WO2022209014A1 - Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron - Google Patents

Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron Download PDF

Info

Publication number
WO2022209014A1
WO2022209014A1 PCT/JP2021/044584 JP2021044584W WO2022209014A1 WO 2022209014 A1 WO2022209014 A1 WO 2022209014A1 JP 2021044584 W JP2021044584 W JP 2021044584W WO 2022209014 A1 WO2022209014 A1 WO 2022209014A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
producing
agglomerate
material particles
iron
Prior art date
Application number
PCT/JP2021/044584
Other languages
French (fr)
Japanese (ja)
Inventor
隆英 樋口
哲也 山本
光輝 照井
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2021437808A priority Critical patent/AU2021437808A1/en
Priority to CN202180096122.3A priority patent/CN117043364A/en
Priority to CA3212055A priority patent/CA3212055A1/en
Priority to EP21935167.3A priority patent/EP4317464A4/en
Priority to BR112023019688A priority patent/BR112023019688A2/en
Priority to US18/551,401 priority patent/US20240167110A1/en
Publication of WO2022209014A1 publication Critical patent/WO2022209014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • C21B13/0093Protecting against oxidation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/216Sintering; Agglomerating in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic

Definitions

  • the present invention relates to raw material particles for producing agglomerates, a method for producing raw material particles for producing agglomerates, agglomerates, a method for producing agglomerates, and a method for producing reduced iron.
  • the blast furnace method has been the mainstream of the pig iron manufacturing process for many years.
  • raw materials containing iron oxide such as sintered ore and coke are charged into the blast furnace from the top of the blast furnace, and hot air is blown into the blast furnace from tuyeres at the bottom of the blast furnace.
  • the blown hot air reacts with coke in the blast furnace to generate high-temperature reducing gas (mainly carbon monoxide (CO) gas), which heats and reduces the raw material.
  • CO carbon monoxide
  • the raw material is melted and dripped into the blast furnace while being further reduced by coke, and finally stored in the hearth as molten pig iron (pig iron).
  • the stored hot metal is taken out from the tap hole and supplied to the next steelmaking process.
  • carbonaceous material such as coke is used as a reducing agent to indirectly reduce iron oxide contained in the raw material.
  • agglomerates such as fired pellets and sintered bodies of iron ore powder, which are raw materials for reduced iron, are charged from the top of a reducing furnace such as a shaft furnace.
  • a gas CO gas, H gas
  • MIDREX registered trademark
  • Non-Patent Document 1 Non-Patent Document 1
  • Patent Document 2 In the method described in Patent Document 2 or Non-Patent Document 1, in order to suppress the amount of CO 2 emissions, it is necessary to reduce the amount of reduction reaction by CO gas and increase the amount of reduction reaction by H 2 gas. Well, for that purpose, the H2 concentration of the reducing gas used should be increased.
  • the reduction reaction with CO gas is an exothermic reaction (+6710 kcal/kmol (Fe 2 O 3 )
  • the reduction reaction with H 2 gas is an endothermic reaction (-22800 kcal/kmol (Fe 2 O 3 )).
  • the present invention has been made in view of the above problems, and its object is to provide raw material particles for producing agglomerates, which can produce agglomerates having a higher reducibility than conventional ones. to do.
  • the present invention for solving the above problems is as follows.
  • Raw material particles for producing an agglomerate as a raw material for producing reduced iron A central portion and an outer peripheral portion that surrounds the central portion, A raw material particle for producing an agglomerate, wherein the central portion contains a metallic iron-containing substance or a volatile substance, and the outer peripheral portion contains iron oxide.
  • [5] A method for producing raw material particles according to any one of [1] to [4] above, wherein the raw material containing iron oxide is pulverized to obtain a raw material powder, and then classified to classify the raw material.
  • a pretreatment step for adjusting the particle size of the powder Raw material particles for producing agglomerates, characterized in that the raw material powder whose particle size is adjusted and the metallic iron-containing substance or the volatile substance and the binder are mixed and granulated to obtain the raw material particles. Production method.
  • the agglomerated raw material particles are When the core before firing or sintering has the metallic iron-containing material, the core includes a first portion having the metallic iron-containing material and the metallic iron-containing material surrounding the first portion. Having a three-layer structure having a second portion in which the contained metallic iron is oxidized, An agglomerate characterized in that, when the core before firing or sintering contains the volatile substance, the core has a hollow structure that is a void.
  • the raw material particles according to any one of [1] to [4] or the raw material particles produced by the production method according to any one of [5] to [7] are A method for producing an agglomerate, characterized in that the agglomerate is obtained by firing or sintering in an oxidizing atmosphere at a temperature of 1350°C or lower.
  • the agglomerate described in [8] or the agglomerate manufactured by the manufacturing method described in [9] is charged into a reducing furnace, a reducing gas is introduced into the reducing furnace, and the A method for producing reduced iron, comprising reducing iron oxide contained in the agglomerate with a reducing gas to obtain reduced iron.
  • the raw material particles for producing agglomerates according to the present invention are raw material particles for producing agglomerates that serve as raw materials for producing reduced iron, and include a central portion and an outer peripheral portion that surrounds the central portion.
  • the central portion comprises metallic iron-containing substances or volatile substances
  • the outer peripheral portion comprises iron oxide.
  • FIG. 1 shows an example of particles that constitute a conventional agglomerate.
  • the particle 100 shown in FIG. 1 comprises a central portion 110 and an outer peripheral portion 120 surrounding the central portion 110 .
  • the central portion 110 is composed of coarse-grained iron oxide
  • the peripheral portion 120 is composed of iron ore fine powder (that is, iron oxide).
  • the inventors diligently studied ways to increase the reducibility of agglomerates. As a result, the present inventors have come up with the idea of forming the central portion of the particles that constitute the agglomerate from a material that does not require or does not require reduction.
  • the particles 100 are entirely composed of iron oxide, but in order to reduce the iron oxide in the central portion 110, the reducing gas passes through the outer peripheral portion 120 to reach the central portion 110, and reacts. must be exhausted from the surface of the particle 100. Therefore, reducing the iron oxide in the central portion 110 of the particle 100 requires a longer time than reducing the iron oxide in the outer peripheral portion 120 . This leads to a decrease in reducibility of the particles as a whole.
  • the present inventors have determined that the central portion 110 of the conventional particle 100, which requires a long time for reduction, is replaced by a substance containing metallic iron with a high content of metallic iron or a substance that does not require reduction such as voids. It was thought that the time required for reduction of the particles as a whole could be reduced and the reducibility could be enhanced by configuring with
  • the agglomerate as described above is a raw material particle in which the core is composed of the metallic iron-containing material or a volatile substance whose large proportion disappears at high temperatures, and the outer periphery is composed of iron ore powder.
  • the raw material particles for producing agglomerates of the present embodiment are raw material particles for producing agglomerates that serve as raw materials for producing reduced iron using a reducing gas, and are generally called green pellets.
  • FIG. 2 shows raw material particles for producing agglomerates according to the invention.
  • the raw material particle 1 shown in FIG. 2(a) comprises a central portion 11 having a metallic iron-containing substance and an outer peripheral portion 12 having iron oxide.
  • the raw material particle 2 shown in FIG. 2(b) has a central portion 21 containing volatile substances and an outer peripheral portion 22 containing iron oxide.
  • the central portion 11 (21) is a portion that constitutes the nucleus of the raw material particle 1 (2), and in the present invention is composed of a substance that does not require reduction with a reducing gas or a substance that does not require much reduction. Specifically, the central portion 11 (21) is composed of a metallic iron-containing substance (volatile substance).
  • the metallic iron-containing substance is a substance having a high metallic iron content, specifically a substance having a metallic iron concentration of 70% by mass or more.
  • metallic iron-containing substances include reduced iron products produced during the production of reduced iron, sieved products of reduced pellets (pellet chips), and various scraps such as cast iron. Substances can be used.
  • the metallic iron-containing substance it is preferable to use a substance having a metallic iron concentration of 90% by mass or more.
  • the volatile substance is a substance that volatilizes in the agglomeration process (firing process or sintering process), specifically, a substance that has a mass reduction rate of 90% or more at 1000°C.
  • Used paper, organic substances, and the like can be used as such volatile substances.
  • polypropylene, woody biomass-based pellets, waste paper, pellets manufactured from paper pulp waste, and the like can be used.
  • the following describes a suitable raw material particle configuration when the particle size of the entire agglomerate, which is the raw material for producing reduced iron, is 6 to 16 mm, which is used as green pellets. It is preferable that the grain size of the central portion 11 is 2 mm or more and 6 mm or less. If the particle size of the central portion 11 is 2 mm or more, even when the raw material particles 1 are fired or sintered in the agglomeration step, the central portion 11 is not entirely oxidized, leaving the metallic iron-containing substance. The reducibility of the agglomerate can be enhanced.
  • the thickness of the coating layer is sufficiently secured, and more new raw materials for reduced iron are used. can be compounded.
  • the outer peripheral portion 12 (22) constitutes a coating layer that covers the periphery of the central portion 11 (21), which is the nucleus, of the raw material particle 1 (2).
  • the outer peripheral portion 12 (22) can be made of iron oxide.
  • the iron source of the outer peripheral portion 12 (22) is preferably composed of iron oxide powder, which is powdery iron oxide. As a result, when reducing the agglomerate, the reducing gas can be circulated through the gaps between the iron oxide powders to efficiently reduce the iron oxide. Also, the outer peripheral portion 12 (22) may contain an auxiliary material such as CaO or MgO.
  • the particle size is preferably 125 ⁇ m or less. If the particle size of the iron oxide powder is 125 ⁇ m or less, dense raw material particles 1 (2) with reduced porosity between powders that collapse during transportation without reducing the strength of the raw material particles 1 (2) can be obtained. Granulation can be produced. More preferably, the particle size of the iron oxide powder is 63 ⁇ m or less, and even more preferably 45 ⁇ m or less.
  • the thickness of the outer peripheral portion 12 is preferably 2 mm or more and 5 mm or less. If the thickness of the outer peripheral portion 12 is 2 mm or more, it is possible to prevent the layers forming the outer peripheral portion 12 from breaking or collapsing during the firing process. Further, if the thickness of the outer peripheral portion 12 is 5 mm or less, the particle size of the raw material particles 1 (2) can be controlled within the range of 6 mm to 16 mm, and the reaction time in the reduction furnace can be secured.
  • the iron oxide in the outer peripheral portion 12 (22) can be composed of a relatively low-quality raw material.
  • the iron oxide can contain at least more than 4% by weight of water of crystallization and/or more than 1.5% by weight of alumina.
  • a high-quality raw material with a high content of iron oxide has been used.
  • the quality of iron ore powder for producing agglomerates that serve as raw materials for reduced iron has been declining due to depletion of high-quality iron ore.
  • Low-grade iron ore contains a large amount of water of crystallization and gangue (alumina (Al 2 O 3 ) and silica (SiO 2 )). Also, the gangue melts during the firing process, reducing the strength of the agglomerate.
  • the raw material particles 1 (2) according to the present invention have the central portion 11 (21) composed of metallic iron-containing substances (volatile substances), and are composed of substances that do not require or require little reduction. Therefore, even when low-grade iron ore, specifically iron oxide constituting the outer peripheral portion, contains at least more than 4% by mass of water of crystallization and/or more than 1.5% by mass of alumina, a dense mass It is possible to compensate for the decrease in reducibility due to the production of the product.
  • the raw material particles 1 (2) according to the present invention can be used to produce an agglomerate having both strength and reducibility.
  • the iron oxide for example, iron ore produced in Australia or iron ore produced in India, which contain relatively many impurities, can be used.
  • the particle size of the raw material particles 1 (2) is preferably 6 mm or more and 16 mm or less. If the particle size of the raw material particles 1 (2) is 6 mm or more, air permeability in the furnace is secured when iron oxide contained in the agglomerate obtained by agglomerating the raw material particles 1 (2) is reduced. can operate while Further, if the particle size of the raw material particles 1(2) is 16 mm or less, the delay of reduction inside the raw material particles 1(2) can be minimized, and an agglomerate with a high reduction rate can be produced. Preferably, the particle size of the raw material particles 1 (2) is 9 mm or more and 16 mm or less.
  • the ratio of the central portion 11 to the entire raw material particles 1 is preferably 5% by mass or more and 50% by mass or less. If the ratio of the central portion 11 is 5% by mass or more, an agglomerate with high reducibility can be obtained. Moreover, if the ratio of the central portion 11 is 50% by mass or less, a larger amount of new raw material for reduced iron can be blended while ensuring the thickness of the outer peripheral portion 12 that is the coating layer. More preferably, the proportion of central portion 11 is 10% by mass or more and 20% by mass or less.
  • the method for producing raw material particles for producing agglomerates according to the present invention is a method for producing the raw material particles according to the above-described present invention, wherein the raw material containing iron oxide is pulverized to make raw material powder, and then classified and classified as described above.
  • the raw material particles for producing agglomerates according to the present invention have agglomerate having a higher reducibility than conventional ones by forming the central portion of a substance that does not require reduction or a substance that does not require much reduction. It is characterized by being manufacturable.
  • the raw material particles according to the present invention can be produced using a known method for producing green pellets. Each step will be described below.
  • the pretreatment necessary for the granulation process which is the post-process, is performed.
  • a raw material having iron oxide containing 4% by mass or less of water of crystallization and/or 1.5% by mass or less of alumina, such as high-quality iron ore, or 4% by mass, such as low-quality iron ore % of crystal water or more than 1.5% by mass of alumina is pulverized, and the obtained raw material powder is classified to adjust its particle size.
  • the raw material of iron ore can be pulverized using a ball mill or the like.
  • classification can be performed using a rotating rotor, a sieve, or the like.
  • the raw material powder whose particle size has been adjusted in the pretreatment process, metallic iron-containing substances or volatile substances, and binders such as quicklime and bentonite are mixed and granulated.
  • metallic iron-containing substances or volatile substances, and binders such as quicklime and bentonite are also component adjustment materials for CaO and MgO.
  • This can be done using a pelletizer such as a disc pelletizer, a drum mixer or the like. In this way, raw material particles for agglomerate production can be produced.
  • the granulation step it is preferable to use a metallic iron-containing substance or a volatile substance having a particle size of 2 mm or more and 6 mm or less. Also, as described above, it is preferable to adjust the thickness of the outer peripheral portion to 2 mm or more and 5 mm or less in the granulation step.
  • the agglomerate according to the present invention is an agglomerate obtained by firing or sintering the raw material particles for producing the agglomerate according to the present invention, and the agglomerated raw material particles are fired Alternatively, when the core before sintering has a metallic iron-containing substance, the core has a first portion having a metallic iron-containing substance, and the metallic iron contained in the metallic iron-containing substance covering the first portion is oxidized. It is characterized by having a three-layered structure having a second portion formed thereon, and having a hollow structure in which the central portion is a void when the central portion contains a volatile substance before firing or sintering.
  • the raw material particles for producing agglomerates according to the present invention are configured so that the central part thereof contains metallic iron-containing substances or volatile substances.
  • the central part 11 of the raw material particle 1 has a metallic iron-containing substance
  • the outer peripheral part 12 of the central part 11 is formed by heat during the firing process or the sintering process.
  • the metallic iron in the adjacent portion is oxidized, leaving the metallic iron-containing material unoxidized inside.
  • the particles 3 constituting the agglomerate consisted of a first portion 31a having a metallic iron-containing substance and an oxidized metallic iron covering the first portion 31a.
  • the outer peripheral portion 32 has a three-layer structure including the second portion 31b and iron oxide.
  • the central portion 21 of the raw material particle 2 contains a volatile substance
  • the volatile substance in the central portion 21 volatilizes due to heat during the firing process or the sintering process.
  • the particles 4 constituting the agglomerate have a hollow structure in which the central portion 41 is void and the outer peripheral portion 42 contains iron oxide.
  • the agglomerate according to the present invention composed of such particles 3 and 4 is , it has a higher reducibility than the conventional one.
  • the particle 3 has a stronger structure because the layer (second portion) 31b formed by oxidation of the metallic iron-containing material forming the central portion 11 of the raw material particle 1 forms a shell.
  • the particles 4 although a shell like the layer (second portion) 31b of the particles 3 is not formed, the hollow portion A dense sintered layer is formed on the inner wall texture of 41 .
  • the particle 4 has a higher strength than a structure that is hollow from the beginning, due to the effect of positively applying the amount of heat from the inside.
  • the raw material particles according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are fired or fired in an oxidizing atmosphere at 1200 ° C. or higher and 1350 ° C. or lower. It is characterized by forming an agglomeration by binding to obtain an agglomerate.
  • the raw material particles for producing agglomerates according to the present invention or the raw material particles produced by the method for producing raw material particles according to the present invention have a core containing a metallic iron-containing substance or a volatile substance, and an outer peripheral portion containing an oxidized substance. have iron; By firing or sintering such raw material iron powder in an oxidizing atmosphere at 1200 ° C. or more and 1350 ° C. or less to agglomerate it, when the center part of the raw material particle has a metallic iron-containing substance, it is adjacent to the outer peripheral part Some of the metallic iron is oxidized, while the core of the raw material particles volatilizes if it has volatiles. As a result, the particles constituting the agglomerates have a three-layer structure as shown in FIG. 3(a) or a hollow structure as shown in FIG. An agglomerate having properties can be obtained.
  • the firing of the raw material particles can be performed using a rotary kiln or the like. Specifically, the raw material particles for agglomerate production according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are charged into a rotary kiln and placed in the air at 1200 ° C. or higher and 1350 ° C. or lower. placed in an oxidizing atmosphere such as Thereby, fired pellets can be obtained.
  • sintering of raw material particles can be performed using a sintering machine.
  • the raw material particles for agglomerate production according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are mixed with granulated particles obtained by granulating conventional raw material particles. and placed in an oxidizing atmosphere at 1200° C. or higher and 1350° C. or lower. Thereby, a sintered ore can be obtained.
  • Method for producing reduced iron In the method for producing reduced iron according to the present invention, the agglomerate according to the present invention described above or the agglomerate produced by the method for producing an agglomerate according to the present invention is charged into a reducing furnace, and a reducing gas is introduced into the reducing furnace. and reducing iron oxide contained in the agglomerate to obtain reduced iron.
  • the agglomerate according to the present invention or the agglomerate produced by the method for producing an agglomerate according to the present invention has higher reducibility than conventional ones.
  • a reducing furnace such as a shaft furnace and introducing a reducing gas, reduced iron can be produced efficiently.
  • the reducing gas includes coke oven gas, gas obtained by reforming natural gas (including hydrocarbon as a component), mixed gas of CO gas and H2 gas, H2 gas ( H2 concentration is 100 % gas) can be used, but it is preferable to use a gas containing H 2 as a main component as the reducing gas.
  • a gas containing H 2 as a main component means a gas having an H 2 concentration of 50% by volume or more. This makes it possible to reduce CO 2 emissions.
  • the H 2 concentration of the reducing gas is preferably 65% by volume or more. Thereby, the CO 2 emission reduction effect can be further enhanced.
  • the H2 concentration of the reducing gas is more preferably 70% by volume or more, more preferably 80% by volume or more, even more preferably 90% by volume or more, and most preferably 100% by volume , that is, using H2 gas as the reducing gas. .
  • H2 gas By using H2 gas as the reducing gas, reduced iron can be produced without emitting CO2 .
  • a sintered ore was prepared by using a raw material powder obtained by mixing Brazilian iron ore and Australian iron ore whose composition is shown in Table 1 at a ratio of 50:50. Specifically, first, the solid iron ore was granulated together with auxiliary raw materials limestone, return ore and coke fine to produce granulated particles. The average diameter of the produced granulated particles was about 3 to 4 mm, and core particles (concentration of iron: 57% by mass) of about 1 mm at maximum were contained inside the particles. The granulated particles thus obtained were charged into a small sintering tester and sintered.
  • Invention Example 4 A sintered ore as an agglomerate according to Invention Example 4 was produced in the same manner as in Invention Example 3. However, the green pellets prepared by the same method as in Invention Example 2 were used. All other conditions are the same as in Invention Example 3. It was 84% when the value of the reducibility of the obtained sintered ore was calculated
  • Invention example 5 A sintered ore as an agglomerate according to Invention Example 4 was produced in the same manner as in Invention Example 1. However, polypropylene particles (diameter: 3-5 mm) were added in place of the DRI powder when producing the green pellets. All other conditions are the same as in Invention Example 1. The value of the reducibility of the obtained fired pellets was determined to be 79%.
  • the agglomerates according to Invention Examples 1 to 5 had strength comparable to that of the agglomerates according to Conventional Examples 1 and 2, and could be used for producing reduced iron without any problem. Thus, the agglomerates according to Invention Examples 1 to 5 have both strength and reducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Provided are raw material particles for the production of an agglomerate, able to produce an agglomerate having a higher reducing property. The raw material particles 1 (2) of the present invention, for producing an agglomerate used as raw material for the production of reduced iron comprise: central parts 11 (21) and outer peripheral parts 12 (22) covering the circumference of the central parts 11 (21). The raw material particles are characterized in that the central part 11 has a metal iron-containing substance, the center part 21 has a volatile substance, and the outer peripheral parts 12 (22) have an iron oxide.

