JP2020077361A - 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 - Google Patents
学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 Download PDFInfo
- Publication number
- JP2020077361A JP2020077361A JP2019114985A JP2019114985A JP2020077361A JP 2020077361 A JP2020077361 A JP 2020077361A JP 2019114985 A JP2019114985 A JP 2019114985A JP 2019114985 A JP2019114985 A JP 2019114985A JP 2020077361 A JP2020077361 A JP 2020077361A
- Authority
- JP
- Japan
- Prior art keywords
- evaluation
- company
- data
- test
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 464
- 230000013016 learning Effects 0.000 title claims abstract description 380
- 238000000034 method Methods 0.000 title claims description 87
- 238000012360 testing method Methods 0.000 claims abstract description 337
- 238000010276 construction Methods 0.000 claims description 136
- 238000012797 qualification Methods 0.000 claims description 7
- 238000011056 performance test Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 25
- 238000010971 suitability test Methods 0.000 abstract description 5
- 230000007306 turnover Effects 0.000 description 19
- 238000003066 decision tree Methods 0.000 description 18
- 230000010365 information processing Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 230000008092 positive effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000007637 random forest analysis Methods 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000007115 recruitment Effects 0.000 description 10
- 238000012795 verification Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000001502 supplementing effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001755 vocal effect Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
請求項1記載の発明に係る学習モデル構築装置(以下、「請求項1の構築装置」という)は、採用を予定している企業(以下、「採用企業」という)の現在又は過去の社員(以下、「既存社員」という)それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得手段と、当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得手段と、当該評価データ取得手段が取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得手段と、当該試験データ取得手段が取得した試験データそれぞれと、これらに対応する当該ラベル取得手段が取得したラベルそれぞれの組を教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習手段と、を備えることを特徴とする。
請求項2記載の発明に係る学習モデル構築装置(以下、「請求項2の構築装置」という)は、請求項1の構築装置の好ましい態様として、当該既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得手段を、さらに備え、前記学習手段は、当該個人経歴データ取得手段が取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行うように構成されていることを特徴とする。
請求項3記載の発明に係る学習モデル構築装置(以下、「請求項3の構築装置」という)は、請求項1または2の構築装置の好ましい態様として、前記学習手段は、前記教師データを教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築するように構成され、そのうえ、前記学習手段が構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得手段が取得した評価ラベルそれぞれとの合致度を判定する合致度判定手段が設けられていることを特徴とする。
請求項4記載の発明に係る学習モデル構築装置(以下、「請求項4の構築装置」という)は、請求項1ないし3いずれかの構築装置の好ましい態様として、前記採用企業とは異なる、1又は2以上の他社企業の現在又は過去の社員(以下、「他社既存社員」という)それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、をさらに備え、前記ラベル取得手段は、前記評価データ取得手段が取得した評価データ(自社評価データ)に当該他社評価データ取得手段が取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得することを特徴とする。
請求項5記載の発明に係る学習モデル構築装置(以下、「請求項5の構築装置」という)は、他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、当該他社評価データ取得手段が取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得手段と、当該他社試験データ取得手段が取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得手段が取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習手段と、を備えることを特徴とする。
請求項6記載の発明に係る入社後評価予測装置(以下、「請求項6の予測装置」という)は、請求項1、2、4および5いずれかの構築装置で構築した学習モデルを用いた入社後評価予測装置の好ましい態様であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、当該希望者試験データ取得手段が取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備えることを特徴とする。
