JP2020084302A - Production method of sintered ore with carbon material and production facility of sintered ore with carbon material ore - Google Patents

Production method of sintered ore with carbon material and production facility of sintered ore with carbon material ore Download PDF

Info

Publication number
JP2020084302A
JP2020084302A JP2018225096A JP2018225096A JP2020084302A JP 2020084302 A JP2020084302 A JP 2020084302A JP 2018225096 A JP2018225096 A JP 2018225096A JP 2018225096 A JP2018225096 A JP 2018225096A JP 2020084302 A JP2020084302 A JP 2020084302A
Authority
JP
Japan
Prior art keywords
carbonaceous material
raw material
particles
sintered ore
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018225096A
Other languages
Japanese (ja)
Other versions
JP6988778B2 (en
Inventor
隆英 樋口
Takahide Higuchi
隆英 樋口
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
頌平 藤原
Shohei Fujiwara
頌平 藤原
山本 哲也
Tetsuya Yamamoto
哲也 山本
友司 岩見
Tomoji Iwami
友司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018225096A priority Critical patent/JP6988778B2/en
Publication of JP2020084302A publication Critical patent/JP2020084302A/en
Application granted granted Critical
Publication of JP6988778B2 publication Critical patent/JP6988778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method and an apparatus for manufacturing a sintered ore with high quality of carbonaceous material.SOLUTION: When a sintering raw material obtained by mixing a compression-molded carbonaceous material interior-shaped particles for producing sintered ore containing iron ore powder, a raw material containing CaO and a carbonaceous material with raw material particles for producing sintered ore is charged on a pallet of a sintering machine to form a charging layer, a large amount of the carbonaceous material interior-shaped particles is charged on the lower layer side of the charging layer, and a sintered ore is produced by combustion heat of the carbonaceous material contained in the raw material particles for producing the sintered ore. This is formed into a production equipment of sintered ore formed of a raw material hopper, a compression molding machine for compression-molding carbonaceous material interior-shaped particles, a drum mixer for granulating the usual raw material particles for sintering, and a Dwight Lloyd sintering machine for sintering the mixed sintering raw material.SELECTED DRAWING: Figure 1

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、焼結原料として炭材内装成型体を用いて焼結鉱を製造する方法および製造設備に関するものである。 TECHNICAL FIELD The present invention relates to a technology for producing a sintered ore used as a raw material for iron making in a blast furnace or the like, and specifically, a method and a method for producing a sintered ore by using a carbon material-containing molded body as a raw material for sintering. It concerns equipment.

高炉製鉄法では、現在、鉄源として、鉄鉱石や焼結鉱などの鉄含有原料を主に用いている。ここで、上記焼結鉱は、粒径が10mm以下の鉄鉱石の他に、珪石や蛇紋岩、精錬ニッケルスラグなどからなるSiO含有原料や石灰石、生石灰などのCaO含有原料などからなる副原料、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)等からなる造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合し造粒して擬似粒子である焼結原料とした後、該焼結原料を焼結機の循環移動するパレット上に装入し、上記擬似粒子中に含まれる炭材を燃焼させて焼結し、得られた焼結ケーキを破砕し、整粒して、一定の粒径以上のものを成品として回収した塊成鉱の一種である。 In the blast furnace ironmaking method, iron-containing raw materials such as iron ore and sinter are mainly used as iron sources at present. Here, the above-mentioned sintered ore is, in addition to iron ore having a particle size of 10 mm or less, a SiO 2 containing raw material made of silica stone, serpentine, refined nickel slag or the like, or a sub raw material made of CaO containing raw material such as limestone or quick lime. , A suitable amount of water is added to a granulation raw material such as solid fuel (carbonaceous material) that is a coagulating material such as powder coke or anthracite, and mixed using a drum mixer or the like to be granulated and sintered as pseudo particles. After being used as a raw material, the sintering raw material is placed on a pallet that moves circularly in a sintering machine, the carbonaceous material contained in the pseudo particles is burned and sintered, and the obtained sintered cake is crushed. It is a kind of agglomerated ore that has been sized and recovered as a product with a certain particle size or more.

ところで、近年、上記塊成鉱として、鉄鉱石やダスト等の鉄源と、コークス等の炭材とを近接配置したものが注目を浴びている。その理由は、例えば、鉄鉱石等の鉄源と炭材とを一つの塊成鉱の中で近接配置すると、鉄源側の還元反応(発熱反応)と炭材側のガス化反応(吸熱反応)とが速い速度で繰り返して起こることから、製鉄効率が向上するとともに、高炉などの炉内温度を低下させることもできるからである。 By the way, in recent years, as the above-mentioned agglomerated ore, one in which an iron source such as iron ore and dust and a carbonaceous material such as coke are arranged close to each other has attracted attention. The reason is that, for example, when an iron source such as an iron ore and a carbonaceous material are placed close to each other in one agglomerated ore, a reduction reaction (exothermic reaction) on the iron source side and a gasification reaction (endothermic reaction) on the carbonaceous material side. ) And (2) occur repeatedly at a high speed, the iron-making efficiency is improved and the temperature inside the furnace such as the blast furnace can be lowered.

上記塊成鉱としては、例えば、特許文献1に開示の、炭材核の周囲に、鉄鉱石粉とCaO含有原料からなる外層を形成してなる擬似粒子である焼結鉱製造用の炭材内装造粒粒子を、通常の造粒粒子に混合してなる焼結原料を焼結機のパレット上に装入して装入層を形成する際、上記炭材内装造粒粒子を、装入層の下層側に多く装入し、上記通常の造粒粒子中に含まれる炭材の燃焼熱で焼結鉱を製造する炭材内装焼結鉱がある。 The agglomerated ore is, for example, a carbonaceous material interior for sinter ore production, which is a pseudo particle formed by forming an outer layer made of iron ore powder and a CaO-containing raw material around a carbonaceous material nucleus disclosed in Patent Document 1. When the sintering raw material obtained by mixing the granulated particles with the normal granulated particles is charged on the pallet of the sintering machine to form the charging layer, the carbon material-containing granulated particles are mixed with the charging layer. There is a carbonaceous material-containing sintered ore that is charged in a large amount in the lower layer side to produce a sintered ore by the combustion heat of the carbonaceous material contained in the usual granulated particles.

この技術では、炭材内装造粒粒子として、炭材核には粒径3mm以上のコークス粒子を用い、鉄鉱石粉には、粒径を調整したペレットフィードを用いている。また、造粒粒子はドラムミキサーやペレタイザーで造粒する方法が開示されているのみである。 In this technique, as the carbon material-containing granulated particles, coke particles having a particle size of 3 mm or more are used for the carbon material core, and pellet feed having a controlled particle size is used for the iron ore powder. Further, only a method of granulating granulated particles with a drum mixer or a pelletizer is disclosed.

特許第5790966号公報Patent No. 5790966

しかしながら、特許文献1の方法では、炭材内装造粒粒子の原料となるペレットフィードや炭材の粒径に制限があった。
粒径が特定の範囲に調整されたペレットフィードを用いるためには、市場に流通しているペレットフィードの粒度分布を管理し、必要に応じてアンダーサイズやオーバーサイズの粒子を整粒して除去したり、粉砕により粗粒を除去する必要があった。一方、粒径が3
mm以上のコークス粒子を用いるためには、コークスを3mmの篩で選別するのが一般的である。ところが、コークスは、通常、屋外でハンドリングされるため、調湿された状態である。このような調湿原料を3mmの篩目で選別しようとすると、網目に粉が付着し篩分け効率が著しく低下するため、必要な量を得ることが難しくなるという課題がある。
However, the method of Patent Document 1 has a limitation on the particle size of the pellet feed or the carbonaceous material, which is a raw material of the granulated particles containing carbonaceous material.
In order to use a pellet feed with a particle size adjusted to a specific range, control the particle size distribution of the pellet feed in the market, and adjust the size of undersize and oversize particles to remove it. Or it was necessary to remove coarse particles by crushing. On the other hand, the particle size is 3
In order to use coke particles of mm or larger, it is general to select coke with a 3 mm sieve. However, the coke is usually handled outdoors, and thus is in a humidity-controlled state. When it is attempted to select such a humidity control raw material with a 3 mm sieve mesh, powder adheres to the mesh and the sieving efficiency is significantly reduced, which makes it difficult to obtain the necessary amount.