Description

塊成物製造用の原料粒子、塊成物製造用の原料粒子の製造方法、塊成物、塊成物の製造方法および還元鉄の製造方法Raw material particles for producing agglomerate, method for producing raw material particles for producing agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
 本発明は、塊成物製造用の原料粒子、塊成物製造用の原料粒子の製造方法、塊成物、塊成物の製造方法および還元鉄の製造方法に関する。 The present invention relates to raw material particles for producing agglomerates, a method for producing raw material particles for producing agglomerates, agglomerates, a method for producing agglomerates, and a method for producing reduced iron.
 鉄鋼業においては、長年、高炉法が銑鉄製造工程の主流を担ってきた。高炉法においては、高炉の炉頂から焼結鉱などの酸化鉄を含む原料およびコークスを高炉内に装入し、高炉下部の羽口から熱風を高炉内に吹き込む。これにより、吹き込まれた熱風が高炉内のコークスと反応して高温の還元ガス(主に一酸化炭素(CO)ガス)が発生し、原料を加熱しながら還元する。その後、原料は溶融してコークスによってさらに還元されながら高炉内を滴下し、最終的には溶銑(銑鉄)として炉床部に貯留する。貯留した溶銑は、出銑口から取り出され、次の製鋼プロセスに供される。このように、高炉法ではコークスなどの炭材を還元材として使用して、原料に含まれる酸化鉄を間接的に還元する。 In the steel industry, the blast furnace method has been the mainstream of the pig iron manufacturing process for many years. In the blast furnace method, raw materials containing iron oxide such as sintered ore and coke are charged into the blast furnace from the top of the blast furnace, and hot air is blown into the blast furnace from tuyeres at the bottom of the blast furnace. As a result, the blown hot air reacts with coke in the blast furnace to generate high-temperature reducing gas (mainly carbon monoxide (CO) gas), which heats and reduces the raw material. After that, the raw material is melted and dripped into the blast furnace while being further reduced by coke, and finally stored in the hearth as molten pig iron (pig iron). The stored hot metal is taken out from the tap hole and supplied to the next steelmaking process. Thus, in the blast furnace method, carbonaceous material such as coke is used as a reducing agent to indirectly reduce iron oxide contained in the raw material.
 ところで、近年、地球温暖化防止が叫ばれており、温室効果ガスの1つである二酸化炭素(CO)の排出削減が強く要請されている。上述のように、高炉法では還元材として炭材を使用するため、大量のCOが発生する。そこで、還元材比(溶銑1トンあたりの還元材使用量)を削減した様々な高炉操業方法が提案されている(例えば、特許文献1参照)。 By the way, in recent years, the prevention of global warming has been called for, and there is a strong demand for the reduction of emissions of carbon dioxide (CO 2 ), which is one of the greenhouse gases. As mentioned above, the blast furnace process uses carbonaceous material as a reducing agent, so a large amount of CO 2 is generated. Therefore, various blast furnace operating methods have been proposed in which the reducing agent ratio (the amount of reducing agent used per ton of hot metal) is reduced (see, for example, Patent Document 1).
 一方、原料に含まれる酸化鉄を直接還元する方法として、還元鉄の原料である、鉄鉱石粉の焼成ペレットや焼結体などの塊成物をシャフト炉などの還元炉の炉頂部から装入するとともに、還元剤としてガス(COガス、Hガス)を還元炉の炉下部から導入して還元鉄を製造する方法があり(例えば、特許文献2)、MIDREX(登録商標)(非特許文献1)などが知られている。この方法において、還元ガスとしてHガスのみを使用する場合、理論上はCOを排出しない還元鉄の製造が可能である。 On the other hand, as a method for directly reducing iron oxide contained in raw materials, agglomerates such as fired pellets and sintered bodies of iron ore powder, which are raw materials for reduced iron, are charged from the top of a reducing furnace such as a shaft furnace. In addition, there is a method of producing reduced iron by introducing a gas (CO gas, H gas) as a reducing agent from the lower part of the reducing furnace (for example, Patent Document 2 ), MIDREX (registered trademark) (Non-Patent Document 1 ) are known. In this method, if only H2 gas is used as the reducing gas, it is theoretically possible to produce reduced iron that does not emit CO2 .
特開2020-45508号公報Japanese Patent Application Laid-Open No. 2020-45508 特公平2-46644号公報Japanese Patent Publication No. 2-46644
 上記特許文献2または非特許文献1に記載された方法において、COの排出量を抑制するためには、COガスによる還元反応量を減らして、Hガスによる還元反応量を増加させればよく、そのためには、使用する還元ガスのH濃度を高めればよい。 In the method described in Patent Document 2 or Non-Patent Document 1, in order to suppress the amount of CO 2 emissions, it is necessary to reduce the amount of reduction reaction by CO gas and increase the amount of reduction reaction by H 2 gas. Well, for that purpose, the H2 concentration of the reducing gas used should be increased.
 しかしながら、COガスによる還元反応が発熱反応(+6710kcal/kmol(Fe))であるのに対して、Hガスによる還元反応は吸熱反応(-22800kcal/kmol(Fe))である。したがって、還元ガスのH濃度を高めると、吸熱反応が生じて炉内の温度が低下し、還元反応が停滞して還元性が低下する問題がある。 However, while the reduction reaction with CO gas is an exothermic reaction (+6710 kcal/kmol (Fe 2 O 3 )), the reduction reaction with H 2 gas is an endothermic reaction (-22800 kcal/kmol (Fe 2 O 3 )). be. Therefore, if the H 2 concentration of the reducing gas is increased, an endothermic reaction occurs, the temperature in the furnace drops, and the reduction reaction stagnate, resulting in a decrease in reducibility.
 上述のような還元性の低下問題を解決するために、高い還元性を有する塊成物ひいては、こうした塊成物を製造することができる原料粒子が希求されている。 In order to solve the problem of reduced reducibility as described above, agglomerates with high reducibility and raw material particles from which such agglomerates can be produced are desired.
 本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、従来よりも高い還元性を有する塊成物を製造することができる、塊成物製造用の原料粒子を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide raw material particles for producing agglomerates, which can produce agglomerates having a higher reducibility than conventional ones. to do.
 上記課題を解決する本発明は、以下の通りである。 The present invention for solving the above problems is as follows.
[1]還元鉄製造の原料となる塊成物を製造するための原料粒子であって、
 中心部と、該中心部の周囲を覆う外周部とを備え、
 前記中心部は金属鉄含有物質または揮発物質を有し、前記外周部は、酸化鉄を有することを特徴とする、塊成物製造用の原料粒子。
[1] Raw material particles for producing an agglomerate as a raw material for producing reduced iron,
A central portion and an outer peripheral portion that surrounds the central portion,
A raw material particle for producing an agglomerate, wherein the central portion contains a metallic iron-containing substance or a volatile substance, and the outer peripheral portion contains iron oxide.
[2]前記酸化鉄は、少なくとも4質量%超えの結晶水および/または1.5質量%超えのアルミナを含む、前記[1]に記載の塊成物製造用の原料粒子。 [2] The raw material particles for producing agglomerates according to [1], wherein the iron oxide contains at least water of crystallization exceeding 4% by mass and/or alumina exceeding 1.5% by mass.
[3]前記中心部の粒径が2mm以上6mm以下である、前記[1]または[2]に記載の塊成物製造用の原料粒子。 [3] The raw material particles for producing an agglomerate according to [1] or [2], wherein the particle size of the central portion is 2 mm or more and 6 mm or less.
[4]前記外周部の厚みが2mm以上5mm以下である、前記[1]~[3]のいずれか一項に記載の塊成物製造用の原料粒子。 [4] The raw material particle for producing an agglomerate according to any one of [1] to [3], wherein the outer peripheral portion has a thickness of 2 mm or more and 5 mm or less.
[5]前記[1]~[4]のいずれか一項に記載の原料粒子を製造する方法であって、前記酸化鉄を有する原料を粉砕して原料粉とした後、分級して前記原料粉の粒径を調整する前処理工程と、
 粒径が調整された前記原料粉と前記金属鉄含有物質または前記揮発物質とバインダーとを混合して造粒し、前記原料粒子を得ることを特徴とする、塊成物製造用の原料粒子の製造方法。
[5] A method for producing raw material particles according to any one of [1] to [4] above, wherein the raw material containing iron oxide is pulverized to obtain a raw material powder, and then classified to classify the raw material. A pretreatment step for adjusting the particle size of the powder,
Raw material particles for producing agglomerates, characterized in that the raw material powder whose particle size is adjusted and the metallic iron-containing substance or the volatile substance and the binder are mixed and granulated to obtain the raw material particles. Production method.
[6]前記造粒工程において、粒径が2mm以上6mm以下である前記金属鉄含有物質または前記揮発物質を用いる、前記[5]に記載の塊成物製造用の原料粒子の製造方法。 [6] The method for producing raw material particles for producing agglomerates according to [5], wherein the metallic iron-containing substance or the volatile substance having a particle size of 2 mm or more and 6 mm or less is used in the granulation step.
[7]前記造粒工程において、前記外周部の厚みを2mm以上5mm以下に調整する、前記[5]または[6]に記載の塊成物製造用の原料粒子の製造方法。 [7] The method for producing raw material particles for producing agglomerates according to [5] or [6], wherein in the granulation step, the thickness of the outer peripheral portion is adjusted to 2 mm or more and 5 mm or less.
[8]前記[1]~[4]のいずれか一項に記載の原料粒子を焼成または焼結して塊成化された塊成物であって、
 塊成化された前記原料粒子は、
  焼成または焼結前の前記中心部が前記金属鉄含有物質を有する場合、前記中心部は前記金属鉄含有物質を有する第1部分と、該第1部分の周囲を覆う、前記金属鉄含有物質に含まれる金属鉄が酸化した第2部分とを有する3層構造を有し、
  焼成または焼結前の前記中心部が前記揮発物質を有する場合、前記中心部は空隙である中空構造を有することを特徴とする、塊成物。
[8] An agglomerate obtained by firing or sintering the raw material particles according to any one of [1] to [4],
The agglomerated raw material particles are
When the core before firing or sintering has the metallic iron-containing material, the core includes a first portion having the metallic iron-containing material and the metallic iron-containing material surrounding the first portion. Having a three-layer structure having a second portion in which the contained metallic iron is oxidized,
An agglomerate characterized in that, when the core before firing or sintering contains the volatile substance, the core has a hollow structure that is a void.
[9]前記[1]~[4]のいずれか一項に記載の原料粒子、または前記[5]~[7]のいずれか一項に記載の製造方法によって製造された原料粒子を、1200℃以上1350℃以下の酸化雰囲気下で焼成または焼結して塊成化し、塊成物を得ることを特徴とする、塊成物の製造方法。 [9] The raw material particles according to any one of [1] to [4] or the raw material particles produced by the production method according to any one of [5] to [7] are A method for producing an agglomerate, characterized in that the agglomerate is obtained by firing or sintering in an oxidizing atmosphere at a temperature of 1350°C or lower.
[10]前記[8]に記載の塊成物または前記[9]に記載の製造方法によって製造された塊成物を還元炉に装入するとともに、還元ガスを前記還元炉に導入し、前記還元ガスにより前記塊成物に含まれる酸化鉄を還元して還元鉄を得ることを特徴とする、還元鉄の製造方法。 [10] The agglomerate described in [8] or the agglomerate manufactured by the manufacturing method described in [9] is charged into a reducing furnace, a reducing gas is introduced into the reducing furnace, and the A method for producing reduced iron, comprising reducing iron oxide contained in the agglomerate with a reducing gas to obtain reduced iron.
[11]前記還元ガスとして水素を主成分とするガスを使用する、前記[10]に記載の還元鉄の製造方法。 [11] The method for producing reduced iron according to [10], wherein a gas containing hydrogen as a main component is used as the reducing gas.
 本発明によれば、従来よりも高い還元性を有する塊成物を製造することができる、塊成物製造用の原料粒子を提供することができる。 According to the present invention, it is possible to provide raw material particles for producing agglomerates, which can produce agglomerates having a higher reducibility than conventional ones.
従来の塊成物を構成する粒子の一例を示す図である。It is a figure which shows an example of the particle|grains which comprise the conventional agglomerate. 本発明による塊成物製造用の原料粒子を示す図であり、(a)は中心部が金属鉄含有物質を有するもの、(b)は中心部が揮発物質を有するものである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the raw material particle|grains for agglomerate manufacture by this invention, (a) has a metal iron containing substance in the center part, (b) has a volatile substance in the center part. 本発明による塊成物を構成する粒子を示す図であり、(a)は3層構造を有するもの、(b)は中空構造を有するものである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the particle|grains which comprise the agglomerate by this invention, (a) has a three-layer structure, (b) has a hollow structure.
(塊成物製造用の原料粒子)
 以下、図面を参照して、本発明の実施形態について説明する。本発明による塊成物製造用の原料粒子は、還元鉄製造の原料となる塊成物を製造するための原料粒子であり、中心部と該中心部の周囲を覆う外周部とを備え、上記中心部は金属鉄含有物質または揮発物質を有し、上記外周部は、酸化鉄を有することを特徴とする。
(Raw material particles for agglomerate production)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The raw material particles for producing agglomerates according to the present invention are raw material particles for producing agglomerates that serve as raw materials for producing reduced iron, and include a central portion and an outer peripheral portion that surrounds the central portion. The central portion comprises metallic iron-containing substances or volatile substances, and the outer peripheral portion comprises iron oxide.
 本発明者らは、従来よりも高い還元性を有する還元鉄製造の原料となる塊成物を製造することができる、塊成物製造用の原料粒子について鋭意検討した。図1は、従来の塊成物を構成する粒子の一例を示している。図1に示した粒子100は、中心部110と該中心部110の周囲を覆う外周部120とを備える。粒子100においては、中心部110は粗粒の酸化鉄で構成されており、外周部120は鉄鉱石の微粉(すなわち、酸化鉄)で構成されている。 The present inventors diligently studied raw material particles for producing agglomerates, which can produce agglomerates that are raw materials for producing reduced iron and have higher reducibility than conventional ones. FIG. 1 shows an example of particles that constitute a conventional agglomerate. The particle 100 shown in FIG. 1 comprises a central portion 110 and an outer peripheral portion 120 surrounding the central portion 110 . In the particle 100, the central portion 110 is composed of coarse-grained iron oxide, and the peripheral portion 120 is composed of iron ore fine powder (that is, iron oxide).
 本発明者らは、塊成物の還元性を高める方途について鋭意検討した。その結果、塊成物を構成する粒子について、中心部を還元が不要またはあまり必要ではない物質で構成することに想到した。 The inventors diligently studied ways to increase the reducibility of agglomerates. As a result, the present inventors have come up with the idea of forming the central portion of the particles that constitute the agglomerate from a material that does not require or does not require reduction.
 すなわち、上記粒子100は、粒子全体が酸化鉄で構成されているが、中心部110の酸化鉄を還元するためには、還元ガスが外周部120を通過して中心部110に到達し、反応によって生成されるガスが粒子100の表面から排出される必要がある。そのため、粒子100の中心部110の酸化鉄を還元するには、外周部120の酸化鉄を還元する場合に比べて多くの時間を要する。これは、粒子全体の還元性の低下に繋がる。 That is, the particles 100 are entirely composed of iron oxide, but in order to reduce the iron oxide in the central portion 110, the reducing gas passes through the outer peripheral portion 120 to reach the central portion 110, and reacts. must be exhausted from the surface of the particle 100. Therefore, reducing the iron oxide in the central portion 110 of the particle 100 requires a longer time than reducing the iron oxide in the outer peripheral portion 120 . This leads to a decrease in reducibility of the particles as a whole.
 そこで、本発明者らは、従来の粒子100において還元に多くの時間を要する中心部110を、金属鉄の含有率が高い金属鉄含有物質や空隙などの還元が不要か、あまり必要ではない物質で構成することにより、粒子全体として還元に要する時間を低減して還元性を高めることができるのではないかと考えた。 Therefore, the present inventors have determined that the central portion 110 of the conventional particle 100, which requires a long time for reduction, is replaced by a substance containing metallic iron with a high content of metallic iron or a substance that does not require reduction such as voids. It was thought that the time required for reduction of the particles as a whole could be reduced and the reducibility could be enhanced by configuring with
 そして、本発明者らは、上述のような塊成物は、中心部を上記金属鉄含有物質または高温で多くの割合が消失する揮発物質で構成し、外周部を鉄鉱石粉で構成した原料粒子を用いて製造することにより、塊成化工程(焼成工程または焼結工程)後に得られる塊成物を構成する粒子が、上述のような、中心部を還元不要あるいはあまり必要ではない状態にできることを見出し、本発明を完成させたのである。以下、本発明の各構成について説明する。 The inventors of the present invention have found that the agglomerate as described above is a raw material particle in which the core is composed of the metallic iron-containing material or a volatile substance whose large proportion disappears at high temperatures, and the outer periphery is composed of iron ore powder. By manufacturing using, the particles constituting the agglomerate obtained after the agglomeration step (firing step or sintering step) can be in a state where the central part does not need or is not much required to be reduced, as described above. and completed the present invention. Each configuration of the present invention will be described below.
 本実施形態の塊成物製造用の原料粒子は、還元ガスを用いた還元鉄製造の原料となる塊成物を製造するための原料粒子であり、一般にグリーンペレットと呼ばれるものである。図2は、本発明による塊成物製造用の原料粒子を示している。図2(a)に示した原料粒子1は、金属鉄含有物質を有する中心部11と、酸化鉄を有する外周部12とを備える。また、図2(b)に示した原料粒子2は、揮発物質を有する中心部21と、酸化鉄を有する外周部22とを備える。 The raw material particles for producing agglomerates of the present embodiment are raw material particles for producing agglomerates that serve as raw materials for producing reduced iron using a reducing gas, and are generally called green pellets. FIG. 2 shows raw material particles for producing agglomerates according to the invention. The raw material particle 1 shown in FIG. 2(a) comprises a central portion 11 having a metallic iron-containing substance and an outer peripheral portion 12 having iron oxide. The raw material particle 2 shown in FIG. 2(b) has a central portion 21 containing volatile substances and an outer peripheral portion 22 containing iron oxide.
<中心部>
 中心部11(21)は、原料粒子1(2)の核を構成する部分であり、本発明においては還元ガスによる還元不要物質あるいは還元があまり必要ではない物質で構成されている。具体的には、中心部11(21)は、金属鉄含有物質(揮発物質)で構成されている。
<Central area>
The central portion 11 (21) is a portion that constitutes the nucleus of the raw material particle 1 (2), and in the present invention is composed of a substance that does not require reduction with a reducing gas or a substance that does not require much reduction. Specifically, the central portion 11 (21) is composed of a metallic iron-containing substance (volatile substance).
-金属鉄含有物質-
 本発明において、金属鉄含有物質は、金属鉄の含有率が高い物質であり、具体的には、金属鉄の濃度が70質量%以上の物質である。こうした金属鉄含有物質としては、還元鉄製造時に製造された還元不良品や還元ペレットの篩下品(ペレットチップ)、鋳鉄などの各種スクラップ屑などが挙げられ、金属鉄の濃度が70質量%以上の物質を用いることができる。金属鉄含有物質として、金属鉄の濃度が90質量%以上の物質を用いることが好ましい。
-Substances containing metallic iron-
In the present invention, the metallic iron-containing substance is a substance having a high metallic iron content, specifically a substance having a metallic iron concentration of 70% by mass or more. Examples of such metallic iron-containing substances include reduced iron products produced during the production of reduced iron, sieved products of reduced pellets (pellet chips), and various scraps such as cast iron. Substances can be used. As the metallic iron-containing substance, it is preferable to use a substance having a metallic iron concentration of 90% by mass or more.
-揮発物質-
 一方、揮発物質は、塊成化工程(焼成工程または焼結工程)において揮発する物質であり、具体的には、1000℃で質量減少率が90%以上の物質である。こうした揮発物質としては、古紙や有機物質など用いることができる。具体的には、ポリプロピレンや木質バイオマス系のペレット、古紙、製紙パルプ廃材から製造されたペレットなどを用いることができる。
- Volatile substances -
On the other hand, the volatile substance is a substance that volatilizes in the agglomeration process (firing process or sintering process), specifically, a substance that has a mass reduction rate of 90% or more at 1000°C. Used paper, organic substances, and the like can be used as such volatile substances. Specifically, polypropylene, woody biomass-based pellets, waste paper, pellets manufactured from paper pulp waste, and the like can be used.
 以下、還元鉄製造の原料となる塊成物全体の粒径をグリーンペレットとして使用される6~16mmとする場合の好適な原料粒子構成について述べる。中心部11の粒径は、2mm以上6mm以下とすることが好ましい。中心部11の粒径が2mm以上であれば、原料粒子1が塊成化工程において焼成または焼結された場合にも、中心部11の全てが酸化されずに金属鉄含有物質を残して、塊成物の還元性を高めることができる。また、中心部11の粒径が6mm以下であれば、原料粒子1(2)の粒径を6~16mmとする場合、被覆層の厚みを十分確保し、還元鉄用の新原料をより多く配合することができる。 The following describes a suitable raw material particle configuration when the particle size of the entire agglomerate, which is the raw material for producing reduced iron, is 6 to 16 mm, which is used as green pellets. It is preferable that the grain size of the central portion 11 is 2 mm or more and 6 mm or less. If the particle size of the central portion 11 is 2 mm or more, even when the raw material particles 1 are fired or sintered in the agglomeration step, the central portion 11 is not entirely oxidized, leaving the metallic iron-containing substance. The reducibility of the agglomerate can be enhanced. In addition, if the particle diameter of the central portion 11 is 6 mm or less, and the particle diameter of the raw material particles 1 (2) is 6 to 16 mm, the thickness of the coating layer is sufficiently secured, and more new raw materials for reduced iron are used. can be compounded.
<外周部>
 外周部12(22)は、原料粒子1(2)において、核である中心部11(21)の周囲を覆う被覆層を構成する。本発明では、外周部12(22)は、酸化鉄で構成できる。
<Periphery>
The outer peripheral portion 12 (22) constitutes a coating layer that covers the periphery of the central portion 11 (21), which is the nucleus, of the raw material particle 1 (2). In the present invention, the outer peripheral portion 12 (22) can be made of iron oxide.
 外周部12(22)の鉄源は、粉状の酸化鉄である酸化鉄粉で構成することが好ましい。これにより、塊成物を還元する際に、還元ガスを酸化鉄粉間の隙間を流通させて、酸化鉄を効率的に還元させることができる。また、外周部12(22)の構成には、CaOやMgO等の副原料を含有させてもよい。 The iron source of the outer peripheral portion 12 (22) is preferably composed of iron oxide powder, which is powdery iron oxide. As a result, when reducing the agglomerate, the reducing gas can be circulated through the gaps between the iron oxide powders to efficiently reduce the iron oxide. Also, the outer peripheral portion 12 (22) may contain an auxiliary material such as CaO or MgO.
 外周部12(22)が酸化鉄粉で構成されている場合、その粒径は125μm以下であることが好ましい。酸化鉄粉の粒径が125μm以下であれば、原料粒子1(2)の強度を低下させることなく、搬送時に崩壊する粉体間の空隙率を低下させた緻密な原料粒子1(2)を造粒製造することができる。より好ましくは、酸化鉄粉の粒径は、63μm以下、さらに好ましくは45μm以下である。 When the outer peripheral portion 12 (22) is made of iron oxide powder, the particle size is preferably 125 μm or less. If the particle size of the iron oxide powder is 125 μm or less, dense raw material particles 1 (2) with reduced porosity between powders that collapse during transportation without reducing the strength of the raw material particles 1 (2) can be obtained. Granulation can be produced. More preferably, the particle size of the iron oxide powder is 63 μm or less, and even more preferably 45 μm or less.
 外周部12の厚みは、2mm以上5mm以下であることが好ましい。外周部12の厚みが2mm以上であれば、焼成過程における外周部12を構成する層の破れや崩壊を抑止することができる。また、外周部12の厚みが5mm以下であれば、原料粒子1(2)の粒径を6mm~16mmの範囲に制御することが可能となり、還元炉における反応時間を確保することができる。 The thickness of the outer peripheral portion 12 is preferably 2 mm or more and 5 mm or less. If the thickness of the outer peripheral portion 12 is 2 mm or more, it is possible to prevent the layers forming the outer peripheral portion 12 from breaking or collapsing during the firing process. Further, if the thickness of the outer peripheral portion 12 is 5 mm or less, the particle size of the raw material particles 1 (2) can be controlled within the range of 6 mm to 16 mm, and the reaction time in the reduction furnace can be secured.
 また、外周部12(22)における酸化鉄は、比較的低品質の原料で構成することができる。具体的には、上記酸化鉄は、少なくとも4質量%超えの結晶水および/または1.5質量%超えのアルミナを含むことができる。従来、還元炉を用いた還元鉄の製造プロセスにおいては、原料として酸化鉄の含有量が多い高品質のものが使用されてきた。しかしながら、近年、還元鉄の原料となる塊成物を製造するための鉄鉱石粉の品質が、高品質の鉄鉱石の枯渇によって低品位化している。低品位の鉄鉱石は結晶水や脈石(アルミナ(Al)やシリカ(SiO))を多く含有しており、結晶水は塊成物の強度低下や焼成過程における爆裂の原因となり、また脈石は焼成過程において溶融して塊成物の強度を低下させる問題がある。 Also, the iron oxide in the outer peripheral portion 12 (22) can be composed of a relatively low-quality raw material. Specifically, the iron oxide can contain at least more than 4% by weight of water of crystallization and/or more than 1.5% by weight of alumina. Conventionally, in the process of producing reduced iron using a reducing furnace, a high-quality raw material with a high content of iron oxide has been used. However, in recent years, the quality of iron ore powder for producing agglomerates that serve as raw materials for reduced iron has been declining due to depletion of high-quality iron ore. Low-grade iron ore contains a large amount of water of crystallization and gangue (alumina (Al 2 O 3 ) and silica (SiO 2 )). Also, the gangue melts during the firing process, reducing the strength of the agglomerate.
 このような強度低下を補うために、乾燥工程において鉄鉱石に含まれる結晶水を低減したり、焼成熱量を増加したりすることが有効であるが、得られた塊成物が緻密な組織となるため、今度は塊成物の還元性が低下する問題が生じる。塊成物の還元性が低下すると、還元鉄製造プロセスにおいて塊成物の還元により多くの時間を要することになるため、還元鉄の製造効率が低下する。このように、塊成物の強度と還元性とはトレードオフの関係にある。 In order to compensate for such a decrease in strength, it is effective to reduce the water of crystallization contained in the iron ore in the drying process and to increase the amount of heat for firing. Therefore, there arises a problem that the reducibility of the agglomerate is lowered. When the reducibility of the agglomerate is lowered, it takes more time to reduce the agglomerate in the reduced iron production process, resulting in a reduced production efficiency of reduced iron. Thus, there is a trade-off relationship between the strength and reducibility of the agglomerate.
 塊成物の強度と還元性とを両立させる方法として、例えば、原料粒子のサイズを従来よりも小さくすることが考えられる。しかしこの場合、造粒工程において、焼成または焼結前の原料粒子を造粒する際に、造粒サイズを緻密に制御する必要があり、これは従来の造粒機を用いた操業では困難である。また、還元炉に装入した場合には細粒のペレットは通気性を阻害する可能性があるため、操業上好ましくない。 As a method of achieving both strength and reducibility of the agglomerate, for example, it is conceivable to make the size of the raw material particles smaller than before. However, in this case, in the granulation process, it is necessary to precisely control the granule size when granulating the raw material particles before firing or sintering, which is difficult in the operation using a conventional granulator. be. Further, when charged into a reducing furnace, fine pellets may impede air permeability, which is not preferable in terms of operation.
 この点、本発明による原料粒子1(2)は、中心部11(21)を金属鉄含有物質(揮発物質)で構成しており、還元が不要またはあまり必要ではない物質で構成されている。そのため、低品位の鉄鉱石、具体的には、外周部を構成する酸化鉄が、少なくとも4質量%超えの結晶水および/または1.5質量%超えのアルミナを含む場合にも、緻密な塊成物を製造することによる還元性の低下を補うことができる。このように、本発明による原料粒子1(2)を用いて、強度と還元性とを兼ね備えた塊成物を製造することができる。上記酸化鉄としては、例えば不純物の比較的多い豪州産の鉄鉱石やインド産の鉄鉱石などを用いることができる。 In this regard, the raw material particles 1 (2) according to the present invention have the central portion 11 (21) composed of metallic iron-containing substances (volatile substances), and are composed of substances that do not require or require little reduction. Therefore, even when low-grade iron ore, specifically iron oxide constituting the outer peripheral portion, contains at least more than 4% by mass of water of crystallization and/or more than 1.5% by mass of alumina, a dense mass It is possible to compensate for the decrease in reducibility due to the production of the product. Thus, the raw material particles 1 (2) according to the present invention can be used to produce an agglomerate having both strength and reducibility. As the iron oxide, for example, iron ore produced in Australia or iron ore produced in India, which contain relatively many impurities, can be used.
 原料粒子1(2)の粒径は、6mm以上16mm以下であることが好ましい。原料粒子1(2)の粒径が6mm以上であれば、原料粒子1(2)を塊成化して得られる塊成物に含まれる酸化鉄を還元する際に、炉内の通気性を確保しながら操業することができる。また、原料粒子1(2)の粒径が16mm以下であれば、原料粒子1(2)内部における還元の遅延を最小限に留めて、高還元率の塊成物を製造することができる。好ましくは、原料粒子1(2)の粒径は9mm以上16mm以下である。 The particle size of the raw material particles 1 (2) is preferably 6 mm or more and 16 mm or less. If the particle size of the raw material particles 1 (2) is 6 mm or more, air permeability in the furnace is secured when iron oxide contained in the agglomerate obtained by agglomerating the raw material particles 1 (2) is reduced. can operate while Further, if the particle size of the raw material particles 1(2) is 16 mm or less, the delay of reduction inside the raw material particles 1(2) can be minimized, and an agglomerate with a high reduction rate can be produced. Preferably, the particle size of the raw material particles 1 (2) is 9 mm or more and 16 mm or less.
 また、原料粒子1全体に占める中心部11の割合は、5質量%以上50質量%以下であることが好ましい。中心部11の割合が5質量%以上であれば、還元性の高い塊成物を得ることができる。また、中心部11の割合が50質量%以下であれば、被覆層である外周部12の厚みを確保しつつ、還元鉄用の新原料をより多く配合することができる。より好ましくは、中心部11の割合は、10質量%以上20質量%以下である。 Further, the ratio of the central portion 11 to the entire raw material particles 1 is preferably 5% by mass or more and 50% by mass or less. If the ratio of the central portion 11 is 5% by mass or more, an agglomerate with high reducibility can be obtained. Moreover, if the ratio of the central portion 11 is 50% by mass or less, a larger amount of new raw material for reduced iron can be blended while ensuring the thickness of the outer peripheral portion 12 that is the coating layer. More preferably, the proportion of central portion 11 is 10% by mass or more and 20% by mass or less.
(塊成物製造用の原料粒子の製造方法)
 本発明による塊成物製造用の原料粒子の製造方法は、上述した本発明による原料粒子を製造する方法であって、酸化鉄を有する原料を粉砕して原料粉とした後、分級して上記原料粉の粒径を調整する前処理工程と、粒径が調整された原料粉と金属鉄含有物質または揮発物質とバインダーとを混合して造粒し、本発明による原料粒子を得ることを特徴とする。
(Method for producing raw material particles for producing agglomerates)
The method for producing raw material particles for producing agglomerates according to the present invention is a method for producing the raw material particles according to the above-described present invention, wherein the raw material containing iron oxide is pulverized to make raw material powder, and then classified and classified as described above. A pretreatment step for adjusting the particle size of the raw material powder, and mixing and granulating the raw material powder with the adjusted particle size, a metallic iron-containing substance or a volatile substance, and a binder to obtain raw material particles according to the present invention. and
 上述のように、本発明による塊成物製造用の原料粒子は、中心部を還元不要物質または還元があまり必要ではない物質で構成することによって、従来よりも高い還元性を有する塊成物を製造できることを特徴としている。上記本発明による原料粒子は、公知のグリーンペレットの製造方法を用いて製造することができる。以下、各工程について説明する。 As described above, the raw material particles for producing agglomerates according to the present invention have agglomerate having a higher reducibility than conventional ones by forming the central portion of a substance that does not require reduction or a substance that does not require much reduction. It is characterized by being manufacturable. The raw material particles according to the present invention can be produced using a known method for producing green pellets. Each step will be described below.
 まず、前処理工程では、後工程である造粒工程を行うために必要な前処理を行う。具体的には、高品質の鉄鉱石などの、4質量%以下の結晶水および/または1.5質量%以下のアルミナを含む酸化鉄を有する原料、あるいは低品質の鉄鉱石などの、4質量%超えの結晶水または1.5質量%超えのアルミナを含む酸化鉄を有する原料を粉砕し、得られた原料粉を分級してその粒径を調整する。鉄鉱石の原料の粉砕は、ボールミルなどを用いて行うことができる。また、分級については、回転ローターや篩いなどを用いて行うことができる。 First, in the pretreatment process, the pretreatment necessary for the granulation process, which is the post-process, is performed. Specifically, a raw material having iron oxide containing 4% by mass or less of water of crystallization and/or 1.5% by mass or less of alumina, such as high-quality iron ore, or 4% by mass, such as low-quality iron ore % of crystal water or more than 1.5% by mass of alumina is pulverized, and the obtained raw material powder is classified to adjust its particle size. The raw material of iron ore can be pulverized using a ball mill or the like. In addition, classification can be performed using a rotating rotor, a sieve, or the like.
 次に、造粒工程では、前処理工程において粒径が調整された原料粉と、金属鉄含有物質または揮発物質と、生石灰やベントナイトなどのバインダーとを混合して造粒する。これらはCaOやMgOの成分調整材でもある。これは、ディスクペレタイザーなどのペレタイザーやドラムミキサーなどを用いて行うことができる。こうして、塊成物製造用の原料粒子を製造することができる。 Next, in the granulation process, the raw material powder whose particle size has been adjusted in the pretreatment process, metallic iron-containing substances or volatile substances, and binders such as quicklime and bentonite are mixed and granulated. These are also component adjustment materials for CaO and MgO. This can be done using a pelletizer such as a disc pelletizer, a drum mixer or the like. In this way, raw material particles for agglomerate production can be produced.
 上記造粒工程において、粒径が2mm以上6mm以下である金属鉄含有物質または揮発物質を用いることが好ましいのは既述の通りである。また、造粒工程において、外周部の厚みを2mm以上5mm以下に調整することが好ましいのも既述の通りである。 As described above, in the granulation step, it is preferable to use a metallic iron-containing substance or a volatile substance having a particle size of 2 mm or more and 6 mm or less. Also, as described above, it is preferable to adjust the thickness of the outer peripheral portion to 2 mm or more and 5 mm or less in the granulation step.
(塊成物)
 本発明による塊成物は、上述した本発明による塊成物製造用の原料粒子を焼成または焼結して塊成化された塊成物であって、塊成化された原料粒子は、焼成または焼結前の中心部が金属鉄含有物質を有する場合、中心部は金属鉄含有物質を有する第1部分と、該第1部分の周囲を覆う、金属鉄含有物質に含まれる金属鉄が酸化した第2部分とを有する3層構造を有し、焼成または焼結前の中心部が揮発物質を有する場合、中心部が空隙である中空構造を有することを特徴とする。
(Agglomerate)
The agglomerate according to the present invention is an agglomerate obtained by firing or sintering the raw material particles for producing the agglomerate according to the present invention, and the agglomerated raw material particles are fired Alternatively, when the core before sintering has a metallic iron-containing substance, the core has a first portion having a metallic iron-containing substance, and the metallic iron contained in the metallic iron-containing substance covering the first portion is oxidized. It is characterized by having a three-layered structure having a second portion formed thereon, and having a hollow structure in which the central portion is a void when the central portion contains a volatile substance before firing or sintering.
 上述のように、本発明による塊成物製造用の原料粒子は、その中心部が金属鉄含有物質または揮発物質を有するように構成されている。原料粒子1の中心部11が金属鉄含有物質を有する場合、原料粒子1が焼成または焼結されると、焼成工程または焼結工程の際の熱により、中心部11のうち、外周部12に隣接する部分の金属鉄が酸化され、内部は酸化されずに金属鉄含有物質のまま残る。その結果、図3(a)に示すように、塊成物を構成する粒子3は、金属鉄含有物質を有する第1部分31aと、該第1部分31aの周囲を覆う、金属鉄が酸化した第2部分31bとを有し、外周部32が酸化鉄を有する3層構造となる。 As described above, the raw material particles for producing agglomerates according to the present invention are configured so that the central part thereof contains metallic iron-containing substances or volatile substances. When the central part 11 of the raw material particle 1 has a metallic iron-containing substance, when the raw material particle 1 is fired or sintered, the outer peripheral part 12 of the central part 11 is formed by heat during the firing process or the sintering process. The metallic iron in the adjacent portion is oxidized, leaving the metallic iron-containing material unoxidized inside. As a result, as shown in FIG. 3(a), the particles 3 constituting the agglomerate consisted of a first portion 31a having a metallic iron-containing substance and an oxidized metallic iron covering the first portion 31a. The outer peripheral portion 32 has a three-layer structure including the second portion 31b and iron oxide.
 一方、原料粒子2の中心部21が揮発物質を有する場合、原料粒子2が焼成または焼結されると、焼成工程または焼結工程の際の熱により、中心部21の揮発物質が揮発する。その結果、図3(b)に示すように、塊成物を構成する粒子4は、中心部41が空隙であり、外周部42が酸化鉄を有する中空構造となる。 On the other hand, when the central portion 21 of the raw material particle 2 contains a volatile substance, when the raw material particle 2 is fired or sintered, the volatile substance in the central portion 21 volatilizes due to heat during the firing process or the sintering process. As a result, as shown in FIG. 3B, the particles 4 constituting the agglomerate have a hollow structure in which the central portion 41 is void and the outer peripheral portion 42 contains iron oxide.
 上記図3(a)および3(b)に示した粒子3、4は、中心部31a、41が還元不要な状態にあるため、こうした粒子3、4で構成された本発明による塊成物は、従来よりも高い還元性を有するものとなる。 Since the particles 3 and 4 shown in FIGS. 3(a) and 3(b) have central portions 31a and 41 that do not require reduction, the agglomerate according to the present invention composed of such particles 3 and 4 is , it has a higher reducibility than the conventional one.
 また、粒子3については、原料粒子1の中心部11を構成する金属鉄含有物質の酸化により生成した層(第2部分)31bがシェルを形成するため、より強固な構造を有する。また粒子4については、粒子3の層(第2部分)31bのようなシェルは形成されていないものの、原料粒子2の中心部21を構成する揮発物質の燃焼消失にともなう生成熱により、中空部分41の内壁組織に緻密な焼成層が形成される。その結果、粒子4は、最初から中空の構造体に比べて、内部からの熱量が積極的に与えられる効果により、高い強度を有する。 In addition, the particle 3 has a stronger structure because the layer (second portion) 31b formed by oxidation of the metallic iron-containing material forming the central portion 11 of the raw material particle 1 forms a shell. Regarding the particles 4, although a shell like the layer (second portion) 31b of the particles 3 is not formed, the hollow portion A dense sintered layer is formed on the inner wall texture of 41 . As a result, the particle 4 has a higher strength than a structure that is hollow from the beginning, due to the effect of positively applying the amount of heat from the inside.
(塊成物の製造方法)
 本発明による塊成物の製造方法は、上述した本発明による原料粒子、または本発明による原料粒子の製造方法によって製造された原料粒子を、1200℃以上1350℃以下の酸化雰囲気下で焼成または焼結して塊成化し、塊成物を得ることを特徴とする。
(Method for producing agglomerate)
In the method for producing an agglomerate according to the present invention, the raw material particles according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are fired or fired in an oxidizing atmosphere at 1200 ° C. or higher and 1350 ° C. or lower. It is characterized by forming an agglomeration by binding to obtain an agglomerate.
 上述した本発明による塊成物製造用の原料粒子、または本発明による原料粒子の製造方法によって製造された原料粒子は、その中心部が金属鉄含有物質または揮発物質を有し、外周部は酸化鉄を有する。こうした原料鉄粉を1200℃以上1350℃以下の酸化雰囲気下で焼成または焼結して塊成化することにより、原料粒子の中心部が金属鉄含有物質を有する場合には、外周部に隣接する部分の金属鉄が酸化される一方、原料粒子の中心部が揮発物質を有する場合には、揮発する。その結果、塊成物を構成する粒子は、図3(a)に示したような3層構造を有するものか、図3(b)に示した中空構造を有するものとなり、従来よりも高い還元性を有する塊成物を得ることができる。 The raw material particles for producing agglomerates according to the present invention or the raw material particles produced by the method for producing raw material particles according to the present invention have a core containing a metallic iron-containing substance or a volatile substance, and an outer peripheral portion containing an oxidized substance. have iron; By firing or sintering such raw material iron powder in an oxidizing atmosphere at 1200 ° C. or more and 1350 ° C. or less to agglomerate it, when the center part of the raw material particle has a metallic iron-containing substance, it is adjacent to the outer peripheral part Some of the metallic iron is oxidized, while the core of the raw material particles volatilizes if it has volatiles. As a result, the particles constituting the agglomerates have a three-layer structure as shown in FIG. 3(a) or a hollow structure as shown in FIG. An agglomerate having properties can be obtained.
 上記原料粒子の焼成は、ロータリーキルンなどを用いて行うことができる。具体的には、上述した本発明による塊成物製造用の原料粒子、または本発明による原料粒子の製造方法によって製造された原料粒子をロータリーキルンに装入し、1200℃以上1350℃以下の大気中などの酸化雰囲気下に置く。これにより、焼成ペレットを得ることができる。 The firing of the raw material particles can be performed using a rotary kiln or the like. Specifically, the raw material particles for agglomerate production according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are charged into a rotary kiln and placed in the air at 1200 ° C. or higher and 1350 ° C. or lower. placed in an oxidizing atmosphere such as Thereby, fired pellets can be obtained.
 また、原料粒子の焼結は、焼結機を用いて行うことができる。具体的には、上述した本発明による塊成物製造用の原料粒子、または本発明による原料粒子の製造方法によって製造された原料粒子と、従来の原料粒子を造粒した造粒粒子とを混合し、1200℃以上1350℃以下の酸化雰囲気下に置く。これにより、焼結鉱を得ることができる。 In addition, sintering of raw material particles can be performed using a sintering machine. Specifically, the raw material particles for agglomerate production according to the present invention described above or the raw material particles produced by the method for producing raw material particles according to the present invention are mixed with granulated particles obtained by granulating conventional raw material particles. and placed in an oxidizing atmosphere at 1200° C. or higher and 1350° C. or lower. Thereby, a sintered ore can be obtained.
(還元鉄の製造方法)
 本発明による還元鉄の製造方法は、上述した本発明による塊成物または本発明による塊成物の製造方法によって製造された塊成物を還元炉に装入するとともに、還元ガスを還元炉に導入し、塊成物に含まれる酸化鉄を還元して還元鉄を得ることを特徴とする。
(Method for producing reduced iron)
In the method for producing reduced iron according to the present invention, the agglomerate according to the present invention described above or the agglomerate produced by the method for producing an agglomerate according to the present invention is charged into a reducing furnace, and a reducing gas is introduced into the reducing furnace. and reducing iron oxide contained in the agglomerate to obtain reduced iron.
 上述のように、本発明による塊成物または本発明による塊成物の製造方法によって製造された塊成物は、従来よりも高い還元性を有するものである。こうした塊成物をシャフト炉などの還元炉に装入するとともに、還元ガスを導入することにより、還元鉄の製造を効率的に行うことができる。 As described above, the agglomerate according to the present invention or the agglomerate produced by the method for producing an agglomerate according to the present invention has higher reducibility than conventional ones. By charging such an agglomerate into a reducing furnace such as a shaft furnace and introducing a reducing gas, reduced iron can be produced efficiently.
 本発明において、上記還元ガスとしては、コークス炉ガス、天然ガス(成分として炭化水素を含む)を改質したガス、COガスとHガスとの混合ガス、Hガス(H濃度が100%のガス)などを用いることができるが、還元ガスとしてHを主成分とするガスを使用することが好ましい。ここで、「Hを主成分とするガス」とは、H濃度が50体積%以上であるガスを意味している。これにより、COの排出削減を行うことができる。 In the present invention, the reducing gas includes coke oven gas, gas obtained by reforming natural gas ( including hydrocarbon as a component), mixed gas of CO gas and H2 gas, H2 gas ( H2 concentration is 100 % gas) can be used, but it is preferable to use a gas containing H 2 as a main component as the reducing gas. Here, "a gas containing H 2 as a main component" means a gas having an H 2 concentration of 50% by volume or more. This makes it possible to reduce CO 2 emissions.
 上記還元ガスのH濃度は、65体積%以上が好ましい。これにより、COの排出削減効果をより高めることができる。還元ガスのH濃度は、70体積%以上がより好ましく、80体積%以上がさらに好ましく、90体積%以上がさらにまた好ましく、100体積%、すなわち還元ガスとしてHガスを用いることが最も好ましい。還元ガスとしてHガスを用いることにより、COを排出することなく、還元鉄を製造することができる。 The H 2 concentration of the reducing gas is preferably 65% by volume or more. Thereby, the CO 2 emission reduction effect can be further enhanced. The H2 concentration of the reducing gas is more preferably 70% by volume or more, more preferably 80% by volume or more, even more preferably 90% by volume or more, and most preferably 100% by volume , that is, using H2 gas as the reducing gas. . By using H2 gas as the reducing gas, reduced iron can be produced without emitting CO2 .
 以下、本発明の実施例について説明するが、本発明は実施例に限定されない。 Examples of the present invention will be described below, but the present invention is not limited to the examples.
(従来例1)
 表1に成分組成を示すブラジル産の鉄鉱石を用いて、焼成ペレットを作製した。具体的には、まず、上記鉄鉱石を粉砕し、得られた鉄鉱石粉を分級して、粒径が-63μmの鉄鉱石粉を得た。次いで、上記鉄鉱石粉とバインダーとしての生石灰とを混合し、ペレタイザーを用いて調湿しながら直径12mmのグリーンペレットを作製した。そして、作製したグリーンペレットを大気中1350℃の雰囲気で60分間焼成した。こうして、従来例1による塊成物としての焼成ペレットを製造した。得られた焼成ペレットについて、JIS-M8713に従って被還元性の値を求めたところ、60%であった。
(Conventional example 1)
Using Brazilian iron ore whose chemical composition is shown in Table 1, fired pellets were produced. Specifically, first, the iron ore was pulverized and the obtained iron ore powder was classified to obtain iron ore powder having a particle size of −63 μm. Next, the iron ore powder and quicklime as a binder were mixed, and green pellets having a diameter of 12 mm were produced while adjusting the humidity using a pelletizer. Then, the produced green pellets were fired in the atmosphere at 1350° C. for 60 minutes. In this way, fired pellets were produced as an agglomerate according to Conventional Example 1. When the reducibility value of the obtained fired pellets was determined according to JIS-M8713, it was 60%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(従来例2)
 ブラジル産の鉄鉱石と表1に成分組成を示す豪州産の鉄鉱石とを50:50の割合で混合した粉原料を用いて、焼結鉱を作製した。具体的には、まず、有姿の鉄鉱石を副原料の石灰石、返鉱および粉コークスとともに造粒して造粒粒子を作製した。作製した造粒粒子の平均径は3-4mm程度であり、この粒子の内部には最大1mm程度の核粒子(鉄の濃度:57質量%)が含まれていた。このようにして得られた造粒粒子を小型焼結試験機に装入して焼結した。焼結には、充填層高さ600mm、直径300mmの鉄製容器を用い、吸引負圧6.9kPaで一定差圧の下で焼結した。得られた焼結鉱を2m高さから4回落下させ、得られた焼結鉱の中で粒径が19-22mmの焼結鉱粒子を選別した。こうして、従来例2による塊成物としての焼結鉱を製造した。得られた焼結鉱について、JIS-M8713に従って被還元性の値を求めたところ、65-70%であった。
(Conventional example 2)
A sintered ore was prepared by using a raw material powder obtained by mixing Brazilian iron ore and Australian iron ore whose composition is shown in Table 1 at a ratio of 50:50. Specifically, first, the solid iron ore was granulated together with auxiliary raw materials limestone, return ore and coke fine to produce granulated particles. The average diameter of the produced granulated particles was about 3 to 4 mm, and core particles (concentration of iron: 57% by mass) of about 1 mm at maximum were contained inside the particles. The granulated particles thus obtained were charged into a small sintering tester and sintered. For sintering, an iron container with a packed bed height of 600 mm and a diameter of 300 mm was used, and sintering was performed under a constant differential pressure with a suction negative pressure of 6.9 kPa. The obtained sintered ore was dropped four times from a height of 2 m, and sintered ore particles having a particle size of 19 to 22 mm were selected from the obtained sintered ore. Thus, a sintered ore as an agglomerate according to Conventional Example 2 was produced. When the reducibility value of the obtained sintered ore was determined according to JIS-M8713, it was 65 to 70%.
(発明例1)
 従来例1と同様に、発明例1による塊成物としての焼成ペレットを製造した。ただし、塊成物製造用のグリーンペレット(原料粒子)を製造する際に、還元鉄製造プロセスにおいて得られたDRI粉(鉄の濃度:80.4質量%、粒径:3~5mm(5mmの篩下で、3mmの篩上)、金属化率(=還元鉄比率/全鉄含有率):80%)を添加し、上記DRI粉を中心部として備えるグリーンペレット(原料粒子)を作製した。その他の条件は、従来例1と全て同じである。得られた焼成ペレットの被還元性の値を求めたところ、80%であった。
(Invention Example 1)
In the same manner as in Conventional Example 1, fired pellets were produced as agglomerates according to Invention Example 1. However, when producing green pellets (raw material particles) for producing agglomerates, DRI powder obtained in the reduced iron production process (iron concentration: 80.4% by mass, particle size: 3 to 5 mm (5 mm Under the sieve, 3 mm above the sieve) and metallization ratio (=reduced iron ratio/total iron content): 80%) were added to prepare green pellets (raw material particles) having the above DRI powder as the center. All other conditions are the same as in Conventional Example 1. The reducibility value of the fired pellets thus obtained was found to be 80%.
(発明例2)
 従来例1と同様に、発明例2による塊成物としての焼成ペレットを製造した。ただし、塊成物製造用のグリーンペレット(原料粒子)を作製する際に、還元鉄製造プロセスにおいて得られたDRI粉(鉄の濃度:75.2質量%、粒径:3~5mm(5mmの篩下で、3mmの篩上)、金属化率(=還元鉄比率/全鉄含有率):65%)を添加し、上記DRI粉を中心部として備えるグリーンペレット(原料粒子)を作製した。その他の条件は、従来例1と全て同じである。得られた焼成ペレットの被還元性の値を求めたところ、78%であった。
(Invention Example 2)
In the same manner as in Conventional Example 1, fired pellets were produced as an agglomerate according to Invention Example 2. However, when producing green pellets (raw material particles) for agglomerate production, DRI powder obtained in the reduced iron production process (iron concentration: 75.2% by mass, particle size: 3 to 5 mm (5 mm Under the sieve and above the sieve of 3 mm), metallization ratio (=reduced iron ratio/total iron content): 65%) was added to prepare green pellets (raw material particles) having the above DRI powder as the center. All other conditions are the same as in Conventional Example 1. The value of the reducibility of the obtained fired pellets was determined to be 78%.
(発明例3)
 従来例2と同様に、発明例3による塊成物としての焼結鉱を製造した。ただし、造粒粒子の作製は、豪州産の鉄鉱石のみを用いて行い、得られた造粒粒子と、発明例1と同じ方法で作製したグリーンペレットとを混合して混合造粒原料を作製し、得られた混合造粒原料を小型焼結試験機に装入して焼結した。その他の条件は、従来例2と全て同じである。得られた焼結鉱の被還元性の値を求めたところ、90%であった。
(Invention example 3)
In the same manner as in Conventional Example 2, a sintered ore as an agglomerate according to Invention Example 3 was produced. However, the granulated particles are produced using only Australian iron ore, and the obtained granulated particles are mixed with green pellets produced in the same manner as in Invention Example 1 to produce a mixed granulated raw material. Then, the obtained mixed granulated raw material was put into a small sintering tester and sintered. All other conditions are the same as in Conventional Example 2. The reducibility value of the obtained sintered ore was determined to be 90%.
(発明例4)
 発明例3と同様に、発明例4による塊成物としての焼結鉱を製造した。ただし、グリーンペレットは、発明例2と同じ方法で作製したものを用いた。その他の条件は、発明例3と全て同じである。得られた焼結鉱の被還元性の値を求めたところ、84%であった。
(Invention Example 4)
A sintered ore as an agglomerate according to Invention Example 4 was produced in the same manner as in Invention Example 3. However, the green pellets prepared by the same method as in Invention Example 2 were used. All other conditions are the same as in Invention Example 3. It was 84% when the value of the reducibility of the obtained sintered ore was calculated|required.
(発明例5)
 発明例1と同様に、発明例4による塊成物としての焼結鉱を製造した。ただし、グリーンペレットを製造する際に、DRI粉に代えてポリプロピレン粒子(直径:3-5mm)を添加した。その他の条件は、発明例1と全て同じである。得られた焼成ペレットの被還元性の値を求めたところ、79%であった。
(Invention example 5)
A sintered ore as an agglomerate according to Invention Example 4 was produced in the same manner as in Invention Example 1. However, polypropylene particles (diameter: 3-5 mm) were added in place of the DRI powder when producing the green pellets. All other conditions are the same as in Invention Example 1. The value of the reducibility of the obtained fired pellets was determined to be 79%.
<塊成物の還元性の評価>
 上述のように、従来例1および2については、焼結鉱の被還元性は60-70%程度であったのに対して、発明例1~5の焼結鉱の被還元性は79%以上となり、従来例1および2よりも高い還元性を示した。また、発明例1と発明例2との比較、発明例3と発明例4との比較から、グリーンペレット(原料粒子)の中心部の金属化率が高い方が、被還元性の値も高くなることが分かる。
<Evaluation of reducibility of agglomerates>
As described above, in Conventional Examples 1 and 2, the reducibility of the sintered ore was about 60-70%, whereas the reducibility of the sintered ore of Invention Examples 1 to 5 was 79%. As described above, the reducibility was higher than that of Conventional Examples 1 and 2. In addition, from the comparison between Invention Examples 1 and 2, and between Invention Examples 3 and 4, the higher the metallization rate of the central portion of the green pellet (raw material particle), the higher the reducibility value. I know it will be.
<塊成物の強度の評価>
 発明例1~5による塊成物は、従来例1および2による塊成物と同程度の強度を有しており、還元鉄の製造に問題なく使用することができた。このように、発明例1~5による塊成物は、強度と還元性とを兼ね備えたものである。
<Evaluation of strength of agglomerate>
The agglomerates according to Invention Examples 1 to 5 had strength comparable to that of the agglomerates according to Conventional Examples 1 and 2, and could be used for producing reduced iron without any problem. Thus, the agglomerates according to Invention Examples 1 to 5 have both strength and reducibility.
 本発明によれば、従来よりも高い還元性を有する塊成物を製造することができる、塊成物製造用の原料粒子を提供することができるため、製鉄業において有用である。 According to the present invention, it is possible to provide raw material particles for producing agglomerates, which can produce agglomerates having a higher reducibility than conventional ones, and is therefore useful in the steel industry.
1,2 原料粒子
3,4 焼結鉱を構成する粒子
11,21,31,41 中心部
12,22,32,42 外周部
31a 第1部分
31b 第2部分
1, 2 raw material particles 3, 4 particles 11, 21, 31, 41 constituting the sintered ore central portion 12, 22, 32, 42 outer peripheral portion 31a first portion 31b second portion

Claims (11)

  1.  還元鉄製造の原料となる塊成物を製造するための原料粒子であって、
     中心部と、該中心部の周囲を覆う外周部とを備え、
     前記中心部は金属鉄含有物質または揮発物質を有し、前記外周部は、酸化鉄を有することを特徴とする、塊成物製造用の原料粒子。
    Raw material particles for producing an agglomerate as a raw material for producing reduced iron,
    A central portion and an outer peripheral portion that surrounds the central portion,
    A raw material particle for producing an agglomerate, wherein the central portion contains a metallic iron-containing substance or a volatile substance, and the outer peripheral portion contains iron oxide.
  2.  前記酸化鉄は、少なくとも4質量%超えの結晶水および/または1.5質量%超えのアルミナを含む、請求項1に記載の塊成物製造用の原料粒子。 The raw material particles for producing agglomerates according to claim 1, wherein the iron oxide contains at least more than 4% by mass of water of crystallization and/or more than 1.5% by mass of alumina.
  3.  前記中心部の粒径が2mm以上6mm以下である、請求項1または2に記載の塊成物製造用の原料粒子。 The raw material particles for producing agglomerates according to claim 1 or 2, wherein the particle size of the central part is 2 mm or more and 6 mm or less.
  4.  前記外周部の厚みが2mm以上5mm以下である、請求項1~3のいずれか一項に記載の塊成物製造用の原料粒子。 The raw material particles for producing agglomerates according to any one of claims 1 to 3, wherein the outer peripheral portion has a thickness of 2 mm or more and 5 mm or less.
  5.  請求項1~4のいずれか一項に記載の原料粒子を製造する方法であって、
     前記酸化鉄を有する原料を粉砕して原料粉とした後、分級して前記原料粉の粒径を調整する前処理工程と、
     粒径が調整された前記原料粉と前記金属鉄含有物質または前記揮発物質とバインダーとを混合して造粒し、前記原料粒子を得ることを特徴とする、塊成物製造用の原料粒子の製造方法。
    A method for producing raw material particles according to any one of claims 1 to 4,
    A pretreatment step of pulverizing the raw material containing iron oxide to obtain a raw material powder, and then classifying the raw material powder to adjust the particle size of the raw material powder;
    Raw material particles for producing agglomerates, characterized in that the raw material powder whose particle size is adjusted and the metallic iron-containing substance or the volatile substance and the binder are mixed and granulated to obtain the raw material particles. Production method.
  6.  前記造粒工程において、粒径が2mm以上6mm以下である前記金属鉄含有物質または前記揮発物質を用いる、請求項5に記載の塊成物製造用の原料粒子の製造方法。 The method for producing raw material particles for producing agglomerates according to claim 5, wherein the metallic iron-containing substance or the volatile substance having a particle size of 2 mm or more and 6 mm or less is used in the granulation step.
  7.  前記造粒工程において、前記外周部の厚みを2mm以上5mm以下に調整する、請求項5または6に記載の塊成物製造用の原料粒子の製造方法。 The method for producing raw material particles for producing agglomerates according to claim 5 or 6, wherein in the granulation step, the thickness of the outer peripheral portion is adjusted to 2 mm or more and 5 mm or less.
  8.  請求項1~4のいずれか一項に記載の原料粒子を焼成または焼結して塊成化された塊成物であって、
     塊成化された前記原料粒子は、
      焼成または焼結前の前記中心部が前記金属鉄含有物質を有する場合、前記中心部は前記金属鉄含有物質を有する第1部分と、該第1部分の周囲を覆う、前記金属鉄含有物質に含まれる金属鉄が酸化した第2部分とを有する3層構造を有し、
      焼成または焼結前の前記中心部が前記揮発物質を有する場合、前記中心部が空隙である中空構造を有することを特徴とする、塊成物。
    An agglomerate obtained by firing or sintering the raw material particles according to any one of claims 1 to 4,
    The agglomerated raw material particles are
    When the core before firing or sintering has the metallic iron-containing material, the core includes a first portion having the metallic iron-containing material and the metallic iron-containing material surrounding the first portion. Having a three-layer structure having a second portion in which the contained metallic iron is oxidized,
    An agglomerate characterized by having a hollow structure in which the central portion is a void when the central portion contains the volatile substance before firing or sintering.
  9.  請求項1~4のいずれか一項に記載の原料粒子、または請求項5~7のいずれか一項に記載の塊成物製造用の原料粒子の製造方法によって製造された原料粒子を、1200℃以上1350℃以下の酸化雰囲気下で焼成または焼結して塊成化し、塊成物を得ることを特徴とする、塊成物の製造方法。 The raw material particles according to any one of claims 1 to 4, or the raw material particles produced by the method for producing raw material particles for producing agglomerates according to any one of claims 5 to 7, are A method for producing an agglomerate, characterized in that the agglomerate is obtained by firing or sintering in an oxidizing atmosphere at a temperature of 1350°C or lower.
  10.  請求項8に記載の塊成物または請求項9に記載の塊成物の製造方法によって製造された塊成物を還元炉に装入するとともに、還元ガスを前記還元炉に導入し、前記還元ガスにより前記塊成物に含まれる酸化鉄を還元して還元鉄を得ることを特徴とする、還元鉄の製造方法。 The agglomerate according to claim 8 or the agglomerate produced by the method for producing an agglomerate according to claim 9 is charged into a reducing furnace, a reducing gas is introduced into the reducing furnace, and the reducing A method for producing reduced iron, comprising reducing iron oxide contained in the agglomerate with a gas to obtain reduced iron.
  11.  前記還元ガスとして水素を主成分とするガスを使用する、請求項10に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 10, wherein a gas containing hydrogen as a main component is used as the reducing gas.
PCT/JP2021/044584 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron WO2022209014A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2021437808A AU2021437808A1 (en) 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
CN202180096122.3A CN117043364A (en) 2021-03-31 2021-12-03 Raw material particle for producing agglomerate, method for producing raw material particle for producing agglomerate, method for producing agglomerate, and method for producing reduced iron
CA3212055A CA3212055A1 (en) 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
EP21935167.3A EP4317464A4 (en) 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
BR112023019688A BR112023019688A2 (en) 2021-03-31 2021-12-03 RAW MATERIAL PARTICLES FOR THE PRODUCTION OF AGGLOMERATE, METHOD FOR PRODUCING RAW MATERIAL PARTICLES FOR THE PRODUCTION OF AGGLOMERATE, AGGLOMERATE, METHOD FOR PRODUCING AGGLOMERATE AND METHOD FOR PRODUCING REDUCED IRON
US18/551,401 US20240167110A1 (en) 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061965 2021-03-31
JP2021061965A JP7424339B2 (en) 2021-03-31 2021-03-31 Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron

Publications (1)

Publication Number Publication Date
WO2022209014A1 true WO2022209014A1 (en) 2022-10-06

Family

ID=83455842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044584 WO2022209014A1 (en) 2021-03-31 2021-12-03 Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron

Country Status (9)

Country Link
US (1) US20240167110A1 (en)
EP (1) EP4317464A4 (en)
JP (1) JP7424339B2 (en)
CN (1) CN117043364A (en)
AU (1) AU2021437808A1 (en)
BR (1) BR112023019688A2 (en)
CA (1) CA3212055A1 (en)
TW (1) TW202239973A (en)
WO (1) WO2022209014A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246644B2 (en) 1986-03-21 1990-10-16 Midoretsukusu Intern Bv Rotsuterudamu Chuuritsuhi Buranchi
JP2012126963A (en) * 2010-12-15 2012-07-05 Kobe Steel Ltd Agglomerate for manufacturing reduced iron, and method for manufacturing the same
JP2014080649A (en) * 2012-10-15 2014-05-08 Nippon Steel & Sumitomo Metal Agglomerated ore for blast furnace and manufacturing method thereof
JP2015101740A (en) * 2013-11-21 2015-06-04 株式会社神戸製鋼所 Method for manufacturing reduced iron
JP2015209570A (en) * 2014-04-25 2015-11-24 株式会社神戸製鋼所 Production method of reduced iron
JP2020045508A (en) 2018-09-14 2020-03-26 日本製鉄株式会社 Operation method of blast furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749894A4 (en) * 2004-05-19 2008-07-02 Jfe Steel Corp Semi-reduced sintered ore and method for production thereof
JP5540859B2 (en) * 2010-04-19 2014-07-02 Jfeスチール株式会社 Carbon steel interior agglomerate for iron making and method for producing the same
WO2015114546A1 (en) * 2014-01-31 2015-08-06 Saudi Basic Industries Corporation Composite iron pellets
CN109439896B (en) * 2018-10-29 2020-02-21 北京科技大学 Preparation method of self-fluxing composite pellet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246644B2 (en) 1986-03-21 1990-10-16 Midoretsukusu Intern Bv Rotsuterudamu Chuuritsuhi Buranchi
JP2012126963A (en) * 2010-12-15 2012-07-05 Kobe Steel Ltd Agglomerate for manufacturing reduced iron, and method for manufacturing the same
JP2014080649A (en) * 2012-10-15 2014-05-08 Nippon Steel & Sumitomo Metal Agglomerated ore for blast furnace and manufacturing method thereof
JP2015101740A (en) * 2013-11-21 2015-06-04 株式会社神戸製鋼所 Method for manufacturing reduced iron
JP2015209570A (en) * 2014-04-25 2015-11-24 株式会社神戸製鋼所 Production method of reduced iron
JP2020045508A (en) 2018-09-14 2020-03-26 日本製鉄株式会社 Operation method of blast furnace

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHIUEMURASAKAGUCHI: "MIDREX'' Process", KOBE STEEL ENGINEERING REPORTS, vol. 60, no. 1, 2010
See also references of EP4317464A4

Also Published As

Publication number Publication date
TW202239973A (en) 2022-10-16
JP7424339B2 (en) 2024-01-30
AU2021437808A1 (en) 2023-10-12
US20240167110A1 (en) 2024-05-23
BR112023019688A2 (en) 2023-10-31
CA3212055A1 (en) 2022-10-06
CN117043364A (en) 2023-11-10
JP2022157632A (en) 2022-10-14
EP4317464A1 (en) 2024-02-07
EP4317464A4 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
CA1246343A (en) Agglomerated ores and a producing method therefor
TWI396749B (en) Producing method of reduced iron
JP6460293B2 (en) Method for producing sintered ore
JP2016125125A (en) Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore
WO2022209014A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
JPH02228428A (en) Charging material for blast furnace and its production
WO2022049781A1 (en) Iron ore pellets and manufacturing method of iron ore pellets
TWI632241B (en) Method for manufacturing sinter ore in carbon material
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP2005097645A (en) Method of producing semi-reduced sintered ore
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
JP7440768B2 (en) Blast furnace fired pellets and method for producing blast furnace fired pellets
JP2001262241A (en) Method for producing sintered ore containing carbon
WO2024070135A1 (en) Iron ore pellet production method
WO2024089903A1 (en) Method for determining high temperature properties of iron ore pellets, method for producing iron ore pellets, and iron ore pellets
JP7227053B2 (en) Method for producing sintered ore
JP2024047288A (en) Method for producing iron ore pellet and iron ore pellet
JPH02232322A (en) Charging material for blast furnace and its production
JPH0364570B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3212055

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18551401

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180096122.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021437808

Country of ref document: AU

Ref document number: AU2021437808

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: P6002467/2023

Country of ref document: AE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019688

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021437808

Country of ref document: AU

Date of ref document: 20211203

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317068750

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023127116

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2021935167

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112023019688

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230925

ENP Entry into the national phase

Ref document number: 2021935167

Country of ref document: EP

Effective date: 20231024

NENP Non-entry into the national phase

Ref country code: DE