JP5814163B2 - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP5814163B2
JP5814163B2 JP2012050758A JP2012050758A JP5814163B2 JP 5814163 B2 JP5814163 B2 JP 5814163B2 JP 2012050758 A JP2012050758 A JP 2012050758A JP 2012050758 A JP2012050758 A JP 2012050758A JP 5814163 B2 JP5814163 B2 JP 5814163B2
Authority
JP
Japan
Prior art keywords
plate
mountain
line
cooler
valley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012050758A
Other languages
Japanese (ja)
Other versions
JP2013187317A (en
Inventor
浩嗣 朝柄
浩嗣 朝柄
啓仁 松井
啓仁 松井
忠史 吉田
忠史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2012050758A priority Critical patent/JP5814163B2/en
Publication of JP2013187317A publication Critical patent/JP2013187317A/en
Application granted granted Critical
Publication of JP5814163B2 publication Critical patent/JP5814163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本明細書では、発熱体に接する位置に配置して冷却液を流すことで、発熱体を冷却する冷却器を開示する。   In this specification, the cooler which cools a heat generating body is disclosed by arrange | positioning in the position which touches a heat generating body, and flowing a cooling fluid.

特許文献1と2に、発熱体に接触する位置に配置して用いる冷却器が開示されている。その冷却器を模式的に示す図8と図9を参照して、従来の冷却器4を説明する。参照番号16は冷却器4の外壁であり、内部を冷却液が通過する流路を画定している。参照番号8は冷却液の流入管であり、参照番号10は冷却液の流出管である。流入管8から冷却器4に流入した冷却液は、冷却器4の内部を図示x方向に通過し、流出管10から流出する。外壁16には、第1発熱体6aに接する第1面16aと、第2発熱体6bに接する第2面16bが形成されている。第1面16aに第1発熱体6aを密着させ、第2面16bに第2発熱体6bに密着させて使用する。冷却器4は、第1発熱体6aと第2発熱体6bの間に挟んで用い、両側に位置する第1発熱体6aと第2発熱体6bを冷却する。   Patent Documents 1 and 2 disclose a cooler that is arranged and used at a position in contact with a heating element. A conventional cooler 4 will be described with reference to FIGS. 8 and 9 schematically showing the cooler. Reference numeral 16 is an outer wall of the cooler 4 and defines a flow path through which the coolant passes. Reference numeral 8 is a cooling liquid inflow pipe, and reference numeral 10 is a cooling liquid outflow pipe. The coolant flowing into the cooler 4 from the inflow pipe 8 passes through the inside of the cooler 4 in the x direction in the figure and flows out from the outflow pipe 10. The outer wall 16 is formed with a first surface 16a in contact with the first heating element 6a and a second surface 16b in contact with the second heating element 6b. The first heating element 6a is in close contact with the first surface 16a, and the second heating element 6b is in close contact with the second surface 16b. The cooler 4 is sandwiched between the first heating element 6a and the second heating element 6b and cools the first heating element 6a and the second heating element 6b located on both sides.

冷却効率を向上させるために、外壁16で囲繞されている空間内に内壁18が形成されており、冷却液の通過流路を複数本の微細流路に分岐させる。図9に示すように、3枚の板状部材18a,18b,18cを積層することで、複数本の微細流路に分岐させる内壁18が形成されている。第1板状部材18aは、第1面16aの内面に接している。第2板状部材18cは、第2面16bの内面に接している。中間板状部材18bは、第1板状部材18aと第2板状部材18cの中間に挿入されている。   In order to improve the cooling efficiency, an inner wall 18 is formed in the space surrounded by the outer wall 16, and the passage for cooling liquid is branched into a plurality of fine channels. As shown in FIG. 9, by laminating three plate-like members 18a, 18b, 18c, an inner wall 18 that branches into a plurality of fine channels is formed. The first plate member 18a is in contact with the inner surface of the first surface 16a. The second plate member 18c is in contact with the inner surface of the second surface 16b. The intermediate plate member 18b is inserted between the first plate member 18a and the second plate member 18c.

板状部材18a,18b,18cの各々には、第1面16a側に膨出している山筋30と、第2面16b側に膨出している谷筋32が、図示のy方向に沿って観測したときに交互に出現する繰り返し形状が形成されている。各山筋30と各谷筋32は、図示x方向に伸びている。ただしx軸に沿ってストレートには伸びておらず、所定波長Lで+y方向と−y方向に変位しながら伸びている。すなわち各山筋30と各谷筋32は、所定波長Lで±y方向に屈曲しながらx方向に伸びている。図9では、図示の明瞭化のために、一本の谷筋32の屈曲形状のみを示している。他の谷筋も山筋も、同様に、所定波長Lで±y方向に屈曲しながらx方向に伸びている。   Each of the plate-like members 18a, 18b, and 18c has a mountain line 30 that bulges toward the first surface 16a and a valley line 32 that bulges toward the second surface 16b along the y direction shown in the figure. Repeated shapes that appear alternately when observed are formed. Each mountain line 30 and each valley line 32 extend in the illustrated x direction. However, it does not extend straight along the x axis, but extends while being displaced in the + y direction and the −y direction at a predetermined wavelength L. That is, each mountain line 30 and each valley line 32 extends in the x direction while being bent in the ± y direction at a predetermined wavelength L. In FIG. 9, only the bent shape of one valley streak 32 is shown for clarity of illustration. Similarly, other valley lines and mountain lines extend in the x direction while bending in the ± y direction at a predetermined wavelength L.

本明細書では、流入管8と流出管10を結ぶ図示x方向を通過方向という。また冷却器4と発熱体6が積層されている図示z方向を積層方向という。また山筋30と谷筋32が所定の波長で変位している図示y方向を屈曲方向という。x方向とy方向とz方向は直交している。第1面16aと第2面16bは、通過方向と屈曲方向を含む面に沿って伸びている。各々の板状部材18a,18b,18cも、通過方向と屈曲方向を含む面に沿って伸びており、積層方向に積層されている。   In this specification, the illustrated x direction connecting the inflow pipe 8 and the outflow pipe 10 is referred to as a passing direction. The z direction in which the cooler 4 and the heating element 6 are stacked is referred to as a stacking direction. The y direction shown in the figure where the mountain line 30 and the valley line 32 are displaced at a predetermined wavelength is referred to as a bending direction. The x direction, the y direction, and the z direction are orthogonal to each other. The first surface 16a and the second surface 16b extend along a surface including a passing direction and a bending direction. Each of the plate-like members 18a, 18b, and 18c also extends along a plane including the passing direction and the bending direction, and is stacked in the stacking direction.