そこで、本発明は、従来技術が抱えている上述した問題点に鑑みてなされたものであり、その目的は、原料の粒度の制約条件を緩和し、高強度の炭材内装粒子を得て、高品質の炭材内装焼結鉱を製造する方法を提案することにある。併せて、その方法に適した製造設備を提供することにある。 Therefore, the present invention has been made in view of the above-mentioned problems that the prior art has, and its purpose is to relax the constraint conditions of the particle size of the raw material, to obtain a high-strength carbonaceous material-containing particles, It is to propose a method for producing a high-quality carbon material-containing sintered ore. At the same time, it is to provide a manufacturing facility suitable for the method.

発明者らは、上記に記した課題を解決するために鋭意検討を重ねた結果、外力を加えることにより成型することで炭材内装成型粒子とすることが有効であることを見出して、本発明を開発するに至った。すなわち、本発明は、第一に、鉄鉱石粉、CaO含有原料および炭材を含み、圧縮成型された焼結鉱製造用炭材内装成型粒子を、焼結鉱製造用原料粒子に混合してなる焼結原料を、焼結機のパレット上に装入して装入層を形成する際に、前記炭材内装成型粒子を、装入層の下層側に多く装入し、前記焼結鉱製造用原料粒子中に含まれる炭材の燃焼熱で焼結鉱を製造することを特徴とする炭材内装焼結鉱の製造方法を提案する。 As a result of intensive studies to solve the above-mentioned problems, the inventors have found that it is effective to form carbonaceous material-containing molded particles by molding by applying an external force, and the present invention Came to develop. That is, the present invention is, first of all, formed by mixing compression-molded carbonaceous material-containing molded particles for producing a sintered ore containing iron ore powder, a CaO-containing raw material and a carbonaceous material, with raw material particles for producing a sintered ore. When the sintering raw material is charged on the pallet of the sintering machine to form the charging layer, many of the carbon material-containing molded particles are charged in the lower layer side of the charging layer to produce the sintered ore. We propose a method for producing a carbonaceous material-containing sintered ore characterized by producing a sintered ore by the combustion heat of the carbonaceous material contained in the raw material particles.

なお、本発明に係る炭材内装焼結鉱の製造方法については、
a.上記焼結鉱製造用原料粒子は、ドラムミキサーにて造粒した、粒径が上記炭材内装成型粒子よりも小さいこと、
b.上記鉄鉱石粉は、粒径が1mm以下の粉状鉄鉱石であること、
c.上記炭材内装成型粒子の外面から2mmまでの範囲は、融点が1200℃以上1500℃以下であること、
d.上記炭材は、粒径が8mm以下のコークス粒子であること、
e.上記炭材内装成型粒子は、粒径が8mm以上であること、
f.上記炭材内装成型粒子は、鉄鉱石粉と融点調整剤としてのCaO含有原料と炭材とが圧縮成型機を用いて成型された成型体であること、
がより好ましい解決手段になり得るものと考えられる。
In addition, about the manufacturing method of the carbonaceous material-containing sintered ore according to the present invention,
a. The raw material particles for producing the sinter ore are granulated with a drum mixer, and the particle size is smaller than the carbon material-containing molded particles,
b. The iron ore powder is a powdered iron ore with a particle size of 1 mm or less,
c. In the range from the outer surface of the carbonaceous material-containing molded particles to 2 mm, the melting point is 1200° C. or more and 1500° C. or less,
d. The carbonaceous material is coke particles having a particle size of 8 mm or less,
e. The carbonaceous material-containing molded particles have a particle size of 8 mm or more,
f. The carbonaceous material-containing molded particles are iron ore powder, a CaO-containing raw material as a melting point adjusting agent, and a carbonaceous material that are molded using a compression molding machine,
Is considered to be a more preferable solution.

また、本発明は、第二に、上記いずれかの炭材内装焼結鉱の製造方法に用いる設備であって、鉄鉱石粉が保持されるホッパと、CaO含有原料が保持されるホッパと、炭材が保持されるホッパとを少なくとも一つずつ備えるとともに、少なくとも、鉄鉱石粉、CaO含有原料および炭材を含む原料を混合し、圧縮し、成型して焼結鉱製造用炭材内装成型粒子とする圧縮成型機と、通常の焼結鉱用原料を造粒して焼結鉱製造用原料粒子とするドラムミキサーと、上記炭材内装成型粒子と上記焼結鉱製造用原料粒子とが混合され焼結原料として保持されるサージホッパーを有し、該サージホッパーから装入された上記焼結原料を焼結して焼結鉱とするドワイトロイド式焼結機とを備えることを特徴とする炭材内装焼結鉱の製造設備を提供する。 In addition, the present invention is secondly the equipment used in the method for producing any of the above carbonaceous material-containing sintered ore, comprising a hopper for holding iron ore powder, a hopper for holding a CaO-containing raw material, and a charcoal. And at least one hopper for holding the material, at least, iron ore powder, CaO-containing raw material and a raw material containing a carbonaceous material are mixed, compressed and molded to form a carbonaceous material-containing molded particle for sinter production. A compression molding machine, a drum mixer that granulates a normal raw material for sinter ore into raw material particles for producing sinter, and the above-mentioned carbonaceous material-containing molded particles and the above raw material particles for producing sinter are mixed. A charcoal having a surge hopper held as a sintering raw material, and a Dwightroid type sintering machine for sintering the sintering raw material charged from the surge hopper to obtain a sintered ore. Providing manufacturing facilities for material-containing sinter.

本発明によれば、使用する炭材や鉄鉱石粉の粒度を気にすることなく、高強度の炭材内装成型粒子を成型することが可能となる。特に、かかる炭材内装成型粒子は、一般的なドワイトロイド式(DL)焼結機を用いて焼結鉱を製造することができるので、大量かつ安価に炭材内装焼結鉱を製造することが可能になる。また、本発明の炭材内装焼結鉱は、高炉等の原料として用いる上で十分な強度を有することに加え、鉄含有原料と炭材とが近接配置された構造を有するので、製鉄反応の反応効率の向上、炉内温度の低下、燃料比の低減をもたらし、製造コストの低減にも寄与する。 According to the present invention, it becomes possible to mold high-strength carbonaceous material-containing molded particles without worrying about the particle size of the carbonaceous material or iron ore powder used. In particular, since such a carbonaceous material-containing molded particle can be used to produce a sintered ore using a general Dwightroid type (DL) sintering machine, it is possible to produce a large amount and inexpensive carbonaceous material-containing sintered ore. Will be possible. Further, the carbonaceous material-containing sintered ore of the present invention has a structure in which the iron-containing raw material and the carbonaceous material are arranged in close proximity in addition to having sufficient strength for use as a raw material for a blast furnace, etc. It improves the reaction efficiency, lowers the temperature in the furnace, reduces the fuel ratio, and contributes to the reduction of manufacturing cost.

本発明の一実施形態を示す炭材内装成型粒子(A)および従来技術にかかる炭材内装造粒粒子(B)の概念図である。FIG. 1 is a conceptual diagram of carbonaceous material-containing molded particles (A) showing one embodiment of the present invention and carbonaceous material-containing granulated particles (B) according to a conventional technique. 本発明の一実施形態を示す製造設備概念図(A)および従来技術の製造設備概念図(B)である。It is a manufacturing equipment conceptual diagram (A) which shows one Embodiment of this invention, and the manufacturing equipment conceptual diagram (B) of a prior art.

