficient of an example and a comparative example.

以下、図面を参照しながら本発明に係る一実施形態の熱交換器について説明する。なお、各図において適宜図示される矢印X、矢印Y、矢印Zは、熱交換器の装置幅方向、装置奥行き方向、装置厚さ方向をそれぞれ示している。また、本実施形態では、矢印Z方向を装置上下方向として説明する。 Hereinafter, a heat exchanger according to an embodiment of the present invention will be described with reference to the drawings. In addition, the arrow X, the arrow Y, and the arrow Z, which are appropriately illustrated in each drawing, respectively indicate the device width direction, the device depth direction, and the device thickness direction of the heat exchanger. Further, in the present embodiment, the arrow Z direction will be described as the device vertical direction.

図1には、本実施形態の熱交換器20が示されている。この熱交換器20は、例えば、CPUや電力用半導体素子などの発熱体Hを冷却するために用いられる。具体的には、熱交換器20に発熱体Hを接触させて、この発熱体Hの熱を熱交換器20の内部を流れる冷媒Lに伝達することにより、発熱体Hを冷却するものである。なお、本実施形態の発熱体Hは、本発明における熱交換対象の一例である。また、本実施形態の冷媒Lは、本発明における熱媒体の一例である。 FIG. 1 shows a heat exchanger 20 of this embodiment. The heat exchanger 20 is used, for example, to cool a heating element H such as a CPU or a power semiconductor element. Specifically, the heating element H is brought into contact with the heat exchanger 20 and the heat of the heating element H is transferred to the refrigerant L flowing inside the heat exchanger 20 to cool the heating element H. .. The heating element H of the present embodiment is an example of the heat exchange target in the present invention. Further, the refrigerant L of the present embodiment is an example of the heat medium in the present invention.

図1及び図2に示されるように、本実施形態の熱交換器20は、ケース22と、ケース22内に設置される積層コア30と、を有している。 As shown in FIGS. 1 and 2, the heat exchanger 20 of the present embodiment has a case 22 and a laminated core 30 installed in the case 22.

図2に示されるように、ケース22は、ケース本体24と、このケース本体24の装置厚さ方向の開口24Aを閉じる蓋体26と、を有している。 As shown in FIG. 2, the case 22 has a case body 24 and a lid body 26 that closes the opening 24A of the case body 24 in the device thickness direction.

ケース本体24は、板状の底部24Bと、底部24Bの外周縁部に立設された側壁部24Cとで構成されている。このケース本体24は、金属材料(例えば、アルミニウム、銅)を用いて形成されている。 The case main body 24 is composed of a plate-shaped bottom portion 24B and a side wall portion 24C provided upright on the outer peripheral edge portion of the bottom portion 24B. The case body 24 is formed using a metal material (for example, aluminum or copper).

図1及び図2に示されるように、蓋体26は、板状とされ、ケース本体24の側壁部24Cの底部24B側と反対側の端面に接合されている。なお、本実施形態では、蓋体26は、ケース本体24の端面にろう付けによって接合されている。また、蓋体26は、金属材料(例えば、アルミニウム、銅)を用いて形成されている。 As shown in FIGS. 1 and 2, the lid 26 has a plate shape and is joined to an end surface of the side wall portion 24C of the case body 24 opposite to the bottom portion 24B side. In the present embodiment, the lid 26 is joined to the end surface of the case body 24 by brazing. The lid 26 is formed using a metal material (for example, aluminum or copper).

また、ケース本体24の側壁部24Cには、ケース22の内部に冷媒(例えば、冷却水、オイル)Lが流入する入口27Aが、装置幅方向の一端側に形成されている。この入口27Aには、冷媒供給源に連結された供給パイプ28(図1参照)が接続されている。なお、本実施形態の入口27Aは、本発明における入口の一例である。 Further, an inlet 27A through which a refrigerant (for example, cooling water or oil) L flows into the case 22 is formed on the side wall portion 24C of the case body 24 at one end side in the device width direction. A supply pipe 28 (see FIG. 1) connected to a coolant supply source is connected to the inlet 27A. The inlet 27A of the present embodiment is an example of the inlet of the present invention.

また、ケース本体24の側壁部24Cには、ケース22の内部の冷媒Lが流出するための出口27Bが装置幅方向の他端側に形成されている。この出口27Bには、排出パイプ29(図1参照)が接続されている。なお、本実施形態の出口27Bは、本発明における出口の一例である。 Further, the side wall 24C of the case main body 24 is provided with an outlet 27B through which the refrigerant L inside the case 22 flows out on the other end side in the device width direction. A discharge pipe 29 (see FIG. 1) is connected to the outlet 27B. The outlet 27B of the present embodiment is an example of the outlet in the present invention.

図2及び図3に示されるように、供給パイプ28を通して入口27Aからケース22の内部に供給された冷媒Lは、積層コア30に形成される後述する流路38を流れ、出口27Bから排出パイプ29を通して外部に排出される。ここで、冷媒Lは、ケース22内において、入口27Aから出口27Bへ向けて流れる。 As shown in FIGS. 2 and 3, the refrigerant L supplied from the inlet 27A to the inside of the case 22 through the supply pipe 28 flows through a flow path 38 described later formed in the laminated core 30, and the outlet 27B discharges the pipe. It is discharged to the outside through 29. Here, the refrigerant L flows in the case 22 from the inlet 27A toward the outlet 27B.

図3〜図8に示されるように、積層コア30は、複数の貫通孔44が形成された複数の打ち抜き板32が積層されて構成されている。すなわち、積層コア30は、1枚の打ち抜き板32を1層として、複数の層が積層されて形成されている。なお、本実施形態の積層コア30は、本発明における積層体の一例である。 As shown in FIGS. 3 to 8, the laminated core 30 is configured by laminating a plurality of punched plates 32 having a plurality of through holes 44 formed therein. That is, the laminated core 30 is formed by laminating a plurality of layers, with one punched plate 32 as one layer. The laminated core 30 of the present embodiment is an example of the laminated body of the present invention.