請求項7記載の発明に係る入社後評価予測装置(以下、「請求項7の予測装置」という)は、請求項3記載の学習モデル構築装置で構築した複数の学習モデルを用いた入社後評価予測装置の好ましい態様であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、前記合致度判定手段が判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定手段と、当該希望者試験データ取得手段が取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備えることを特徴とする。
請求項8記載の発明に係る学習モデル構築方法(以下、「請求項8の構築方法」という)は、既存社員それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得ステップと、当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得ステップと、当該評価データ取得手段が取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得ステップと、当該試験データ取得ステップで取得した試験データそれぞれと、これらに対応する当該ラベル取得ステップで取得したラベルそれぞれの組を教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習ステップと、を備えることを特徴とする。
請求項9記載の発明に係る学習モデル構築方法(以下、「請求項7の構築方法」という)は、請求項8の構築方法の好ましい態様として、当該既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得ステップを、さらに備え、前記学習ステップでは、当該個人経歴データ取得手段が取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行うことを特徴とする。
請求項10記載の発明に係る学習モデル構築方法(以下、「請求項10の予測方法」という)は、請求項8または9いずれかの構築方法の好ましい態様として、他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、をさらに備え、前記ラベル取得では、前記評価データ取得ステップが取得した評価データに当該他社評価データ取得ステップで取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得することを特徴とする。
請求項11記載の発明に係る学習モデル構築方法(以下、「請求項11の構築方法」という)は、他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、当該他社評価データ取得手段が取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得ステップと、当該他社試験データ取得手段が取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得手段が取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習ステップと、を備えることを特徴とする。
請求項12記載の発明に係る学習モデル構築方法(以下、「請求項12の構築方法」という)は、請求項8または9のいずれかの構築方法の好ましい態様として、前記学習ステップでは、前記教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築し、そのうえ、前記学習ステップで構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得ステップで取得した評価ラベルそれぞれとの合致度を判定する合致度判定ステップが設けられていることを特徴とする。
請求項13記載の発明に係る入社後評価予測方法(以下、「請求項13の予測方法」という)は、請求項12記載の学習モデル構築方法で構築した複数の学習モデルを用いた入社後評価予測方法であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得ステップと、前記合致度判定手段が判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定ステップと、当該希望者試験データ取得ステップで取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測ステップと、を備えることを特徴とする。
以下、図面を参照しながら、本発明を実施するための最良の形態(以下、「本実施形態」という)を説明する。以下では、最初に主要用語を定義づけし、その後に具体的な形態の説明を行う。
本明細書における「職務適正試験」とは、入社希望者の能力・適正や人となりを把握する目的で行われる試験のことをいい、「職業適性検査」「職業適性診断」「適性検査」などと呼ばれることもある。一般的には各検査項目の結果をそれぞれ偏差値化したものが結果をして示される。職務適正試験の内容は限定されるものではないが、様々な業者から提供されている公知のもののほか、独自開発したものも用いることができる。前者の業者から提供される職務適正試験には、たとえば、株式会社リクルートマネジメントソリューションズが提供する「SPI」(商標)、日本エス・エイチ・エル株式会社が提供するGAB(商標)、CAB(商標)、玉手箱(商標)、株式会社ヒューマネージが提供するTG-WEB(商標)、一般社団法人日本MBTI協会が提供するMBTI(商標)、e−人事株式会社が提供するCUBICなどがある。本明細書では、このような業者提供の職務適正試験のことを「業者提供試験」ということにする。
図1は、入社希望者(採用前社員)の入社後評価を予測するための評価予測装置(以下、「予測装置」という)の構成例を示す機能ブロック図である。
図1に示すように構築手段3は、試験データ取得手段31、評価データ取得手段33、ラベル取得手段35、学習手段37および合致度判定手段39を有し、好ましい態様としてさらに個人経歴データ取得手段38を備えている。そのうえ、既存社員試験情報データベース61、既存社員評価情報データベース62、ラベル情報データベース63、学習モデルデータベース69を有し、好ましい態様として既存社員個人経歴データベース65、及び既存社員面接結果データベース67を備えている。
図1に示すように予測手段5は、希望者試験データ取得手段51、個人履歴データ取得手段、選定手段55、評価予測手段57、入社希望者履歴データベース71、入社希望者試験情報データベース73、入社希望者社員面接データベース75、入社後評価予測結果データベース77を備えている。
図1および2を参照しながら説明する。ここでは、理解しやすくするためこの職務適正試験を、業者提供試験の一つであるSPI(商標)試験とする。他の業者提供試験や独自開発した職務適正試験を排除する趣旨でない。
図2を参照しながら、本実施形態の変形例(以下、「本変形例」という)について説明する。図2に示す評価予測装置1´(以下、「予測装置1´」という)が図1に示す予測装置1と基本構造1´と異なるのは、予測装置1´が有する他社既存社員データベース103を予測装置1が有しない点と、予測装置1が行わなかった他社既存社員データベース103から得るデータの処理を予測装置1´の学習モデル構築手段3´(以下、「構築手段3´」という)が行う点の2点である。この2点を除き、評価装置1と評価委装置1Aは共通する。このため、この共通部分については、図1で用いた符号を図2においても使用し、これらの説明は可能な範囲で省略する。
図5を参照しながら、本発明に係る構築方法・評価予測方法を用いて行った実証例を示す。まず本実施例1では、Webサービス企業、不動産業、IT関連企業、人材業および建築業を対象業種として実証を行った。既存社員数や利用した職務適正試験等と、その結果は図5に示すとおりである。正解(合致)率・予測精度をみると、Webサービス企業について正解率59.3%・予測精度(Kappa係数、以下同じ)0.24、同じく不動産業について正解率60.0%・予測精度0.31、IT関連企業について正解率62.4%・予測精度0.41、同じく人材業について正解率51.0%・予測精度0.26、さらに同じく建築業では正解率68.9%・予測精度0.45であった。