図1に本発明の一実施形態を示す炭材内装成型粒子(A)および特許文献1に記載の従来技術にかかる炭材内装造粒粒子(B)の概念図を示す。本発明の炭材内装成型粒子1は、図1Aに示すように、圧縮成型により、鉄鉱石粉とCaO含有原料との混合相3中に炭材2が分散した構造にしたものである。圧縮成型には、双ロール式や平板式のブリケットマシン、シリンダープレス式などを用いることができる。図示の4は、後述する焼結後の炭材残存領域(核)と炭材消失領域(外層)の境界を示す焼結境界面である。一方、図1Bに示すものは従来技術であって、3mm以上の炭材2核の周囲に、炭材を含まない外層として、鉄鉱石粉とCaO含有原料との混合相3をもつものに造粒した炭材内装造粒粒子5である。 FIG. 1 shows a conceptual diagram of carbonaceous material-containing molded particles (A) showing an embodiment of the present invention and carbonaceous material-containing granulated particles (B) according to the conventional technique described in Patent Document 1. As shown in FIG. 1A, the carbon material-containing molded particle 1 of the present invention has a structure in which the carbon material 2 is dispersed in the mixed phase 3 of the iron ore powder and the CaO-containing raw material by compression molding. For the compression molding, a twin roll type or flat plate type briquette machine, a cylinder press type or the like can be used. Reference numeral 4 in the drawing is a sintering boundary surface indicating a boundary between a carbonaceous material remaining region (nucleus) and a carbonaceous material disappearing region (outer layer) after sintering which will be described later. On the other hand, what is shown in FIG. 1B is a prior art, and it is granulated into a material having a mixed phase 3 of iron ore powder and CaO-containing raw material as an outer layer containing no carbon material around a carbon material 2 nucleus of 3 mm or more. It is the carbon material-containing granulated particles 5.

従来の一般的な知見では、炭材2から成型体表面までの被覆層厚みが2mm以上あれば、焼結過程で炭材2の燃焼、消失を防止することができることがわかっている。この点、本発明の炭材内装成型粒子では、図1Aから明らかなように、表層近傍にも炭材2が分布しており、焼結工程で燃焼、消失により空隙が生じる。ただし、内部には焼結後にも健全な炭材残存領域がある。また、本発明の場合、このような空隙にもかかわらず、十分な熱間強度を有する成型体が得られている。その理由としては、強制的に圧縮して成型体を得ているため、空隙の生成による熱間強度の低下を補うことができたものと考えられる。 It has been known from conventional general knowledge that if the coating layer thickness from the carbonaceous material 2 to the surface of the molded body is 2 mm or more, the combustion and disappearance of the carbonaceous material 2 can be prevented in the sintering process. In this respect, in the carbonaceous material-containing molded particles of the present invention, as is clear from FIG. 1A, the carbonaceous material 2 is distributed also in the vicinity of the surface layer, and voids are generated due to burning and disappearance in the sintering process. However, there is a sound carbonaceous material remaining region even after sintering. Further, in the case of the present invention, a molded product having sufficient hot strength is obtained despite such voids. It is considered that the reason for this is that since the molded body is forcibly compressed, the decrease in hot strength due to the formation of voids can be compensated.

ここで、本発明に用いる鉄鉱石粉としては、粒径が1mm以下の粉状鉄鉱石を用いることが好ましい。ここで、粒径が1mm以下とは、JIS Z8801―1:2006に定める公称目開き1mmの篩を全量通過することを示す。 Here, as the iron ore powder used in the present invention, it is preferable to use powdery iron ore having a particle size of 1 mm or less. Here, the particle size of 1 mm or less means that the entire amount passes through a sieve having a nominal opening of 1 mm defined in JIS Z8801-1:2006.

なお、本発明に用いる鉄鉱石粉は、粒径が上記範囲内であれば、ペレットフィードの他に、ペレットフィードよりも10μm以下の粒径を多く含むシンターフィードやミルスケール、転炉排ガス回収ダスト(OGダスト)、選鉱時に発生したテーリング等、ならびにこれらの破砕物でもよく、また、それらをペレットフィードに混合したものであってもよい。好ましくは、ペレットフィードを主とする混合物、または、ペレットフィードである。ペレットフィードは、1mm以下が90%以上の微粒鉱石で、高品位(高Fe、低脈石)のヘマタイトやマグネタイトを主成分とし、かつ、安価に大量に入手できる点で優れている。 If the iron ore powder used in the present invention has a particle size within the above range, in addition to pellet feed, a sinter feed containing a larger particle size of 10 μm or less than the pellet feed, mill scale, converter exhaust gas recovery dust ( OG dust), tailing generated during beneficiation, and crushed products thereof, or may be a mixture of them in a pellet feed. A mixture mainly composed of pellet feed or a pellet feed is preferable. Pellet feed is a fine grain ore with a size of 1 mm or less of 90% or more, is mainly composed of high-quality (high Fe, low gangue) hematite or magnetite, and is excellent in that it can be obtained in large quantities at low cost.

しかし、上記マグネタイト、特に高品位のマグネタイトの融点は、1580℃程度と高く、高品質の焼結鉱を得るための好適な焼結温度(1200〜1400℃)と比較して遥かに高く、通常の焼結温度では溶融しない、即ち、焼結反応が起こらない。 However, the melting point of the above-mentioned magnetite, particularly high-grade magnetite, is as high as about 1580° C., which is much higher than the suitable sintering temperature (1200 to 1400° C.) for obtaining high-quality sinter, It does not melt at the sintering temperature of 1, that is, the sintering reaction does not occur.

本発明は、上記鉄鉱石粉に融点調整剤であるCaO含有原料を添加することによって、鉄鉱石とCaO含有原料との混合相の融点を低下させ、焼結時の温度(1200℃以上)で早期に溶融させて擬似粒子の表層部に融着層を形成し、該融着層を酸素遮断層として作用させることにより、炭材内装成型粒子の内部に分散した炭材の燃焼、消失を防止して、炭材を残存させるようにしたところに特徴がある。 The present invention reduces the melting point of the mixed phase of the iron ore and the CaO-containing raw material by adding the CaO-containing raw material, which is a melting point adjuster, to the iron ore powder described above, so that the temperature at the time of sintering (1200°C or higher) is early. To form a fusion layer on the surface layer of the pseudo particles, and by acting the fusion layer as an oxygen barrier layer, it is possible to prevent combustion and disappearance of the carbonaceous material dispersed inside the carbonaceous material-containing molded particles. The characteristic is that the carbonaceous material remains.

また、本発明によれば、上記構造とすることにより、焼結鉱焼成時に空気の侵入があったとしても、炭材残存領域(核)を存在させることができる。というのは、炭材内装成型粒子(擬似粒子)の表層(外層)の酸素遮断効果によって、焼結境界面4より内側の核に含まれる炭材には侵入Oが到達せず、表層部のCと侵入Oの反応により、外層内は基本的に還元性雰囲気のCOガスに保持されることになるので、炭材の残留が可能となると考えられるからである。 Further, according to the present invention, with the above structure, the carbonaceous material remaining region (nucleus) can be present even if air invades during firing of the sintered ore. This is because due to the oxygen blocking effect of the surface layer (outer layer) of the carbon material-containing molded particles (pseudo particles), the invasion O 2 does not reach the carbon material contained in the nucleus inside the sintering boundary surface 4, and the surface layer portion This is because it is considered that the carbonaceous material can remain because the inside of the outer layer is basically held by the CO gas in the reducing atmosphere due to the reaction of C with the invading O 2 .

