JP2020085073A - 推定装置及び、推定方法 - Google Patents

推定装置及び、推定方法 Download PDF

Info

Publication number
JP2020085073A
JP2020085073A JP2018217204A JP2018217204A JP2020085073A JP 2020085073 A JP2020085073 A JP 2020085073A JP 2018217204 A JP2018217204 A JP 2018217204A JP 2018217204 A JP2018217204 A JP 2018217204A JP 2020085073 A JP2020085073 A JP 2020085073A
Authority
JP
Japan
Prior art keywords
clutch
rotation speed
control
torque
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018217204A
Other languages
English (en)
Inventor
修一 矢作
Shuichi Yahagi
修一 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018217204A priority Critical patent/JP2020085073A/ja
Publication of JP2020085073A publication Critical patent/JP2020085073A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】クラッチ摩擦係数を推定する。【解決手段】入力回数センサ90と、出力回転数センサ93,94と、変速進行過程で生じるトルクフェーズからイナーシャフェーズに亘って、クラッチ21,22を所定の供給油圧で作動させて解放状態から係合状態に切り替えるクラッチ架け替え制御を実行するクラッチ制御部112と、イナーシャフェーズにおいて、クラッチ入力回転数をクラッチ出力回転数に一致させる差回転制御を実行すると共に、当該差回転制御中の所定期間に亘ってクラッチ入力回転数を一定回転数に維持する回転数一定制御を実行する差回転制御部120と、回転数一定制御中に駆動力源10からクラッチ21,22に入力されるトルクを取得すると共に、取得したトルクと供給油圧との相関データを算出し、算出した相関データに基づいてクラッチ21,22の摩擦係数μを推定する摩擦係数推定部113とを備えた。【選択図】図3

Description

本開示は、推定装置及び、推定方法に関し、特に、駆動力源の回転動力を自動変速機に伝達するクラッチのクラッチ特性(例えば、摩擦係数)の推定装置及び、推定方法に関する。
車両に搭載される動力伝達装置においては、変速中に駆動力源からクラッチを介して自動変速機に伝達されるクラッチ伝達トルクを適宜に制御することにより、変速ショックの発生や変速時間の間延び等を効果的に抑制している。
例えば、特許文献1には、クラッチの摩擦部材回転数及びクラッチ摩擦係数を一定として、摩擦部材の伝達トルクと目標トルクとの差から摩擦部材への作用力を決定するようにした技術が開示されている。
特開平9−249051号公報
上記特許文献1記載の技術では、クラッチ摩擦係数を一定としているが、実際のクラッチ摩擦係数は摩擦部材の経年劣化等に伴い変化する。このため、クラッチ摩擦係数に変化が生じると、クラッチ伝達トルクの制御精度が低下することで、変速ショックや変速時間の間延び等を引き起こす可能性がある。
本開示の技術は、クラッチ特性を効果的に推定することを目的とする。
本開示の装置は、駆動力源の回転動力を自動変速機に伝達するクラッチの摩擦係数の推定装置であって、前記駆動力源から前記クラッチに入力されるクラッチ入力回転数を取得する入力回数取得手段と、前記クラッチから前記自動変速機に出力されるクラッチ出力回転数を取得する出力回転数取得手段と、前記自動変速機の変速進行過程で生じるトルクフェーズからイナーシャフェーズに亘って、前記クラッチを所定の供給油圧で作動させて解放状態から係合状態に切り替えるクラッチ架け替え制御を実行するクラッチ制御手段と、前記イナーシャフェーズにおいて、前記クラッチ入力回転数を前記クラッチ出力回転数に一致させる差回転制御を実行すると共に、当該差回転制御中の所定期間に亘って前記クラッチ入力回転数を一定回転数に維持する回転数一定制御を実行する回転数制御手段と、前記回転数一定制御中に前記駆動力源から前記クラッチに入力されるトルクを取得すると共に、取得した前記トルクと前記供給油圧との相関データを算出し、算出した当該相関データに基づいて前記クラッチのクラッチ特性を推定するクラッチ特性推定手段と、を備えることを特徴とする。
また、前記クラッチ特性推定手段は、前記トルクを縦軸、前記供給油圧を横軸に設定することにより前記相関データを作成すると共に、当該相関データを線形近似して得られる線形近似直線の傾き値を求め、当該傾き値を前記クラッチのクラッチ有効半径、クラッチプレート枚数及び、ピストン受圧面積で除算することにより前記クラッチの摩擦係数を推定演算することが好ましい。
また、前記線形近似直線の切片値を求めると共に、当該切片値に前記ピストン受圧面積を乗じた値を前記傾き値で除算することにより、前記クラッチのリターンスプリングのスプリング反力を推定演算するスプリング反力推定手段をさらに備えることが好ましい。
本開示の方法は、駆動力源の回転動力を自動変速機に伝達するクラッチの摩擦係数の推定方法であって、前記自動変速機の変速進行過程で生じるトルクフェーズからイナーシャフェーズに亘って、前記クラッチを所定の供給油圧で作動させて解放状態から係合状態に切り替えるクラッチ架け替え制御を実行し、前記イナーシャフェーズにおいて、前記駆動力源から前記クラッチに入力されるクラッチ入力回転数を前記クラッチから前記自動変速機に出力されるクラッチ出力回転数に一致させる差回転制御を実行すると共に、当該差回転制御中の所定期間に亘って前記クラッチ入力回転数を一定回転数に維持する回転数一定制御を実行し、前記回転数一定制御中に前記駆動力源から前記クラッチに入力されるトルクを取得すると共に、取得した前記トルクと前記供給油圧との相関データを算出し、算出した当該相関データに基づいて前記クラッチのクラッチ特性を推定することを特徴とする。
本開示の技術によれば、クラッチ特性を効果的に推定することができる。
本実施形態に係る車両に搭載された動力伝達装置を示す模式的な構成図である。 本実施形態に係る摩擦係数推定部により算出される相関データの一例を示す模式図である。 第1クラッチを係合状態から解放状態にしつつ、第2クラッチを解放状態から係合状態に切り替えるシフトアップ時におけるクラッチ摩擦係数及び、スプリング反力の推定処理を説明するタイミングチャート図である。 本実施形態に係るクラッチ摩擦係数及び、スプリング反力の推定処理の流れを説明するフローチャート図である。
以下、添付図面に基づいて、本実施形態に係る制御装置及び、制御方法を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
図1は、本実施形態に係る車両1に搭載された動力伝達装置を示す模式的な構成図である。
車両1には、駆動力源の一例であるエンジン10が搭載されている。エンジン10のクランクシャフト11は、デュアルクラッチ装置20(クラッチ)を介して、変速機構30(自動変速機)の第1及び第2変速機入力軸31,32に接続されている。変速機構30の変速機出力軸33には、何れも図示しない左右駆動輪にデファレンシャルギヤ装置等を介して連結されたプロペラシャフトが接続されている。
デュアルクラッチ装置20は、第1クラッチ21及び第2クラッチ22を有する。
第1クラッチ21は、例えば、湿式多板クラッチであって、クランクシャフト11と一体回転するクラッチハブ23と、第1変速機入力軸31と一体回転する第1クラッチドラム24と、複数枚のフリクションプレート及びセパレートプレートを交互に配置した第1クラッチプレート25と、第1クラッチプレート25を圧接する第1ピストン26と、第1油圧室26Aと、第1リターンスプリング26Bとを備えている。第1クラッチプレート25のフリクションプレートには、不図示の摩擦部材が取り付けられている。
第1クラッチ21は、コントロールユニット100からの指令に応じて油供給回路70から第1油圧室26Aに供給される作動油の圧力(作動油圧)によって第1ピストン26が出力側(図1の右方向)にストローク移動すると、第1クラッチプレート25が圧接されて、トルクを伝達する係合状態(接状態)となる。一方、コントロールユニット100からの指令に応じて第1油圧室26Aの作動油圧が解放されると、第1ピストン26が第1リターンスプリング26Bの付勢力によって入力側(図1の左方向)にストローク移動することで、第1クラッチ21は動力伝達を遮断する解放状態(断状態)となる。
第2クラッチ22は、例えば、湿式多板クラッチであって、クラッチハブ23と、第2変速機入力軸32と一体回転する第2クラッチドラム27と、複数枚のフリクションプレート及びセパレートプレートを交互に配置した第2クラッチプレート28と、第2クラッチプレート28を圧接する第2ピストン29と、第2油圧室29Aと、第2リターンスプリング29Bとを備えている。第2クラッチプレート28のフリクションプレートには、不図示の摩擦部材が取り付けられている。
第2クラッチ22は、コントロールユニット100からの指令に応じて油供給回路70から第2油圧室29Aに供給される作動油圧によって第2ピストン29が出力側(図1の右方向)にストローク移動すると、第2クラッチプレート28が圧接されて、トルクを伝達する係合状態(接状態)となる。一方、コントロールユニット100からの指令に応じて第2油圧室29Aの作動油圧が解放されると、第2ピストン29が第2リターンスプリング29Bの付勢力によって入力側(図1の左方向)にストローク移動することで、第2クラッチ22は動力伝達を遮断する解放状態(断状態)となる。
油供給回路70は、オイルパン71内の作動油に浸漬されたオイルストレーナ72と、オイルストレーナ72に接続された主供給ライン73と、主供給ライン73から分岐する第1及び第2供給ライン74,75とを備えている。また、主供給ライン73には、エンジン10の動力で駆動するオイルポンプOPが設けられている。
第1供給ライン74は、第1油圧室26Aに作動油を供給する。第1供給ライン74には、第1油圧室26Aへの供給油圧を制御する第1電磁バルブ76が設けられている。第2供給ライン75は、第2油圧室29Aに作動油を供給する。第2供給ライン75には、第2油圧室29Aへの供給油圧を制御する第2電磁バルブ77が設けられている。これら第1及び第2電磁バルブ76,77の作動は、コントロールユニット100からの指令に応じて通電されることにより制御される。
変速機構30は、入力側に配置された副変速部40と、出力側に配置された主変速部50とを備えている。また、変速機構30は、副変速部40に設けられた第1変速機入力軸31及び第2変速機入力軸32と、主変速部50に設けられた変速機出力軸33と、これら各軸31〜33に並行に配置された副軸34とを備えている。第1変速機入力軸31は、第2変速機入力軸32を軸方向に貫通する中空軸内に相対回転自在に挿入されている。
副変速部40には、第1スプリッタギヤ対41と、第2スプリッタギヤ対42とが設けられている。第1スプリッタギヤ対41は、第1変速機入力軸31に一体回転可能に設けられた第1入力主ギヤ43と、副軸34に一体回転可能に設けられて、第1入力主ギヤ43と常時歯噛する第1入力副ギヤ44とを備えている。第2スプリッタギヤ対42は、第2変速機入力軸32に一体回転可能に設けられた第2入力主ギヤ45と、副軸34に一体回転可能に設けられて、第2入力主ギヤ45と常時歯噛する第2入力副ギヤ46とを備えている。
主変速部50には、複数の出力ギヤ対51と、複数のシンクロメッシュ機構55とが設けられている。各出力ギヤ対51は、副軸34に一体回転可能に設けられた出力副ギヤ52と、出力軸33に相対回転自在に設けられると共に、出力副ギヤ52と常時歯噛する出力主ギヤ53とを備えている。各シンクロメッシュ機構55は、何れも図示しないスリーブやシンクロナイザリング、ドグギヤ等を備えて構成されている。
シンクロメッシュ機構55の作動は、コントロールユニット100によって制御されており、車両1の走行状態やエンジン10の運転状態等に応じて、変速シフタ85がシンクロメッシュ機構55のスリーブをシフト移動させることにより、変速機出力軸33と出力主ギヤ53とを選択的に係合状態(ギヤイン状態)又は非係合状態(ニュートラル状態)に切り替えるようになっている。なお、出力ギヤ対51やシンクロメッシュ機構55の個数、配列パターン等は図示例に限定されものではなく、本開示の趣旨を逸脱しない範囲で適宜変更することが可能である。
本実施形態において、副変速部40は、第1スプリッタギヤ対41のギヤ比が第2スプリッタギヤ対42よりも小さく設定されている。すなわち、第2クラッチ22を締結して第2スプリッタギヤ対42から主変速部50に駆動力を伝達する場合には、低速側(奇数段)とすることができ、第1クラッチ21を締結して第1スプリッタギヤ対41から主変速部50に駆動力を伝達する場合には、高速側(偶数段)とすることができるように構成されている。
エンジン回転数センサ90(入力回転数取得手段の一例)は、クランクシャフト11からエンジン10の単位時間当たりの回転数(以下、エンジン回転速度ω)を取得する。アクセル開度センサ91は、不図示のアクセルペダルの踏み込み量に応じたエンジン10の燃料噴射量Q(噴射指示値)を取得する。車速センサ92は、変速機出力軸33(又は、プロペラシャフト)から車両1の車速Vを取得する。なお、車速センサ92は、車輪速センサであってもよい。第1入力軸回転数センサ93(出力回転数取得手段の一例)は、第1クラッチ21に接続された第1変速機入力軸31の単位時間当たりの回転数(以下、第1クラッチ出力回転速度ω)を取得する。第2入力軸回転数センサ94(出力回転数取得手段の一例)は、第2クラッチ22に接続された第2変速機入力軸32の単位時間当たりの回転数(以下、第2クラッチ出力回転速度ω)を取得する。これら各種センサ類90〜94のセンサ値は、電気的に接続されたコントロールユニット100に出力される。
コントロールユニット100は、エンジン10、デュアルクラッチ装置20、変速機構30等の各種制御を行うもので、CPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を備えて構成されている。
また、コントロールユニット100は、自動変速制御部110と、クラッチ制御部112(クラッチ制御手段)と、差回転制御部120(回転数制御手段)と、摩擦係数推定部113(クラッチ特性推定手段)と、スプリング反力推定部114(スプリング反力推定手段)とを一部の機能要素として有する。これらの機能要素は、本実施形態では一体のハードウェアであるコントロールユニット100に含まれるものとして説明するが、これらの何れか一部を別体のハードウェアに設けることもできる。
自動変速制御部110は、エンジン10の運転状態や車両1の走行状態等に基づいて、変速機構30を適切な変速段にシフトアップ又はシフトダウンさせる自動変速制御を実行する。より詳しくは、コントロールユニット100のメモリには、燃料噴射量Q及び車速Vに基づいて参照される不図示のシフトチェンジマップが格納されている。自動変速制御部100は、アクセル開度センサ91及び車速センサ92から入力される各センサ値に基づいてシフトチェンジマップを参照することにより適切な変速段を特定し、変速シフタ85を作動させることにより、変速機構30を適切な変速段にシフトチェンジさせる。
自動変速制御部110は、シフトアップ要求の成立により、現在のギヤ段を奇数段から偶数段にシフトアップする場合には、主変速部50の現在確立されている動力伝達経路を維持(現ギヤ段に対応するシンクロメッシュ機構55を係合状態に維持)しつつ、クラッチ制御部112に、第2クラッチ22を係合状態から解放状態、第1クラッチ21を解放状態から係合状態に切り替えさせる指示信号を送信する。同様に、自動変速制御部110は、シフトダウン要求の成立により、現在のギヤ段を偶数段から奇数段にシフトダウンする場合には、主変速部50の現在確立されている動力伝達経路を維持しつつ、クラッチ制御部112に、第1クラッチ21を係合状態から解放状態、第2クラッチ22を解放状態から係合状態に切り替えさせる指示信号を送信する。
一方、自動変速制御部110は、シフトアップ要求の成立により、現在のギヤ段を偶数段から奇数段にシフトアップする場合には、次のギヤ段に対応するシンクロメッシュ機構55を係合状態にして、予め主変速部50に次のギヤ段の動力伝達経路を確立させるプレシフトを行いつつ、クラッチ制御部112に、第1クラッチ21を係合状態から解放状態、第2クラッチ22を解放状態から係合状態に切り替えさせる指示信号を送信する。同様に、自動変速制御部110は、シフトダウン要求の成立により、現在のギヤ段を奇数段から偶数段にシフトダウンする場合には、次のギヤ段に対応するシンクロメッシュ機構55を係合状態にして、予め主変速部50に次のギヤ段の動力伝達経路を確立させるプレシフトを行いつつ、クラッチ制御部112に、第2クラッチ22を係合状態から解放状態、第1クラッチ21を解放状態か係合状態に切り替えさせる指示信号を送信する。
クラッチ制御部112は、自動変速制御部110から送信される指令に応じて、第1クラッチ21及び第2クラッチ22の係合/解放を切り替えるクラッチ架け替え制御を行う。本実施形態において、クラッチ制御部112は、解放状態から係合状態に切り替わる第1又は第2クラッチ21,22の伝達トルクが所望のクラッチ伝達トルクTcとなるように、第1又は第2油圧室26A,29Aへの供給油圧Pc(第1又は第2電磁バルブ76,77への通電量)を制御する。
具体的には、クラッチ制御部112は、変速要求が成立するトルクフェーズの開始からイナーシャフェーズが終了するまでの期間に亘って、摩擦係数マップM1から読み取られるクラッチ摩擦係数μ及び、スプリング反力マップM2から読み取られるスプリング反力Frtunを以下の数式(1)に代入し、係合状態に切り替えられる第1又は第2クラッチ21,22から変速機構30に伝達されるトルクが所望のクラッチ伝達トルクTcとなるように、第1又は第2油圧室26A,29Aへの供給油圧Pcmd(指示値)を調整する。
Tc=μRN(APcmd−Frtun) ・・・(1)
数式(1)において、Rはクラッチプレート25,28の有効半径、Nはクラッチプレート25,28の枚数、Aはピストン26,29の受圧面積である。
ここで、「トルクフェーズ」とは、自動変速の進行途中で生じる変速過程の一つであり、現ギヤ段のクラッチ21,22が係合状態から解放状態に徐々に移行すると共に、次のギヤ段のクラッチ21,22が解放状態から係合状態に徐々に移行するフェーズをいう。また、「イナーシャフェーズ」とは、自動変速の進行途中で生じる変速過程の一つであり、解放側のクラッチ21,22が完全に解放されると共に、係合側のクラッチ21,22がスリップ状態から完全に係合され、その間にシフトアップの場合にはエンジン回転速度ωを低下させる一方、シフトダウンの場合にはエンジン回転速度ωを上昇させるフェーズをいう。
差回転制御部120は、トルクフェーズ後のイナーシャフェーズにおいて、エンジン回転速度ωと、解放状態から係合状態に切り替えられる第1又は第2クラッチ21,22のクラッチ出力回転速度ωとの実差回転速度Δω(=ω−ω)が目標差回転速度Δωrefとなるように、エンジン回転速度ωを低下又は上昇させる差回転制御を実行する。
具体的には、差回転制御部120は、イナーシャフェーズにおいて、エンジン回転速度ωを解放状態から係合状態に切り替えられる第1又は第2クラッチ21,22のクラッチ出力回転速度ωに徐々に一致させる目標差回転速度Δωrefを設定する。そして、差回転制御部120は、目標差回転速度Δωrefから、エンジン回転速度ωと係合状態に切り替えられる第1又は第2クラッチ21,22のクラッチ出力回転速度ωとの実差回転速度Δω(=ω−ω,ω)を減算して得られる偏差e(=Δωref−Δω)に対してPID制御を施し、設定されたエンジントルクTeでエンジン10を駆動さる燃料噴射指示値を制御対象のであるンジン10の不図示のインジェクタに出力する。
本実施形態において、差回転制御部120は、後述するクラッチ摩擦係数μを推定する所定の学習条件が成立すると、差回転制御中にエンジン回転速度ωを所定期間に亘って一定回転速度に維持する回転速度一定制御(回転数一定制御)を実行する。
摩擦係数推定部113及び、スプリング反力推定部114は、イナーシャフェーズ中の回転速度一定制御が実行されている期間に取得されるエンジントルクTe(クラッチ伝達トルクTc)と、第1又は第2油圧室26A,29Aへの供給油圧Pcmdとの相関データに基づいて、第1及び第2クラッチ21,22の各クラッチプレート25,28のクラッチ摩擦係数μ及び、各リターンスプリング26B,29Bのスプリング反力Frtunをそれぞれ推定する。
なお、第1及び第2クラッチ21,22のクラッチ摩擦係数μ及び、スプリング反力Frtunの推定は、何れも同様の処理内容となるため、以下では、第2クラッチ22の推定処理を説明し、第1クラッチ21の推定処理については説明を省略する。
イナーシャフェーズにおいて、エンジントルクTeとクラッチ伝達トルクTcとの関係式は以下の数式(2)で表される。
Te=Tc−Ie・ω* ・・・・(2)
数式(2)において、Ieは、エンジンイナーシャ、ωeの右上に付されているアスタリスク(*)は時間微分を表しており、ωe*はエンジン回転加速度度である。
イナーシャフェーズ中に回転速度一定制御を実行すると、数式(2)において、エンジン回転加速度度ωe*はゼロとなる。すなわち、回転速度一定制御中は、エンジン10から第2クラッチ22に入力されるエンジントルクTeと、第2クラッチ22から変速機構30に伝達されるクラッチ伝達トルクTcとが等しくなり(Te=Tc)、上記数式(1)は、以下の数式(3)で表される。
Te=Tc=μRN(APcmd−Frtun
=μRNAPcmd−μRNFrtun
=aPcmd+b ・・・(3)
但し、a=μRNA、b=−μRNFrtun
数式(3)において、μは第2クラッチ22のクラッチ摩擦係数、Pcmdは第2油圧室29Aへの供給油圧(指示値)、Rは第2クラッチプレート28の有効半径、Nは第2クラッチプレート28の枚数、Aは第2ピストン29の受圧面積、Frtrnは第2リターンスプリング29Bのスプリング反力である。なお、供給油圧Pcmdは、指示値に限定されず、油供給回路70に設けられた不図示の油圧センサのセンサ値等を用いてもよい。
数式(3)を一次直線として見做せば、供給油圧Pcmd及びエンジントルクTe(クラッチ伝達トルクTc)の相関関係を得ることにより、数式(3)の傾き「a」及び切片「b」を求めることができ、さらには、クラッチ摩擦係数μ及び、スプリング反力Frtrnをそれぞれ算出することができる。摩擦係数推定部113は、回転速度一定制御の実行期間に得られるエンジントルクTe(=Tc)及び、供給油圧Pcmdをアクセル開度毎に処理し、これらの相関データを算出して、コントロールユニット100のメモリに格納する。
図2は、摩擦係数推定部113により算出される相関データDの一例であり、x軸に供給油圧Pcmd、y軸にエンジントルクTe(クラッチ伝達トルクTc)が設定されている。摩擦係数推定部113は、これら供給油圧Pcmd及び、エンジントルクTe(クラッチ伝達トルクTc)の相関データDを線形近似することにより、線形近似線Lを算出すると共に、該線形近似線Lの傾き「a」及び、y軸との切片「b」を求めて以下の数式(4)に代入することにより、第2クラッチ22のクラッチ摩擦係数μを推定算出する。
μ=a/RNA ・・・(4)
数式(4)において、Rは第2クラッチプレート28の有効半径、Nは第2クラッチプレート28の枚数、Aは第2ピストン29の受圧面積である。
摩擦係数推定部113は、推定演算したクラッチ摩擦係数μを摩擦係数マップM1に送信すると共に、当該クラッチ摩擦係数μに基づいて数推定部113は、推定演算したクラッチ摩擦係数μを逐次更新する。なお、相関データDは、必ずしもグラフ化する必要はなく、数値データとして処理してもよい。また、相関データDの処理は、線形近似に限定されず、曲線近似等であってもよい。
スプリング反力推定部114は、上述の相関データDを線形近似することにより求めた線形近似線Lの傾き「a」及び、切片「b」を、以下の数式(5)に代入することにより、第2リターンスプリング29Bのスプリング反力Frtunを推定演算する。
rtun=−b/μRN=−Ab/a ・・・(5)
数式(5)において、Rは第2クラッチプレート28の有効半径、Nは第2クラッチプレート28の枚数、Aは第2ピストン29の受圧面積である。
スプリング反力推定部114は、推定算出したスプリング反力Frtunをスプリング反力マップM2に送信すると共に、当該スプリング反力Frtunに基づいてスプリング反力マップM2を逐次更新する。
図3は、第1クラッチ21を係合状態から解放状態にしつつ、第2クラッチ22を解放状態から係合状態に切り替えるシフトアップ時におけるクラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を説明するタイミングチャート図である。
図3において、(A)は、エンジン回転速度ω、第1クラッチ出力回転速度ω及び、第2クラッチ出力回転速度ωの変化を、(B)は、クラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を行った場合のエンジントルクTe及び、ドライバ要求トルクTdの変化を、(C)は、クラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を行わなかった場合のエンジントルクTe及び、ドライバ要求トルクTdの変化をそれぞれ示している。また、時刻T0〜T1はトルクフェーズを、時刻T1〜T4はイナーシャフェーズを、時刻T2〜T3はイナーシャフェーズ中に回転速度一定制御が実行されている期間をそれぞれ示している。
時刻T0にて、シフトアップ要求が成立すると、現ギヤ段に対応する第1クラッチ21の解放を開始すると共に、次のギヤ段に対応する第2クラッチ22の係合を開始するクラッチ架け替え制御が開始される。
時刻T1にて、トルクフェーズからイナーシャフェーズに移行すると、エンジン回転速度ωと第2クラッチ22のクラッチ出力回転速度ωとの実差回転速度Δω(=ω−ω)が目標差回転速度Δωrefとなるように、エンジン回転速度ωを低下させる差回転制御が開始される。
時刻T2にて、所定の学習条件が成立すると、クラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を行うべく、エンジン回転速度ωを所定値に維持する回転速度一定制御が開始される。所定の学習条件としては、例えば、予めクラッチ摩擦係数μが変化する前の初期状態で取得した基準エンジントルクTe_STに対して、現在のエンジントルクTeに差異ΔTeが生じた場合等に成立するようにすればよい。
時刻T2にて、回転速度一定制御が開始されると、摩擦係数推定部113は、回転速度一定制御の実行期間に得られるエンジントルクTe(=Tc)及び、供給油圧Pcmdをアクセル開度毎やドライバ要求トルク毎に処理し、これらの相関データDを算出する。さらに、摩擦係数推定部113は、相関データDを線形近似することにより求めた線形近似線Lの傾き「a」及び、切片「b」を、上記数式(4)に代入することにより、第2クラッチ22のクラッチ摩擦係数μを推定演算する。また、これと並行して、スプリング反力推定部114は、傾き「a」及び、切片「b」を、上記数式(5)に代入することにより、第2リターンスプリング29Bのスプリング反力Frtunを推定演算する。
時刻T3にて、クラッチ摩擦係数μ及び、スプリング反力Frtunの推定演算処理が終了したならば、回転速度一定制御も終了する。
時刻T4にて、エンジン回転速度ωとクラッチ出力回転速度ωとが一致すると変速制御を終了する。(C)の時刻T4に示すように、クラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を行わなかった場合には、エンジン回転速度ωとクラッチ出力回転速度ωとが一致した後に、ドライバ要求トルクTdに対してエンジントルクTeにずれ(トルク段差)が生じ、変速ショックを引き起こす要因となる。また,トルクフェーズ中にドライバの意図しない加速度変化を発生させてしまう場合もある。
これに対し、回転速度一定制御中にクラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理を行う本実施形態では、(B)の時刻T4に示すように、エンジン回転速度ωがクラッチ出力回転速度ωに一致した際に、エンジントルクTeもドライバ要求トルクTdに略一致するようになる。すなわち、変速ショックの発生を効果的に抑制することが可能になる。
図4は、本実施形態に係るクラッチ摩擦係数μ及び、スプリング反力Frtrnの推定処理の流れを説明するフローチャート図である。本ルーチンは、変速制御の開始(図3の時刻T0参照)とともに実行される。なお、変速制御の開始からイナーシャフェーズに移行するまでのトルクフェーズ(図3の時刻T0〜T1参照)においては、現ギヤ段に対応する第1クラッチ21を解放状態に移行させると共に、次のギヤ段に対応する第2クラッチ22を係合状態に移行させるクラッチ架け替え制御が実行される。
ステップS100では、トルクフェーズからイナーシャフェーズに移行したか否かを判定する。この判定は、例えば、変速機構30の入出力回転数差等に基づいてスリップを検知することにより行えばよい。ステップS100にて、イナーシャフェーズに移行したと判定した場合(Yes)は、ステップS110に進む。一方、イナーシャフェーズに移行していないと判定した場合(No)は、ステップS100の処理を繰り返す。
ステップS110では、目標差回転速度Δωrefを設定すると共に、エンジン回転速度ωと第2クラッチ出力回転速度ωとの実差回転速度Δω(=ω−ω)が目標差回転速度Δωrefとなるように、これらの偏差e(=Δωref−Δω)に基づいてエンジン10の駆動を制御する差回転制御を開始する。
ステップS120では、クラッチ摩擦係数μを推定する所定の学習条件が成立するか否かを判定する。所定の学習条件としては、例えば、予めクラッチ摩擦係数μが変化する前の初期状態で取得した基準エンジントルクTe_STに対して、現在のエンジントルクTeに差異ΔTeが生じた場合や、前回の学習から所定時間が経過している場合、加速度やジャークの大きさから変速ショックが大きいと判断する場合等に成立するようにすればよい。学習条件が成立する場合(Yes)、本制御はステップS130に進む。一方、学習条件が成立しない場合(No)、本制御はステップS200に進む。
ステップS130では、回転速度一定制を開始すると共に、ステップS140では、回転速度一定制御の実行期間に得られるエンジントルクTe(=Tc)及び、供給油圧Pcmdをアクセル開度毎に処理し、これらの相関データDを算出する。
ステップS150では、相関データDを線形近似することにより求めた線形近似線Lの傾き「a」及び、切片「b」を算出する。次いで、ステップS160では、傾き「a」及び、切片「b」を上記数式(4)に代入することにより、第2クラッチ22のクラッチ摩擦係数μを推定演算する。さらに、ステップS170では、傾き「a」及び、切片「b」を、上記数式(5)に代入することにより、第2リターンスプリング29Bのスプリング反力Frtunを推定演算する。
ステップS180では、推定したクラッチ摩擦係数μ及び、スプリング反力Frtunに基づいて、各マップM1,M2を更新すると共に、ステップS190では、回転速度一定制御を終了する。
ステップS200では、差回転制御を継続して実行し、ステップS210では、エンジン回転速度ωが第2クラッチ出力回転速度ωに一致したか否かを判定する。エンジン回転速度ωが第2クラッチ出力回転速度ωに一致していない場合(No)は、ステップS200及び、S210の処理を繰り返す。一方、エンジン回転速度ωが第2クラッチ出力回転速度ωに一致した場合(Yes)は、ステップS220に進み、差回転制御を終了して、その後、本制御はリターンされる。
以上詳述した本実施形態によれば、イナーシャフェーズにおける差回転制御中の所定期間に亘ってエンジン回転速度ωを一定に維持する回転速度一定制御を実行すると共に、回転速度一定制御の実行期間に得られるエンジントルクTe(=Tc)及び、供給油圧Pcmdをアクセル開度毎に処理して相関データDを算出し、相関データDを線形近似することにより求めた線形近似線Lの傾き「a」及び、切片「b」に基づいてクラッチ摩擦係数μ及び、スプリング反力Frtunを推定演算するように構成されている。これにより、経年劣化等により変化するクラッチ摩擦係数μやスプリング反力Frtunを適宜に推定することが可能となり、エンジントルクTeやクラッチ伝達トルクTcの制御精度が確実に向上することで、変速ショックの発生や変速時間の間延びを効果的に防止することが可能になる。また、エンジン回転速度ωを一定のときに推定処理を行うことで、微分誤差及び、エンジンイナーシャの誤差等を取り除くことが可能となり、推定精度を確実に向上することができる。
なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
例えば、上記実施形態では、エンジン10と変速機構30との間の動力を断接するクラッチは、デュアルクラッチ装置20を一例に説明したが、シングルクラッチ装置、複数のクラッチやブレーキを有するAT装置であってもよい。
また、各クラッチ21,22のクラッチ出力回転速度ωは、入力軸回転数センサ93,94により取得するものとして説明したが、車速センサ92のセンサ値に変速機構30のギヤ比を乗じることにより取得してもよい。
また、車両1は、駆動力源としてエンジン10を備えるものとして説明したが、エンジン10とモータとを併用するハイブリッド車両等、エンジン10以外の他の駆動力源を備える車両であってもよい。また、上記実施形態では、クラッチ摩擦係数μやスプリング反力Frtunの推定を一例に説明したが、これには限定せず、クラッチ特性(例えば、クラッチ伝達トルクTcと供給油圧Pcmdとの相関関係)を推定するように構成してもよい。
1 車両
10 エンジン
11 クランクシャフト
20 デュアルクラッチ装置
21 第1クラッチ
22 第2クラッチ
30 変速機構
31 第1変速機入力軸
32 第2変速機入力軸
90 エンジン回転数センサ(入力回転数取得手段)
91 アクセル開度センサ
92 車速センサ
93 第1入力軸回転数センサ(出力回転数取得手段)
94 第2入力軸回転数センサ(出力回転数取得手段)
100 コントロールユニット
110 自動変速制御部
112 クラッチ制御部(クラッチ制御手段)
113 摩擦係数推定部(クラッチ特性推定手段)
114 スプリング反力推定部(スプリング反力推定手段)

Claims (4)

  1. 駆動力源の回転動力を自動変速機に伝達するクラッチの摩擦係数の推定装置であって、
    前記駆動力源から前記クラッチに入力されるクラッチ入力回転数を取得する入力回数取得手段と、
    前記クラッチから前記自動変速機に出力されるクラッチ出力回転数を取得する出力回転数取得手段と、
    前記自動変速機の変速進行過程で生じるトルクフェーズからイナーシャフェーズに亘って、前記クラッチを所定の供給油圧で作動させて解放状態から係合状態に切り替えるクラッチ架け替え制御を実行するクラッチ制御手段と、
    前記イナーシャフェーズにおいて、前記クラッチ入力回転数を前記クラッチ出力回転数に一致させる差回転制御を実行すると共に、当該差回転制御中の所定期間に亘って前記クラッチ入力回転数を一定回転数に維持する回転数一定制御を実行する回転数制御手段と、
    前記回転数一定制御中に前記駆動力源から前記クラッチに入力されるトルクを取得すると共に、取得した前記トルクと前記供給油圧との相関データを算出し、算出した当該相関データに基づいて前記クラッチのクラッチ特性を推定するクラッチ特性推定手段と、を備える
    ことを特徴とする推定装置。
  2. 前記クラッチ特性推定手段は、前記トルクを縦軸、前記供給油圧を横軸に設定することにより前記相関データを作成すると共に、当該相関データを線形近似して得られる線形近似直線の傾き値を求め、当該傾き値を前記クラッチのクラッチ有効半径、クラッチプレート枚数及び、ピストン受圧面積で除算することにより前記クラッチの摩擦係数を推定演算する
    請求項1に記載の推定装置。
  3. 前記線形近似直線の切片値を求めると共に、当該切片値に前記ピストン受圧面積を乗じた値を前記傾き値で除算することにより、前記クラッチのリターンスプリングのスプリング反力を推定演算するスプリング反力推定手段をさらに備える
    請求項2に記載の推定装置。
  4. 駆動力源の回転動力を自動変速機に伝達するクラッチの摩擦係数の推定方法であって、
    前記自動変速機の変速進行過程で生じるトルクフェーズからイナーシャフェーズに亘って、前記クラッチを所定の供給油圧で作動させて解放状態から係合状態に切り替えるクラッチ架け替え制御を実行し、前記イナーシャフェーズにおいて、前記駆動力源から前記クラッチに入力されるクラッチ入力回転数を前記クラッチから前記自動変速機に出力されるクラッチ出力回転数に一致させる差回転制御を実行すると共に、当該差回転制御中の所定期間に亘って前記クラッチ入力回転数を一定回転数に維持する回転数一定制御を実行し、前記回転数一定制御中に前記駆動力源から前記クラッチに入力されるトルクを取得すると共に、取得した前記トルクと前記供給油圧との相関データを算出し、算出した当該相関データに基づいて前記クラッチのクラッチ特性を推定する
    ことを特徴とする推定方法。
JP2018217204A 2018-11-20 2018-11-20 推定装置及び、推定方法 Pending JP2020085073A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217204A JP2020085073A (ja) 2018-11-20 2018-11-20 推定装置及び、推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217204A JP2020085073A (ja) 2018-11-20 2018-11-20 推定装置及び、推定方法

Publications (1)

Publication Number Publication Date
JP2020085073A true JP2020085073A (ja) 2020-06-04

Family

ID=70907243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217204A Pending JP2020085073A (ja) 2018-11-20 2018-11-20 推定装置及び、推定方法

Country Status (1)

Country Link
JP (1) JP2020085073A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143678A (ja) * 2020-03-10 2021-09-24 いすゞ自動車株式会社 推定装置及び、推定方法
WO2024018887A1 (ja) * 2022-07-20 2024-01-25 日本精工株式会社 2段変速機、該2段変速機のμ-V特性の学習方法、および該2段変速機の変速制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216630A (ja) * 2009-03-19 2010-09-30 Toyota Central R&D Labs Inc 自動変速機のパラメータ同定装置
JP2015090179A (ja) * 2013-11-05 2015-05-11 日産自動車株式会社 変速機の学習制御装置
JP2016125648A (ja) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 クラッチ摩擦係数推定方法及びクラッチ伝達トルク制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216630A (ja) * 2009-03-19 2010-09-30 Toyota Central R&D Labs Inc 自動変速機のパラメータ同定装置
JP2015090179A (ja) * 2013-11-05 2015-05-11 日産自動車株式会社 変速機の学習制御装置
JP2016125648A (ja) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 クラッチ摩擦係数推定方法及びクラッチ伝達トルク制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143678A (ja) * 2020-03-10 2021-09-24 いすゞ自動車株式会社 推定装置及び、推定方法
WO2024018887A1 (ja) * 2022-07-20 2024-01-25 日本精工株式会社 2段変速機、該2段変速機のμ-V特性の学習方法、および該2段変速機の変速制御方法

Similar Documents

Publication Publication Date Title
US8725371B2 (en) Speed changing control apparatus for vehicle
US10036436B2 (en) Method of learning clutch touch point for DCT vehicle
JP2007113608A (ja) 変速制御装置
JP2020085073A (ja) 推定装置及び、推定方法
JP2010038181A (ja) クラッチ制御装置
JP3931033B2 (ja) 自動変速機の制御装置および制御方法
JP2020101091A (ja) 制御装置及び、制御方法
JP6365200B2 (ja) デュアルクラッチ式変速機の制御装置及び制御方法
JP7205509B2 (ja) 推定装置及び、推定方法
JP2020082891A (ja) 車両の制御装置及び、制御方法
JP2020085072A (ja) 制御装置及び、制御方法
JP6865921B2 (ja) 変速機の制御装置
JP6834217B2 (ja) 変速機の制御装置
KR102177600B1 (ko) 습식dct차량의 클러치 제어방법 및 장치
US7926375B2 (en) Transmission control apparatus
JP6733389B2 (ja) 変速機の制御装置
EP2832604A1 (en) Driving apparatus for vehicle
JP7255525B2 (ja) 制御装置及び、制御方法
JP2017219087A (ja) デュアルクラッチ式変速機の制御装置
JP2020101092A (ja) 制御装置及び、制御方法
JP2020085071A (ja) 制御装置及び、制御方法
JP6724626B2 (ja) 変速機の制御装置
JP7092077B2 (ja) 推定装置及び推定方法
JP6733388B2 (ja) 変速機の制御装置
JP2020070906A (ja) 制御装置及び、制御方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110