一方、図6は、不動産業とIT関連業2社の、退職予測正解率と予測精度を示す。既存社員数や利用した職務適正試験等と、その結果は図6に示すとおりである。退職予測における正解(合致)率・予測精度は不動産業について正解率91.0%・予測精度(Kappa係数、以下同じ)0.33・再現率61.5%、同じくIT関連業(約1000名)において正解率87.7%・予測精度0.14・再現率49.1%、同じくIT関連業(約300名)において正解率89.7%・予測精度0.30・再現率72.7%であった。
本実施例ではラベルをH(高い)、M(中間)、L(低い)の3段階水準を用いたため、学習モデルを用いない予測の場合には、正解率が約33%(3分の1)となる。各実証例において、合致率は約33%を大きく上回る結果となっており、学習モデルを利用した評価予測は、有効であることが確認できる。また各実証例は、企業規模、業界、用いる職務適性試験に違いがあるが、同様に本手法を用いることで、評価予測が有効であることが示されている。加えて、各職務適性試験データ以外に「所属」や「職種」のデータを用いることで、より合致率・予測精度(Kappa係数、次項以下で説明)が高まっている。職務適性試験データのみでも、十分に有用な結果が得られることが示されているが、「個人経歴データ」を加え、複数の学習モデルを構築し、最適予想モデルを選択することで、より精度の高い学習モデルを構築できることが確認でき、本手法が十分に実用的であることがわかった。
本実施例1では自社評価を、H(高い)、M(中間)、L(低い)という3つの水準に分けたものを評価レベルとしたのに対し、図6に示す本実施例2に関する退職を予測する実証例では、ラベルを「退職」と「在職」の2段階水準を用いた。すなわち、自社の社員それぞれの他社データ試験データと、同社員それぞれの「退職」と「在職」の組を教師データとして教師あり学習を行った結果である。
1´ 評価予測装置
3 学習モデル構築装置(構築装置)
3´ 本変形例に係る学習モデル構築装置(構築装置)
5 入社後評価予測装置(予測装置)
31 試験データ取得手段(他社試験データ取得手段)
33 評価データ取得手段(他社評価データ取得手段)
35 ラベル取得手段
37 学習手段
38 個人経歴データ取得手段
39 合致度判定手段
51 希望者試験データ取得手段
53 選定手段
55 評価予測手段
57 面接データ取得手段
61 既存社員試験情報データベース
62 既存社員評価情報データベース
63 ラベル情報データベース
65 既存社員個人経歴データベース
67 既存社員面接結果データベース
69 学習モデルデータベース
71 入社前基本情報データベース
73 入社前試験情報データベース
75 入社前社員面接データベース
77 入社後評価予測結果データベース
101 業者提供試験結果データベース
103 他社既存社員データベース
N ネットワーク
請求項1記載の発明に係る学習モデル構築装置(以下、「請求項1の構築装置」という)は、採用を予定している企業(以下、「採用企業」という)の現在又は過去の社員(以下、「既存社員」という)それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得手段と、当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得手段と、当該評価データ取得手段が取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得手段と、当該試験データ取得手段が取得した試験データそれぞれと、これらに対応する当該ラベル取得手段が取得したラベルそれぞれの組を教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習手段と、を備え、当該評価データは、当該既存社員の離職をマイナス評価したデータである、ることを特徴とする。
請求項2記載の発明に係る学習モデル構築装置(以下、「請求項2の構築装置」という)は、請求項1の構築装置の好ましい態様として、前記既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得手段を、さらに備え、前記学習手段は、当該個人経歴データ取得手段が取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行うように構成されていることを特徴とする。
請求項3記載の発明に係る学習モデル構築装置(以下、「請求項3の構築装置」という)は、請求項1または2の構築装置の好ましい態様として、前記学習手段は、前記教師データを教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築するように構成され、そのうえ、前記学習手段が構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得手段が取得した評価ラベルそれぞれとの合致度を判定する合致度判定手段が設けられていることを特徴とする。
請求項4記載の発明に係る学習モデル構築装置(以下、「請求項4の構築装置」という)は、請求項1ないし3いずれかの構築装置の好ましい態様として、前記採用企業とは異なる、1又は2以上の他社企業の現在又は過去の社員(以下、「他社既存社員」という)それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、をさらに備え、前記ラベル取得手段は、前記評価データ取得手段が取得した評価データ(自社評価データ)に当該他社評価データ取得手段が取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得することを特徴とする。
請求項5記載の発明に係る学習モデル構築装置(以下、「請求項5の構築装置」という)は、採用企業とは異なる、1又は2以上の他社企業の現在又は過去の社員(以下、「他社既存社員」という)それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、当該他社評価データ取得手段が取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得手段と、当該他社試験データ取得手段が取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得手段が取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習手段と、を備えることを特徴とする。
請求項6記載の発明に係る入社後評価予測装置(以下、「請求項6の予測装置」という)は、請求項1、2、4および5いずれかの構築装置で構築した学習モデルを用いた入社後評価予測装置の好ましい態様であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、当該希望者試験データ取得手段が取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備えることを特徴とする。
請求項7記載の発明に係る入社後評価予測装置(以下、「請求項7の予測装置」という)は、請求項3記載の学習モデル構築装置で構築した複数の学習モデルを用いた入社後評価予測装置の好ましい態様であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、前記合致度判定手段が判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定手段と、当該希望者試験データ取得手段が取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備えることを特徴とする。