ここで、上記で調整する鉄鉱石と融点調整剤の混合物の融点は、1200〜1500℃の範囲が好ましく、焼結機上で溶融を促進させる観点から、より好ましくは1200〜1400℃の範囲である。1200℃未満では、融液が生成せず、また、焼結鉱の構成鉱物の中で最も高強度で、被還元性も比較的高いカルシウムフェライトが生成しないからである。一方、1500℃超えでは、焼結機上では溶融せず、カルシウムフェライトを主体とする焼結鉱組織と融着しないからである。 Here, the melting point of the mixture of the iron ore and the melting point adjusting agent adjusted above is preferably in the range of 1200 to 1500°C, and more preferably in the range of 1200 to 1400°C from the viewpoint of promoting melting on the sintering machine. is there. This is because if the temperature is less than 1200° C., a melt is not generated, and calcium ferrite, which has the highest strength and relatively high reducibility among the constituent minerals of the sintered ore, is not generated. On the other hand, above 1500° C., it does not melt on the sintering machine and does not fuse with the sinter structure mainly composed of calcium ferrite.

なお、融点調整剤として添加する上記CaO含有原料としては、生石灰(CaO)、消石灰(Ca(OH))、炭酸カルシウム(CaCO)およびドロマイト(CaMg(CO)の内から選ばれる1種または2種以上からなることが好ましい。特に、CaOが好ましい。CaO含有原料の添加量は、CaO換算で、外層に用いる鉄鉱石紛としてのペレットフィード(PF)に、例えば、Anglo American−PFのように脈石成分が少ない(ヘマタイト(Fe)が97.7mass%)ものを使用する場合には、Fe−CaO二元系状態図から決定すればよい。また、脈石成分の多い鉄鉱石粉を使用する場合には、脈石成分であるSiOを考慮したSiO−Fe−CaO三元系状態図を用いてCaO成分としての添加量を決定すればよい。なお、生石灰は、融点調整剤として作用するほか、バインダーとしても作用する。 The CaO-containing raw material added as the melting point adjuster is selected from quicklime (CaO), slaked lime (Ca(OH) 2 ), calcium carbonate (CaCO 3 ), and dolomite (CaMg(CO 3 ) 2 ). It is preferably composed of one kind or two or more kinds. CaO is particularly preferable. The amount of CaO-containing raw material added is, in terms of CaO, the pellet feed (PF) as the iron ore powder used for the outer layer, which contains a small amount of gangue components such as Anglo American-PF (hematite (Fe 2 O 3 )). 97.7 mass%), it may be determined from the Fe 2 O 3 —CaO binary system phase diagram. In addition, when using iron ore powder with a large amount of gangue components, the addition amount as CaO components is determined using a SiO 2 —Fe 2 O 3 —CaO ternary phase diagram that considers SiO 2 , which is a gangue component. Just decide. In addition to quick melting point, quick lime acts as a binder.

本発明において、成型性を向上させる点から、水分を、4〜10mass%程度に調質することが好ましい。その理由は、水分4mass%以上では成型後の強度がより高くなり、 また、10mass%以下では成型不良をより低減できるからである。 In the present invention, it is preferable to adjust the water content to about 4 to 10 mass% from the viewpoint of improving moldability. The reason is that when the water content is 4 mass% or more, the strength after molding becomes higher, and when the water content is 10 mass% or less, molding defects can be further reduced.

また、バインダーとして、α化澱粉やベントナイト、ポリビニルアルコール、リグニンスルホン酸マグネシウム、ポリアクリルアミド、CMC(カルボキシメチルセルロース)などを用いることができる。たとえば、α化澱粉を0.1〜10mass%添加することが好ましい。その理由は、α化澱粉が0.1mass%以上では成型後の強度がより上昇し、10mass%を超えると成型後の強度の上昇の効果が飽和しはじめ、その添加コストの上昇に見合わなくなるおそれがあるからである。 Further, as the binder, pregelatinized starch, bentonite, polyvinyl alcohol, magnesium lignin sulfonate, polyacrylamide, CMC (carboxymethyl cellulose) or the like can be used. For example, it is preferable to add 0.1 to 10 mass% of pregelatinized starch. The reason for this is that when the content of pregelatinized starch is 0.1 mass% or more, the strength after molding further increases, and when it exceeds 10 mass%, the effect of increasing the strength after molding begins to saturate, and it becomes uncomfortable to increase the addition cost. This is because there is a risk.

炭材としては、コークス粒やホンゲイ炭等の無煙炭のような揮発分の少ない炭材を使用することが好ましい。かかる炭材の粒径として、8mm以下が好ましい。ここで、粒径が8mm以下とは、JIS Z8801―1:2006に定める公称目開き8mmの篩を全量通過することを示す。従来法では、1個の造粒粒子に必ず1個の炭材核を要するため、コークスを粒径3mm以上に整粒する必要があったが、本発明では、成型粒子中心部の炭材残存層(核)に1個以上の炭材粒が賦存すれば有効であることから、粒径8mm以下が好ましく、下限を問わない。圧縮成型の特性として、炭材粒子の中心は炭材粒子の半径よりも成型粒子外面に近いところには存在できないので、炭材の粒径分布として好ましくは粒径2.8mm超えの炭材を質量基準で20%以上存在させると、成型粒子外面から1〜2mm以内の場所の焼結時に消失する炭材の比率が低減して強度が向上するのでより好ましい。ここで、粒径が2.8mm超えとは、JIS Z8801―1:2006に定める公称目開き2.8mmの篩を通過しないことを示す。さらに好ましくは、算術平均粒径として、1.5mm以上4.0mm以下の範囲である。 As the carbonaceous material, it is preferable to use a carbonaceous material having a low volatile content such as coke grains and anthracite such as Hongay charcoal. The particle size of the carbonaceous material is preferably 8 mm or less. Here, the particle size of 8 mm or less means that all the particles pass through a sieve having a nominal mesh size of 8 mm defined in JIS Z8801-1:2006. In the conventional method, since one granulated particle always requires one carbonaceous material core, it was necessary to regulate the coke to have a particle diameter of 3 mm or more. However, in the present invention, the carbonaceous material remains at the center of the molded particle. Since it is effective if one or more carbon material grains are present in the layer (nucleus), the grain size is preferably 8 mm or less, and the lower limit is not limited. As a characteristic of compression molding, since the center of the carbonaceous material particle cannot exist closer to the outer surface of the molded material than the radius of the carbonaceous material particle, the carbonaceous material preferably has a particle size distribution of 2.8 mm or more. The presence of 20% or more on the mass basis is more preferable because the ratio of the carbonaceous material that disappears during sintering in a place within 1 to 2 mm from the outer surface of the molded particle is reduced and the strength is improved. Here, when the particle size exceeds 2.8 mm, it means that the particle size does not pass through a sieve having a nominal opening of 2.8 mm defined in JIS Z8801-1:2006. More preferably, the arithmetic average particle diameter is in the range of 1.5 mm or more and 4.0 mm or less.

また、焼結後に炭材の燃焼、消失する領域であって、上記擬似粒子の外層の厚みは、最も薄いところで2mm以上とすることが好ましい。その理由は、2mm未満では、消失した炭材の空隙によって、成型粒子の熱間強度が低下するおそれがある。通常、圧縮成型においては、圧縮方向以外の密度がばらついたり、形状が真球にはならないことから、成型粒子の表層から焼結境界層までの厚みは均一ではない。焼結層の熱間強度は、焼結層の厚みに比例すると考えられるため、最も外層の薄い部分を基準に評価する。成型粒子は、通常、外部から加熱されるため、中心側ほど加熱時において昇温し難い。そのため、外層の厚さを厚くするには、外層の融点を低目に調整するか、圧縮力を低くすることで調節できる。外層の厚みは、酸素遮断および熱間強度の観点から、より好ましくは3〜7mmの範囲である。 Further, in the region where the carbonaceous material burns and disappears after sintering, the thickness of the outer layer of the pseudo particles is preferably 2 mm or more at the thinnest place. The reason is that if it is less than 2 mm, the void strength of the carbonaceous material that has disappeared may reduce the hot strength of the molded particles. Usually, in compression molding, since the density other than in the compression direction varies and the shape does not become a true sphere, the thickness of the molded particles from the surface layer to the sintered boundary layer is not uniform. Since the hot strength of the sintered layer is considered to be proportional to the thickness of the sintered layer, it is evaluated based on the thinnest portion of the outer layer. Since the molded particles are usually heated from the outside, it is difficult for the temperature to rise during heating toward the center. Therefore, in order to increase the thickness of the outer layer, the melting point of the outer layer can be adjusted to a low value or the compression force can be decreased. The thickness of the outer layer is more preferably in the range of 3 to 7 mm from the viewpoint of oxygen barrier and hot strength.

また、本発明の炭材内装成型粒子(擬似粒子)の粒径は、炭材残存領域(核)の球相当径の最小値と外層の最小値の合計から、最小の粒径は7mmとなるが、焼結機上での炭材の反応を抑制する観点からは、成型粒子内の温度分布を考慮して、焼結過程で粒子中心まで十分に昇温する粒径以上、すなわち8mm以上とするのが好ましい。より好ましくは10mm以上、さらに好ましくは20mm以上である。ここで、粒径は球相当径とする。 Further, the particle size of the carbonaceous material-containing molded particles (pseudo particles) of the present invention is 7 mm from the sum of the minimum value of the sphere-equivalent diameter of the carbonaceous material remaining region (nucleus) and the minimum value of the outer layer. However, from the viewpoint of suppressing the reaction of the carbonaceous material on the sintering machine, in consideration of the temperature distribution in the formed particles, the particle diameter is not less than a sufficient temperature to reach the center of the particles in the sintering process, that is, 8 mm or more. Preferably. It is more preferably 10 mm or more, and further preferably 20 mm or more. Here, the particle diameter is the equivalent spherical diameter.

また、本発明の炭材内装成型粒子は、後述する焼結機への焼結原料装入時に、焼結層の下層側に偏析装入することが求められるが、そのため、通常の焼結原料(造粒粒子)よりも粒径を大きくすることが好ましい。ここで、上記通常の造粒粒子とは、鉄鉱石粉と炭材とCaO含有原料を含む副原料を造粒原料とし、これをドラムミキサーやペレタイザー等によって、2〜4mm(算術平均径)の粒径に造粒した擬似粒子のことをいう(以降、同様とする)。また、本発明における造粒粒子の粒径とは、篩い分けで測定した粒径のことをいう Further, the carbonaceous material-containing molded particles of the present invention are required to be segregated into the lower layer side of the sintered layer at the time of charging the sintering raw material into the sintering machine described later. The particle size is preferably larger than (granulated particles). Here, the above-mentioned normal granulated particles are granules of auxiliary raw materials including iron ore powder, carbonaceous materials and CaO-containing raw materials, and granules of 2 to 4 mm (arithmetic mean diameter) by a drum mixer or pelletizer. This refers to pseudo particles that are granulated into particles (the same applies hereinafter). The particle size of the granulated particles in the present invention means the particle size measured by sieving.

次に、本発明の炭材内装成型粒子とその成型粒子を焼結原料に用いた焼結鉱の製造方法について説明する。
図2Aは、本発明に適合する炭材内装成型粒子を使って炭材内装焼結鉱を製造する方法の一例を示したものである。一方、図2Bは、特許文献1に記載の従来の方法による炭材内装造粒粒子を使って炭材内装焼結鉱を製造する方法の一例を示したものである。なお、上記の図2Aの例は、粒子径1mm以下の鉄鉱石粉8と、融点調整剤としてのCaO含有原料9と、粒子径8mm以下の炭材(コークス粉)10とを、圧縮成型機であるブリケットマシン11内に装入して、圧縮−成型して、粒子径8mm以上の大きさの炭材内装成型粒子(擬似粒子)としている。ここで、ブリケットマシンの圧縮力は、軸圧(ロールの軸方向の長さあたりの荷重)として0.5tonf/cm(490kN/m)以上とすることが好ましい。その理由は、そうすることで十分な熱間強度を得ることができるからである。過大な荷重は装置の大型化を招くので、より好ましい軸圧は、0.7〜1.8tonf/cm(690〜1760kN/m)の範囲である。
Next, a carbonaceous material-containing molded particle of the present invention and a method for producing a sintered ore using the molded particle as a sintering raw material will be described.
FIG. 2A shows an example of a method for producing a carbon material-containing sintered ore using the carbon material-containing molded particles according to the present invention. On the other hand, FIG. 2B shows an example of a method for producing a carbonaceous material-containing sintered ore using the conventional carbonaceous material-containing granulated particles described in Patent Document 1. In the example of FIG. 2A, the iron ore powder 8 having a particle diameter of 1 mm or less, the CaO-containing raw material 9 as a melting point adjusting agent, and the carbonaceous material (coke powder) 10 having a particle diameter of 8 mm or less are compressed by a compression molding machine. It is loaded into a certain briquette machine 11 and compression-molded to obtain carbonaceous material-containing molded particles (pseudo particles) having a particle diameter of 8 mm or more. Here, the compressive force of the briquette machine is preferably 0.5 tonf/cm (490 kN/m) or more as the axial pressure (load per axial length of the roll). The reason is that a sufficient hot strength can be obtained by doing so. Since an excessive load leads to an increase in size of the device, a more preferable axial pressure is in the range of 0.7 to 1.8 tonf/cm (690 to 1760 kN/m).

次いで、上記のようにして得た炭材内装成型粒子(擬似粒子)は、通常の焼結鉱製造用原料6をドラムミキサー7で攪拌し、造粒することで得られる通常の焼結鉱製造用造粒粒子(擬似粒子)と合流させて両粒子を混合させて焼結機13のサージホッパーに搬入し、該サージホッパーから焼結機の循環移動するパレット上に装入する。なお、炭材内装成型粒子(擬似粒子)は、通常の焼結鉱製造用造粒粒子(擬似粒子)より粒子径が大きくしているため、装入時に偏析し、焼結時の温度が上層側よりも高くなり易い中層および下層側に多く堆積するので、焼結反応が十分に進行しやすいという特徴がある。 Next, the carbonaceous material-containing molded particles (pseudo particles) obtained as described above are obtained by agitating the ordinary raw material 6 for producing a sintered ore with a drum mixer 7 and granulating it to produce a normal sintered ore. The particles are mixed with the granulated particles (pseudo particles) for mixing, and both particles are mixed and carried into the surge hopper of the sintering machine 13, and are loaded from the surge hopper onto a pallet that circulates in the sintering machine. Since the carbonaceous material-containing molded particles (pseudo particles) have a larger particle size than ordinary granulated particles for sinter production (pseudo particles), they segregate at the time of charging and the temperature during sintering becomes the upper layer. Since a large amount is deposited on the side of the middle layer and the side of the lower layer, which tends to be higher than the side, the sintering reaction has a characteristic that the reaction easily proceeds sufficiently.

上述したように、本発明の炭材内装焼結鉱は、一般的なDL焼結機を利用して生産できるため、安価にかつ大量生産することができる。また、外層の原料となる鉄鉱石粉も粉コークスも粒度を気にすることなく、安価かつ大量に入手できるので、生産上の制約は存在しない。また、篩機や粉砕機などの設備投資を抑えることができる。 As described above, since the carbonaceous material-containing sintered ore of the present invention can be produced using a general DL sintering machine, it can be mass-produced at low cost. In addition, since iron ore powder and coke coke which are raw materials for the outer layer can be obtained inexpensively and in large quantities without worrying about the particle size, there is no restriction on production. In addition, it is possible to suppress capital investment such as a sieving machine and a crusher.