また、積層コア30は、同形状の打ち抜き板32が表裏逆向きに積層されて形成されている。具体的には、積層コア30は、打ち抜き板32の裏面32B(図5で示される面)に別の打ち抜き板32の裏面32Bを重ね、この別の打ち抜き板32の表面32A(図4で示される面)にさらに別の打ち抜き板32の表面32Aを重ねていくことで形成されている。なお、本実施形態の積層コア30は、打ち抜き板32を6枚積層して形成されている。すなわち、積層コア30には、打ち抜き板32による層が6層形成されている。なお、本実施形態の打ち抜き板32は、本発明における板材の一例である。また、本実施形態では、積層コア30の打ち抜き板32の積層方向が装置厚さ方向と同じ方向である。 Further, the laminated core 30 is formed by stacking punched plates 32 having the same shape in the opposite directions. Specifically, in the laminated core 30, the back surface 32B of the punching plate 32 is overlapped with the back surface 32B of the punching plate 32 (the surface shown in FIG. 5), and the front surface 32A of the punching plate 32 (shown in FIG. 4). The surface 32A of the punching plate 32 is further overlapped with the surface 32A. The laminated core 30 of this embodiment is formed by laminating six punched plates 32. That is, the laminated core 30 is formed with six layers of punched plates 32. The punched plate 32 of the present embodiment is an example of the plate material of the present invention. Further, in the present embodiment, the stacking direction of the punched plate 32 of the stacked core 30 is the same as the device thickness direction.

打ち抜き板32は、金属製の素材板に打ち抜き成形によって複数の貫通孔44を形成し、複数の線状部34と複数の連結部36とを形成したものである。打ち抜き板32となる板材の材質としては、例えば、アルミニウム、銅を用いることが好ましい。なお、本実施形態では、ろう付けの観点から、両面がろう材層とされたクラッド鋼板(アルミニウム製)を用いている。 The punching plate 32 is formed by punching and forming a plurality of through holes 44 in a metal material plate, and forming a plurality of linear portions 34 and a plurality of connecting portions 36. As the material of the plate material that becomes the punched plate 32, for example, aluminum or copper is preferably used. In this embodiment, from the viewpoint of brazing, a clad steel plate (made of aluminum) whose both sides are brazing material layers is used.

線状部34は、積層コア30の積層方向と直交する方向であって冷媒Lが入口27Aから出口27Bに向かう方向、すなわち、冷媒Lの流れ方向(本実施形態では、装置幅方向に沿った方向と同じ方向)に波状に延びる帯状部分であり、延在方向の両端間で幅が一定とされている。なお、ここでいう線状部34の延在方向とは、線状部34の幅中心を通る中心線CL1に沿った方向である。また、線状部34の幅とは、線状部34の一辺に対して直交する方向に沿って計測した線状部34の両辺間の長さである。 The linear portion 34 is a direction orthogonal to the laminating direction of the laminated core 30 and the direction in which the refrigerant L goes from the inlet 27A to the outlet 27B, that is, the flow direction of the refrigerant L (in the present embodiment, along the device width direction. The strip-shaped portion extends in a wave shape in the same direction) and has a constant width between both ends in the extending direction. The extending direction of the linear portion 34 here is a direction along the center line CL1 passing through the width center of the linear portion 34. The width of the linear portion 34 is a length between both sides of the linear portion 34 measured along a direction orthogonal to one side of the linear portion 34.

また、線状部34は、積層コア30の積層方向と直交する方向であり、波の振幅方向(本実施形態では、装置奥行き方向に沿った方向)に間隔をあけて複数設けられている。なお、本実施形態の線状部34は、冷媒Lの流れ方向に三角波状(換言すると、ジグザグ状)に延びている。また、振幅方向に隣接する線状部34は、互いに平行に配置されている。 Further, the linear portions 34 are a direction orthogonal to the laminating direction of the laminated core 30, and are provided in plural at intervals in the amplitude direction of the wave (in the present embodiment, the direction along the device depth direction). The linear portion 34 of the present embodiment extends in a triangular wave shape (in other words, a zigzag shape) in the flow direction of the refrigerant L. Further, the linear portions 34 that are adjacent to each other in the amplitude direction are arranged in parallel with each other.

連結部36は、線状部34の延在方向に間隔をあけて設けられており、振幅方向に隣接する線状部34同士を連結している。この連結部36は、一方の線状部34から振幅方向に隣接する他方の線状部34へ直線状に延びる帯状部分であり、延在方向の両端間で幅が一定とされている。なお、ここでいう連結部36の延在方向とは、連結部36の幅中心を通る中心線CL2に沿った方向である。また、連結部36の幅とは、連結部36の一辺に対して直交する方向に沿って計測した連結部36の両辺間の長さである。 The connecting portions 36 are provided at intervals in the extending direction of the linear portions 34, and connect the linear portions 34 that are adjacent to each other in the amplitude direction. The connecting portion 36 is a strip-shaped portion that linearly extends from one linear portion 34 to the other linear portion 34 that is adjacent in the amplitude direction, and has a constant width between both ends in the extending direction. The extending direction of the connecting portion 36 is a direction along the center line CL2 passing through the width center of the connecting portion 36. In addition, the width of the connecting portion 36 is a length between both sides of the connecting portion 36 measured along a direction orthogonal to one side of the connecting portion 36.

図6に示されるように、一の連結部36は、振幅方向に隣接する線状部34同士において、一方の線状部34の頂部34Aよりも冷媒Lの流れ方向の下流側、すなわち、一般部34Bと他方の線状部34の一般部34Bとを連結している。また、一の連結部36よりも冷媒Lの流れ方向下流側の他の連結部36は、一方の線状部34の一般部34Bと他方の線状部34の頂部34Aよりも冷媒Lの流れ方向の下流側、すなわち、一般部34Bとを連結している。なお、ここでいう一般部34Bとは、線状部34の頂部34Aと底部34Cとの間の部分を指す。また、本実施形態では、線状部34を三角波状としているため、頂部34Aが三角波の角部であり、底部34Cが三角波の隅部であり、一般部34Bが三角波の角部と隅部をつなぐ直線部である。さらに、図6に示されるように、連結部36は、振幅方向に隣接する線状部34同士において、一方の線状部34の一般部34Bと他方の線状部34の一般部34Bとを連結している。 As shown in FIG. 6, in one connecting portion 36, between the linear portions 34 that are adjacent to each other in the amplitude direction, a downstream side in the flow direction of the refrigerant L with respect to the top portion 34A of one linear portion 34, that is, in general, The portion 34B is connected to the general portion 34B of the other linear portion 34. Further, the other connecting portion 36 on the downstream side of the one connecting portion 36 in the flow direction of the refrigerant L flows through the refrigerant L more than the general portion 34B of the one linear portion 34 and the top portion 34A of the other linear portion 34. The downstream side of the direction, that is, the general portion 34B is connected. The general portion 34B referred to here is a portion between the top portion 34A and the bottom portion 34C of the linear portion 34. Further, in the present embodiment, since the linear portion 34 has a triangular wave shape, the top portion 34A is a triangular wave corner portion, the bottom portion 34C is a triangular wave corner portion, and the general portion 34B is a triangular wave corner portion and a corner portion. It is a straight part that connects. Further, as shown in FIG. 6, the connecting portion 36 includes a general portion 34B of one linear portion 34 and a general portion 34B of the other linear portion 34 between the linear portions 34 adjacent to each other in the amplitude direction. It is connected.