2つの発熱体の間に挟んで用いる冷却器を用いるとz方向に多段に積層することができる。特許文献1の実施例には、積層方向に沿って、第1冷却器、第1発熱体、第2冷却器、第2発熱体、第3冷却器、第3発熱体・・の順で積層された構造体が開示されている。第2冷却器は第1発熱体と第2発熱体に挟まれており、第1発熱体と第2発熱体を冷却する。第3冷却器は第2発熱体と第3発熱体に挟まれており、第2発熱体と第3発熱体を冷却する。積層段数には格別の制約がなく、2つの発熱体の間に1つの冷却器が挟まれている最小単位で用いることもできる。あるいは、例えば第1冷却器にように、冷却器の片側にのみ発熱体が配置されている場合もありえる。   When a cooler used between two heating elements is used, it can be stacked in multiple stages in the z direction. In the example of Patent Document 1, the first cooler, the first heating element, the second cooler, the second heating element, the third cooler, the third heating element,. An improved structure is disclosed. The second cooler is sandwiched between the first heating element and the second heating element, and cools the first heating element and the second heating element. The third cooler is sandwiched between the second heating element and the third heating element, and cools the second heating element and the third heating element. There is no particular limitation on the number of stacked layers, and the number of stacked layers can be used in the minimum unit in which one cooler is sandwiched between two heating elements. Alternatively, for example, as in the first cooler, the heating element may be disposed only on one side of the cooler.

特開2011−228580号公報JP 2011-228580 A 特開2010−10418号公報JP 2010-10418 A

特許文献1と2の冷却器4は極めて高性能であり、高い冷却効率を備えている。例えば積層された板状部材18a,18b,18cによって微細流路に分岐されており、発熱体6a,6bの熱が伝熱する冷却器4の壁と冷却液の接触面積が広く確保されており、熱交換率が高い。微細流路は、それ以上に狭くなると流動抵抗が急激に増加する断面サイズに調整されており、冷却液の流動抵抗は高くない。また、微細流路がストレートに伸びておらず、±y方向に屈曲しているために、微細流路内の冷却液の流れに乱流が発生し、冷却液と壁の間の熱交換率が向上する。
本明細書では、すでに冷却効率が高い冷却器の冷却効率をさらに向上させる技術を開示する。
The coolers 4 of Patent Documents 1 and 2 have extremely high performance and high cooling efficiency. For example, the laminated plate-like members 18a, 18b, and 18c are branched into fine flow paths, and the contact area between the wall of the cooler 4 and the cooling liquid through which the heat of the heating elements 6a and 6b is transferred is ensured. The heat exchange rate is high. The fine flow path is adjusted to have a cross-sectional size in which the flow resistance increases rapidly when it becomes narrower than that, and the flow resistance of the coolant is not high. In addition, since the microchannel does not extend straight and is bent in the ± y direction, turbulent flow occurs in the flow of the coolant in the microchannel, and the heat exchange rate between the coolant and the wall Will improve.
In the present specification, a technique for further improving the cooling efficiency of a cooler having already high cooling efficiency is disclosed.

本明細書で開示する冷却器は、少なくとも一つの発熱体に接した状態において冷却液を通過させて用いる。その冷却器は、冷却液が通過する流路を画定する外壁と、流路内に収容されている内壁を備えている。本明細書では、冷却液が通過する方向を通過方向とし、通過方向に直交する方向を積層方向とし、通過方向と積層方向に直交する方向を屈曲方向とする。
外壁は、通過方向と屈曲方向を含む面に沿って伸びているとともに発熱体に接する第1面と、第1面から積層方向に距離をおいて伸びている第2面を備えている。内壁は、第1面と平行な板状部材の複数枚が積層方向に積層された状態で流路内に収容されている。各々の板状部材は、第1面側に膨出している山筋と第2面側に膨出している谷筋が屈曲方向に交互に繰り返された形状となっている。各山筋と各谷筋は、通過方向に伸びている。ただしストレートに伸びているのではなく、所定波長で変位方向を反転しながら屈曲方向に変位している。積層方向に隣接する一方の板状部材に形成されている山筋と他方の板状部材に形成されている谷筋の位相がずれており、その山筋と谷筋が交差するとともに第1面に接する範囲内の板状部材に第2面に向かって突出する第1突出部が形成されている。
The cooler disclosed in the present specification is used by allowing a coolant to pass through in a state where the cooler is in contact with at least one heating element. The cooler includes an outer wall that defines a flow path through which the coolant passes, and an inner wall that is accommodated in the flow path. In this specification, the direction in which the coolant passes is the passing direction, the direction orthogonal to the passing direction is the stacking direction, and the direction orthogonal to the passing direction and the stacking direction is the bending direction.
The outer wall includes a first surface that extends along a plane including a passing direction and a bending direction and that contacts the heating element, and a second surface that extends from the first surface at a distance in the stacking direction. The inner wall is accommodated in the flow path in a state where a plurality of plate-like members parallel to the first surface are stacked in the stacking direction. Each plate-like member has a shape in which a mountain line that bulges on the first surface side and a valley line that bulges on the second surface side are alternately repeated in the bending direction. Each mountain line and each valley line extends in the passing direction. However, it does not extend straight, but is displaced in the bending direction while reversing the displacement direction at a predetermined wavelength. The phase of the mountain line formed in one plate-like member adjacent in the stacking direction and the valley line formed in the other plate-like member are out of phase, and the mountain surface and the valley line intersect with each other. The 1st protrusion part which protrudes toward the 2nd surface is formed in the plate-shaped member in the range which touches.

第1板状部材の山筋と、それに隣接する板状部材(2枚の板状部材が積層されている場合には第2板状部材であり、3枚の板状部材が積層されている場合には中間板状部材である。4枚以上の板状部材が積層されていることもある)の谷筋の位相がずれていると、山筋と谷筋が交差して山筋と谷筋が向かい合う範囲が形成される。第1板状部材の山筋は第1面(正確には第1面の内面)に接している。本明細書に開示されている冷却器では、山筋と谷筋が向かい合っている範囲内の第1板状部材に第2面に向けて突出している突出部が形成されている。そのために、第1板状部材の山筋を通過する冷却液は、その突出部によって流れが乱される。突出部がなければ山筋に沿って層流となって流れる冷却液が突出部によって乱されて乱流になる。冷却液が壁に沿って層流となって流れる場合の冷却液と壁の間の熱交換率に比して、冷却液が乱流となって流れる場合の冷却液と壁の間の熱交換率の方が高い。発熱体に第1面を密着させれば、その発熱体が効率的に冷却される。   The mountain line of the first plate-like member and the plate-like member adjacent to it (when two plate-like members are laminated, it is the second plate-like member, and three plate-like members are laminated) In some cases, it is an intermediate plate-like member. 4 or more plate-like members may be stacked. A range where the lines face each other is formed. The ridges of the first plate member are in contact with the first surface (more precisely, the inner surface of the first surface). In the cooler disclosed in the present specification, the first plate-shaped member within the range where the mountain and valley lines face each other is formed with a protruding portion that protrudes toward the second surface. Therefore, the flow of the coolant that passes through the ridges of the first plate member is disturbed by the protrusions. If there is no protrusion, the coolant flowing in a laminar flow along the mountain line is disturbed by the protrusion and becomes a turbulent flow. Heat exchange between the coolant and the wall when the coolant flows in a turbulent flow compared to the heat exchange rate between the coolant and the wall when the coolant flows as a laminar flow along the wall The rate is higher. If the first surface is brought into close contact with the heating element, the heating element is efficiently cooled.

この冷却器を複数個の発熱体の間に挟んで用いる場合には、第1発熱体に第1面を密着させ、第2発熱体に第2面を密着させる。この場合は、第1面と第2面を平行とし、山筋と谷筋が交差するとともに第2面に接する範囲内の板状部材に第1面に向かって突出する第2突出部を形成する。
また、第1面に接する第1板状部材と、中間板状部材と、第2面に接する第2板状部材を順に積層して内壁を構成することが好ましい。この場合、第1板状部材の山筋と中間板状部材の谷筋が交差するとともに第1面に接する範囲内の第1板状部材に第2面に向かって突出する第1突出部を形成し、第2板状部材の谷筋と中間板状部材の山筋が交差するとともに第2面に接する範囲内の第2板状部材に第1面に向かって突出する第2突出部を形成する。
When this cooler is used by sandwiching it between a plurality of heating elements, the first surface is brought into close contact with the first heating element, and the second surface is brought into close contact with the second heating element. In this case, the first surface and the second surface are parallel, and the second projecting portion that projects toward the first surface is formed on the plate-like member within the range where the mountain and valley lines intersect and contact the second surface. To do.
Moreover, it is preferable to laminate | stack in order the 1st plate-shaped member which contact | connects a 1st surface, an intermediate | middle plate-shaped member, and the 2nd plate-shaped member which contacts a 2nd surface, and comprises an inner wall. In this case, the first projecting portion projecting toward the second surface is formed on the first plate member within the range where the mountain line of the first plate member intersects the valley of the intermediate plate member and is in contact with the first surface. And forming a second projecting portion projecting toward the first surface on the second plate-shaped member within a range where the valley of the second plate-shaped member and the mountain streak of the intermediate plate-shaped member intersect with each other. Form.

上記によると、第1発熱体を冷却する冷却液は第1突出部によって乱流となり、第2発熱体を冷却する冷却液は第2突出部によって乱流となる。第1発熱体と第2発熱体の双方が効率的に冷却される。   According to the above, the coolant that cools the first heating element becomes turbulent by the first protrusion, and the coolant that cools the second heating element becomes turbulent by the second protrusion. Both the first heating element and the second heating element are efficiently cooled.

本明細書で開示する冷却器によると、すでに高い冷却効率を持つ特許文献1と2の冷却器の冷却効率がさらに改善される。   According to the cooler disclosed in the present specification, the cooling efficiency of the coolers of Patent Documents 1 and 2 having already high cooling efficiency is further improved.

複数の冷却器と複数の発熱体が交互に多段階に積層されている構造体の平面図。FIG. 3 is a plan view of a structure in which a plurality of coolers and a plurality of heating elements are alternately stacked in multiple stages. 図1のII−II断面図。II-II sectional drawing of FIG. 図1のIII−III断面図であり、2個の発熱体の間に冷却器が挟まれている状態の断面図。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 and shows a state in which a cooler is sandwiched between two heating elements. 3枚の板状部材が積層されている内壁を形成するための素材の平面図。The top view of the raw material for forming the inner wall on which three plate-shaped members are laminated | stacked. 図4のV部の拡大図。The enlarged view of the V section of FIG. 図5のVI−VI断面図。VI-VI sectional drawing of FIG. 位相が相違する山筋と谷筋の関係を例示する図。The figure which illustrates the relationship between the mountain line and valley line from which a phase differs. 従来の冷却器の外形を模式的に示す図。The figure which shows the external shape of the conventional cooler typically. 従来の冷却器の内部構造の一部を模式的に示す図。The figure which shows typically a part of internal structure of the conventional cooler.

下記に示す実施例の主要な特徴を列記する。
(特徴1) 各々の板状部材に形成されている山筋の高さ(山筋の高さは谷筋の深さに等しい)が等しい。第1突出部と第2突出部の各々の突出長が、山筋の高さよりも短い。第1突出部と第2突出部は、山筋と谷筋が向かい合うために、微細流路の高さが山筋の高さの2倍となっている部分に形成される。ここに、山筋の高さよりも短い突出長を持つ第1突出部または第2突出部が形成されるために、突出部でさえぎられない流路高さが、山筋の高さ以上となる。突出部を形成しても、残存流路の高さが維持される。突出部を設けることで、流動抵抗が顕著に増大することはない。
(特徴2) 第1面に接する第1板状部材と、中間板状部材と、第2面に接する第2板状部材が順に積層されている。第1板状部材に第1突出部が形成されており、第2板状部材に第2突出部が形成されており、中間板状部材には突出部が形成されていない。
(特徴3) 板状部材にコの字状の切れ目を入れ、それを曲げ起こすことで突出部が形成されている。
(特徴4) 山筋と谷筋が向かいあって微細流路の高さが山筋の高さの2倍となるすべての範囲で、突出部が形成されている。
(特徴5) 山筋と谷筋が向かいあって微細流路の高さが山筋の高さの2倍となる範囲のうちの一部で、突出部が形成されている。
(特徴6) 一枚の金属シートを折り曲げることで、複数枚の板状部材を積層した内壁が形成されている。
(特徴7) 内壁に形成されている山筋と谷筋は、通過方向に伸びているともに、所定波長で変位方向を反転させながら屈曲方向に変位している。冷却液の通過経路が、いわゆるウエーブ形状となっている。内壁は、冷却液との接触面積を増加させるフィンとして機能する。実施例の冷却器は、ウエーブフィンを内蔵する冷却器である。
(特徴8) 実施例の冷却器は、2個の発熱体の間に挟んで用いることで両側の発熱体を冷却する。ただし図1に例示する冷却器4a,4lのように、1個の発熱体のみを冷却する用い方もできる。この場合は、発熱体に接する面にのみ突出部を設ければよい。1個の発熱体のみを冷却する冷却器の場合は、発熱体に接する側の面を第1面としたときに、第1面側にのみ突出部を設ければよい。
The main features of the embodiments shown below are listed.
(Characteristic 1) The height of the mountain line formed in each plate-like member (the height of the mountain line is equal to the depth of the valley line) is equal. Each protrusion length of the first protrusion and the second protrusion is shorter than the height of the mountain line. The first protrusion and the second protrusion are formed at a portion where the height of the fine channel is twice the height of the mountain line because the mountain line and the valley line face each other. Here, since the first protrusion or the second protrusion having a protrusion length shorter than the height of the mountain line is formed, the flow path height that is not interrupted by the protrusion part is equal to or higher than the height of the mountain line. . Even if the protrusion is formed, the height of the remaining flow path is maintained. By providing the protrusion, the flow resistance is not significantly increased.
(Characteristic 2) The 1st plate-shaped member which contact | connects a 1st surface, the intermediate | middle plate-shaped member, and the 2nd plate-shaped member which contact | connects a 2nd surface are laminated | stacked in order. A first protrusion is formed on the first plate member, a second protrusion is formed on the second plate member, and no protrusion is formed on the intermediate plate member.
(Characteristic 3) A protruding portion is formed by making a U-shaped cut in a plate-like member and bending it.
(Characteristic 4) The protrusions are formed in all ranges where the mountain and valley lines face each other and the height of the fine channel is twice the height of the mountain lines.
(Characteristic 5) The protrusion is formed in a part of the range in which the mountain and valley lines face each other and the height of the fine channel is twice the height of the mountain line.
(Characteristic 6) An inner wall in which a plurality of plate-like members are stacked is formed by bending a single metal sheet.
(Feature 7) The mountain and valley lines formed on the inner wall extend in the passing direction and are displaced in the bending direction while inverting the displacement direction at a predetermined wavelength. The passage path of the coolant is a so-called wave shape. The inner wall functions as a fin that increases the contact area with the coolant. The cooler according to the embodiment is a cooler incorporating a wave fin.
(Characteristic 8) The cooler according to the embodiment cools the heating elements on both sides by being sandwiched between two heating elements. However, it is also possible to use only one heating element, such as the coolers 4a and 4l illustrated in FIG. In this case, it is only necessary to provide the protrusion only on the surface in contact with the heating element. In the case of a cooler that cools only one heating element, when the surface on the side in contact with the heating element is the first surface, the protrusion only needs to be provided on the first surface side.

図1は、複数個の冷却器4と複数個の発熱体6を積層方向(z方向)に多段に積層した構造体2を、屈曲方向(y方向)から見下ろした平面図を示している。図示の8は、冷却液の流入管であり、図示の10は冷却液の流出管である。流入管8と流出管10と反対側から順に、第1冷却器4a、第1発熱体6a、第2冷却器4b、第2発熱体6b、第3冷却器4c・・の順で積層されている。発熱体6a,6b,6c・・・等は、左右に分割されており、添え字AとBで区別する。左右の発熱体に共通の事象についは添え字A,Bを省略して説明する。また、第1発熱体6a〜第11発熱体6kに共通の事象についは添え字a,b等を省略して説明する。さらに、第1冷却器4a〜第12冷却器4lに共通の事象についは添え字a,b等を省略して説明する。   FIG. 1 is a plan view of a structure 2 in which a plurality of coolers 4 and a plurality of heating elements 6 are stacked in multiple layers in the stacking direction (z direction) as viewed from the bending direction (y direction). 8 in the figure is an inflow pipe for the coolant, and 10 in the figure is an outflow pipe for the coolant. The first cooler 4a, the first heating element 6a, the second cooler 4b, the second heating element 6b, and the third cooler 4c are stacked in this order from the opposite side of the inflow pipe 8 and the outflow pipe 10. Yes. The heating elements 6a, 6b, 6c,... Are divided into left and right, and are distinguished by suffixes A and B. The phenomenon common to the left and right heating elements will be described with the subscripts A and B omitted. Also, the events common to the first heating element 6a to the eleventh heating element 6k will be described with the suffixes a and b omitted. Further, the events common to the first cooler 4a to the twelfth cooler 4l will be described with the subscripts a and b omitted.

冷却液の流入管8の背後において、積層方向で隣接する冷却器同士は、連通管8a,8b・・8kで接続されている。同様に、冷却液の流出管10の背後において、積層方向で隣接する冷却器同士は、連通管10a,10b・・10kで接続されている。
流入管8から流入した冷却液の一部は、第12冷却器4l内に分流するとともに連通管8kに分流する。連通管8kに分流した冷却液の一部は、第11冷却器4kに分流するとともに連通管8jに分流する。以下も同様である。第1冷却器4a〜第12冷却器4lを通過した冷却液は、合流して流出管10から流れ出る。矢印12は流入する冷却液を示しており、矢印14は流出する冷却液を示しており、冷却液の循環を示している。
The coolers adjacent in the stacking direction behind the coolant inflow pipe 8 are connected by communication pipes 8a, 8b,. Similarly, the coolers adjacent in the stacking direction behind the cooling liquid outflow pipe 10 are connected by communication pipes 10a, 10b,.
A part of the coolant that has flowed in from the inflow pipe 8 is divided into the twelfth cooler 4l and to the communication pipe 8k. A part of the coolant that has been divided into the communication pipe 8k is divided into the eleventh cooler 4k and also into the communication pipe 8j. The same applies to the following. The coolant that has passed through the first cooler 4a to the twelfth cooler 4l joins and flows out from the outflow pipe 10. An arrow 12 indicates the inflowing coolant, and an arrow 14 indicates the outflowing coolant, indicating the circulation of the coolant.

例えば、第2冷却器4bは、第1発熱体6aA,6aB(総称して6aという)と、第2発熱体6bA,6bB(総称して6bという)の間に挟まれている。第2冷却器4bを冷却液が通過することで、第1発熱体6aと第2発熱体6bを冷却する。第3冷却器4c〜第11冷却器4kについても、両側の発熱体6の間に挟まれており、両側の発熱体6を冷却する。ただし第1冷却器4aは、片側に存在する第1発熱体6aを冷却し、第12冷却器4lは、片側に存在する第11発熱体6kを冷却する。   For example, the second cooler 4b is sandwiched between first heating elements 6aA and 6aB (collectively referred to as 6a) and second heating elements 6bA and 6bB (collectively referred to as 6b). As the coolant passes through the second cooler 4b, the first heating element 6a and the second heating element 6b are cooled. The third cooler 4c to the eleventh cooler 4k are also sandwiched between the heating elements 6 on both sides, and cool the heating elements 6 on both sides. However, the 1st cooler 4a cools the 1st heat generating body 6a which exists in one side, and the 12th cooler 4l cools the 11th heat generating body 6k which exists in one side.

図2は、図1のII−II断面を示している。図3は、図1のIII−III断面を示している。図3は、右側の第1発熱体6aBと、第2冷却器4bと、右側の第2発熱体6bBの断面を示している。第1冷却器4a〜第12冷却器4lの断面図は同じであり、以下では共通に説明する。   FIG. 2 shows a II-II cross section of FIG. FIG. 3 shows a III-III cross section of FIG. FIG. 3 shows a cross section of the right first heating element 6aB, the second cooler 4b, and the right second heating element 6bB. The sectional views of the first cooler 4a to the twelfth cooler 4l are the same, and will be described below in common.

冷却器4は、外壁16c,16dを備えており、冷却液流路17の外側輪郭を画定している。図2に示すように、冷却液流路17は、x方向に伸びている。図3に示すように、外壁16cの外面には発熱体6aが接している。外壁16cの外面であって発熱体6aに接する範囲が、請求項でいう第1面に相当する。外壁16dの外面には発熱体6bが接している。外壁16dの外面であって発熱体6bに接する範囲が、請求項でいう第2面に相当する。第2冷却器4b〜第11冷却器4kの全部について、番号が若い方の発熱体に接する面を第1面16aといい、番号が大きい方の発熱体に接する面を第2面16bという。また番号が若い発熱体を第1発熱体といい、番号が大きい発熱体を第2発熱体という。   The cooler 4 includes outer walls 16 c and 16 d and defines an outer contour of the coolant flow path 17. As shown in FIG. 2, the coolant flow path 17 extends in the x direction. As shown in FIG. 3, the heating element 6a is in contact with the outer surface of the outer wall 16c. The range of the outer surface of the outer wall 16c that is in contact with the heating element 6a corresponds to the first surface in the claims. The heating element 6b is in contact with the outer surface of the outer wall 16d. The range of the outer surface of the outer wall 16d that is in contact with the heating element 6b corresponds to the second surface in the claims. With respect to all of the second cooler 4b to the eleventh cooler 4k, the surface in contact with the heating element with the smaller number is referred to as the first surface 16a, and the surface in contact with the heating element with the larger number is referred to as the second surface 16b. A heating element with a young number is called a first heating element, and a heating element with a large number is called a second heating element.

外壁16c、16dによって輪郭が画定されている空間(冷却液流路17)内に、内壁18が収容されている。図2に示すように、発熱体6が左右に分割されているのに対応して、内壁18も左側の内壁18Aと右側の内壁18Bに分割されている。左右の内壁18A,18Bは同じ構造を備えており、共通の事象は添え字A,Bを省略して説明する。   The inner wall 18 is accommodated in a space (coolant flow path 17) whose outline is defined by the outer walls 16c and 16d. As shown in FIG. 2, the inner wall 18 is also divided into a left inner wall 18 </ b> A and a right inner wall 18 </ b> B corresponding to the heating element 6 being divided into left and right. The left and right inner walls 18A and 18B have the same structure, and common events will be described with the subscripts A and B omitted.

図3に示すように、内壁18は、第1板状部材18aと中間板状部材18bと第2板状部材18cを積層方向(z方向)に積層して構成されている。図3は、右側の内壁の断面を示しているので、添え字Bが付加されている。左側の内壁18Aについても、同様である。板状部材18a,18b,18cの各々には、第1面16a側に膨出している山筋30と、第2面16b側に膨出している谷筋32が、図示のy方向に沿って観測したときに交互に出現する繰り返し形状が形成されている。各山筋30と各谷筋32は、図示x方向に伸びている。ただしx軸に沿ってストレートには伸びておらず、図2に示すように、+y方向と−y方向に所定波長Lで交互に変位しながら伸びている。すなわち各山筋30と各谷筋32は、所定波長Lで±y方向に屈曲しながらx方向に伸びている。ウエーブ形状の微細流路を提供する。
山筋30と谷筋32が形成されている第1板状部材18aと中間板状部材18bと第2板状部材18cを積層方向(z方向)に積層することで、冷却液流路17は、複数の微細流路20に分割される。冷却液と、冷却器4を構成する壁の接触面積が増大する。内壁18は、冷却液との接触面積を増やすフィンであり、ウエーブ形状の微細流路に分割するウエーブフィンを提供している。
As shown in FIG. 3, the inner wall 18 is configured by laminating a first plate member 18a, an intermediate plate member 18b, and a second plate member 18c in the lamination direction (z direction). Since FIG. 3 shows a cross section of the right inner wall, a subscript B is added. The same applies to the left inner wall 18A. Each of the plate-like members 18a, 18b, and 18c has a mountain line 30 that bulges toward the first surface 16a and a valley line 32 that bulges toward the second surface 16b along the y direction shown in the figure. Repeated shapes that appear alternately when observed are formed. Each mountain line 30 and each valley line 32 extend in the illustrated x direction. However, it does not extend straight along the x axis, but extends while being displaced alternately at a predetermined wavelength L in the + y direction and the −y direction as shown in FIG. That is, each mountain line 30 and each valley line 32 extends in the x direction while being bent in the ± y direction at a predetermined wavelength L. A wave-shaped fine channel is provided.
By laminating the first plate-like member 18a, the intermediate plate-like member 18b, and the second plate-like member 18c, in which the mountain line 30 and the valley line 32 are formed, in the laminating direction (z direction), the coolant flow path 17 is , And divided into a plurality of fine channels 20. The contact area between the coolant and the walls constituting the cooler 4 increases. The inner wall 18 is a fin that increases the contact area with the coolant, and provides a wave fin that is divided into fine wave-shaped channels.

積層方向に隣接する一対の板状部材では、一方の板状部材に形成されている山筋と他方の板状部材に形成されている谷筋の位相がずれている。図7の(2)は、第2面16bに接している第2板状部材18cに形成されている山筋30と谷筋32のyz断面を示している。図7の(1)は、中間板状部材18bを除去して第2板状部材18cを第1面16a側から見た図を示しており、ドットが付された領域は、谷筋32が上側に開いている範囲((2)の破線で示す範囲))が伸びている範囲を示す。谷筋32は、所定の波長Lで、±y方向に変位しながらx方向に伸びている。山筋30についても同様である。
図7の(4)は、第2板状部材18cの上方に位置している中間板状部材18bに形成されている山筋30と谷筋32のyz断面を示している。図7の(3)のドットが付された領域は、山筋30が下側に開いている範囲((4)の破線で示す範囲))が伸びている範囲を示す。山筋30は、所定の波長Lで、±y方向に変位しながらx方向に伸びている。谷筋32についても同様である。
図7では図示されていないが、第1板状部材18aに形成されている山筋30と谷筋32についても同様である。
In a pair of plate-like members adjacent to each other in the stacking direction, the phases of the mountain stripes formed on one plate-like member and the valley stripes formed on the other plate-like member are shifted. (2) of FIG. 7 shows a yz cross section of the mountain line 30 and the valley line 32 formed in the second plate-like member 18c in contact with the second surface 16b. (1) of FIG. 7 shows a view in which the intermediate plate member 18b is removed and the second plate member 18c is viewed from the first surface 16a side. The range that extends upward (the range indicated by the broken line in (2)) is shown. The valley line 32 extends in the x direction at a predetermined wavelength L while being displaced in the ± y direction. The same applies to the mountain line 30.
(4) of FIG. 7 shows a yz cross section of the mountain line 30 and the valley line 32 formed in the intermediate plate member 18b located above the second plate member 18c. The area to which the dots in (3) in FIG. 7 are attached indicates the area in which the range in which the mountain line 30 opens downward (the area indicated by the broken line in (4)) is extended. The mountain line 30 extends in the x direction at a predetermined wavelength L while being displaced in the ± y direction. The same applies to the valley line 32.
Although not shown in FIG. 7, the same applies to the mountain streak 30 and the valley streak 32 formed in the first plate-like member 18a.

第1板状部材18aと中間板状部材18bと第2板状部材18cに形成されている山筋30と谷筋32は、±y方向に変位しながらx方向に伸びており、その屈曲の波長と振幅は等しい。位相のみが相違している。   The crests 30 and the troughs 32 formed in the first plate member 18a, the intermediate plate member 18b, and the second plate member 18c extend in the x direction while being displaced in the ± y direction. Wavelength and amplitude are equal. Only the phase is different.

積層方向に隣接する一対の板状部材では、一方の板状部材に形成されている山筋と他方の板状部材に形成されている谷筋の位相がずれている。図7の(6)は、第2板状部材18cの谷筋32の上側開口範囲と、中間板状部材18bの山筋30の下側開口範囲を重ねて表示した図である。ハッチが付されている範囲は、第2板状部材18cの谷筋32と中間板状部材18bの山筋30が向かい合う範囲を示しており、その範囲では、図7の(5)に示すように、第2板状部材18cの谷筋32に沿った微細流路と中間板状部材18bの山筋32に沿った微細流路が合流する。第2板状部材18cの谷筋32と中間板状部材18bの山筋30が向かい合って形成される合流流路を参照番号26で示す。
図3に示すように、第2板状部材の谷筋32の下面を画定する壁は、第2面16bに接している。合流流路26が形成されている範囲内にある第2板状部材の谷筋32の下面を画定する壁には、突出部28が形成されている。図5と図6は、第2板状部材の谷筋32の下面を画定する壁に突出部28が形成されている部分を示している。谷筋32の下面を画定する壁にコの字状の切れ目29を入れ、それを曲げ起こすことで、突出部28が形成されている。
In a pair of plate-like members adjacent to each other in the stacking direction, the phases of the mountain stripes formed on one plate-like member and the valley stripes formed on the other plate-like member are shifted. (6) of FIG. 7 is a diagram in which the upper opening range of the valley line 32 of the second plate-shaped member 18c and the lower opening range of the mountain line 30 of the intermediate plate-shaped member 18b are displayed in an overlapping manner. The hatched range indicates a range where the valley line 32 of the second plate member 18c and the mountain line 30 of the intermediate plate member 18b face each other. In this range, as shown in (5) of FIG. In addition, the fine flow path along the valley line 32 of the second plate member 18c and the fine flow path along the mountain line 32 of the intermediate plate member 18b merge. A joining flow path formed by the valley streak 32 of the second plate member 18c and the mountain streak 30 of the intermediate plate member 18b facing each other is denoted by reference numeral 26.
As shown in FIG. 3, the wall that defines the lower surface of the valley line 32 of the second plate-shaped member is in contact with the second surface 16b. A protrusion 28 is formed on the wall that defines the lower surface of the valley line 32 of the second plate-like member within the range where the merge channel 26 is formed. 5 and 6 show a portion where the protruding portion 28 is formed on the wall defining the lower surface of the valley line 32 of the second plate-like member. A protruding portion 28 is formed by making a U-shaped cut 29 in a wall defining the lower surface of the valley 32 and bending it.

突出部28が形成されていないと、冷却液は谷筋32に沿って層流となって流れる。図6に示すように、突出部28が形成されていると、冷却液の流れが突出部28によって乱されて乱流になる。冷却液が板状部材に沿って層流となって流れる場合の板状部材と冷却液の間の熱交換率に比して、冷却液が乱流となって流れる場合の板状部材と冷却液の間の熱交換率の方が高い。
発熱体近傍では冷却液の温度が上昇して周囲の冷却液よりも高温となり、温度境界層が形成されることがある。温度境界層が形成されると、冷却液と発熱体の熱交換が十分に行われず、冷却器による冷却効率が低下するおそれがある。突出部28が設けられていないと、冷却液が板状部材に沿って層流となって流れ、温度境界層が維持されてしまうおそれがある。突出部28を設けると乱流が発達するために温度境界層が形成されることを抑制する。突出部28を設けると冷却効率が低下するおそれが減少する。
本実施例では、発熱体に接する第1面に接する範囲内の内壁に突出部が形成されていることから、温度境界層が形成されやすい箇所(発熱体に沿った箇所)で乱流を起こすことができ、温度境界層の発生をより効果的に妨げることができる。突出部28が形成されていることから、冷却器4の冷却効率がさらに改善される。
If the protruding portion 28 is not formed, the coolant flows in a laminar flow along the valley line 32. As shown in FIG. 6, when the protruding portion 28 is formed, the flow of the coolant is disturbed by the protruding portion 28 and becomes a turbulent flow. Compared to the heat exchange rate between the plate member and the coolant when the coolant flows as a laminar flow along the plate member, the plate member and the cooling when the coolant flows as a turbulent flow The heat exchange rate between liquids is higher.
In the vicinity of the heating element, the temperature of the coolant rises and becomes higher than the surrounding coolant, and a temperature boundary layer may be formed. When the temperature boundary layer is formed, heat exchange between the coolant and the heating element is not sufficiently performed, and the cooling efficiency by the cooler may be reduced. If the protruding portion 28 is not provided, the coolant flows in a laminar flow along the plate-like member, and the temperature boundary layer may be maintained. Providing the protrusions 28 suppresses the formation of a temperature boundary layer because turbulent flow develops. Providing the protrusions 28 reduces the possibility that the cooling efficiency will decrease.
In this embodiment, since the protruding portion is formed on the inner wall in the range in contact with the first surface in contact with the heating element, a turbulent flow is caused at a position where the temperature boundary layer is easily formed (location along the heating element). And the generation of the temperature boundary layer can be more effectively prevented. Since the protrusion 28 is formed, the cooling efficiency of the cooler 4 is further improved.

図6に示すように、第2板状部材18cの谷筋32の深さH1と、中間板状部材18bの山筋30の高さH1は等しい。また図示はしないが、中間板状部材18bの谷筋32の深さと第1板状部材18aの山筋30の高さは等しい。すなわち、第1板状部材18aの山筋30と谷筋32と中間板状部材18bの山筋30と谷筋32と第2板状部材18cの山筋30と谷筋32の深さH1は全部等しく、異物が詰まらない大きさの微細流路が確保される深さとされている。
また、第1板状部材18aの山筋30と谷筋32と中間板状部材18bの山筋30と谷筋32と第2板状部材18cの山筋30と谷筋32の幅は全部等しく、異物が詰まらない大きさの微細流路が確保される幅とされている。
図6に示すように、突出部28の突出高さH2は、谷筋32の深さH1よりも短い。また突出部28は、山筋30と谷筋32が向かい合ってその高さが2×H1となっている合流流路26に形成される。そのために突出部28の上方にH1以上の流路が確保される。
突出部28を形成しても、異物が詰まらないだけの大きさを持つ流路が確保される。
As shown in FIG. 6, the depth H1 of the valley 32 of the second plate member 18c is equal to the height H1 of the mountain 30 of the intermediate plate member 18b. Although not shown, the depth of the valley line 32 of the intermediate plate member 18b is equal to the height of the mountain line 30 of the first plate member 18a. That is, the depth H1 of the mountain line 30 and the valley line 32 of the first plate member 18a, the mountain line 30 and the valley line 32 of the intermediate plate member 18b, and the mountain line 30 and the valley line 32 of the second plate member 18c are as follows. The depths are all equal and ensure a fine flow path with a size that does not clog foreign matter.
Further, the widths of the mountain line 30 and valley line 32 of the first plate member 18a, the mountain line 30 and valley line 32 of the intermediate plate member 18b, and the mountain line 30 and valley line 32 of the second plate member 18c are all equal. The width is such that a fine channel having a size that does not clog foreign matter is secured.
As shown in FIG. 6, the protrusion height H <b> 2 of the protrusion 28 is shorter than the depth H <b> 1 of the valley line 32. Moreover, the protrusion part 28 is formed in the confluence | merging flow path 26 where the mountain line 30 and the valley line 32 face each other, and the height is 2xH1. Therefore, a flow path of H1 or more is secured above the protrusion 28.
Even if the protrusion 28 is formed, a flow path having a size sufficient to prevent clogging of foreign matters is secured.

同種の事象が、第1板状部材18aと中間板状部材18bの間にも存在する。すなわち、第1板状部材18aの山筋30と中間板状部材18bの谷筋32が向かい合う範囲が存在し、その範囲では、図3に示すように、第1板状部材18aの山筋30に沿った微細流路と中間板状部材18bの谷筋32に沿った微細流路が合流する合流流路22が形成される。
合流流路22が形成されている範囲内にある第1板状部材18aの山筋30の上面を画定する壁には、突出部24が形成されている。突出部24もまた、冷却器4の冷却効率をさらに改善する。
A similar event also exists between the first plate member 18a and the intermediate plate member 18b. That is, there is a range where the mountain line 30 of the first plate-like member 18a and the valley line 32 of the intermediate plate-like member 18b face each other, and in this range, as shown in FIG. 3, the mountain line 30 of the first plate-like member 18a. , And the merging channel 22 is formed by the merging of the minute channel along the valley path 32 of the intermediate plate member 18b.
A protrusion 24 is formed on the wall that defines the upper surface of the mountain line 30 of the first plate-like member 18a within the range in which the merge channel 22 is formed. The protrusion 24 also further improves the cooling efficiency of the cooler 4.

図4は、第1板状部材18aと中間板状部材18bと第2板状部材18cを形成する素材を示している。第1板状部材18aと中間板状部材18bと第2板状部材18cとなる範囲に、±y方向に屈曲する山筋30と谷筋32が形成されている。第1板状部材18aになる範囲には突出部24が形成されており、第2板状部材18cになる範囲には突出部28が形成されている。それを矢印sに示すように折り曲げることで、第1板状部材18aと中間板状部材18bと第2板状部材18cを積層した内壁18を形成することができる。もちろん、3枚の板を積層して内壁18を構成してもよい。   FIG. 4 shows a material for forming the first plate member 18a, the intermediate plate member 18b, and the second plate member 18c. In the range of the first plate member 18a, the intermediate plate member 18b, and the second plate member 18c, a mountain line 30 and a valley line 32 that are bent in the ± y direction are formed. A protrusion 24 is formed in a range where the first plate member 18a is formed, and a protrusion 28 is formed in a range where the second plate member 18c is formed. By bending it as indicated by the arrow s, the inner wall 18 in which the first plate member 18a, the intermediate plate member 18b, and the second plate member 18c are laminated can be formed. Of course, the inner wall 18 may be formed by stacking three plates.

山筋と谷筋が向かい合って合流流路が形成される範囲は図7の(6)に限られない。山筋と谷筋の位置関係を調整することで、図7の(7)に示す範囲に合流流路22,26を形成することもできるし、図7の(8)に示す範囲に合流流路22,26を形成することもできる。合流経路22,26を形成する範囲は、特に限定されない。
本実施例では、第1突出部24と第2突出部28を形成する。第1面16a側にのみ発熱体が存在する場合には、第2突出部28を形成しなくてもよい。あるいは、第2面16b側にのみ発熱体が存在する場合には、第1突出部24を形成しなくてもよい。
The range in which the mountain and valley lines face each other and the merge channel is formed is not limited to (6) in FIG. By adjusting the positional relationship between the mountain and valley lines, the merging flow paths 22 and 26 can be formed in the range shown in (7) of FIG. 7, or the merging flow in the range shown in (8) of FIG. Paths 22 and 26 can also be formed. The range in which the merge paths 22 and 26 are formed is not particularly limited.
In the present embodiment, the first protrusion 24 and the second protrusion 28 are formed. When the heating element exists only on the first surface 16a side, the second protrusion 28 may not be formed. Alternatively, when the heating element exists only on the second surface 16b side, the first protrusion 24 may not be formed.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

2:積層構造体
4:冷却器(4a:第1冷却器〜4l:第12冷却器)
6:発熱体(6a:第1発熱体〜6k:第11発熱体)
添え字Aは左側の発熱体を示し、添え字Bは右側の発熱体を示す。
8:流入管
8a〜8k:連通管
10:流出管
10a〜10k:連通管
12:流入する冷却液
14:流出する冷却液
16:外壁
16a:第1面
16b:第2面
17:冷却液流路
18:内壁
添え字Aは左側の内壁を示し、添え字Bは右側の内壁を示す
18a:第1板状部材
18b:中間板状部材
18c;第2板状部材
20:微細流路
22:合流流路
24:突出部
26:合流流路
28:突出部
29:コの字状切れ目
30:山筋
32:谷筋
2: Laminated structure 4: Cooler (4a: 1st cooler to 4l: 12th cooler)
6: heating element (6a: first heating element to 6k: eleventh heating element)
Subscript A indicates the left heating element, and subscript B indicates the right heating element.
8: Inflow pipes 8a to 8k: Communication pipe 10: Outflow pipes 10a to 10k: Communication pipe 12: Inflowing coolant 14: Outflowing coolant 16: Outer wall 16a: First surface 16b: Second surface 17: Coolant flow Path 18: Inner wall Subscript A indicates the left inner wall, Subscript B indicates the right inner wall 18a: First plate member 18b: Intermediate plate member 18c; Second plate member 20: Fine channel 22: Merged channel 24: Protruding part 26: Merged channel 28: Protruding part 29: U-shaped cut 30: Mountain line 32: Valley line

Claims (4)

少なくとも一つの発熱体に接した状態で冷却液を通過させて用いる冷却器であり、
冷却液が通過する流路を画定する外壁と、流路内に収容されている内壁を備えており、
冷却液が通過する方向を通過方向とし、通過方向に直交する方向を積層方向とし、通過方向と積層方向に直交する方向を屈曲方向としたときに、
外壁は、通過方向と屈曲方向を含む面に沿って伸びているとともに発熱体に接する第1面と、第1面から積層方向に距離をおいて伸びている第2面を備えており、
内壁は、第1面と平行な板状部材の複数枚が積層方向に積層された状態で流路内に収容されており、
各々の板状部材は、第1面側に膨出している山筋と第2面側に膨出している谷筋が屈曲方向に交互に繰り返される形状であり、
各山筋と各谷筋は、通過方向に伸びているともに、所定波長で変位方向を反転しながら屈曲方向に変位しており、
積層方向に隣接する一方の板状部材に形成されている山筋と他方の板状部材に形成されている谷筋の位相がずれており、その山筋と谷筋が交差するとともに第1面に接する範囲内の板状部材に第2面に向かって突出する第1突出部が形成されていることを特徴とする冷却器。
A cooler used by passing a coolant in contact with at least one heating element;
An outer wall defining a flow path through which the coolant passes, and an inner wall accommodated in the flow path,
When the direction in which the coolant passes is the passing direction, the direction orthogonal to the passing direction is the stacking direction, and the direction orthogonal to the passing direction and the stacking direction is the bending direction,
The outer wall includes a first surface extending along a plane including a passing direction and a bending direction and contacting the heating element, and a second surface extending at a distance from the first surface in the stacking direction,
The inner wall is accommodated in the flow path in a state where a plurality of plate-like members parallel to the first surface are stacked in the stacking direction,
Each plate-like member has a shape in which a mountain line bulging on the first surface side and a valley line bulging on the second surface side are alternately repeated in the bending direction,
Each mountain line and each valley line extend in the passing direction and are displaced in the bending direction while inverting the displacement direction at a predetermined wavelength.
The phase of the mountain line formed in one plate-like member adjacent in the stacking direction and the valley line formed in the other plate-like member are out of phase, and the mountain surface and the valley line intersect with each other. A cooler, wherein a plate-like member within a range in contact with the first member is formed with a first protrusion that protrudes toward the second surface.
各々の板状部材に形成されている山筋の高さが等しく、
第1突出部の突出長が、山筋の高さよりも短いことを特徴とする請求項1に記載の冷却器。
The height of the mountain lines formed in each plate-like member is equal,
The cooler according to claim 1, wherein the protrusion length of the first protrusion is shorter than the height of the mountain line.
複数個の発熱体の間に配置した状態で用いる冷却器であり、
第1面と第2面は平行であり、
山筋と谷筋が交差するとともに第2面に接する範囲内の板状部材に第1面に向かって突出する第2突出部が形成されていることを特徴とする請求項1または2の冷却器。
A cooler used in a state of being arranged between a plurality of heating elements,
The first surface and the second surface are parallel,
3. The cooling according to claim 1, wherein a second projecting portion projecting toward the first surface is formed on a plate-like member within a range where the mountain line and the valley line intersect and in contact with the second surface. vessel.
第1面に接する第1板状部材と、中間板状部材と、第2面に接する第2板状部材が順に積層されて内壁が構成されており、
第1板状部材の山筋と中間板状部材の谷筋が交差するとともに第1面に接する範囲内の第1板状部材に第2面に向かって突出する第1突出部が形成されており、
第2板状部材の谷筋と中間板状部材の山筋が交差するとともに第2面に接する範囲内の第2板状部材に第1面に向かって突出する第2突出部が形成されていることを特徴とする請求項3に記載の冷却器。
A first plate member in contact with the first surface, an intermediate plate member, and a second plate member in contact with the second surface are sequentially laminated to form an inner wall,
A first projecting portion projecting toward the second surface is formed on the first plate-shaped member within a range in contact with the first surface while the mountain line of the first plate-shaped member intersects with the valley of the intermediate plate-shaped member. And
A second projecting portion projecting toward the first surface is formed on the second plate-shaped member within a range in contact with the second surface while the valley of the second plate-shaped member intersects with the mountain streak of the intermediate plate-shaped member. The cooler according to claim 3.
JP2012050758A 2012-03-07 2012-03-07 Cooler Active JP5814163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050758A JP5814163B2 (en) 2012-03-07 2012-03-07 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050758A JP5814163B2 (en) 2012-03-07 2012-03-07 Cooler

Publications (2)

Publication Number Publication Date
JP2013187317A JP2013187317A (en) 2013-09-19
JP5814163B2 true JP5814163B2 (en) 2015-11-17

Family

ID=49388519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050758A Active JP5814163B2 (en) 2012-03-07 2012-03-07 Cooler

Country Status (1)

Country Link
JP (1) JP5814163B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698111B2 (en) * 2018-01-09 2020-05-27 日本軽金属株式会社 Liquid cooling jacket
JP2019057739A (en) * 2019-01-07 2019-04-11 日本軽金属株式会社 Liquid-cooled jacket
KR102064529B1 (en) * 2019-04-25 2020-01-09 잘만테크 주식회사 Cooling apparatus for electronic components with corrugated plate layered cooling tower

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239183U (en) * 1985-08-29 1987-03-09
JP5157681B2 (en) * 2008-06-27 2013-03-06 株式会社デンソー Stacked cooler
JP5316470B2 (en) * 2010-04-22 2013-10-16 株式会社デンソー Laminate heat exchanger

Also Published As

Publication number Publication date
JP2013187317A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP6420140B2 (en) Oil cooler
CN107924897B (en) Laminated core type radiator
JP2013175526A (en) Cooler and cooling device
JP2010114174A (en) Core structure for heat sink
WO2018012558A1 (en) Laminated heat sink core
US10578367B2 (en) Plate heat exchanger with alternating symmetrical and asymmetrical plates
JP5432838B2 (en) Plate laminated heat sink
CN110140208B (en) Cooling device and method for manufacturing cooling device
JP5814163B2 (en) Cooler
JP6578964B2 (en) Laminate heat exchanger
JP2013165298A (en) Liquid cooling device
JP4544187B2 (en) Cooler
CN110537070B (en) Plate heat exchanger
JP2013130300A (en) Stacked heat exchanger
JP5411304B2 (en) Plate heat exchanger
WO2017195588A1 (en) Stack type heat exchanger
JP7213078B2 (en) Laminated heat exchanger
CN112146484B (en) Plate heat exchanger
EP3569959B1 (en) Water heat exchanger
JP7028637B2 (en) Flat heat pipe
JP6429122B2 (en) Heat exchanger and intermediate plate for heat exchanger
KR20200032593A (en) Printed circuit heat exchanger and heat exchanging device comprising it
JP4312640B2 (en) Stacked heat exchanger
JP2018093115A (en) Cooler
JP2016090123A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5814163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250