請求項8記載の発明に係る学習モデル構築方法(以下、「請求項8の構築方法」という)は、コンピュータによって実行される入社後評価予測方法であって、採用を予定している企業(以下、「採用企業」というの現在又は過去の社員(以下、「既存社員」という)それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得ステップと、当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得ステップと、当該評価データ取得ステップで取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得ステップと、当該試験データ取得ステップで取得した試験データそれぞれと、これらに対応する当該ラベル取得ステップで取得したラベルそれぞれの組を教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習ステップと、を備え、当該評価データは、当該既存社員の離職をマイナス評価したデータである、ることを特徴とする。
請求項9記載の発明に係る学習モデル構築方法(以下、「請求項7の構築方法」という)は、請求項8の構築方法の好ましい態様として、当該既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得ステップを、さらに備え、前記学習ステップでは、当該個人経歴データ取得ステップで取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行うことを特徴とする。
請求項10記載の発明に係る学習モデル構築方法(以下、「請求項10の予測方法」という)は、請求項8または9いずれかの構築方法の好ましい態様として、他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、をさらに備え、前記ラベル取得ステップでは、前記評価データ取得ステップが取得した評価データに当該他社評価データ取得ステップで取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得することを特徴とする。
請求項11記載の発明に係る学習モデル構築方法(以下、「請求項11の構築方法」という)は、コンピュータによって実行される入社後評価予測方法であって、
採用を予定している企業とは異なる、1又は2以上の他社企業の現在又は過去の社員(以下、「他社既存社員」という)それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、当該他社評価データ取得ステップで取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得ステップと、当該他社試験データ取得ステップで取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得ステップで取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習ステップと、を備え当該評価データは、当該既存社員の離職をマイナス評価したデータである、ることを特徴とする。
請求項12記載の発明に係る学習モデル構築方法(以下、「請求項12の構築方法」という)は、請求項8または9のいずれかの構築方法の好ましい態様として、前記学習ステップでは、前記教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築し、そのうえ、前記学習ステップで構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得ステップで取得した評価ラベルそれぞれとの合致度を判定する合致度判定ステップが設けられていることを特徴とする。
請求項13記載の発明に係る入社後評価予測方法(以下、「請求項13の予測方法」という)は、請求項12記載の学習モデル構築方法で構築した複数の学習モデルを用いた入社後評価予測方法であって、入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得ステップと、前記合致度判定ステップで判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定ステップと、当該希望者試験データ取得ステップで取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測ステップと、を備えることを特徴とする。
以下、図面を参照しながら、本発明を実施するための最良の形態(以下、「本実施形態」という)を説明する。以下では、最初に主要用語を定義づけし、その後に具体的な形態の説明を行う。
本明細書における「職務適正試験」とは、入社希望者の能力・適正や人となりを把握する目的で行われる試験のことをいい、「職業適性検査」「職業適性診断」「適性検査」などと呼ばれることもある。一般的には各検査項目の結果をそれぞれ偏差値化したものが結果をして示される。職務適正試験の内容は限定されるものではないが、様々な業者から提供されている公知のもののほか、独自開発したものも用いることができる。前者の業者から提供される職務適正試験には、たとえば、株式会社リクルートマネジメントソリューションズが提供する「SPI」(商標)、日本エス・エイチ・エル株式会社が提供するGAB(商標)、CAB(商標)、玉手箱(商標)、株式会社ヒューマネージが提供するTG-WEB(商標)、一般社団法人日本MBTI協会が提供するMBTI(商標)、e−人事株式会社が提供するCUBICなどがある。本明細書では、このような業者提供の職務適正試験のことを「業者提供試験」ということにする。
図1は、入社希望者(採用前社員)の入社後評価を予測するための評価予測装置(以下、「予測装置」という)の構成例を示す機能ブロック図である。
図1に示すように構築手段3は、試験データ取得手段31、評価データ取得手段33、ラベル取得手段35、学習手段37および合致度判定手段39を有し、好ましい態様としてさらに個人経歴データ取得手段38を備えている。そのうえ、既存社員試験情報データベース61、既存社員評価情報データベース62、ラベル情報データベース63、学習モデルデータベース69を有し、好ましい態様として既存社員個人経歴データベース65、及び既存社員面接結果データベース67を備えている。
図1に示すように予測手段5は、希望者試験データ取得手段51、個人履歴データ取得手段、選定手段55、評価予測手段57、入社希望者履歴データベース71、入社希望者試験情報データベース73、入社希望者社員面接データベース75、入社後評価予測結果データベース77を備えている。
図1および2を参照しながら説明する。ここでは、理解しやすくするためこの職務適正試験を、業者提供試験の一つであるSPI(商標)試験とする。他の業者提供試験や独自開発した職務適正試験を排除する趣旨でない。
図2を参照しながら、本実施形態の変形例(以下、「本変形例」という)について説明する。図2に示す評価予測装置1´(以下、「予測装置1´」という)が図1に示す予測装置1と基本構造1´と異なるのは、予測装置1´が有する他社既存社員データベース103を予測装置1が有しない点と、予測装置1が行わなかった他社既存社員データベース103から得るデータの処理を予測装置1´の学習モデル構築手段3´(以下、「構築手段3´」という)が行う点の2点である。この2点を除き、評価装置1と評価委装置1Aは共通する。このため、この共通部分については、図1で用いた符号を図2においても使用し、これらの説明は可能な範囲で省略する。
図5を参照しながら、本発明に係る構築方法・評価予測方法を用いて行った実証例を示す。まず本実施例1では、Webサービス企業、不動産業、IT関連企業、人材業および建築業を対象業種として実証を行った。既存社員数や利用した職務適正試験等と、その結果は図5に示すとおりである。正解(合致)率・予測精度をみると、Webサービス企業について正解率59.3%・予測精度(Kappa係数、以下同じ)0.24、同じく不動産業について正解率60.0%・予測精度0.31、IT関連企業について正解率62.4%・予測精度0.41、同じく人材業について正解率51.0%・予測精度0.26、さらに同じく建築業では正解率68.9%・予測精度0.45であった。