また、積層コア30では、複数(本実施形態では6枚)の打ち抜き板32を表裏逆向きに互いの線状部34同士を重ねつつ、互いに重ねられた打ち抜き板32の連結部36同士が線状部34の延在方向に間隔をあけて配置(言い換えると、連結部36同士が互いに重なり合わないように配置)されるように積層されている。ここで、打ち抜き板32の波の振幅方向に隣接する線状部34間には複数の貫通孔44が形成されおり、上記のように互いに重ねられた打ち抜き板32同士ではそれぞれの貫通孔44の一部分同士が打ち抜き板32の板厚方向(積層方向)に重なり合っている。これらの貫通孔44によって冷媒Lの流路38が形成されている。この流路38は、互いに重ねられた打ち抜き板32における上記振幅方向に隣接する線状部34間に複数の貫通孔44によって形成されているため、打ち抜き板32の板厚方向(積層方向)から見て線状部34と同様に三角波状に形成されている。これにより、流路38には頂部34Aと底部34Cとの間に曲がり部が形成され、その曲がり部の頂点を避けた位置に連結部36が設けられている。また、積層された打ち抜き板32は、ろう付けによって互いに接合されている。 Further, in the laminated core 30, a plurality (six in the present embodiment) of punched plates 32 are overlapped with the linear portions 34 of the punched plates 32 in opposite directions, and the connecting portions 36 of the punched plates 32 that are overlapped with each other are formed into a line. The laminated portions are stacked so as to be spaced apart from each other in the extending direction of the shaped portions 34 (in other words, arranged so that the connecting portions 36 do not overlap each other). Here, a plurality of through holes 44 are formed between the linear portions 34 adjacent to each other in the wave amplitude direction of the punched plate 32, and the punched plates 32 stacked with each other as described above have respective through holes 44 of the through holes 44. Part of each of them is overlapped with each other in the plate thickness direction (stacking direction) of the punched plate 32. The flow path 38 for the refrigerant L is formed by these through holes 44. Since the flow path 38 is formed by the plurality of through holes 44 between the linear portions 34 of the punched plates 32 which are overlapped with each other and which are adjacent to each other in the amplitude direction, the flow channels 38 are formed in the plate thickness direction (stacking direction) of the punched plates 32. As seen, it is formed in a triangular wave shape like the linear portion 34. As a result, a curved portion is formed in the flow path 38 between the top portion 34A and the bottom portion 34C, and the connecting portion 36 is provided at a position avoiding the apex of the curved portion. The stacked punched plates 32 are joined to each other by brazing.

また、積層コア30を形成する複数の打ち抜き板32は、1枚の打ち抜き板50と、1枚の打ち抜き板52と、複数枚(本実施形態では4枚)の打ち抜き板54とで構成されている。 The plurality of punched plates 32 forming the laminated core 30 are composed of one punched plate 50, one punched plate 52, and a plurality of (four in this embodiment) punched plates 54. There is.

打ち抜き板50は、積層コア30の積層方向の一方側(本実施形態では装置上側)に位置して一方の最外層を形成している。一方、打ち抜き板52は、打ち抜き板50と反対側の積層コア30の積層方向の他方側(装置下側)に位置して他方の最外層を形成している。また、複数枚の打ち抜き板54は、積層コア30の積層方向で打ち抜き板50と打ち抜き板52との間に位置して複数の中間層を形成している。これらの打ち抜き板50、52、54は、板厚を除いて同形状とされている。言い換えると、打ち抜き板50、52、54は、少なくとも外形及び貫通孔44の形状が同じ形状とされている。 The punched plate 50 is located on one side (upper side of the apparatus in the present embodiment) of the laminated core 30 in the laminating direction and forms one outermost layer. On the other hand, the punching plate 52 is located on the other side (lower side of the apparatus) in the stacking direction of the laminated core 30 on the side opposite to the punching plate 50 and forms the other outermost layer. Further, the plurality of punched plates 54 are located between the punched plate 50 and the punched plate 52 in the stacking direction of the laminated core 30 to form a plurality of intermediate layers. These punched plates 50, 52, 54 have the same shape except for the plate thickness. In other words, the punched plates 50, 52, 54 have at least the same outer shape and the same shape as the through hole 44.

また、図7及び図8に示されるように、打ち抜き板50の板厚T1は、打ち抜き板52の板厚T2及び打ち抜き板54の板厚T3よりも薄くされている。言い換えると、打ち抜き板50によって形成される一方の最外層(本実施形態では装置上側の外層)の層厚は、打ち抜き板52によって形成される他方の最外層(本実施形態では装置下側の外層)の層厚及び打ち抜き板54によって形成される中間層の層厚よりも薄くされている。なお、本実施形態では、打ち抜き板52の板厚T2と打ち抜き板54の板厚T3とが同じ板厚とされている。 Further, as shown in FIGS. 7 and 8, the plate thickness T1 of the punched plate 50 is made smaller than the plate thickness T2 of the punched plate 52 and the plate thickness T3 of the punched plate 54. In other words, the layer thickness of one outermost layer (the outer layer on the upper side of the device in this embodiment) formed by the punching plate 50 is equal to the outermost layer of the other formed by the punching plate 52 (the outer layer on the lower side of the device in this embodiment). 2) and the thickness of the intermediate layer formed by the punching plate 54. In this embodiment, the plate thickness T2 of the punched plate 52 and the plate thickness T3 of the punched plate 54 are the same.

積層コア30の一方の最外層を形成する打ち抜き板50の外面(本実施形態では装置上側の面)は、蓋体26の下面にろう付けされている。すなわち、打ち抜き板50は、発熱体Hに近い側に配置されている。 The outer surface (the surface on the upper side of the device in this embodiment) of the punched plate 50 forming one outermost layer of the laminated core 30 is brazed to the lower surface of the lid 26. That is, the punching plate 50 is arranged on the side closer to the heating element H.

また、積層コア30の他方の最外層を形成する打ち抜き板52の外面(本実施形態では装置下側の面)は、ケース本体24の底面にろう付けされている。すなわち、打ち抜き板52は、打ち抜き板50と比べて、発熱体Hから遠い側に配置されている。 The outer surface of the punched plate 52 forming the other outermost layer of the laminated core 30 (the lower surface of the device in this embodiment) is brazed to the bottom surface of the case body 24. That is, the punched plate 52 is arranged farther from the heating element H than the punched plate 50.

これらの蓋体26及びケース本体24の底部24Bによって積層コア30が積層方向から挟まれると共に、打ち抜き板50の複数の貫通孔44及び打ち抜き板52の複数の貫通孔44が塞がれている。なお、本実施形態の蓋体26及びケース本体24の底部24Bは、本発明におけるケースの対向する壁の一例である。 The lid 26 and the bottom portion 24B of the case body 24 sandwich the laminated core 30 from the stacking direction, and the through holes 44 of the punched plate 50 and the through holes 44 of the punched plate 52 are closed. The lid 26 and the bottom portion 24B of the case body 24 of the present embodiment are examples of opposing walls of the case according to the present invention.

図7及び図8に示されるように、流路38は、第1外層流路部56と、第2外層流路部58と、一般流路部60とで形成されている。 As shown in FIGS. 7 and 8, the flow channel 38 is formed of a first outer layer flow channel portion 56, a second outer layer flow channel portion 58, and a general flow channel portion 60.

第1外層流路部56は、蓋体26と打ち抜き板50の貫通孔44とによって形成されている。一方、第2外層流路部58は、ケース本体24の底部24Bと打ち抜き板52の貫通孔44とによって形成されている。また、一般流路部60は、複数枚の打ち抜き板54の貫通孔44によって形成されている。 The first outer layer flow path portion 56 is formed by the lid 26 and the through hole 44 of the punched plate 50. On the other hand, the second outer layer flow path portion 58 is formed by the bottom portion 24B of the case body 24 and the through hole 44 of the punched plate 52. Further, the general flow path portion 60 is formed by the through holes 44 of the plurality of punched plates 54.

第1外層流路部56の流路面積は、一般流路部60の流路面積よりも小さくされている。具体的には、打ち抜き板50の板厚T1が、打ち抜き板54の板厚T3よりも薄くされていることから、第1外層流路部56の幅が一般流路部60の幅と同じで、第1外層流路部56の高さが一般流路部60の高さよりも低くなっている。なおここでいう第1外層流路部56及び一般流路部60の各々の幅は、流路38の延在方向と直交する方向における幅、すなわち、振幅方向に隣接する線状部34間の距離を指す。また、ここでいう第1外層流路部56及び一般流路部60の各々の高さは、積層コア30の積層方向における高さ、すなわち、層厚(打ち抜き板の板厚)を指す。 The flow passage area of the first outer layer flow passage portion 56 is smaller than the flow passage area of the general flow passage portion 60. Specifically, since the plate thickness T1 of the punched plate 50 is smaller than the plate thickness T3 of the punched plate 54, the width of the first outer layer flow passage portion 56 is the same as the width of the general flow passage portion 60. The height of the first outer layer flow path portion 56 is lower than the height of the general flow path portion 60. The width of each of the first outer layer flow path portion 56 and the general flow path portion 60 here is the width in the direction orthogonal to the extending direction of the flow path 38, that is, between the linear portions 34 adjacent in the amplitude direction. Refers to the distance. Further, the height of each of the first outer layer flow passage portion 56 and the general flow passage portion 60 referred to here is the height of the laminated core 30 in the laminating direction, that is, the layer thickness (thickness of the punched plate).

次に、本実施形態の熱交換器20の作用効果について説明する。
熱交換器20では、図1及び図2に示されるように、ケース22の蓋体26に接するように発熱体Hを配置することで、ケース22を介してケース22内を流れる冷媒Lと発熱体Hとの間で熱交換が行われる。具体的には、発熱体Hからの熱がケース22と、このケース22を介して積層コア30に伝達される。ケース22と積層コア30は、ケース22内に供給される冷媒Lとの熱交換によって冷却される。これにより、発熱体Hの熱が冷媒Lに奪われ(伝熱され)、発熱体Hが冷却される。
Next, the function and effect of the heat exchanger 20 of this embodiment will be described.
In the heat exchanger 20, as shown in FIGS. 1 and 2, by disposing the heating element H in contact with the lid 26 of the case 22, heat generation with the refrigerant L flowing in the case 22 through the case 22 is achieved. Heat is exchanged with the body H. Specifically, the heat from the heating element H is transferred to the case 22 and the laminated core 30 via the case 22. The case 22 and the laminated core 30 are cooled by heat exchange with the refrigerant L supplied into the case 22. As a result, the heat of the heating element H is taken (transferred) by the refrigerant L, and the heating element H is cooled.

