JP2020085314A - 天井放射パネル及び天井放射空調システム - Google Patents

天井放射パネル及び天井放射空調システム Download PDF

Info

Publication number
JP2020085314A
JP2020085314A JP2018219212A JP2018219212A JP2020085314A JP 2020085314 A JP2020085314 A JP 2020085314A JP 2018219212 A JP2018219212 A JP 2018219212A JP 2018219212 A JP2018219212 A JP 2018219212A JP 2020085314 A JP2020085314 A JP 2020085314A
Authority
JP
Japan
Prior art keywords
ceiling
air conditioning
radiation panel
pipe
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018219212A
Other languages
English (en)
Inventor
啓明 佐藤
Keimei Sato
啓明 佐藤
清水 洋
Hiroshi Shimizu
洋 清水
勝範 阿部
Katsunori Abe
勝範 阿部
剛彦 濱宇津
Takehiko Hamautsu
剛彦 濱宇津
信幸 室野
Nobuyuki Murono
信幸 室野
英一郎 松井
Eiichiro Matsui
英一郎 松井
卓哉 熊澤
Takuya Kumazawa
卓哉 熊澤
文悟 富田
Bungo Tomita
文悟 富田
恭介 黒瀬
Kyosuke Kurose
恭介 黒瀬
達郎 浅見
Tatsuro Asami
達郎 浅見
隼人 鎌田
Hayato Kamata
隼人 鎌田
伊藤 清
Kiyoshi Ito
清 伊藤
栗原 隆
Takashi Kurihara
栗原  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2018219212A priority Critical patent/JP2020085314A/ja
Publication of JP2020085314A publication Critical patent/JP2020085314A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

【課題】設置位置の変更が容易で冷却能力が良好な天井放射パネルを提供する。【解決手段】天井放射パネル11は、金属製の板状の放射部21を有し、一辺の長さが600mmの放射パネル本体20と、放射部の上面22に設けられ、内部に空調媒体5が流通可能な空調配管30とを備える。放射パネル本体の幅方向D1には、幅方向に直交する長さ方向D2に沿って延びる直管部31が6本ある。【選択図】図1