一方、図6は、不動産業とIT関連業2社の、退職予測正解率と予測精度を示す。既存社員数や利用した職務適正試験等と、その結果は図6に示すとおりである。退職予測における正解(合致)率・予測精度は不動産業について正解率91.0%・予測精度(Kappa係数、以下同じ)0.33・再現率61.5%、同じくIT関連業(約1000名)において正解率87.7%・予測精度0.14・再現率49.1%、同じくIT関連業(約300名)において正解率89.7%・予測精度0.30・再現率72.7%であった。
本実施例ではラベルをH(高い)、M(中間)、L(低い)の3段階水準を用いたため、学習モデルを用いない予測の場合には、正解率が約33%(3分の1)となる。各実証例において、合致率は約33%を大きく上回る結果となっており、学習モデルを利用した評価予測は、有効であることが確認できる。また各実証例は、企業規模、業界、用いる職務適性試験に違いがあるが、同様に本手法を用いることで、評価予測が有効であることが示されている。加えて、各職務適性試験データ以外に「所属」や「職種」のデータを用いることで、より合致率・予測精度(Kappa係数、次項以下で説明)が高まっている。職務適性試験データのみでも、十分に有用な結果が得られることが示されているが、「個人経歴データ」を加え、複数の学習モデルを構築し、最適予想モデルを選択することで、より精度の高い学習モデルを構築できることが確認でき、本手法が十分に実用的であることがわかった。
本実施例1では自社評価を、H(高い)、M(中間)、L(低い)という3つの水準に分けたものを評価レベルとしたのに対し、図6に示す本実施例2に関する退職を予測する実証例では、ラベルを「退職」と「在職」の2段階水準を用いた。すなわち、自社の社員それぞれの他社データ試験データと、同社員それぞれの「退職」と「在職」の組を教師データとして教師あり学習を行った結果である。
1´ 評価予測装置
3 学習モデル構築装置(構築装置)
3´ 本変形例に係る学習モデル構築装置(構築装置)
5 入社後評価予測装置(予測装置)
31 試験データ取得手段(他社試験データ取得手段)
33 評価データ取得手段(他社評価データ取得手段)
35 ラベル取得手段
37 学習手段
38 個人経歴データ取得手段
39 合致度判定手段
51 希望者試験データ取得手段
53 選定手段
55 評価予測手段
57 面接データ取得手段
61 既存社員試験情報データベース
62 既存社員評価情報データベース
63 ラベル情報データベース
65 既存社員個人経歴データベース
67 既存社員面接結果データベース
69 学習モデルデータベース
71 入社前基本情報データベース
73 入社前試験情報データベース
75 入社前社員面接データベース
77 入社後評価予測結果データベース
101 業者提供試験結果データベース
103 他社既存社員データベース
N ネットワーク
Claims (13)
- 採用を予定している企業(以下、「採用企業」という)の現在又は過去の社員(以下、「既存社員」という)それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得手段と、
当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得手段と、
当該評価データ取得手段が取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得手段と、
当該試験データ取得手段が取得した試験データそれぞれと、これらに対応する当該ラベル取得手段が取得したラベルそれぞれの組みを教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習手段と、
を備えることを特徴とする学習モデル構築装置。 - 当該既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得手段を、さらに備え、
前記学習手段は、当該個人経歴データ取得手段が取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行うように構成されている
ことを特徴とする請求項1記載の学習モデル構築装置。 - 前記学習手段は、前記教師データを教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築するように構成され、
そのうえ、
前記学習手段が構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得手段が取得した評価ラベルそれぞれとの合致度を判定する合致度判定手段が設けられている
ことを特徴とする請求項1または2いずれか記載の学習モデル構築装置。 - 前記採用企業とは異なる、1又は2以上の他社企業の現在又は過去の社員(以下、「他社既存社員」という)それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、
当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、をさらに備え、
前記ラベル取得手段は、前記評価データ取得手段が取得した評価データに当該他社評価データ取得手段が取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する
ことを特徴とする請求項1ないし3いずれか記載の学習モデル構築装置。 - 他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得手段と、
当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得手段と、
当該他社評価データ取得手段が取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得手段と、
当該他社試験データ取得手段が取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得手段が取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習手段と、
を備えることを特徴とする学習モデル構築装置。 - 請求項1、2、4および5のいずれか記載の学習モデル構築装置で構築した学習モデルを用いた入社後評価予測装置であって、
採用前社員が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、
当該希望者試験データ取得手段が取得した採用前社員の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備える
ことを特徴とする入社後評価予測装置。 - 請求項3記載の学習モデル構築装置で構築した複数の学習モデルを用いた入社後評価予測装置であって、
入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得手段と、
前記合致度判定手段が判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定手段と、
当該希望者試験データ取得手段が取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測手段と、を備える
ことを特徴とする入社後評価予測装置。 - 既存社員それぞれが所定の職務適正試験を受験した結果を試験データとして取得する試験データ取得ステップと、
当該既存社員それぞれの社内評価の結果を示す評価データを取得する評価データ取得ステップと、
当該評価データ取得手段が取得した当該評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得するラベル取得ステップと、