図7及び図8に示されるように、一般流路部60を流れる冷媒Lは、連結部36によって積層方向で分流と合流を繰り返しながら入口27Aから出口27Bへ向かう方向に流れる。ここで、一般流路部60から積層方向外側へ分岐する第1外層流路部56には、一般流路部60から分流した冷媒Lが流れ込む。このたため、一般流路部60を流れる冷媒L(分流後合流した冷媒L)の流量と比べて、第1外層流路部56を流れる冷媒Lの流量が少なくなる。ここで、熱交換器20では、第1外層流路部56の流路面積が一般流路部60の流路面積よりも小さいため、第1外層流路部56を流れる冷媒Lの流速が速くなり、流路38を流れる冷媒Lの流速が一般流路部60を流れる冷媒Lの流速に近づく。すなわち、冷媒Lの流速が積層コア30の積層方向で均一に近づく。このように発熱体Hに近い側の第1外層流路部56の流速を速めることで、発熱体Hから熱を効率よく奪う(冷媒Lに伝熱させる)ことができる。その結果、熱交換器20は、発熱体Hと冷媒Lとの間の熱交換が効率よく行われ、熱交換性能が向上する。 As shown in FIGS. 7 and 8, the refrigerant L flowing through the general flow path portion 60 flows in the direction from the inlet 27A to the outlet 27B while repeatedly dividing and joining in the stacking direction by the connecting portion 36. Here, the refrigerant L split from the general flow path portion 60 flows into the first outer layer flow path portion 56 that branches outward from the general flow path portion 60 in the stacking direction. Therefore, the flow rate of the refrigerant L flowing through the first outer layer flow path portion 56 is smaller than the flow rate of the refrigerant L flowing through the general flow path portion 60 (refrigerant L that has joined after splitting). Here, in the heat exchanger 20, since the flow passage area of the first outer layer flow passage portion 56 is smaller than the flow passage area of the general flow passage portion 60, the flow velocity of the refrigerant L flowing through the first outer layer flow passage portion 56 is high. Therefore, the flow velocity of the refrigerant L flowing through the flow passage 38 approaches the flow velocity of the refrigerant L flowing through the general flow passage portion 60. That is, the flow velocity of the refrigerant L approaches uniform in the laminating direction of the laminated core 30. By thus increasing the flow velocity of the first outer layer flow path portion 56 on the side closer to the heating element H, it is possible to efficiently remove heat from the heating element H (transfer the heat to the refrigerant L). As a result, in the heat exchanger 20, the heat exchange between the heating element H and the refrigerant L is efficiently performed, and the heat exchange performance is improved.

また、熱交換器20では、第1外層流路部56の幅を一般流路部60の幅と同じとし、第1外層流路部56の高さを一般流路部60の高さよりも低くてしている。これにより、例えば、第1外層流路部56の幅と一般流路部60の幅を異ならせる構成と比べて、一般流路部60から第1外層流路部56へ冷媒Lがスムーズに流れ込むため、冷媒Lの圧力損失を抑制できる。 Further, in the heat exchanger 20, the width of the first outer layer flow passage portion 56 is the same as the width of the general flow passage portion 60, and the height of the first outer layer flow passage portion 56 is lower than the height of the general flow passage portion 60. I am doing it. Thereby, for example, as compared with the configuration in which the width of the first outer layer flow passage portion 56 and the width of the general flow passage portion 60 are made different, the refrigerant L smoothly flows from the general flow passage portion 60 into the first outer layer flow passage portion 56. Therefore, the pressure loss of the refrigerant L can be suppressed.

熱交換器20では、蓋体26及びケース本体24の底部24Bで打ち抜き板50の貫通孔44及び打ち抜き板52の貫通孔44をそれぞれ塞ぐため、例えば、打ち抜き板50の貫通孔44及び打ち抜き板52の貫通孔44を他の板材で塞ぐ構成と比べて、部品点数を減らすことができる。 In the heat exchanger 20, since the through hole 44 of the punched plate 50 and the through hole 44 of the punched plate 50 are closed by the lid 26 and the bottom portion 24B of the case main body 24, for example, the through hole 44 of the punched plate 50 and the punched plate 52 are used. The number of parts can be reduced as compared with the configuration in which the through hole 44 of FIG.

熱交換器20では、同形状(板厚を除く)の打ち抜き板50と打ち抜き板54において、板厚T1を板厚T3よりも薄くするという簡単な構成で、第1外層流路部56の流路面積を一般流路部60の流路面積よりも小さくすることができる。すなわち、板厚T1を板厚T3よりも薄くするという簡単な構成で熱交換器20の熱交換性能を向上させることができる。 In the heat exchanger 20, the punching plate 50 and the punching plate 54 having the same shape (excluding the plate thickness) have a simple configuration in which the plate thickness T1 is smaller than the plate thickness T3, and the flow of the first outer layer flow path portion 56 is reduced. The passage area can be made smaller than the passage area of the general passage portion 60. That is, the heat exchange performance of the heat exchanger 20 can be improved with a simple configuration in which the plate thickness T1 is thinner than the plate thickness T3.

また、熱交換器20では、発熱体Hから遠い側に位置する積層コア30の第2外層流路部58においては、一般流路部60よりも冷媒Lの流速が遅くても、熱交換性能へ与える影響が少ない。このため、第2外層流路部58の流路面積と一般流路部60の流路面積を同じ流路面積とする、すなわち、打ち抜き板52と打ち抜き板54を共通化することで部品点数を低減することができる。これにより、製造コストの上昇を抑制できる。 Further, in the heat exchanger 20, in the second outer layer flow passage portion 58 of the laminated core 30 located on the side farther from the heating element H, even if the flow velocity of the refrigerant L is slower than that of the general flow passage portion 60, the heat exchange performance. Has little effect on Therefore, the flow passage area of the second outer layer flow passage portion 58 and the flow passage area of the general flow passage portion 60 have the same flow passage area, that is, the punching plate 52 and the punching plate 54 are made common to reduce the number of parts. It can be reduced. This can suppress an increase in manufacturing cost.

そして、熱交換器20では、同形状の複数の打ち抜き板32が互いに表裏逆向きに重ねられて積層コア30が形成されるため、例えば、異なる形状の複数の打ち抜き板が重ねられて積層コア30が形成される構成と比べて、部品点数を低減できる。これにより、製造工程コストの上昇を抑制できる。 Then, in the heat exchanger 20, the plurality of punched plates 32 having the same shape are stacked on each other in the opposite directions to form the laminated core 30, so that, for example, a plurality of punched plates having different shapes are stacked to form the laminated core 30. The number of parts can be reduced as compared with the configuration in which the is formed. This can suppress an increase in manufacturing process cost.

前述の実施形態の熱交換器20では、同形状の6枚の打ち抜き板32を積層して積層コア30を形成しているが、本発明はこの構成に限定されない。積層コア30を形成する打ち抜き板32の枚数は、4枚上であれば、本発明の効果を奏することができる。 In the heat exchanger 20 of the above-described embodiment, six punched plates 32 having the same shape are laminated to form the laminated core 30, but the present invention is not limited to this configuration. If the number of punched plates 32 forming the laminated core 30 is four or more, the effect of the present invention can be achieved.