Description

本発明は、天井放射パネル及び天井放射空調システムに関する。
近年、オフィスの執務室や病室等の天井に天井放射空調システムが導入されている。天井放射空調システムは、水や空気によって冷やされたまたは暖められた天井材からの放射によって天井下の室温を調整するシステムである。天井放射空調システムでは、天井面からの緩やかな空調空気の対流と放射の効果によって、室内の温度分布が均一になり、気流感もなく快適な空間を作り出すことができる。
例えば、特許文献1には、空調機における空調配管の途中に冷媒との熱交換により冷水又は温水を調製する熱交換器ユニットが設置され、熱交換器ユニットにより調製した冷水又は温水を天井放射パネルに循環させて天井面から輻射冷暖房を行う天井放射空調システムが提案されている。特許文献1に開示されている熱交換器ユニットは、熱交換器本体と、冷水又は温水を循環させるポンプと、冷水または温水の熱膨張を吸収する膨張タンクと、冷媒の供給量を膨張弁の操作により制御して冷水又は温水の温度を制御する制御手段とを備えている。
特開2014−152971号公報
近年、建物の天井には、グリッド幅が600mmのシステム天井が多く用いられている。システム天井は、天井側の躯体から鉛直方向に沿って垂下する吊ボルトと、吊ボルトに支持され且つ水平面において互いに直交する方向に延びるTバー及びフレームと、Tバーで囲まれた格子領域に設けられた天井放射パネルとを備えている。グリッド幅が600mmのシステム天井は、格子領域を囲むTバーやフレームの芯が600mm角になるように形成されている。
従来の天井放射パネルは600mm角より大きいものが多く、例えば、一辺が600mm且つ他辺が1800mmの天井放射パネルが主流であった。そのような大きな天井放射パネルを用いる場合、室内の間仕切りの位置の変更時には、天井放射パネルの位置を変えるために、元の位置及び新しく設置する位置のTバーやフレームを取り外してから、天井放射パネルを元の位置から取り外し、新しい位置に設置し、Tバーやフレームを戻す。しかしながら、天井放射パネルの位置の変更の度にTバーやフレームの取り外し及び再設置を行うのは、非常に煩雑であった。また、天井放射パネルの長さを短くすると、1つの天井放射パネルにおいて熱交換に寄与する空調配管の直管部の総長が短くなり、所定の空調性能を得られない虞があった。
本発明は、上述の事情に鑑みてなされたものであり、設置位置の変更が容易で空調性能が良好な天井放射パネル及び天井放射空調システムを提供する。
本発明の天井放射パネルは、金属製の板状の放射部を有する、一辺の長さが600mmの放射パネル本体と、前記放射部の上面に設けられ、内部に空調媒体が流通可能な空調配管と、を備え、前記放射パネル本体の前記一辺に沿う幅方向には、該幅方向に直交する長さ方向に沿って延びる前記空調配管の直管部が略平行に6本配設されている。
上述の天井放射パネルは、放射パネル本体の一辺が600mmであるため、グリッド幅が600mmの天井放射パネル設置領域に対して容易に取り付け及び取り外しされる。放射部の上面には、直管部が6本設けられるので、空調媒体と放射部との間の熱交換が良好に進み、熱が放射部に伝達して均一に広がり、室内に放射される。従って、本発明の天井放射パネルによれば、設置位置の変更が容易になり、且つ良好な空調性能が得られる。
本発明の天井放射パネルでは、前記放射パネル本体の前記長さ方向に沿う他辺の長さが600mmであってもよい。
上述の天井放射パネルによれば、放射パネル本体がシステム天井の天井構造のグリッド幅と同様に600mm角で構成されるため、設置位置の変更がより容易になり、室内の間仕切りの変更やリニューアル等に柔軟に対応可能になる。
本発明の天井放射パネルでは、前記空調配管の内径は13mm以上であり、前記直管部の前記長さ方向に沿う長さは380mm以上であってもよい。
上述の天井放射パネルによれば、空調配管における空調媒体の流量を確保しやすくなり、放射部に接する直管部の総長が確保されるので、直管部の内部に流通する空調媒体と放射部との間の熱交換が良好に行われる。従来の空調システムの空調性能と同等又は従来の空調システムより高い空調性能を得ることができる。
本発明の天井放射パネルでは、前記放射パネル本体は厚み0.6mm以上のスチール板で構成されていてもよい。
上述の天井放射パネルによれば、空調媒体からの熱が放射部に伝わりやすく、良好な冷却能力が得られる。また、従来主流の岩綿吸音板のように微小な孔等が形成された板材ではなく、厚み0.6mm以上の稠密なスチール板が用いられることによって、天井放射パネルの遮音効果が高まる。さらに、スチール板は安価であるため、天井放射パネルの低コスト化が図られる。
本発明の天井放射パネルでは、前記空調配管の端部に、所定の方向に湾曲させることが可能な延管部を有していてもよい。
上述の天井放射パネルによれば、湾曲させた延管部の先端を別の天井放射パネルの湾曲させた延管部の先端と容易に接続可能になる。
本発明の天井放射パネルでは、隣り合う前記直管部同士の間をつなぐ湾曲管部を備え、前記湾曲管部の曲率半径は50mmであってもよい。
上述の天井放射パネルによれば、空調配管の過度な曲げがなく、空調配管の劣化や破損が防止される。
本発明の天井放射空調システムは、600mm角の天井放射パネル設置領域を形成する天井構造と、前記天井放射パネル設置領域に設置された上述の天井放射パネルと、を備えている。
上述の天井放射空調システムによれば、600mmのグリッド幅の天井放射パネル設置領域に上述の天井放射パネルが容易に取り付けられる。天井放射パネルの位置を変更する場合も、少なくとも幅方向のTバー等を取り外す作業又は取り付ける作業が不要になり、作業効率が高まる。前述のように、放射部の上面には、直線部が6本設けられるので、良好な冷却能力が得られる。
本発明の天井放射空調システムでは、前記天井放射パネル設置領域は複数形成され、前記空調配管の端部は前記放射パネル本体から離れる方向に向かって湾曲しつつ折り返す折り返し管部を有し、隣り合う前記天井放射パネルの前記折り返し管部の先端同士が直接接続されていてもよい。
上述の天井放射空調システムによれば、隣り合う天井放射パネルの空調配管の折り返し管部が直接接続されるので、専用の連結管等を用いなくても、空調配管同士が簡潔に接続可能になり、使用する部品数が抑えられる。
本発明の天井放射パネル及び天井放射空調システムによれば、天井放射パネルの設置位置の変更が容易になり、且つ良好な空調性能が得られる。
本発明の第1実施形態の天井放射パネルの平面図である。 本発明の第1実施形態の天井放射パネルの底面図である。 図1に示すC1−C1線で矢視した天井放射パネルの断面図である。 図1に示すC2−C2線で矢視した天井放射パネルの断面図である。 本発明の第1実施形態の天井放射空調システムの側面図である。 本発明の第2実施形態の天井放射パネルの平面図である。 実施例1で用いた実験用チャンバーボックスの斜視図である。 実施例1で用いた別の実験用チャンバーボックスの斜視図である。 実施例1において居室チャンバー内の温度と空調媒体の温度との温度差と天井放射パネルの冷却性能との関係を測定した結果を示すグラフである。 実施例1においてヒートシンクの総長と冷却性能向上率との関係を表すグラフである。 実施例2で用いた室内構成を示す平面図である。 実施例2における天井放射パネルの遮音性能の測定結果を示すグラフである。 実施例3で用いた遮音性能測定実験室の平面図である。 実施例3で用いた遮音性能測定実験室の側面図である。 実施例3で用いた遮音性能測定実験室の天井を室内側から見た図である。 実施例3で用いた遮音性能測定実験室の天井を室内側から見た別の図である。 実施例3における天井放射パネルの遮音性能の測定結果を示すグラフである。 実施例3における天井放射パネルの遮音性能の測定結果を示す別のグラフである。 実施例3における天井放射パネルの遮音性能の測定結果を示す他のグラフである。
以下、本発明の天井放射パネル及び天井放射空調システムの好ましい実施形態について、図面を参照して説明する。
<第1実施形態>
(天井放射パネル)
本発明の第1実施形態の天井放射パネル11は、オフィスの執務室や病室等の天井に用いられる。天井放射パネル11は、建物の天井側の躯体面(図示略)との間に天井空間を形成するように水平面に沿って配置され、躯体面の下方に設けられた天井構造に支持されている。天井構造は、グリッド幅600mmのシステム天井の仕様に合わせて構成されている。