当該試験データ取得ステップで取得した試験データそれぞれと、これらに対応する当該ラベル取得ステップで取得したラベルそれぞれの組を教師データとして教師あり学習を行うことにより、当該採用企業への入社を希望して当該適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する学習ステップと、
を備えることを特徴とする学習モデル構築方法。 - 当該既存社員それぞれの履歴・職務経歴を含む個人経歴データとして取得する個人経歴データ取得ステップを、さらに備え、
前記学習ステップでは、当該個人経歴データ取得手段が取得した前記既存社員それぞれの個人経歴データを加えた前記組を教師データとして教師あり学習を行う
ことを特徴とする請求項8記載の学習モデル構築方法。 - 他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、
当該他社既存社員それぞれの社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、をさらに備え、
前記ラベル取得では、前記評価データ取得ステップが取得した評価データに当該他社評価データ取得ステップで取得した他社評価データを合わせてなる合併データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する
ことを特徴とする請求項8または9いずれか記載の学習モデル構築方法。 - 他社既存社員それぞれが所定の職務適正試験を受験した結果を他社試験データとして取得する他社試験データ取得ステップと、
当該他社既存社員それぞれの他社社内評価の結果を示す他社評価データを取得する他社評価データ取得ステップと、
当該他社評価データ取得手段が取得した当該他社評価データそれぞれを複数の水準に分けたものを、それぞれの評価ラベルとして取得する他社ラベル取得ステップと、
当該他社試験データ取得手段が取得した他社試験データそれぞれと、これらに対応する当該他社ラベル取得手段が取得したラベルそれぞれの組みを他社教師データとして教師あり学習を行うことにより、前記採用企業への入社を希望して前記適正試験を受験した入社希望者の入社後評価予測のための学習モデルを構築する他社学習ステップと、
を備えることを特徴とする学習モデル構築方法。 - 前記学習ステップでは、前記教師データを教師データとして複数の相異なる教師あり学習を行うことにより複数の相異なる学習モデルを構築し、
そのうえ、
前記学習ステップで構築した複数の学習モデルそれぞれに前記試験データ取得手段が取得した試験データそれぞれを入れることで出力される試験ラベルそれぞれと、前記ラベル取得ステップで取得した評価ラベルそれぞれとの合致度を判定する合致度判定ステップが設けられている
ことを特徴とする請求項8または9のいずれか記載の学習モデル構築方法。 - 請求項12記載の学習モデル構築方法で構築した複数の学習モデルを用いた入社後評価予測方法であって、
入社希望者が前記所定の職務適正試験を受験した結果を希望者試験データとして取得する希望者試験データ取得ステップと、
前記合致度判定手段が判定した合致度の中から、もっとも高い合致度の学習モデルを選定する選定ステップと、
当該希望者試験データ取得ステップで取得した入社希望者の希望者試験データそれぞれと前記学習モデルとに基づいて、当該入社希望者の入社後評価を予測する評価予測ステップと、を備える
ことを特徴とする入社後評価予測方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018208134 | 2018-11-05 | ||
JP2018208134 | 2018-11-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020137067A Division JP6786143B1 (ja) | 2018-11-05 | 2020-08-14 | 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020077361A true JP2020077361A (ja) | 2020-05-21 |
JP6762584B2 JP6762584B2 (ja) | 2020-09-30 |
Family
ID=70724180
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019114985A Active JP6762584B2 (ja) | 2018-11-05 | 2019-06-20 | 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 |
JP2020137067A Active JP6786143B1 (ja) | 2018-11-05 | 2020-08-14 | 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020137067A Active JP6786143B1 (ja) | 2018-11-05 | 2020-08-14 | 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6762584B2 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111695680A (zh) * | 2020-06-15 | 2020-09-22 | 北京百度网讯科技有限公司 | 成绩预测方法、成绩预测模型训练方法、装置及电子设备 |
JP2020154473A (ja) * | 2019-03-18 | 2020-09-24 | ヤフー株式会社 | 推定装置、推定方法および推定プログラム |
CN111798059A (zh) * | 2020-07-10 | 2020-10-20 | 河北冀联人力资源服务集团有限公司 | 离职预测系统及方法 |
CN111967729A (zh) * | 2020-07-28 | 2020-11-20 | 兰笺(苏州)科技有限公司 | 一种基于数据挖掘的产业化人员画像评价方法 |
CN112116264A (zh) * | 2020-09-24 | 2020-12-22 | 北京易华录信息技术股份有限公司 | 一种活跃度评估方法及装置 |
CN112257777A (zh) * | 2020-10-21 | 2021-01-22 | 平安科技(深圳)有限公司 | 基于隐马尔可夫模型的离职预测方法及相关装置 |
WO2022065353A1 (ja) * | 2020-09-24 | 2022-03-31 | ミイダス株式会社 | 求人者と求職者とのマッチング方法 |
WO2023042287A1 (ja) * | 2021-09-15 | 2023-03-23 | 日本電気株式会社 | 採用支援装置、採用支援方法、及び採用支援プログラム |
JP2023131601A (ja) * | 2022-03-09 | 2023-09-22 | 株式会社エクサウィザーズ | 情報処理方法、コンピュータプログラム及び情報処理装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002003276A1 (fr) * | 2000-06-30 | 2002-01-10 | Promotion Co., Ltd. | Procede d'evaluation de personnes talentueuses et systeme d'evaluation de personnes talentueuses |
JP2003248763A (ja) * | 2002-02-25 | 2003-09-05 | Nec Corp | 就業仲介システム、就業仲介方法、および就業仲介プログラム |