さらに、本発明の炭材内装焼結鉱の製造に好適な焼結鉱の製造設備について説明する。
本発明を実施するためには、図2Aに示すように、鉄鉱石粉が保持されるホッパ8と、CaO含有原料が保持されるホッパ9と、炭材が保持されるホッパ10とを少なくとも一つずつ備えるとともに、少なくとも、鉄鉱石粉、CaO含有原料および炭材を含む原料を混合し、圧縮し、成型して焼結鉱製造用炭材内装成型粒子とする圧縮成型機11と、通常の焼結鉱用原料6を造粒して焼結鉱製造用原料粒子とするドラムミキサー7と、上記炭材内装成型粒子と上記焼結鉱製造用原料粒子とが混合され焼結原料として保持されるサージホッパー(図示せず)を有し、該サージホッパーから装入された上記焼結原料を焼結して焼結鉱とするドワイトロイド式焼結機13とを備える製造設備を用いることが必要である。なお、本発明では、焼結原料を少なくとも2列の装置群で調整し、それらは図示しない原料搬送ラインでつながれている。本発明における搬送ラインは、粉体を一定の速度で搬送できるものであれば、特に限定されないが、ベルトコンベアなどが好適に使用できる。
Further, a sinter production facility suitable for producing the carbonaceous material-containing sinter of the present invention will be described.
In order to carry out the present invention, as shown in FIG. 2A, at least one of a hopper 8 for holding iron ore powder, a hopper 9 for holding a CaO-containing raw material, and a hopper 10 for holding carbonaceous material is provided. , And at least iron ore powder, CaO-containing raw material, and raw material containing carbonaceous material are mixed, compressed, and molded into a carbonaceous material-interior molded particle for sintering ore production, and normal sintering. A drum mixer 7 that granulates the raw material 6 for ore into raw material particles for producing a sintered ore, and the surge in which the above-mentioned carbonaceous material-containing molded particles and the above raw material particles for producing a sintered ore are mixed and held as a sintering raw material. It is necessary to use a manufacturing facility including a hopper (not shown) and a Dwightroid-type sintering machine 13 that sinters the sintering raw material charged from the surge hopper into a sintered ore. is there. In the present invention, the sintering raw materials are adjusted by at least two rows of apparatus groups, which are connected by a raw material conveying line (not shown). The carrying line in the present invention is not particularly limited as long as it can carry the powder at a constant speed, but a belt conveyor or the like can be preferably used.

まず、本発明の製造設備には、焼結鉱製造用炭材内装成型粒子の調整用に、鉄鉱石粉が保持されるホッパ8と、CaO含有原料が保持されるホッパ9と、炭材が保持されるホッパ10とを少なくとも一つずつ備え、圧縮成型機を備える。圧縮成型機として、双ロール式や平板式のブリケットマシン、シリンダープレス式などを用いることができる。必要に応じて、α化澱粉等の副原料を保持するホッパ(図示せず)を備えることもできる。本発明の圧縮成型機は、所定の圧縮力(荷重)で、所定の大きさの成型粒子が得られるものであればよい。 First, in the production facility of the present invention, a hopper 8 for holding iron ore powder, a hopper 9 for holding a CaO-containing raw material, and a carbonaceous material for holding carbonaceous material-containing molded particles for production of sinter ore. At least one hopper 10 is provided and a compression molding machine is provided. As the compression molding machine, a twin roll type or flat plate type briquette machine, a cylinder press type, or the like can be used. If necessary, a hopper (not shown) for holding an auxiliary material such as pregelatinized starch can be provided. The compression molding machine of the present invention may be any machine that can obtain molded particles of a predetermined size with a predetermined compression force (load).

また、本発明の製造設備には、通常の焼結鉱製造用原料粒子の調整用に、造粒装置としてドラムミキサー7を備える。本発明のドラムミキサーは公知のドラムミキサーを用いることができる。該造粒用の焼結鉱用原料6としては、必要に応じて、上記炭材内装用成型粒子の調整用に用いた原料ホッパから切り出してもよいし、別に用意した原料ホッパから切り出して搬送してもよい。通常の焼結鉱製造用原料粒子に用いられる原料6は、焼結鉱の焼結原料として、一般に用いられるものを広く使用することができる。 In addition, the production facility of the present invention is provided with a drum mixer 7 as a granulating device for adjusting ordinary raw material particles for producing a sintered ore. As the drum mixer of the present invention, a known drum mixer can be used. The sinter ore raw material 6 for granulation may be cut out from a raw material hopper used for adjusting the above-mentioned carbonaceous material interior molding particles, or cut out from a separately prepared raw material hopper and conveyed. You may. As the raw material 6 used for the normal raw material particles for producing a sintered ore, those generally used as a sintering raw material for a sintered ore can be widely used.

また、本発明の製造設備には、上記炭材内装成型粒子と上記焼結鉱製造用原料粒子を焼結原料として混合し、保持するサージホッパーを有するドワイトロイド式焼結機を備える。ドワイトロイド式焼結機は、下方吸引式のドワイトロイド式焼結機とすることが好ましい。 Further, the production facility of the present invention is equipped with a Dwightroid type sintering machine having a surge hopper which mixes and holds the above carbonaceous material-containing molded particles and the above-mentioned raw material particles for producing a sintered ore as a sintering raw material. The Dwightroid type sintering machine is preferably a downward suction type Dwightroid type sintering machine.

発明例として、図2Aのフローに準じて、鉄鉱石粉(≦1mm=100%、−1+0.25mm=15%)を93mass%、CaO源として生石灰を5mass%、粉コークス(算術平均粒径1.5mm、>2.8mm=20%)を2mass%の原料に、バインダーとしてα化澱粉を内数として4mass%加え、ブリケットマシンを用いて、1.2cc(球相当直径約13mm)のブリケットを成型した。その際、荷重は軸圧として0.8tonf/cm(780kN/m)とし、原料水分を内数として8mass%に調整した。なお、鉄鉱石はヤードで採取した調湿状態のものを整粒し、適宜水分調整して用いた。生石灰と粉コークスの水分は0mass%のものを使用した。ブリケット内部には、図1Aに示したように、コークス粉が分散しており、ブリケットの核(焼結境界面の内側)に十分なコークスが分散されていることが確認できた。ここで、鉄鉱石とCaOの混合相の融点は、1500℃であった。 As an invention example, 93 mass% of iron ore powder (≦1 mm=100%, −1+0.25 mm=15%), 5 mass% of quicklime as a CaO source, and powder coke (arithmetic mean particle size 1. 5mm, >2.8mm=20%) to 2mass% of raw material, 4mass% of pregelatinized starch as a binder is added, and a briquette machine of 1.2cc (sphere equivalent diameter of about 13mm) is molded using a briquette machine. did. At that time, the load was adjusted to 0.8 tonf/cm (780 kN/m) as the axial pressure and adjusted to 8 mass% as the raw material water content. It should be noted that the iron ore was conditioned in a humidity-controlled state collected in a yard, and the water content was adjusted appropriately before use. The water content of the quicklime and coke powder was 0 mass%. As shown in FIG. 1A, coke powder was dispersed inside the briquette, and it was confirmed that sufficient coke was dispersed in the core of the briquette (inside the sintering boundary surface). Here, the melting point of the mixed phase of iron ore and CaO was 1500°C.

この成型ブリケットを1200℃で保温した電気炉に装入し、2分間保持後炉内から取り出した。加熱後のブリケットについて、一軸圧縮試験機で圧潰強度を測定したところ、20〜30kgf(196〜294N)程度の強度であった。なお、外層表面部は脆弱な組織であって、剥離粉が発生したが、内側は健全な組織であった。断面の観察から、炭材が残存する核の球相当径は、約4mmであり、外層は薄いところで約2.5mmであった。 This molded briquette was charged into an electric furnace kept at 1200° C., held for 2 minutes, and then taken out of the furnace. When the crush strength of the briquettes after heating was measured with a uniaxial compression tester, the strength was about 20 to 30 kgf (196 to 294 N). The outer layer surface had a fragile structure, and peeling powder was generated, but the inner part had a healthy structure. From the observation of the cross section, the equivalent sphere diameter of the core in which the carbonaceous material remained was about 4 mm, and the outer layer was about 2.5 mm where the outer layer was thin.

比較例として、特許文献1に記載の従来法に従い、図2Bのフローに準じて、鉄鉱石(≦1 mm=100%、−1+0.25mm=15%)を93mass%、CaO源として生石灰を5mass%、粉コークス(算術平均粒径1.5mm、>2.8mm=20%)を2mass%の原料を、直径1.2mのディスクペレタイザーに供給し、水を添加しながら造粒した。ここで、鉄鉱石はヤードで採取した調湿状態のものを整粒し、適宜水分を調整して用いた。生石灰と粉コークスの水分は0mass%のものを使用した。 As a comparative example, according to the conventional method described in Patent Document 1, 93 mass% of iron ore (≦1 mm=100%, −1+0.25 mm=15%) and 5 mass of quicklime as a CaO source were used according to the flow of FIG. 2B. %, powder coke (arithmetic mean particle size 1.5 mm, >2.8 mm=20%), 2 mass% of raw material was supplied to a disk pelletizer having a diameter of 1.2 m, and granulated while adding water. Here, the iron ore was used after adjusting the moisture content of the iron ore sampled in the yard and adjusting the moisture content. The water content of the quicklime and coke powder was 0 mass%.

得られた造粒粒子のうち、目標のサイズである10mmを満足する比率は10%〜50%程度と低く、小粒の炭材内装造粒粒子や、炭材核を含まずに造粒されたものも多数生成した。10mm程度の炭材内装造粒粒子を、温度1300℃で保温した電気炉に装入し、1.5分間保持後に炉内から取り出した。加熱後の炭材内装造粒粒子を一軸圧縮試験機で圧潰強度を測定したところ、5〜10kgf(4.9〜9.8N)程度の強度であった。 Among the obtained granulated particles, the ratio satisfying the target size of 10 mm was as low as about 10% to 50%, and the granules were granulated without containing small carbonaceous material-containing granulated particles or carbonaceous material nuclei. Many things were generated. The carbon material-containing granulated particles having a size of about 10 mm were placed in an electric furnace kept at a temperature of 1300° C., held for 1.5 minutes, and then taken out of the furnace. When the crush strength of the carbon material-containing granulated particles after heating was measured by a uniaxial compression tester, the crush strength was about 5 to 10 kgf (4.9 to 9.8 N).

実施例1において製造した発明例の炭材内装成型粒子と、通常の造粒粒子を、原料装入部の内径が300mmφ、高さが400mmの焼結実験鍋に装入した。上記原料装入部の下層側1/3(133mm)には、炭材内装成型粒子と通常の造粒粒子とを質量比で1:1として炭材内装造粒粒子を通常の造粒粒子内に埋め込むように均一に混合して装入し、その上層側2/3(267mm)には、通常の造粒粒子を装入した後、装入層の上層表面に点火し、試験鍋の下側に配設したブロアーで、試験鍋上方の空気を吸引して装入層内に導入し、焼結原料中の炭材を燃焼させた。ここで、下層側1/3に、炭材内装造粒粒子を通常の造粒粒子内に埋め込むように装入した理由は、周囲の通常の造粒粒子の燃焼熱のみで、該通常の造粒粒子と炭材内装造粒粒子の外層との間で焼結反応を進行させることによって、中心核の炭材を燃焼させずに内装した焼結鉱を得るためであり、そのためには、焼結時に温度が上昇しやすい下層側1/3が有利であるからである。
焼結実験後、原料装入部の下層側1/3(133mm)から得られた炭材内装焼結鉱と、原料装入部の上層側2/3(267mm)から得られた通常の焼結鉱について、JIS M8713:2009に規定された方法で被還元性指数(還元率)RIと、JIS M8720:2009に規定された方法で還元粉化指数RDIを測定した。
The carbonaceous material-containing molded particles of the invention example produced in Example 1 and ordinary granulated particles were charged into a sintering experimental pot having an inner diameter of the raw material charging part of 300 mmφ and a height of 400 mm. In the lower layer side ⅓ (133 mm) of the raw material charging part, the carbon material-containing granulated particles and the normal granulated particles were mixed in a mass ratio of 1:1 to obtain the carbon material-containing granulated particles in the normal granulated particles. The mixture is uniformly mixed so as to be embedded in the above, and the upper layer side 2/3 (267 mm) is charged with normal granulated particles, and then the upper layer surface of the charging layer is ignited and placed under the test pot. The air above the test pot was sucked by the blower arranged on the side to be introduced into the charging layer to burn the carbonaceous material in the sintering raw material. Here, the reason why the carbonaceous material-containing granulated particles were charged in the lower layer side 1/3 so as to be embedded in the ordinary granulated particles was that only the combustion heat of the surrounding ordinary granulated particles was used. This is because a sintering reaction is allowed to proceed between the granular particles and the outer layer of the carbon material-containing granulated particles to obtain a sintered sinter that is provided without burning the carbon material of the central core. This is because it is advantageous on the lower layer side ⅓ where the temperature is likely to rise during binding.
After the sintering experiment, the carbonaceous material-containing sinter obtained from the lower layer side 1/3 (133 mm) of the raw material charging section and the normal firing obtained from the upper layer side 2/3 (267 mm) of the raw material charging section With respect to the slag, the reducibility index (reduction rate) RI was measured by the method specified in JIS M8713:2009, and the reduction dusting index RDI was measured by the method specified in JIS M8720:2009.

原料上層部のRDIは35程度であり、下層のRDIは40であった。一方、被還元性(RI)については上層部では68、下層部では72であった。上層に比べて下層のRDIが高くなった理由については、ブリケット中の炭材の一部が消失することによりブリケットが多孔質化し、還元後強度が低下したためと考えられる。一方、多孔質であるために被還元性の高い焼結鉱を製造する事が可能となった。 The RDI of the upper layer of the raw material was about 35, and the RDI of the lower layer was 40. On the other hand, the reducibility (RI) was 68 in the upper layer portion and 72 in the lower layer portion. It is considered that the reason why the RDI of the lower layer was higher than that of the upper layer was that the briquette became porous due to the disappearance of a part of the carbonaceous material in the briquette and the strength after reduction was reduced. On the other hand, since it is porous, it has become possible to manufacture a sinter that is highly reducible.

本発明の技術は、上記に説明した実施例に限定されるものではなく、例えば、焼結熱源として、焼結原料中に添加した炭材に加えて、気体燃料を供給する焼結技術や、さらに、酸素を富化して供給する焼結技術にも適用することができる。 The technique of the present invention is not limited to the examples described above, for example, as a sintering heat source, in addition to the carbonaceous material added to the sintering raw material, a sintering technique of supplying a gaseous fuel, Further, it can be applied to a sintering technique in which oxygen is enriched and supplied.

1 炭材内装成型粒子
2 炭材(コークス粒)
3 鉄鉱石粉とCaO含有材料との混合相
4 焼結境界面
5 炭材内装造粒粒子
6 通常の焼結鉱用原料
7 ドラムミキサー
8 鉄鉱石粉用ホッパ
9 CaO含有材料用ホッパ
10 炭材(コークス粉)用ホッパ
11 圧縮成型機(ブリケットマシン)
12 ディスクペレタイザー
13 焼結機
1 Carbon material interior molding particles 2 Carbon material (coke grain)
3 Mixed Phase of Iron Ore Powder and CaO-Containing Material 4 Sintering Interface 5 Carbonaceous Material Granulated Particles 6 Ordinary Sintered Raw Material 7 Drum Mixer 8 Iron Ore Powder Hopper 9 CaO-Containing Material Hopper 10 Carbon Material (Coke) Powder) hopper 11 Compression molding machine (briquette machine)
12 Disc pelletizer 13 Sintering machine

Claims (8)

鉄鉱石粉、CaO含有原料および炭材を含み、圧縮成型された焼結鉱製造用炭材内装成型粒子を、焼結鉱製造用原料粒子に混合してなる焼結原料を、焼結機のパレット上に装入して装入層を形成する際に、
前記炭材内装成型粒子を、装入層の下層側に多く装入し、前記焼結鉱製造用原料粒子中に含まれる炭材の燃焼熱で焼結鉱を製造することを特徴とする炭材内装焼結鉱の製造方法。
A sintering raw material obtained by mixing compression-molded carbonaceous material-containing molded particles for sinter ore production, which contains iron ore powder, CaO-containing raw material and carbonaceous material, with a sintering machine pallet When charging on top to form the charging layer,
Charcoal characterized in that a large amount of the carbonaceous material-incorporated molded particles are charged in a lower layer side of a charging layer, and a sintered ore is produced by combustion heat of the carbonaceous material contained in the raw material particles for producing a sintered ore. A method for producing a material-containing sintered ore.
前記焼結鉱製造用原料粒子は、ドラムミキサーにて造粒した、粒径が前記炭材内装成型粒子よりも小さいことを特徴とする請求項1に記載の炭材内装焼結鉱の製造方法。 The method for producing a carbon material-containing sintered ore according to claim 1, wherein the raw material particles for producing a sinter ore are granulated by a drum mixer and have a particle size smaller than that of the carbon material-containing molded particles. .. 前記鉄鉱石粉は、粒径が1mm以下の粉状鉄鉱石であることを特徴とする請求項1または2に記載の炭材内装焼結鉱の製造方法。 The method for producing a carbonaceous material-containing sintered ore according to claim 1 or 2, wherein the iron ore powder is a powdery iron ore having a particle size of 1 mm or less. 前記炭材内装成型粒子の外面から2mmまでの範囲は、融点が1200℃以上1500℃以下であることを特徴とする請求項1〜3のいずれか1項に記載の炭材内装焼結鉱の製造方法。 The range of 2 mm from the outer surface of the carbonaceous material-containing molded particles has a melting point of 1200° C. or more and 1500° C. or less, and the carbonaceous material-containing sintered ore according to any one of claims 1 to 3, Production method. 前記炭材は、粒径が8mm以下のコークス粒子であることを特徴とする請求項1〜4のいずれか1項に記載の炭材内装焼結鉱の製造方法。 The method for producing a carbonaceous material-containing sintered ore according to any one of claims 1 to 4, wherein the carbonaceous material is coke particles having a particle size of 8 mm or less. 前記炭材内装成型粒子は、粒径が8mm以上であることを特徴とする請求項1〜5のいずれか1項に記載の炭材内装焼結鉱の製造方法。 The method for producing a carbonaceous material-containing sintered ore according to claim 1, wherein the carbonaceous material-containing molded particles have a particle diameter of 8 mm or more. 前記炭材内装成型粒子は、鉄鉱石粉と融点調整剤としてのCaO含有原料と炭材とが圧縮成型機を用いて成型された成型体であることを特徴とする請求項1〜6のいずれか1項に記載の炭材内装焼結鉱の製造方法。 7. The carbonaceous material-containing molded particle is a molded body obtained by molding iron ore powder, a CaO-containing raw material as a melting point adjusting agent, and a carbonaceous material using a compression molding machine. The method for producing a carbon material-containing sintered ore according to item 1. 請求項1〜7のいずれか1項に記載の炭材内装焼結鉱の製造方法に用いる設備であって、
鉄鉱石粉が保持されるホッパと、CaO含有原料が保持されるホッパと、炭材が保持されるホッパとを少なくとも一つずつ備えるとともに、
少なくとも、鉄鉱石粉、CaO含有原料および炭材を含む原料を混合し、圧縮し、成型して焼結鉱製造用炭材内装成型粒子とする圧縮成型機と、
通常の焼結鉱用原料を造粒して焼結鉱製造用原料粒子とするドラムミキサーと、
前記炭材内装成型粒子と前記焼結鉱製造用原料粒子とが混合され焼結原料として保持されるサージホッパーを有し、該サージホッパーから装入された前記焼結原料を焼結して焼結鉱とするドワイトロイド式焼結機とを備えることを特徴とする炭材内装焼結鉱の製造設備。
A facility used in the method for producing a carbonaceous material-containing sintered ore according to any one of claims 1 to 7,
At least one hopper that holds the iron ore powder, a hopper that holds the CaO-containing raw material, and a hopper that holds the carbonaceous material,
A compression molding machine that mixes at least iron ore powder, a CaO-containing raw material and a raw material containing carbonaceous material, compresses, and molds them to obtain carbonaceous material-containing molded particles for producing sinter,
A drum mixer that granulates a raw material for normal sinter ore into raw material particles for sinter production,
It has a surge hopper in which the carbonaceous material-containing molded particles and the raw material particles for producing the sintered ore are mixed and held as a sintering raw material, and the sintering raw material charged from the surge hopper is sintered and fired. An apparatus for producing a carbonaceous material-containing sintered ore, comprising a Dwightroid type sintering machine for forming mine.
JP2018225096A 2018-11-30 2018-11-30 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter Active JP6988778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225096A JP6988778B2 (en) 2018-11-30 2018-11-30 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225096A JP6988778B2 (en) 2018-11-30 2018-11-30 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter

Publications (2)

Publication Number Publication Date
JP2020084302A true JP2020084302A (en) 2020-06-04
JP6988778B2 JP6988778B2 (en) 2022-01-05

Family

ID=70906722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225096A Active JP6988778B2 (en) 2018-11-30 2018-11-30 Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter

Country Status (1)

Country Link
JP (1) JP6988778B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056306A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing sintered ore, and pseudo particle for producing sintered ore
JP2007119841A (en) * 2005-10-27 2007-05-17 Jfe Steel Kk Method for manufacturing half-reduced and sintered ore
JP2008019455A (en) * 2006-07-10 2008-01-31 Jfe Steel Kk Method for producing half-reduced sintered ore
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
JP2017172020A (en) * 2016-03-25 2017-09-28 Jfeスチール株式会社 Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056306A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing sintered ore, and pseudo particle for producing sintered ore
JP2007119841A (en) * 2005-10-27 2007-05-17 Jfe Steel Kk Method for manufacturing half-reduced and sintered ore
JP2008019455A (en) * 2006-07-10 2008-01-31 Jfe Steel Kk Method for producing half-reduced sintered ore
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
JP2017172020A (en) * 2016-03-25 2017-09-28 Jfeスチール株式会社 Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same

Also Published As

Publication number Publication date
JP6988778B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
EP1425427B1 (en) Iron ore briquetting
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
CN110168118B (en) Method for producing sintered ore
JPH02228428A (en) Charging material for blast furnace and its production
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP2006257479A (en) Method for producing reduced iron
JP6988844B2 (en) Sintered ore manufacturing method
JP4797388B2 (en) Method for producing semi-reduced sintered ore
JP7227053B2 (en) Method for producing sintered ore
WO2022209014A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
KR101841963B1 (en) Process method of sintered ore
JP2009114537A (en) Method for producing low slag-based sintered ore
JPS61207526A (en) Manufacture of raw material for iron manufacture excelling in reducing property
JPH05195088A (en) Pre-treatment of raw sintered ore for blast furnace
JP2020084258A (en) Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore
WO2007029342A1 (en) Fired agglomerated ore for iron manufacture and process for producing the same
JPH02232322A (en) Charging material for blast furnace and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150