図1は、天井放射パネル11の平面図であり、天井空間側から天井放射パネル11を見た図である。図2は、天井放射パネル11の底面図であり、室内側から天井放射パネル11を見た図である。図3は、図1に示すC1−C1線で矢視した天井放射パネル11の断面図である。図3は、図1に示すC2−C2線で矢視した天井放射パネル11の断面図である。図1に示すように、天井放射パネル11は、金属製の板状の放射部21を有し、少なくとも一辺の長さが600mmの放射パネル本体20と、放射部21の上面22に設けられ、内部に空調媒体5が流通可能な空調配管30とを備える。以下では、放射部21において天井構造のグリッド幅600mmに合う方向且つ一辺に沿う方向を幅方向D1とし、水平面において幅方向D1に直交する方向を長さ方向D2とし、幅方向D1及び長さ方向D2に直交する方向を上下方向D3とする。第1実施形態では、放射パネル本体20の長さ方向D2に沿う他辺の長さも600mmであり、放射パネル本体20は600mm角で形成されている。
放射パネル本体20は、天井構造に設置された際に下面23が室内に開放される放射部21と、放射部21の幅方向D1の端24に設けられた段差部26と、放射部21の長さ方向D2の端25に設けられた段差部27とを備える。放射部21は、孔が形成されていない稠密な一枚板で構成されているので、天井放射パネル11の遮音性が高まる。
図3に示すように、段差部26は、端24から上側に立ち上がる第1立ち上がり部26−1と、第1立ち上がり部26−1の上端から幅方向D1の外側に延びるフランジ部26−2と、フランジ部26−2の幅方向D1の外側の縁から上側に立ち上がる第2立ち上がり部26−3とを備える。
図4に示すように、段差部27は、端25から上側に立ち上がる第1立ち上がり部27−1と、第1立ち上がり部27−1の上端から長さ方向D2の外側に延びるフランジ部27−2とを備える。
段差部26,27は、不図示の天井構造によって支持可能とされている。具体的には、段差部26,27が直接又は間接的に天井構造に架かり、少なくとも放射部21が天井構造に開口している天井放射パネル設置領域から室内側に開放されている。
放射パネル本体20の一辺の長さが600mmであるとは、放射パネル本体20の幅方向D1の大きさがグリッド幅600mmの天井構造及びTバーやフレームの大きさに合わせて設定されていることを意味する。天井構造の幅方向D1を勘案し、放射部21の一辺の長さは、例えば580mm以上600mm未満であることが好ましい。同様の観点から、フランジ部26−2の幅方向D1の大きさ及びフランジ部27−2の長さ方向D2の大きさは、5mm以上10mm以下とすることができる。
放射パネル本体20の素材としては、スチール板又はアルミニウム板が好ましい。特に、放射パネル本体20が厚み0.6mm以上のスチール板で形成されていることによって、天井放射パネル11の遮音性が高まると共に、コストが低減される。
空調配管30は、長さ方向D2に沿って延びる直管部31と、空調媒体5の流通方向に沿って1つの直管部31の後端から隣り合う直管部31の前端との間をつなぐ湾曲管部32とを備える。空調媒体5は、例えば冷水であるが、その他に温水やガスであってもよく、不図示の温度制御部で所定の温度に調整されて空調配管30の内部を流通する。空調媒体5の流通方向に沿って最前の直管部31の前端(空調配管の端部)及び最後の直管部31の後端(空調配管の端部)には、湾曲管部33を介して、所定の方向に湾曲させることが可能な延管部34が接続されている。
空調配管30は、金属製の配管で構成され、例えばアルミニウム三層管によって構成されている。空調配管30の内径は13mm以上である。直管部31の長さ方向D2に沿う長さは、天井放射パネル11や空調システム全体の設計の仕方に応じて適宜調節されるが、例えば310mm以上490mm以下である、好ましくは380mm以上である。
図3に示すように、幅方向D2には、直管部31が略平行に6本配設されている。6本の直管部31の長さ方向D2に沿う長さL31は、互いに等しい。従って、放射パネル本体20との熱交換に大きく寄与する6本の直管部31の総長は、例えば1860mm以上2940mmであり、好ましくは2280mm以上である。空調配管30の内径、長さL31、及び6本の直管部31の総長が前述の条件を満たすことによって、空調媒体5の流量が確保され、良好な空調性能が得られる。
直管部31は、金属製のヒートシンク40を介して放射部21に接している。ヒートシンク40は、上面22に貼り付け可能な板状の熱伝導部41と、熱伝導部41から上側に突出して設けられて直管部31を幅方向D1の外側から挟んで保持可能な管保持部42とを備えている。熱伝導部41は、例えば両面テープ等の接着材によって上面22に貼り付けられている。
湾曲管部32,33の曲率半径は、50mmである。即ち、空調配管30の最小曲率半径は、50mmである。このことによって、空調配管30の劣化及び損傷が抑えられ、空調媒体5の流量が確保される。
湾曲管部33はそれぞれ、基端に近い方の端24とは反対側の端24に向かって湾曲している。延管部34は、長さ方向D2において互いに異なる位置に配置され、それぞれ湾曲管部33の先端から幅方向D1に沿って略平行に延びている。延管部34は、図5を参照して後述するように、例えば専用の冶具等を用いて上側(所定の方向)に湾曲させつつ幅方向D1に沿って折り返すことができる。その際、延管部34を湾曲させる際に、曲率半径は50mmとされる。
天井放射パネル11では、長さ方向D2において直管部131の延管部34に近い側の端132と端132が対向する端25との距離S132は、湾曲管部33及び延管部34,34を配置できる範囲でなるべく短く設定されることが好ましい。例えば、距離S132は、150mm以下であることが好ましい。また、長さ方向D2において直管部131の端132とは反対側の端133と端133が対向する端25との距離S133は、湾曲管部33を配置できる範囲でなるべく短く設定されることが好ましい。例えば、距離S133は、50mm以下であることが好ましい。距離S132,S133が上述のように設計されることによって、長さL31が好適に確保され、天井放射パネル11の放射効率が高まる。
図1及び図3に示すように、空調配管30は、上側から配管押さえ部50によって押さえられ、管保持部42と配管押さえ部50によって安定した且つ放射部21に良好に熱を伝達可能な位置に保持されている。配管押さえ部50は、幅方向D1に沿って延びる長尺の押さえ部51と、押さえ部51の幅方向D1の一方の端から天井構造に架かる架かり部52と、押さえ部51の幅方向D1の他方の端から天井構造に架かる架かり部54とを備えている。図4に示すように、幅方向D1に沿って断面視すると、押さえ部51は、空調配管30に上側から当たる当たり面と、当たり面から上側に立ち上がる立ち上がり面とを有する。
図3に示すように、架かり部52,54は、第3立ち上がり部52−1,54−1と、第3立ち上がり部52−1,54−1の上端から幅方向D1の外側に延びるフランジ部52−2,54−2と、フランジ部52−2,54−2の幅方向D1の外側の縁から下側に立ち上がる立ち下がり部52−3,54−3とを備える。上下方向D3において、第3立ち上がり部54−1は第3立ち上がり部52−1より僅かに長く、立ち下がり部54−3は立ち下がり部52−3より僅かに長い。幅方向D2において、フランジ部54−2はフランジ部52−2より長い。
押さえ部51の当たり面が空調配管30に上側から当たる状態で、上下方向D3において互いに重なる第2立ち上がり部26−3と第3立ち上がり部52−1には幅方向D1に沿ってビス53が貫通している。即ち、第2立ち上がり部26−3と第3立ち上がり部52−1とは、ビス止めされている。
(天井放射空調システム)
本発明の第1実施形態の天井放射空調システム81は、複数の600mm角の天井放射パネル設置領域90を形成する天井構造100と、それぞれの天井放射パネル設置領域90に設置された天井放射パネル11と、を備えている。図5は、天井放射空調システム81の主要な部分の側面図である。
天井構造100は、建物の天井側の躯体面(図示略)との間に天井空間101を形成するように水平面に沿って配置されたフレーム102を備えている。フレーム102は、Tバーや公知のフレーム材で構成され、グリッド幅600mmで配設されている。つまり、フレーム102は、図5に示すように芯が幅方向D1及び長さ方向D2において隣り合うフレーム102の芯や壁面に対して600mmの間隔をあけるように、配設されている。
第1実施形態では、1つのフレーム102に隣り合う天井放射パネル11の架かり部52,54が重なって架かっている。具体的には、フレーム102の上側の端部を囲むようにフレーム102に架かり部52が架かり、さらに架かり部52を囲むように架かり部52に架かり部54が架かっている。長さ方向D2に沿って延びるフレーム102の下側の端部には、幅方向D2に突出する突出部103が設けられている。突出部103には段差部26が留まっており、第1立ち上がり部26−1が突出部103の側面に接し、フランジ部27−2が突出部103の上面に上側から接している。図示していないが、同様に、幅方向D1に沿って延びるフレームの下側の端部には、長さ方向D2に突出する突出部が設けられている。この突出部には段差部27が留まっており、第1立ち上がり部27−1が突出部の側面に接し、フランジ部27−2が突出部の上面に上側から接している。
それぞれの天井放射パネル11において、延管部34は専用の冶具等を用いて上側に湾曲させつつ幅方向D1に沿って折り返され、折り返し管部(湾曲管部)35になっている。即ち、天井放射パネル設置領域90に設置される天井放射パネル11では、図5に示すように空調配管30の端部が放射パネル本体20の上方(放射パネル本体から離れる方向)に向かって湾曲しつつ幅方向D1に沿って折り返す折り返し管部35を有する。折り返し管部35の曲率半径は、湾曲管部32,33と同様に、50mmである。幅方向D1において隣り合う天井放射パネル11の折り返し管部35の先端同士は、直接接続されている。折り返し管部35の先端同士が直接接続されているとは、折り返し管部35の先端同士が継手36によって接続される際に、幅方向D1において折り返し管部35の先端同士の間の距離が短く、折り返し管部35の先端同士が連結管等を介さずに接続可能な状態を意味する。
幅方向D1において、空調媒体5の流通方向に沿って最前の天井放射パネル11の空調配管30の前端には、不図示のポンプ等から空調媒体5が流入する。流入した空調媒体5は、ヒートシンク40を介して放射部21と熱交換しつつ、空調配管30の内部を流通し、空調媒体5の流通方向に沿って最後の天井放射パネル11の空調配管30の後端から排出される。このように空調媒体5が複数の天井放射パネル11の空調配管30を流通することによって、天井放射空調システム81の下方の室内の全体に冷気等が放射され、室温が調整される。
(作用効果)
以上説明した第1実施形態の天井放射パネル11の一辺及び他辺は、600mmである。天井放射パネル11によれば、放射パネル本体20が600mm角であるため、グリッド幅が600mmの天井放射パネル設置領域90に対して容易に取り付け可能及び取り外し可能にすることができる。そのため、天井放射パネル11の設置位置の変更を天井放射パネル設置領域90単位でより容易に可能とし、室内の間仕切りの変更やリニューアル等に柔軟に対応できる。また、放射部21の上面22には、幅方向D1において直管部31が6本配設されているので、ヒートシンク40を介して放射部21に直接熱伝導可能な空調配管30の総長を従来の600mm角より大きい天井放射パネルと同等又は従来の大きな天井放射パネルの熱伝導可能な空調配管30の総長以上に確保できる。このことによって、空調配管30の内部の空調媒体5と放射部21との間の熱交換が良好に進み、熱が放射部21に伝達して均一に広がり、室内に放射される。従って、天井放射パネル11によれば、設置位置の変更を容易に可能とし、且つ良好な空調性能を得ることができる。また、放射部21は孔が形成されていない稠密な板状であるため、天井放射パネル11の遮音効果を高めることができる。
また、天井放射パネル11によれば、空調配管30の内径は13mm以上であり、直管部31の長さは380mm以上であるので、空調媒体5の流量を確保しやすくすると共に、放射部21に接する直管部31の総長を確保できる。このことによって、空調媒体5と放射部21との間の熱交換が良好に行われ、従来の天井放射パネルの空調性能と同等又は従来の天井放射パネルより高い空調性能を得ることができる。
また、天井放射パネル11によれば、放射パネル本体20は厚み0.6mm以上のスチール板で構成されている場合、スチール板の良好な熱伝導性によって空調媒体5からの熱が放射部21に伝わりやすく、良好な空調性能を得ることができる。また、放射パネル本体20に厚み0.6mm以上の稠密なスチール板を用いることによって、天井放射パネル11の遮音効果を高めることができる。さらに、放射パネル本体20に安価なスチール板を用いることによって、スチール板から容易に所望の形状を有する放射パネル本体20を押出成形可能とし、且つ天井放射パネル11の低コスト化を図ることができる。
また、天井放射パネル11によれば、空調配管30の端部に、所定の方向に湾曲させることが可能な延管部34を有するので、例えば放射部21を水平面に沿った状態にして延管部34を上側に湾曲させて折り返し、延管部34の先端を、同様に延管部34を湾曲させて折り返した別の天井放射パネル11の延管部34の先端と容易に接続できる。
また、天井放射パネル11によれば、湾曲管部32,33の曲率半径は50mmであるので、空調配管30の過度な曲げを防止し、空調媒体5の流速及び流量を確実に確保し、空調配管30の劣化や破損を防止できる。
第1実施形態の天井放射空調システム81は、600mm角の天井放射パネル設置領域90を形成する天井構造100と、天井放射パネル設置領域90に設置された天井放射パネル11と、を備えている。天井放射空調システム81によれば、1つの天井放射パネル設置領域90に1つの天井放射パネル11を設置できる。そのため、天井放射パネル11の位置を変更する際に、従来の600mm角より大きな天井放射パネルを用いた場合のようにTバー等を取り外す作業又は取り付ける作業は不要になる。このことによって、室内の間仕切りの変更やリニューアル等に柔軟に対応でき、天井放射パネル11の位置を変更する際の作業効率を高めることができる。また、放射部21の上面22には、放射部21との熱交換に寄与する直管部31が幅方向D1に6本設けられているので、天井放射パネル11の良好な空調性能が得られ、室内の空調を円滑に行うことができる。
また、天井放射空調システム81では、天井放射パネル設置領域90は複数形成され、隣り合う天井放射パネル11のそれぞれの空調配管30の端部は折り返し管部35を有し、折り返し管部35の先端同士が直接接続されている。天井放射空調システム81によれば、専用の連結管等を用いずに、継手のみを用いて、隣り合う天井放射パネル11の空調配管30同士を簡潔に接続でき、使用する部品数及びコストを抑えることができる。
<第2実施形態>
次に、本発明の第2実施形態の天井放射パネル及び天井放射空調システムについて説明する。第2実施形態の天井放射パネル及び天井放射空調システムにおいて、第1実施形態の天井放射パネル及び天井放射空調システムの構成と共通する構成には第1実施形態の天井放射パネル及び天井放射空調システムと同様の符号を付し、その説明を省略する。
(天井放射パネル)
天井放射パネル11と同様に、本発明の第2実施形態の天井放射パネル12は、オフィスの執務室や病室等の天井に用いられる。天井放射パネル11は、建物の天井側の躯体面(図示略)との間に天井空間を形成するように水平面に沿って配置され、躯体面の下方に設けられた天井構造に支持されている。
図6は、天井放射パネル12の平面図である。天井放射パネル12においては、放射パネル本体20の一辺の長さは600mmであるが、放射パネル本体20の長さ方向D2に沿う他辺の長さは1200mmである。天井放射パネル12の放射部21の長さ方向D2の長さも天井放射パネル11の放射部21の長さの2倍程度に増している。このことによって、天井放射パネル12の直管部31の長さL31は、例えば980mm以上であることが好ましい。天井放射パネル12における6本の直管部31の総長は、5880mm以上であることが好ましい。
天井放射パネル12の延管部34の長さ方向D2に沿う長さは、天井放射パネル11の延管部34の長さ方向D2に沿う長さの2倍程度である。前述のように、放射パネル本体20の他辺の長さ、1つの直管部31及び延管部34の長さが異なること以外は、天井放射パネル12は天井放射パネル11と同様の構成を備えている。
(天井放射空調システム)
図示していないが、第2実施形態の天井放射空調システムは、天井構造100と、天井放射パネル11に替えて天井放射パネル12とを備えている。但し、長さ方向D2において、天井放射パネル12の略中心に位置していたフレーム102は除去され、隣り合う2つ分の天井放射パネル設置領域90に対して1つの天井放射パネル12が設置されている。
(作用効果)
以上説明した第2実施形態の天井放射パネル12の一辺は600mmであり、天井放射パネル12は天井放射パネル11と同様の構成を備えるので、天井放射パネル12によれば、天井放射パネル11と同様の作用効果が得られる。
第2実施形態の天井放射空調システムは、天井放射空調システム81と同様の構成を備えるので、天井放射空調システム81と同様の作用効果を奏する。また、第2実施形態の天井放射空調システムによれば、天井放射パネル11に替えて天井放射パネル12を備え、長さ方向D2において隣り合う2つ分の天井放射パネル設置領域90に対して1つの天井放射パネル12が設置される。このような構成では、天井放射パネル12の設置位置を変更する際に、長さ方向D1において変更前と変更後の各設置位置のフレーム102を取り外す作業や再度取り付ける作業が発生するが、同時に隣り合う2つ分の天井放射パネル設置領域90に関する天井放射パネル12の設置位置を変更できる。
以上、本発明の好ましい実施形態について詳述したが、本発明は特定の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。
本発明では、天井放射パネルの少なくとも一辺の長さが600mmであって、他辺の長さは限定されずに室内のレイアウトや間仕切りに合わせて適宜変更可能である。天井放射パネルの他辺の長さは、600mmの倍数であることが好ましいが、大きくなる程、設置位置の変更時に取り外す又は再度取り付けるフレームの数が多くなると共に天井放射パネルの持ち運びに労力が必要になるため、600mm、1200mm、1800mmの何れかであることが好ましい。
また、上述の実施形態では、天井放射パネル11,12の幅方向D1の600mmあたりに配管押さえ部50が1本設けられていたが、2本以上設けられてもよい。配管押さえ部50の本数を増やすと、直管部31を上側からより強く安定させて管保持部42及び熱伝導部41に押さえることができる。このことによって、天井放射パネル11,12の空調性能を高くすることができる。なお、配管押さえ部50の本数を増やすとコストも高くなるので、天井放射パネル11,12の空調性能を高くしつつコストを抑えるためには、幅方向D1の600mmあたりに配管押さえ部50が1本又は2本設けられていることが好ましい。
また、天井放射パネル11,12の遮音性能をより高くするために、上面22及び空調配管30の上側の周面に吸音材やガラスウール等を設けてもよい。
以下、本発明の実施例について説明する。なお、本発明の天井放射パネル及び天井放射空調システムは、以下の実施例に限定されない。
<実施例1:天井放射パネルの冷却性能の確認(1)>
図7及び図8に示す実験用チャンバーボックスを構築し、上述の天井放射パネル11,12の冷却性能を確認した。実験用チャンバーボックスの上下及び四方の壁面には、優れた断熱性を有する厚み100mmのポリエチレン発泡板(商品名;スタイロフォーム、製造販売元;ダウ化工株式会社)を使用した。前述のポリエチレン発泡板に囲まれた内部空間の幅方向D1及び長さ方向D2の大きさを各々2125mmとし、上下方向D3の大きさを1720mmとした。さらに、内部空間を、上下方向D3の略中央で、厚み25mmのポリエチレン発泡板71によって区画し、上側を天井裏チャンバー72とし、下側を居室チャンバー73とした。
居室チャンバーの床面及び天井裏チャンバーの天井面にあたるポリエチレン発泡板に、380mm×330mmの面状発熱体75(商品名;パル・サーモ、製造販売元;株式会社フジカ)を900mmの間隔をあけて4枚ずつ設置した。1個あたりの面状発熱体の発熱性能は、60Wである。上下方向D3における天井裏チャンバーと居室チャンバーとの間のポリエチレン発泡板を天井とし、天井の平面視中央に天井放射パネル11又は天井放射パネル12を互いに隣接させて設置した。
実施例1では、表1に示すように、使用する天井放射パネルの種類、熱伝導部41の総長及び配管押さえ部50の有無を変えて、A〜DのそれぞれのCaseにおける天井放射パネル11,12の冷却性能を測定した。なお、Case.A〜Dの放射パネル本体20を厚み1.0mmのスチール板で構成し、幅方向D1における熱伝導部41の大きさを60mmに統一した。
Figure 2020085314
図7に示すように、天井放射パネル11を用いたCase.A〜Cでは、天井の平面視中央に、幅方向D1に3枚且つ長さ方向D2に2枚で計6枚の天井放射パネル11を設置した。図8に示すように、天井放射パネル12を用いたCase.Dでは、天井の平面視中央に、幅方向D1に3枚且つ長さ方向D2に1枚で計3枚の天井放射パネル12を設置した。
表1における「ヒートシンクの総長」は、図1又は図6に示す複数の熱伝導部41の長さ方向D2の大きさの合計値を示している。即ち、1つの直管部31に直接熱伝導可能な熱伝導部41の長さ方向D2の大きさは、「ヒートシンクの総長」の1/6である。Case.B及びCase.Cでは、幅方向D1で600mm×長さ方向D2で600mmの天井放射パネル11を用いている。
Case.A,Bでは、ヒートシンクの総長を1.86mとした。Case.A,Bでは、長さL31を310mmとし、距離S132,S133を150mmで共通とした。一方、Case.Cでは、距離S132をCase.A,Bと同じく150mmとしたが、距離S133を50mmまで減じることによって、長さL31をCase.A,Bの場合よりも長くし、380mmとした。このことによって、Case.Cにおけるヒートシンクの総長を、Case.A,Bにおけるヒートシンクの総長よりも長くし、2.28mとした。
Case.Dの「ヒートシンクの総長」は、幅方向D1で600mm×長さ方向D2で600mmの面積内に換算して熱伝導部41の長さ方向D2の大きさの合計値を示している。
表1において、Case.Bの「配管押さえ部の有無」は「有」と記載されているが、配管押さえ部50を用いて空調配管30を上側から管保持部42に向けて押さえるのではなく、管保持部42の幅方向D1の両側2カ所の直管部31を養生テープで上側から管保持部42に押し付けた。Case.C及びCase.Bでは、図1や図6に示すように、幅方向D1において600mmあたり1本の配管押さえ部50で直管部31を上側から管保持部42に押さえた。
実験用チャンバーボックスの外側には小型冷水製造装置76を設置し、通水管77を介して小型冷水製造装置76と複数の天井放射パネル11,12のうちの1枚の天井放射パネル11−1,12−1の延管部34とを接続した。天井放射パネル11−1,12−1とは異なる天井放射パネル11−2,12−2の延管部34を、通水管77とは別の通水管78を介して小型冷水製造装置76に接続した。幅方向D1又は長さ方向D2で隣接する天井放射パネル11の延管部34同士を、図5に示すように直接接続した。幅方向D1又は長さ方向D2で隣接する天井放射パネル12の延管部34同士についても天井放射パネル11と同様に折り返し管部35を形成したうえで直接接続した。小型冷水製造装置76から供給された初期温度の冷水(空調媒体)は、通水管77を通って天井放射パネル11−1,12−1の空調配管30の内部に導入され、延管部34同士が接続されている順に空調配管30の内部を通りつつ、各天井放射パネル11,12の放射部21と熱交換する。天井放射パネル11−2,12−2から排出された熱交換済みの冷水は、通水管78を通って小型冷水製造装置76に戻る。小型冷水製造装置76は、天井放射パネル11−2,12−2から排出された冷水を初期温度まで冷却し、再び天井放射パネル11−1,12−1に供給できる。
図9は、居室チャンバー内の温度と冷水の温度との温度差ΔTと1枚当たりの天井放射パネル11,12の冷却能力との関係を測定したグラフである。つまり、温度差ΔTは、室温と冷水の温度の平均値との差であり、室温と冷水の往還温度の平均値との差である。図9に示すように、Case.Aでは、直管部31が上側から管保持部42に押し付けられていないので、目標である70W/mの冷却能力を得るのに温度差ΔTが10.0℃程度必要になった。Case.Bでは、70W/mの冷却能力を得るのに温度差ΔTがCase.Aとほぼ同じ10.0℃程度必要になった。一方、Case.Bでは、幅方向D1における2カ所で直管部31を管保持部42に押し付けているので、比較的低い温度差ΔT=8.0℃において、Case.Aに比べて高い50.0W/m程度の冷却能力が得られた。
Case.C及びCase.Dでは、直管部31が配管押さえ部50によってCase.Bのように養生テープで押さえられている場合よりも強く管保持部42に押さえられている。そのため、図9及び表1からわかるように、共通の温度差ΔTにおいてCase.A及びCase.Bに比べて高い冷房能力が得られた。図9に示すグラフから、幅方向D1において600mmあたりで直管部31を上側から管保持部42に押さえる位置が増える程、低い温度差ΔTでも9%程度高い冷房能力が得られ、温度差ΔTに対する冷房能力の傾きは小さくなると考えられる。また、直管部31が損傷しない範囲で、直管部31を上側から管保持部42に押さえる力が増す程、同じ温度差ΔTでも高い冷房能力が得られると考えられる。
図10は、図9に示す測定結果から熱伝導部(ヒートシンク)41の幅方向D1の総長に対する天井放射パネル11,12の冷却性能の向上率を算出したグラフである。冷却性能の向上率は、温度差ΔT=9.0℃におけるCase.Bの冷却性能を1としたときのCase.C及びCase.Dの冷却性能の比率を表している。図10に示すように、熱伝導部41の幅方向D1の総長が長くなる程、天井放射パネル11,12の600mm×600mmあたりの冷却性能を高くすることができると考えられる。熱伝導部41の幅方向D1の総長が1m長くなると、冷却性能が20%程度向上することが見込まれる。実施例1の結果をふまえると、1つの直管部31及び1つの直管部31と熱交換する熱伝導部41の幅方向D1の長さは、310mm以上490mm以下であることが好ましい。
<実施例2:天井放射パネルの冷却性能の確認(2)>
図11に示すように、グリッド幅600mmの天井構造100に上述の天井放射パネル11,12を設置した。天井構造100は、所謂システム天井である。長さ方向D2に隣り合う天井放射パネル設置領域90の2つ分のそれぞれに1個の天井放射パネル11を設置し、幅方向D1において互いに他辺が接するように計12個の天井放射パネル11を設置した。天井放射パネル11の設置領域とは異なり、且つ長さ方向D2に隣り合う天井放射パネル設置領域90の2つ分に1個の天井放射パネル12を設置し、幅方向D1において互いに他辺が接するように計6個の天井放射パネル12を設置した。
幅方向D1において最も左側の天井放射パネル11−1及び最も右側の天井放射パネル12−1のそれぞれの空調配管30(図7では図示略)に、冷水供給ラインを介して冷水(空調媒体)を供給した。冷水は、隣接する天井放射パネル11,12のそれぞれの空調配管30の内部を流通し、最も左側の天井放射パネル11−2及び最も左側の天井放射パネル12−2のそれぞれの空調配管30に到達する。最も左側の天井放射パネル11−2及び最も左側の天井放射パネル12−2のそれぞれの空調配管30(図7では図示略)から、冷水排出ラインを介して冷水(空調媒体)を排出し、所定の温度まで冷却して、継続的に冷水供給ラインに供給した。
室温と冷水との温度差ΔTに対する冷却能力(Cooling Capacity)の変化を測定した結果を図8に示す。図8に示すように、600mm×600mmの天井放射パネル11では76W/mの冷却能力が得られ、600mm×1200mmの天井放射パネル12では78W/mの冷却能力が得られた。これらの結果から、少なくとも一辺が600mmである天井放射パネル11,12において従来の天井放射パネルと同等の70W/mの冷却能力を超える高い冷却能力が発揮されることを確認した。
<実施例3:天井放射パネルの遮音性能の確認>
次に、図13及び図14に示すように実際の建物に模した遮音性能測定実験室を施工し、上述の天井放射パネル11,12の遮音性能を確認した。図13及び図14において寸法を表す数値及びHに関する数値の単位は[mm]である。試験方法は、JIS A1417−2000「建築物の空気音遮断性能の測定方法」に準拠した。図13は、遮音性能測定実験室の平面図である。図13に示すように、遮音性能測定実験室には、所定の大きさの内部空間を形成する音源室と受音室を設けた。音源室と受音室とは、エアシールによって互いに隔てた。
図13及び図14に示すように、音源スピーカー及び受音マイクロホン(型番;MI−1233、製造元;株式会社小野測器)を、音源の中心が各室の境界から0.5m以上且つ別の音源の中心から1m以上離れる位置に、設置した。音源スピーカーを、パワーアンプを介して制御ステーション(型番;DS−2000、製造元;株式会社小野測器)及び制御用コンピュータに接続した。各受音マイクロホンも同じ制御ステーションに接続した。実施例3では、JIS A1417−2000に規定されている室間音圧レベル差D[dB]を測定し、受音室の残響時間から求められる等価吸音面積により補正する規準化室間音圧レベル差D[dB]を評価した。
室間音圧レベル差は、音源室及び受音室のそれぞれで測定された室内平均音圧レベルの差で定義される。室内平均音圧レベルは、対象とする室内における空間的及び時間的な平均2乗音圧を基準音圧の2乗で除した値の常用対数を10倍した値である。空間的な平均は、音源近傍の直接音領域、壁等の室境界の近傍音場を除いた空間全体で行った。音源を2ヵ所以上に移動して測定を行った場合には、音源位置毎に上述の計算を行い、その結果の算術平均値を室間音圧レベル差とした。
測定時の周波数範囲は、オクターブ帯域測定では中心周波数63〜4kHzの帯域、1/3オクターブ帯域では中心周波数50〜5kHzの帯域とした。但し、オクターブ帯域測定の63Hz、4kHz帯域、及び1/3オクターブ帯域測定の50〜80Hz帯域、つまり3.15k〜5kHz帯域の測定値は参考値とした。各受音点における音圧レベル平均化時間は6秒とした。受音室の残響時間は、ノイズ断続法に基づいて測定した。音源には、部屋の隅に設置した指向性スピーカーを用いた。受音点は音圧レベル測定点と共通とした。受音時の平均回数は、63〜125Hz帯域:7回、250〜1kHz帯域:5回、2k〜4kHz帯域:3回とした。
上述の遮音性能測定実験室の天井に天井放射パネル11を複数設置した。図15は、室内側から見た遮音性能測定実験室の天井の底面図である。図15に示すように、遮音性能測定実験室の天井には、天井に占める天井放射パネル11の比率を実際の建物に合わせた。幅方向D1においては1列の天井放射パネル11の両側に、天井放射パネル11を設けずに600mm角の岩綿吸音板が設置された列を1列又は2列設けた。長さ方向D2においては、天井放射パネル11を互いに隣接させて隙間なく配置した。
放射パネル本体20を厚みの異なるアルミニウム板又はスチール板で構成した天井放射パネル11の試験体を設置した場合と天井放射パネル11に替えて従来の岩綿吸音板を設置した場合において、1/1オクターブ中心周波数に対する規準化音圧レベル差の変化を測定した。表1は、実施例3の天井放射パネル11の試験体の仕様を表している。
Figure 2020085314
表2に示すように、試験体2−1,2−2の放射パネル本体20は、幅方向D1において正弦波状に高さが変化するアルミニウム波板で構成されている。試験体2−2,3−2,4−2,5−2,6−2,7−2,8−2,9−2,10−2の放射部21及び空調配管30の上側には、ガラスウール(GW)が敷設した。図16に示すように、ガラスウールは、幅方向D1及び長さ方向D2において天井放射パネル11からはみ出すようにした。
図17は、試験体1,2−1,2−2,4−1,4−2について、1オクターブの中心周波数[Hz]の逆数の変化に対する規準化音圧レベル差[dB]の変化を測定したグラフである。図17に示すように、厚み2.0mm以上のアルミニウム板で放射パネル本体20が構成された試験体4−1,4−2では、岩綿吸音板で構成された試験体1を天井に用いた場合と同等程度の遮音性能を、63〜1kHz帯域において確保できることを確認した。但し、2〜4kHz帯域では、試験体4−1,4−2を天井に用いた場合の遮音性能が試験体1を天井に用いた場合に比べて2〜4dB程度低くなった。
図18は、試験体1,3−1,6−1,7−1,8−1,9−1,10−1について、1オクターブの中心周波数[Hz]の逆数の変化に対する規準化音圧レベル差[dB]の変化を測定したグラフである。図18に示すように、厚み0.6mm以上のスチール板で放射パネル本体20が構成された試験体3−1,6−1,7−1,8−1,9−1,10−1では、試験体1を天井に用いた場合と同等程度の遮音性能を、63〜1kHz帯域において確保できることを確認した。但し、2〜4kHz帯域では、試験体2−1,2−2,4−1,4−2を天井に用いた場合と同様に、試験体3−1,6−2,7−1,8−1,9−1,10−1を天井に用いた場合の遮音性能が試験体1を天井に用いた場合に比べて2〜4dB程度低くなった。
図19及び表3は、試験体1,3−2,6−2,7−2,8−2,9−2,10−2について、1オクターブの中心周波数[Hz]の逆数の変化に対する規準化音圧レベル差[dB]の変化の測定結果である。
Figure 2020085314
図19に示すように、ガラスウールを敷設することによって、試験体3−2,6−2,7−2,8−2,9−2,10−2では、試験体3−1,6−1,7−1,8−1,9−1,10−1を天井に用いた場合に比べて4〜6dB程度上回る遮音性能を、63〜1kHz帯域において確保できることを確認した。2〜4kHz帯域であっても、試験体3−2,6−2,7−2,8−2,9−2,10−2を天井に用いた場合の遮音性能は、試験体1を天井に用いた場合に比べて1〜2dB程度しか下回らない。このように、ガラスウールを敷設した場合は、ガラスウールを敷設しない場合に比べて遮音性能の低下が抑えられることを確認した。
上述説明した実施例3により、放射パネル本体20の素材として厚み2.0mm以上のアルミニウム板又は厚み0.6mm以上のスチール板を採用し、その上部にグラスウールを敷設することで、天井放射パネル11,12が従来の岩綿吸音板によるシステム天井と略同等の遮音性能を確保できることを確認した。
5 空調媒体
11,12 天井放射パネル
20 放射パネル本体
21 放射部
30 空調配管
31 直管部
D1 幅方向

Claims (8)

  1. 金属製の板状の放射部を有し、一辺の長さが600mmの放射パネル本体と、
    前記放射パネル本体の上面に設けられ、内部に空調媒体が流通可能な空調配管と、
    を備え、
    前記放射パネル本体の前記一辺に沿う幅方向には、該幅方向に直交する長さ方向に沿って延びる前記空調配管の直管部が略平行に6本配設されていることを特徴とする天井放射パネル。
  2. 前記放射パネル本体の前記長さ方向に沿う他辺の長さが600mmである、
    請求項1に記載の天井放射パネル。
  3. 前記空調配管の内径は13mm以上であり、
    前記直管部の前記長さ方向に沿う長さは380mm以上である、
    請求項1又は2に記載の天井放射パネル。
  4. 前記放射パネル本体は厚み0.6mm以上のスチール板で構成されている、
    請求項1から3の何れか一項に記載の天井放射パネル。
  5. 前記空調配管の端部に、所定の方向に湾曲させることが可能な延管部を有する、
    請求項1から4の何れか一項に記載の天井放射パネル。
  6. 隣り合う前記直管部同士の間をつなぐ湾曲管部を備え、
    前記湾曲管部の曲率半径は50mmである、
    請求項1から5の何れか一項に記載の天井放射パネル。
  7. 600mm角の天井放射パネル設置領域を形成する天井構造と、
    前記天井放射パネル設置領域に設置された請求項1から請求項6の何れか一項に記載の天井放射パネルと、
    を備えることを特徴とする天井放射空調システム。
  8. 前記天井放射パネル設置領域は複数形成され、
    前記空調配管の端部は前記放射パネル本体から離れる方向に向かって湾曲しつつ折り返す折り返し管部を有し、
    隣り合う前記天井放射パネルの前記折り返し管部の先端同士が直接接続されている、
    請求項7に記載の天井放射空調システム。
JP2018219212A 2018-11-22 2018-11-22 天井放射パネル及び天井放射空調システム Pending JP2020085314A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018219212A JP2020085314A (ja) 2018-11-22 2018-11-22 天井放射パネル及び天井放射空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219212A JP2020085314A (ja) 2018-11-22 2018-11-22 天井放射パネル及び天井放射空調システム

Publications (1)

Publication Number Publication Date
JP2020085314A true JP2020085314A (ja) 2020-06-04

Family

ID=70907354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219212A Pending JP2020085314A (ja) 2018-11-22 2018-11-22 天井放射パネル及び天井放射空調システム

Country Status (1)

Country Link
JP (1) JP2020085314A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829065A (zh) * 2020-07-16 2020-10-27 格力电器(武汉)有限公司 加热结构及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248731A (ja) * 1999-02-26 2000-09-12 Toho Gas Co Ltd 床暖房パネル及び床暖房パネルの施工方法
JP2006170551A (ja) * 2004-12-17 2006-06-29 Toyox Co Ltd 天井輻射パネル
JP2016125655A (ja) * 2015-03-26 2016-07-11 クボタシーアイ株式会社 放射空調システム
JP2016200387A (ja) * 2015-04-09 2016-12-01 株式会社クボタケミックス 放射パネル
JP2016200298A (ja) * 2015-04-07 2016-12-01 株式会社トヨックス 輻射パネル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248731A (ja) * 1999-02-26 2000-09-12 Toho Gas Co Ltd 床暖房パネル及び床暖房パネルの施工方法
JP2006170551A (ja) * 2004-12-17 2006-06-29 Toyox Co Ltd 天井輻射パネル
JP2016125655A (ja) * 2015-03-26 2016-07-11 クボタシーアイ株式会社 放射空調システム
JP2016200298A (ja) * 2015-04-07 2016-12-01 株式会社トヨックス 輻射パネル
JP2016200387A (ja) * 2015-04-09 2016-12-01 株式会社クボタケミックス 放射パネル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829065A (zh) * 2020-07-16 2020-10-27 格力电器(武汉)有限公司 加热结构及空调器

Similar Documents

Publication Publication Date Title
RU2541434C2 (ru) Внутренний блок кондиционера воздуха
JP2015532955A (ja) モジュール式ハイブリッド壁組立体
JP2007078324A (ja) 建物の空調システム
JP2020085314A (ja) 天井放射パネル及び天井放射空調システム
LT3350B (en) Radiant or radiant-ventilating airconditioning prefabricated elements and air conditioning installation including said elements
JP4042971B2 (ja) 冷暖房空気オンドル構造
JP6478227B2 (ja) 空調システム
JP2014062672A (ja) 冷暖房用放熱パネル
JP5886013B2 (ja) 放射パネルの設置方法
JP5792111B2 (ja) 冷暖房システム
JP7199833B2 (ja) 躯体蓄熱空調システム
JP2011112262A (ja) 個別空間用空調システム
JP2009216339A (ja) 建物の空調設備及びそれを備えた建物
JP5149657B2 (ja) 建物の空調設備及びそれを備えた建物
JP7507928B2 (ja) 建築物の空調システム
JP2019143855A (ja) 熱交換装置
JPH0438175Y2 (ja)
US12117186B2 (en) Air conditioning appliance having an internal shield
CN219318544U (zh) 空调室内机模块、无风空调及隔断墙
JP2006132822A (ja) 建物の室内空調システム
JP6890366B1 (ja) 放射パネル
JPH09178225A (ja) 放熱面材および天井放射パネル
JP2010230284A (ja) 床暖房用温水マット
JP2022044774A (ja) 空調用放射パネル及びこれを備えた天井放射型空調システム
JP2023150361A (ja) 輻射・対流空調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307