JP2005149034A (ja) * | 2003-11-13 | 2005-06-09 | E Falcon:Kk | 構成員を成功に導くための条件を提示する方法、そのための装置、並びにプログラム |
JP2006127387A (ja) * | 2004-11-01 | 2006-05-18 | Ueno Business Consultants:Kk | 検査方法、検査システム、検査システム用プログラム及び検査システムサーバー装置 |
JP2009266039A (ja) * | 2008-04-25 | 2009-11-12 | Zeus Enterprise:Kk | 採用要否判定システム、採用要否判定方法および採用要否判定プログラム |
US20120323812A1 (en) * | 2010-11-12 | 2012-12-20 | International Business Machines Corporation | Matching candidates with positions based on historical assignment data |
WO2017168458A1 (ja) * | 2016-03-28 | 2017-10-05 | 日本電気株式会社 | 予測モデル選択システム、予測モデル選択方法および予測モデル選択プログラム |
WO2018042547A1 (ja) * | 2016-08-31 | 2018-03-08 | 株式会社オプティム | 回答データ選別システム、回答データ選別方法及びプログラム |
WO2018042546A1 (ja) * | 2016-08-31 | 2018-03-08 | 株式会社オプティム | 応募データ選別システム、応募データ選別方法及びプログラム |
JP2018045559A (ja) * | 2016-09-16 | 2018-03-22 | 富士通株式会社 | 情報処理装置、情報処理方法およびプログラム |
CN107993019A (zh) * | 2017-12-12 | 2018-05-04 | 北京字节跳动网络技术有限公司 | 一种简历评估方法及装置 |
CN108256827A (zh) * | 2018-01-10 | 2018-07-06 | 广东轩辕网络科技股份有限公司 | 目标职位分析方法及系统 |
JP2018147280A (ja) * | 2017-03-07 | 2018-09-20 | 株式会社日立ソリューションズ | データ分析装置及びデータ分析方法 |
-
2019
- 2019-06-20 JP JP2019114985A patent/JP6762584B2/ja active Active
-
2020
- 2020-08-14 JP JP2020137067A patent/JP6786143B1/ja active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002003276A1 (fr) * | 2000-06-30 | 2002-01-10 | Promotion Co., Ltd. | Procede d'evaluation de personnes talentueuses et systeme d'evaluation de personnes talentueuses |
JP2003248763A (ja) * | 2002-02-25 | 2003-09-05 | Nec Corp | 就業仲介システム、就業仲介方法、および就業仲介プログラム |
JP2005149034A (ja) * | 2003-11-13 | 2005-06-09 | E Falcon:Kk | 構成員を成功に導くための条件を提示する方法、そのための装置、並びにプログラム |
JP2006127387A (ja) * | 2004-11-01 | 2006-05-18 | Ueno Business Consultants:Kk | 検査方法、検査システム、検査システム用プログラム及び検査システムサーバー装置 |
JP2009266039A (ja) * | 2008-04-25 | 2009-11-12 | Zeus Enterprise:Kk | 採用要否判定システム、採用要否判定方法および採用要否判定プログラム |
US20120323812A1 (en) * | 2010-11-12 | 2012-12-20 | International Business Machines Corporation | Matching candidates with positions based on historical assignment data |
WO2017168458A1 (ja) * | 2016-03-28 | 2017-10-05 | 日本電気株式会社 | 予測モデル選択システム、予測モデル選択方法および予測モデル選択プログラム |
WO2018042547A1 (ja) * | 2016-08-31 | 2018-03-08 | 株式会社オプティム | 回答データ選別システム、回答データ選別方法及びプログラム |
WO2018042546A1 (ja) * | 2016-08-31 | 2018-03-08 | 株式会社オプティム | 応募データ選別システム、応募データ選別方法及びプログラム |
JP2018045559A (ja) * | 2016-09-16 | 2018-03-22 | 富士通株式会社 | 情報処理装置、情報処理方法およびプログラム |
JP2018147280A (ja) * | 2017-03-07 | 2018-09-20 | 株式会社日立ソリューションズ | データ分析装置及びデータ分析方法 |
CN107993019A (zh) * | 2017-12-12 | 2018-05-04 | 北京字节跳动网络技术有限公司 | 一种简历评估方法及装置 |
CN108256827A (zh) * | 2018-01-10 | 2018-07-06 | 广东轩辕网络科技股份有限公司 | 目标职位分析方法及系统 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020154473A (ja) * | 2019-03-18 | 2020-09-24 | ヤフー株式会社 | 推定装置、推定方法および推定プログラム |
CN111695680A (zh) * | 2020-06-15 | 2020-09-22 | 北京百度网讯科技有限公司 | 成绩预测方法、成绩预测模型训练方法、装置及电子设备 |
CN111695680B (zh) * | 2020-06-15 | 2023-11-10 | 北京百度网讯科技有限公司 | 成绩预测方法、成绩预测模型训练方法、装置及电子设备 |
CN111798059A (zh) * | 2020-07-10 | 2020-10-20 | 河北冀联人力资源服务集团有限公司 | 离职预测系统及方法 |
CN111798059B (zh) * | 2020-07-10 | 2023-11-24 | 河北冀联人力资源服务集团有限公司 | 离职预测系统及方法 |
CN111967729A (zh) * | 2020-07-28 | 2020-11-20 | 兰笺(苏州)科技有限公司 | 一种基于数据挖掘的产业化人员画像评价方法 |
CN112116264A (zh) * | 2020-09-24 | 2020-12-22 | 北京易华录信息技术股份有限公司 | 一种活跃度评估方法及装置 |
WO2022065353A1 (ja) * | 2020-09-24 | 2022-03-31 | ミイダス株式会社 | 求人者と求職者とのマッチング方法 |
CN112257777A (zh) * | 2020-10-21 | 2021-01-22 | 平安科技(深圳)有限公司 | 基于隐马尔可夫模型的离职预测方法及相关装置 |
CN112257777B (zh) * | 2020-10-21 | 2023-09-05 | 平安科技(深圳)有限公司 | 基于隐马尔可夫模型的离职预测方法及相关装置 |