また、前述の実施形態の熱交換器20では、線状部34を三角波状に形成しているが、本発明はこの構成に限定されない。その他の実施形態の熱交換器では、例えば、線状部34を正弦波状、台形波状に形成してもよい。また、図11に示される打ち抜き板33のように、線状部62を直線状に形成してもよい。なお、線状部62は、冷媒Lの流れ方向に沿って直線状に延びている。 Further, in the heat exchanger 20 of the above-described embodiment, the linear portion 34 is formed in a triangular wave shape, but the present invention is not limited to this configuration. In the heat exchangers of other embodiments, for example, the linear portion 34 may be formed in a sine wave shape or a trapezoidal wave shape. Further, the linear portion 62 may be formed in a linear shape like the punched plate 33 shown in FIG. 11. The linear portion 62 extends linearly along the flow direction of the refrigerant L.

さらに、前述の実施形態の熱交換器20では、同形状(板厚を除く)の打ち抜き板32を積層して積層コア30を形成しているが、本発明はこの構成に限定されない。その他の実施形態の熱交換器では、異なる形状の打ち抜き板を交互に積層して積層コアを形成してもよい。 Further, in the heat exchanger 20 of the above-described embodiment, the punched plates 32 having the same shape (excluding the plate thickness) are laminated to form the laminated core 30, but the present invention is not limited to this configuration. In heat exchangers of other embodiments, punched plates having different shapes may be alternately laminated to form a laminated core.

また、前述の実施形態の熱交換器20では、蓋体26の表面に発熱体Hを接触させているが本発明はこの構成に限定されない。例えば、図9に示される積層コア64のように、他方の最外層を形成する打ち抜き板66の板厚T2を、一方の最外層を形成する打ち抜き板50の板厚T1と同じ、すなわち、中間層を形成する打ち抜き板54の板厚T3よりも薄くする構成としてもよい。この場合には、冷媒Lの流速が積層コア30の積層方向でより均一に近づく。また、ケース本体24の下面に別の発熱体Hを接触させることで、別の発熱体Hと冷媒Lとの間で熱交換を行うことができる。 Further, in the heat exchanger 20 of the above-described embodiment, the heating element H is brought into contact with the surface of the lid body 26, but the present invention is not limited to this configuration. For example, as in the laminated core 64 shown in FIG. 9, the punching plate 66 forming the other outermost layer has the same plate thickness T2 as the plate thickness T1 of the punching plate 50 forming one outermost layer, that is, the intermediate thickness. The punching plate 54 forming the layers may be thinner than the plate thickness T3. In this case, the flow rate of the refrigerant L becomes more uniform in the stacking direction of the stacked core 30. Further, by bringing another heating element H into contact with the lower surface of the case body 24, heat exchange can be performed between the other heating element H and the refrigerant L.

さらに前述の実施形態の熱交換器20では、複数枚の打ち抜き板32を積層して積層コア30を形成しているが、本発明はこの構成に限定されない。例えば、金属塊から削り出しで積層コア30と同形状の積層コアを形成してもよいし、金属の積層造形によって積層コア30と同形状の積層コアを形成してもよい。なお、図12に示される積層コア68は、金属の積層造形によって形成されており、連結部36によって層が規定される。 Further, in the heat exchanger 20 of the above-described embodiment, the punched plates 32 are laminated to form the laminated core 30, but the present invention is not limited to this configuration. For example, a laminated core having the same shape as the laminated core 30 may be formed by cutting out from a metal lump, or a laminated core having the same shape as the laminated core 30 may be formed by metal laminating. The laminated core 68 shown in FIG. 12 is formed by metal additive manufacturing, and the layer is defined by the connecting portion 36.

そして前述の実施形態の熱交換器20では、蓋体26及びケース本体24の底部24Bによって、積層コア30が積層方向から挟まれると共に打ち抜き板50の複数の貫通孔44及び打ち抜き板52の複数の貫通孔44が塞がれているが本発明はこの構成に限定されない。例えば、図13に示されるように積層コア30を、一対の板材70で積層方向から挟み、打ち抜き板50の複数の貫通孔44及び打ち抜き板52の複数の貫通孔44を塞ぐ構成としてもよい。このような構成とすることで、積層コア30が一対の板材70で挟まれた状態で一部品となるため、製造における保管時に積層コア30に設けられる複数の貫通孔44に異物が入り込むのを抑制しやすい。 In the heat exchanger 20 of the above-described embodiment, the laminated core 30 is sandwiched by the lid 26 and the bottom portion 24B of the case body 24 from the stacking direction, and the through holes 44 of the punched plate 50 and the punched plates 52 are provided. Although the through hole 44 is closed, the present invention is not limited to this configuration. For example, as shown in FIG. 13, the laminated core 30 may be sandwiched by a pair of plate members 70 from the laminating direction, and the through holes 44 of the punched plate 50 and the through holes 44 of the punched plate 52 may be closed. With such a configuration, the laminated core 30 becomes one component in a state of being sandwiched between the pair of plate members 70, and therefore foreign matter is prevented from entering the plurality of through holes 44 provided in the laminated core 30 during storage during manufacturing. Easy to control.

またさらに、前述の実施形態の熱交換器20では、積層コア30の第1外層流路部56の流路面積を一般流路部60の流路面積よりも小さくするために、打ち抜き板50の板厚T1を打ち抜き板54の板厚T3よりも薄くしているが、本発明はこの構成に限定されない。例えば、図10に示されるよう熱交換器72のように、蓋体26の裏面に一方の最外層を形成する打ち抜き板50の貫通孔44に合わせた形状(貫通孔44に進入可能な形状)の突出部74を形成し、この突出部74を打ち抜き板50の貫通孔44に進入させる構成としてもよい。この場合には、積層コア30における打ち抜き板50の複数の貫通孔44に、蓋体26に設けられた突出部74を進入させるという簡単な構成で、第1外層流路部56の流路面積を一般流路部60の流路面積よりも小さくすることができる。すなわち、熱交換器72は、上記のような簡単な構成で熱交換性能を向上させることが可能となる。また、蓋体26の裏面に突出部74を設ければ、第1外層流路部56の流路面積を一般流路部60の流路面積よりも小さくできるため、打ち抜き板50、52、54の各板厚をすべて同じ板厚とすることができる。すなわち、積層コアを同一形状の複数の打ち抜き板32で形成することができる。このため、部品点数をさらに抑制することができる。 Furthermore, in the heat exchanger 20 of the above-described embodiment, in order to make the flow passage area of the first outer layer flow passage portion 56 of the laminated core 30 smaller than the flow passage area of the general flow passage portion 60, the punching plate 50 is formed. Although the plate thickness T1 is smaller than the plate thickness T3 of the punched plate 54, the present invention is not limited to this configuration. For example, as in the heat exchanger 72 shown in FIG. 10, a shape that matches the through hole 44 of the punched plate 50 that forms one outermost layer on the back surface of the lid 26 (a shape that can enter the through hole 44). The protrusion 74 may be formed and the protrusion 74 may be inserted into the through hole 44 of the punching plate 50. In this case, the flow passage area of the first outer layer flow passage portion 56 is formed by a simple configuration in which the protrusions 74 provided on the lid 26 are inserted into the plurality of through holes 44 of the punched plate 50 in the laminated core 30. Can be made smaller than the flow passage area of the general flow passage portion 60. That is, the heat exchanger 72 can improve the heat exchange performance with the simple configuration as described above. Further, if the protruding portion 74 is provided on the back surface of the lid body 26, the flow passage area of the first outer layer flow passage portion 56 can be made smaller than the flow passage area of the general flow passage portion 60, so the punched plates 50, 52, 54. The plate thicknesses of can be all the same. That is, the laminated core can be formed by a plurality of punched plates 32 having the same shape. Therefore, the number of parts can be further suppressed.

また、前述の実施形態の熱交換器20では、冷媒Lと発熱体Hとの熱交換によって発熱体Hを冷却する構成としているが、本発明はこの構成に限定されない。その他の実施形態の熱交換器では、例えば、熱媒(本発明における熱媒体の一例)と加熱対象(熱交換対象)との熱交換によって加熱対象を加熱する構成としてもよい。 Further, in the heat exchanger 20 of the above-described embodiment, the heat generating element H is cooled by heat exchange between the refrigerant L and the heat generating element H, but the present invention is not limited to this configuration. In the heat exchangers of other embodiments, for example, the heating target may be heated by heat exchange between the heating medium (an example of the heating medium in the present invention) and the heating target (heat exchange target).

(試験例)
次に、本発明の効果を検証するために、本発明を適用した実施例の熱交換器を2種、比較例の熱交換器を2種用意し、冷媒の供給量(流量)を変えながら、熱伝達係数と圧力損失を測定した。測定したデータから図14に示されるグラフが得られた。
(Test example)
Next, in order to verify the effect of the present invention, two types of heat exchangers of the example to which the present invention is applied and two types of heat exchangers of comparative examples are prepared, while changing the supply amount (flow rate) of the refrigerant. , Heat transfer coefficient and pressure loss were measured. The graph shown in FIG. 14 was obtained from the measured data.

(供試熱交換器)
実施例1・・熱交換器20と同じ構造で積層コアを6層とした熱交換器。
実施例2・・実施例1の積層コアを8層とした熱交換器。
比較例1・・実施例1の積層コアの各層の層厚をすべて同じ、すなわち、流路を形成する流路部の断面積をすべて同じにした熱交換器。
比較例2・・実施例2の積層コアの各層の層厚をすべて同じ、すなわち、流路を形成する流路部の断面積をすべて同じにした熱交換器。
(Test heat exchanger)
Example 1 A heat exchanger having the same structure as the heat exchanger 20 and six laminated cores.
Example 2... A heat exchanger in which the laminated core of Example 1 has eight layers.
Comparative Example 1... A heat exchanger in which all layers of the laminated core of Example 1 have the same layer thickness, that is, the cross-sectional areas of flow passages forming flow passages are all the same.
Comparative Example 2... A heat exchanger in which all the layers of the laminated core of Example 2 have the same layer thickness, that is, the cross-sectional areas of the flow passages forming the flow passages are all the same.

図14に示されるように、本発明を適用した実施例1の熱交換器及び実施例2の熱交換器は、それぞれ対応する比較例1の熱交換器及び比較例2の熱交換器よりも圧力損失が少なく、熱伝達係数が高い、良好な結果であることが分かる。 As shown in FIG. 14, the heat exchanger of Example 1 and the heat exchanger of Example 2 to which the present invention is applied are more than the corresponding heat exchangers of Comparative example 1 and Comparative example 2, respectively. It can be seen that the results are good with low pressure loss and high heat transfer coefficient.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。 The embodiments of the present invention have been described above with reference to the embodiments, but these embodiments are merely examples, and various modifications may be made without departing from the scope of the invention. Further, it goes without saying that the scope of rights of the present invention is not limited to these embodiments.

20 熱交換器
22 ケース
27A 入口
27B 出口
38 流路
30 積層コア(積層体)
32 打ち抜き板(板材)
44 貫通孔
50 打ち抜き板(一方の最外層を形成する板材)
52 打ち抜き板(中間層を形成する板材)
56 第1外層流路部(一方側の外層流路部)
58 第2外層流路部(他方側の外層流路部)
60 一般流路部
H 発熱体(熱交換対象)
T1 板厚(最外層を形成する板材の厚み)
T3 板厚(中間層を形成する板材の厚み)
64 積層コア(積層体)
66 打ち抜き板(他方の最外層を形成する板材)
68 積層コア(積層体)
70 板材
72 熱交換器
74 突出部
X 装置幅方向(入口から出口に向かう方向)
Z 装置厚み方向(積層方向)
20 heat exchanger 22 case 27A inlet 27B outlet 38 flow path 30 laminated core (laminated body)
32 Punched plate (plate material)
44 through hole 50 punched plate (plate material forming one outermost layer)
52 Punched plate (plate material forming the intermediate layer)
56 First Outer Layer Flow Path (Outer Layer Flow Path on One Side)
58 Second Outer Layer Channel (Outer Layer Channel on Other Side)
60 General flow path H H heating element (heat exchange target)
T1 plate thickness (thickness of the plate material forming the outermost layer)
T3 plate thickness (thickness of plate material forming the intermediate layer)
64 laminated core (laminated body)
66 Punching plate (plate material forming the other outermost layer)
68 Laminated Core (Laminate)
70 plate material 72 heat exchanger 74 protrusion X device width direction (direction from inlet to outlet)
Z device thickness direction (stacking direction)

Claims (8)

熱媒体が流入する入口及び前記熱媒体が流出する出口が設けられたケースと、
前記ケースに収められ、複数の貫通孔が形成された複数の層が積層され、かつ前記入口から前記出口に向かう方向に前記熱媒体を導く流路が前記貫通孔によって形成された積層体と、
前記積層体を構成する前記複数の層のうち、積層方向の最外層に形成された前記複数の貫通孔を塞ぐようにして前記積層体を前記積層方向から挟む一対の壁部と、
を備え、
前記流路は、前記壁部と前記最外層の前記貫通孔とによって形成された外層流路部と、前記最外層よりも前記積層方向内側に位置する中間層同士の前記貫通孔で形成された一般流路部とで形成されており、
前記積層体は、前記積層方向の一方側の前記外層流路部の流路面積が前記一般流路部の流路面積よりも小さくなるように構成されている、熱交換器。
A case provided with an inlet through which the heat medium flows in and an outlet through which the heat medium flows out;
A laminate in which a plurality of layers, each of which is housed in the case and in which a plurality of through holes are formed, are laminated, and a flow path for guiding the heat medium in a direction from the inlet to the outlet is formed by the through holes,
Of the plurality of layers constituting the laminated body, a pair of wall portions sandwiching the laminated body from the laminating direction so as to close the plurality of through holes formed in the outermost layer in the laminating direction,
Equipped with
The flow passage is formed by an outer layer flow passage portion formed by the wall portion and the through hole of the outermost layer, and the through hole of the intermediate layers located inside the outermost layer in the stacking direction. It is formed with the general channel part,
The heat exchanger, wherein the laminated body is configured such that a flow passage area of the outer layer flow passage portion on one side in the stacking direction is smaller than a flow passage area of the general flow passage portion.
前記積層体は、前記一方側の外層流路部の前記積層方向と直交する方向の幅が前記一般流路部の幅と同じで、前記一方側の外層流路部の前記積層方向の高さが前記一般流路部の高さよりも低い、請求項1に記載の熱交換器。 The laminated body has a width in the direction orthogonal to the laminating direction of the outer layer channel portion on the one side that is the same as the width of the general channel portion, and the height of the outer layer channel portion on the one side in the laminating direction. Is lower than the height of the said general flow path part, The heat exchanger of Claim 1. 一対の前記壁部は、前記ケースの対向する壁である、請求項1又は請求項2に記載の熱交換器。 The heat exchanger according to claim 1, wherein the pair of wall portions are walls of the case that face each other. 前記壁部は、板材であり、
前記積層体は、一対の前記板材によって挟まれた状態で前記ケースに収められている、請求項1又は請求項2に記載の熱交換器。
The wall portion is a plate material,
The heat exchanger according to claim 1 or 2, wherein the stacked body is housed in the case while being sandwiched between a pair of the plate members.
前記積層体は、前記ケースに接する熱交換対象に近い側に前記一方側の外層流路部が位置するようにして前記ケースに収められており、
前記積層体の前記熱交換対象から遠い側に位置する前記積層方向の他方側の前記外層流路部の流路面積が前記一般流路部の流路面積と同じである、請求項1〜4のいずれか1項に記載の熱交換器。
The laminated body is housed in the case so that the outer layer flow path portion on the one side is located on the side close to the heat exchange target in contact with the case,
The flow passage area of the outer layer flow passage portion on the other side in the stacking direction located on the side farther from the heat exchange target of the laminate is the same as the flow passage area of the general flow passage portion. The heat exchanger according to any one of 1.
前記層は、前記複数の貫通孔が形成された板材によって形成されており、
前記積層体は、前記積層方向の一方側の前記最外層を形成する板材の厚みが前記中間層を形成する板材の厚みよりも薄い、請求項1〜5のいずれか1項に記載の熱交換器。
The layer is formed of a plate material in which the plurality of through holes are formed,
The heat exchange according to any one of claims 1 to 5, wherein a thickness of a plate material forming the outermost layer on one side in the stacking direction of the laminate is smaller than a thickness of a plate material forming the intermediate layer. vessel.
前記積層体は、同形状の前記板材が互いに表裏逆向きに積層されて形成されている、請求項6に記載の熱交換器。 The heat exchanger according to claim 6, wherein the laminated body is formed by laminating the plate materials having the same shape so as to be opposite to each other. 前記積層方向の一方側の前記壁部には、前記最外層の前記複数の貫通孔に進入する突出部が設けられている、請求項1〜5のいずれか1項に記載の熱交換器。 The heat exchanger according to claim 1, wherein the wall portion on one side in the stacking direction is provided with a protrusion that enters the plurality of through holes of the outermost layer.
JP2018225966A 2018-11-30 2018-11-30 Heat exchanger Pending JP2020088357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225966A JP2020088357A (en) 2018-11-30 2018-11-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225966A JP2020088357A (en) 2018-11-30 2018-11-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2020088357A true JP2020088357A (en) 2020-06-04

Family

ID=70909176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225966A Pending JP2020088357A (en) 2018-11-30 2018-11-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2020088357A (en)

Similar Documents

Publication Publication Date Title
JP6327271B2 (en) Heat exchanger
JP7028526B2 (en) Cooling device and manufacturing method of cooling device
JP5157681B2 (en) Stacked cooler
JP2011017516A (en) Plate laminated type cooling device and method of manufacturing the same
JP5601928B2 (en) High density stacked heat exchanger
JP2013175526A (en) Cooler and cooling device
KR101655889B1 (en) Heat exchange reactor and method for producing the same
CN107924897A (en) Laminated cores build radiator
JP2006226628A (en) Thermal storage device
JP6578964B2 (en) Laminate heat exchanger
JP2011192730A (en) Cooler, laminated cooler, and intermediate plate
JP2006183945A (en) Oil cooler
JP2012064732A (en) Water cooling heat sink
JP4544187B2 (en) Cooler
JP2020088357A (en) Heat exchanger
JP5393606B2 (en) Heat exchanger
JP5420755B2 (en) HEAT EXCHANGE DEVICE HAVING LAMINATED PLATE AND MANUFACTURING METHOD THEREOF
JP7230020B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP5814163B2 (en) Cooler
JP6614068B2 (en) Heat exchanger
WO2017195588A1 (en) Stack type heat exchanger
JP6578980B2 (en) Laminate heat exchanger
JP2003262489A (en) Plate type heat exchanger
JP7213078B2 (en) Laminated heat exchanger
JP5382185B2 (en) Stacked cooler