WO2023042287A1 (ja) * | 2021-09-15 | 2023-03-23 | 日本電気株式会社 | 採用支援装置、採用支援方法、及び採用支援プログラム |
JP2023131601A (ja) * | 2022-03-09 | 2023-09-22 | 株式会社エクサウィザーズ | 情報処理方法、コンピュータプログラム及び情報処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2020191131A (ja) | 2020-11-26 |
JP6786143B1 (ja) | 2020-11-18 |
JP6762584B2 (ja) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6786143B1 (ja) | 学習モデル構築装置、入社後評価予測装置、学習モデル構築方法および入社後評価予測方法 | |
Sonmez Cakir et al. | Analysis of leader effectiveness in organization and knowledge sharing behavior on employees and organization | |
Hines et al. | Building foresight capacity: toward a foresight competency model | |
Srivastava et al. | Intelligent employee retention system for attrition rate analysis and churn prediction: An ensemble machine learning and multi-criteria decision-making approach | |
Beus et al. | Making sense of climate: A meta-analytic extension of the competing values framework | |
Soliman et al. | The impact of workplace spirituality on lecturers' attitudes in tourism and hospitality higher education institutions | |
Tabiu et al. | Does training, job autonomy and career planning predict employees’ adaptive performance? | |
Roche et al. | Anticipated multiple role management in emerging adults: A test of the social cognitive career self-management model | |
Pesch et al. | Career certainty and major satisfaction: The roles of information-seeking and occupational knowledge | |
KR20180118611A (ko) | 인재의 데이터 기반 식별을 위한 시스템 및 방법 | |
Ellwart et al. | Team mental models of expertise location: Validation of a field survey measure | |
Hauff et al. | Further exploring the links between high-performance work practices and firm performance: A multiple-mediation model in the German context | |
Poon et al. | Examining the antecedents of ambidextrous behaviours in promoting creativity among SMEs in Malaysia | |
Coetzee et al. | Career anchors as a meta-capacity in organizational career development | |
Hassan et al. | Retention approaches of millennial at private sector: Mediating role of job embeddedness | |
Nelson et al. | The role of analytical CRM on salesperson use of competitive intelligence | |
Siahtiri | Innovation at the service encounter in knowledge intensive business services: antecedents and boundary conditions | |
Chakraborty et al. | Enlivening workplace climate through strategic human resource management initiatives: Unleashing its efficacy | |
Singh et al. | Artificial intelligence in HRM: role of emotional–social intelligence and future work skill | |
Newaz et al. | Do employees' attributes and capabilities matter the intention to become a supply chain manager? Structural model analysis | |
Hettiachchi et al. | Effect of cognitive abilities on crowdsourcing task performance | |
Johansen | The direct and interactive effects of middle and upper managerial quality on organizational performance | |
Riley et al. | Relationship conflict, task conflict and teams’ transactive memory systems | |
Aguirre et al. | Instrument for measuring intentions to leave | |
Hanley | Measure what matters: A practical approach to knowledge management metrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190624 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190624 |
|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20190628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190628 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200131 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6762584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |