JP2020075621A - 車両用制動力制御装置 - Google Patents

車両用制動力制御装置 Download PDF

Info

Publication number
JP2020075621A
JP2020075621A JP2018210169A JP2018210169A JP2020075621A JP 2020075621 A JP2020075621 A JP 2020075621A JP 2018210169 A JP2018210169 A JP 2018210169A JP 2018210169 A JP2018210169 A JP 2018210169A JP 2020075621 A JP2020075621 A JP 2020075621A
Authority
JP
Japan
Prior art keywords
braking force
regenerative
brake
hydraulic
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018210169A
Other languages
English (en)
Inventor
伸 菊地
Shin Kikuchi
伸 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018210169A priority Critical patent/JP2020075621A/ja
Publication of JP2020075621A publication Critical patent/JP2020075621A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】 4輪等圧油圧ブレーキと、前輪回生ブレーキとを併用した回生協調ブレーキシステムにてDACを実施する場合に、回生エネルギーの増大と、車輪の早期ロックの回避とを両立させる。【解決手段】 ブレーキECUは、最大減速度を発生させることができる等減速度線Lgmaxと、降坂路の理想配分線Lriso2と、実制動力配分線Loilとに基づいて回生許容制動力Freglimを演算する。ブレーキECUは、降坂必要制動力F*が回生許容制動力Freglim以下である場合、回生制動力のみを発生させ、降坂必要制動力F*が回生許容制動力Freglimを超える場合には、回生ブレーキによって回生許容制動力Freglimを発生させるとともに、降坂必要制動力F*に対して回生許容制動力Freglimだけでは不足する分(F*−Freglim)の制動力を油圧ブレーキ装置で発生させる。【選択図】 図9

Description

本発明は、モータの発電作用により発生する回生制動力と、ブレーキ作動油の油圧制御により発生する油圧制動力との両方によって車輪を制動させる車両用制動力制御装置に関する。
従来から、車両がオフロード等の急な下り坂を降りる場合に、車輪をロックさせることなく一定車速(例えば、5km/h)を維持して降坂するように制動力の自動制御を行う降坂路走行速度制御装置が知られている(例えば、特許文献1)。こうした制動力の自動制御は、ダウンヒルアシストコントロール(DAC:Downhill Assist Control)、あるいは、ヒルディセントコントロール(HDC:Hill Descent Control)と呼ばれている。この特許文献1には、油圧ブレーキと回生ブレーキとを組み合わせてDACを実施することも記載されている。
特開2010−12811号公報
ところで、左右前後輪(4輪)を等しい油圧にて制動力を発生させる4輪等圧油圧ブレーキと、左右前輪のみ回生制動力を発生させる前輪回生ブレーキとを併用した回生協調ブレーキシステムにて、上記のDACを実施することを考えた場合、以下の問題が生じる。
例えば、4輪等圧油圧ブレーキのみでDACを実施すると、降坂路では後輪の接地荷重が小さくなることから、後輪が早期ロック状態となる。このため、制動安定性が悪化する。また、4輪等圧油圧ブレーキに回生ブレーキを併用した場合、回生ブレーキによる前輪制動力が大きすぎると、前輪が早期ロック状態となる。この場合も、制動安定性が悪化する。また、4輪等圧油圧ブレーキに回生ブレーキを併用した場合、回生ブレーキによる前輪制動力が小さすぎると、回生ブレーキにより回収されるエネルギーが少なくなり、回生ブレーキによる燃費向上分が少なくなってしまう。
本発明は、上記課題を解決するためになされたものであり、4輪等圧油圧ブレーキと、前輪回生ブレーキとを併用した回生協調ブレーキシステムにてDACを実施する場合に、回生エネルギーの増大と、車輪の早期ロックの回避とを両立させることを目的とする。
上記目的を達成するために、本発明の特徴は、
左右前後輪の各摩擦ブレーキ機構に互いに等しい油圧のブレーキ作動油を供給して、左右前後輪に一定の前後配分比で油圧制動力を発生させる油圧ブレーキ装置(41,42)と、
左右前後輪のうち、左右前輪に対してのみ回生制動力を発生させる回生ブレーキ装置(12,20,21,22)と、
車両が降坂路を降りる場合に、車両が所定速度を維持して走行するように前記油圧ブレーキ装置と前記回生ブレーキ装置とで発生させる制動力を制御する降坂路速度維持制御を実施する降坂路走行時制動力制御手段(30,40)と
を備えた車両用制動力制御装置であって、
前記降坂路走行時制動力制御手段は、
前記油圧ブレーキ装置で制動力を発生させずに前記回生ブレーキ装置のみで制動力を発生させることが許容される回生許容制動力を設定する回生許容制動力設定手段(S13)と、
前記所定速度を維持して車両が前記降坂路を降りるために必要な制動力である降坂必要制動力が前記回生許容制動力以下である場合には、前記油圧ブレーキ装置で制動力を発生させずに前記回生ブレーキ装置のみで前記降坂必要制動力を発生させ、前記降坂必要制動力が前記回生許容制動力を超える場合には、前記回生ブレーキ装置で前記回生許容制動力を発生させるとともに、前記降坂必要制動力に対して前記回生許容制動力だけでは不足する分の制動力を前記油圧ブレーキ装置で発生させる回生油圧配分制御手段(S16〜S18)とを備え、
前記回生許容制動力設定手段は、前記油圧ブレーキ装置の前輪と後輪との制動力の油圧制動力配分特性(Loil)と、平坦路において最大減速度を発生させることができる前輪と後輪との制動力の配分特性である平坦路最大等減速度特性(Lgmax)と、前記降坂路における前輪と後輪との制動力の理想配分を表す降坂路理想配分特性(Lriso2)とに基づいて、前記回生許容制動力(Freglim)を設定するように構成されたことにある。
本発明の車両用制動力発生装置は、油圧ブレーキ装置と回生ブレーキ装置と降坂路走行時制動力制御手段とを備えている。油圧ブレーキ装置は、左右前後輪の各摩擦ブレーキ機構に互いに等しい油圧のブレーキ作動油を供給して、左右前後輪に一定の前後配分比で油圧制動力を発生させる。つまり、油圧ブレーキ装置は、4輪等圧油圧ブレーキ装置である。
回生ブレーキ装置は、左右前後輪のうち、左右前輪に対してのみ回生制動力を発生させる。例えば、回生ブレーキ装置は、車両を減速させる要求が発生している状況において、モータに左右前輪の回転トルクを伝達させて、モータで発電した電力をバッテリに回生することにより左右前輪に対して回生制動力を発生させる。
降坂路走行時制動力制御手段は、車両が降坂路を降りる場合に、車両が所定速度を維持して走行するように油圧ブレーキ装置と回生ブレーキ装置とで発生させる制動力を制御する降坂路速度維持制御を実施する。従って、ドライバーのブレーキ操作を必要とすることなく、車両が所定速度を超えて加速走行しないようにすることができる。
降坂路走行時制動力制御手段は、回生エネルギーの増大と、車輪の早期ロックの回避とを両立させるために、回生許容制動力設定手段と、回生油圧配分制御手段とを備えている。
回生許容制動力設定手段は、油圧ブレーキ装置で制動力を発生させずに回生ブレーキ装置のみで制動力を発生させることが許容される回生許容制動力を設定する。この場合、回生許容制動力設定手段は、油圧ブレーキ装置の前輪と後輪との制動力の油圧制動力配分特性と、平坦路において最大減速度を発生させることができる前輪と後輪との制動力の配分特性である平坦路最大等減速度特性と、降坂路における前輪と後輪との制動力の理想配分を表す降坂路理想配分特性とに基づいて、回生許容制動力を設定する。従って、降坂路で、車輪のロックを回避して最大の減速度が得られる範囲内で、回生ブレーキ装置で発生させる回生制動力を最大にすることができる。
回生油圧配分制御手段は、所定速度を維持して車両が降坂路を降りるために必要な制動力である降坂必要制動力が回生許容制動力以下である場合には、油圧ブレーキ装置で制動力を発生させずに回生ブレーキ装置のみで降坂必要制動力を発生させ、降坂必要制動力が回生許容制動力を超える場合には、回生ブレーキ装置で回生許容制動力を発生させるとともに、降坂必要制動力に対して回生許容制動力だけでは不足する分の制動力を油圧ブレーキ装置で発生させる。
従って、本発明によれば、油圧ブレーキ装置が制動力の前後配分比を調整しない場合であっても、回生エネルギーの増大と、車輪の早期ロックの回避との両立を図ることができる。
尚、例えば、前記回生許容制動力設定手段は、前輪制動力と後輪制動力との関係を表す座標上において、前記降坂路理想配分特性を表す降坂路理想配分線(Lriso2)と、前記平坦路最大等減速度特性を表す平坦路最大等減速度線(Lgmax)との交点(P2)を通り、前記油圧制動力配分特性を表す油圧制動力配分線(Loil)に平行な直線(Lpara)と、前記後輪制動力がゼロとなる座標軸線との交点(P3)における前記前輪制動力の値を、前記回生許容制動力(Freglim)に設定するように構成されているとよい。
また、この場合、例えば、前記回生許容制動力設定手段は、前輪制動力と後輪制動力との関係を表す座標上において、平坦路における前輪がロックする限界を表すロック線(Lrockf1)と後輪がロックする限界を表すロック線(Lrockr1)との交点(Prockfr1)を通る等減速度線を、前記平坦路最大等減速度線(Lgmax)に設定するように構成されているとよい。
また、前記平坦路最大等減速度線は、前記降坂路の推定摩擦係数(μ)に応じて可変設定されるとよい。
上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は、前記符号によって規定される実施形態に限定させるものではない。
本実施形態に係る車両用制動力制御装置が搭載される車両の概略構成図である。 油圧ブレーキ装置で発生させる前輪制動力と後輪制動力との配分比を表す実制動力配分線を示したグラフである。 平坦路および降坂路における、前輪制動力と後輪制動力との理想的な配分比を表す理想配分線を示したグラフである。 実制動力配分線Loil、理想配分線Lriso1、理想配分線Lriso2、前輪ロック線Lrockf1、後輪ロック線Lrockr1、および、等減速度線Lgmaxを表すグラフである。 降坂路を減速走行する場合に、後輪が早期にロックする現象を説明するグラフである。 降坂路における理想配分線を表すグラフである。 その路面で発生できる最大の減速度で減速できる等減速度線Lgmaxを表すグラフである。 回生許容制動力を算出するための平行線Lparaを表すグラフである。 回生油圧併用線Lregoilを表すグラフである。 回生油圧配分制御ルーチンを表すフローチャートである。 変形例1としての回生油圧併用線Lregoilを演算する方法を表すグラフである。 変形例2としての回生油圧併用線Lregoilを演算する方法を表すグラフである。 回生許容制動力Freglimがゼロとなる場合の例を表すグラフである。
以下、本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の車両用制動力制御装置が搭載される車両1の構成を概略的に示している。
本実施形態の車両用制動力制御装置を備えた車両1は、4輪駆動式ハイブリッド車両であって、左前輪50FLおよび右前輪50FRを駆動するエンジン11およびフロントモータ12と、左後輪50RLおよび右後輪50RRを駆動するリアモータ13とを有するハイブリッドシステム10を備えている。以下、左前輪50FLおよび右前輪50FRについては、それらを前輪50Fと呼び、左後輪50RLおよび右後輪50RRについては、それらを後輪50Rと呼ぶ。また、前輪50Fと後輪50Rとを区別する必要がない場合は、それらを車輪50と呼ぶ。尚、この車両1は、前輪50Fを転舵輪とした一般的な前輪転舵式の車両であるが、転舵機構については、図示および説明を省略する。
ハイブリッドシステム10においては、エンジン11の出力軸とフロントモータ12の出力軸とがプラネタリギヤ14(動力分配プラネタリギヤ、および、リダクションプラネタリギヤを含んで構成される)の入力軸に連結されている。プラネタリギヤ14の出力軸の回転は、ディファレンシャルギヤ15を介して左右の前輪用車軸16L、16Rへ伝達され、これにより左右の前輪50FL,50FRが回転駆動される。尚、本実施形態の車両用制動力制御装置は、ハイブリッドシステム10に特徴を有するものではないため、本明細書では、ハイブリッドシステム10については簡単な説明に留める。例えば、フロントモータ12は、特開2013−177026号公報に記載されているように、動力分配プラネタリギヤに接続され主にエンジン11の回転によって発電を行う第1モータジェネレータと、リダクションプラネタリギヤに接続され主に力行によって前輪50Fに駆動力を付与する第2モータジェネレータとを備えているとよい。
リアモータ13の駆動力は、ディファレンシャルギヤ17(減速ギヤを含む)を介して左右の後輪用車軸18L、18Rへ伝達され、これにより左右の後輪50RL,50RRが回転駆動される。
フロントモータ12およびリアモータ13は、インバータ20に接続されている。インバータ20は、DC/DCコンバータ21を介してバッテリ22と接続されている。インバータ20は、バッテリ22から供給される直流電力(DC/DCコンバータ21によって電圧調整された直流電力)を3相交流に変換して、変換した交流電力をフロントモータ12、および、リアモータ13に独立して供給する。従って、インバータ20は、フロントモータ12に接続されるインバータ回路とリアモータ13に接続されるインバータ回路とを独立して備えている。
フロントモータ12とリアモータ13とは、インバータ20の通電制御によって、車両の前進方向の正回転と、車両の後進方向の逆回転とに独立して駆動可能に構成されている。また、インバータ20は、フロントモータ12で発電した回生電力を直流に変換して、DC/DCコンバータ21を介してバッテリ22に充電する機能も備えている。これにより、フロントモータ12は、制動トルクを発生し、前輪50Fに回生制動力を付与する。尚、リアモータ13については、フロントモータ12のようにバッテリ22に電力回生を行う機能を有していなく、後輪50Rに回生制動力を付与することはできない。
エンジン11、フロントモータ12、および、リアモータ13は、駆動ECU30により、その作動が制御される。駆動ECU30は、マイクロコンピュータを主要部として備えた電子制御装置である。尚、ECUは、Electric Control Unitの略である。本明細書において、マイクロコンピュータは、CPUとROM及びRAM等の記憶装置と等を含み、CPUはROMに格納されたインストラクション(プログラム)を実行することにより各種機能を実現するようになっている。
駆動ECU30は、アクセル操作量を検出するアクセルセンサ31の検出信号を入力して、アクセル操作量に応じたドライバー要求駆動力を演算し、このドライバー要求駆動力を前輪50F側と後輪50R側とに配分した前輪目標駆動力,後輪目標駆動力を、それぞれ前輪50F,後輪50Rに伝達するようにエンジン11、フロントモータ12、および、リアモータ13を制御する。例えば、駆動ECU30は、各種のエンジン制御用センサ32から出力される検出信号を入力して、エンジン11の燃料噴射制御、点火制御、および、吸入空気量制御などを実施する。また、駆動ECU30は、各種のモータ制御用センサ33から出力される検出信号を入力して、インバータ20の作動を制御して、フロントモータ12およびリアモータ13の通電を制御する。
また、車両1は、左右前後輪50FL,50FR,50RL,50RRに設けられる摩擦ブレーキ機構41FL,41FR,41RL,41RR(これらを摩擦ブレーキ機構41と呼ぶ)、ブレーキアクチュエータ42、および、ブレーキECU40を備えている。摩擦ブレーキ機構41は、車輪50に固定されるブレーキディスク41dFL,41dFR,41dRL,41dRR(これらをブレーキディスク41dと呼ぶ)と、車体に固定されるブレーキキャリパ41cFL,41cFR,41cRL,41cRR(これらをブレーキキャリパ41cと呼ぶ)とを備え、ブレーキアクチュエータ42から供給される作動油の油圧によってブレーキキャリパ41cに内蔵されたホイールシリンダを作動させることによりブレーキパッドをブレーキディスク41dに押し付けて摩擦制動力を発生させる。
ブレーキアクチュエータ42は、ブレーキペダルの踏力によって作動油を加圧するマスタシリンダ(図示略)と摩擦ブレーキ機構41との間に設けられ、各ブレーキキャリパ41cに内蔵されたホイールシリンダに供給するブレーキ作動油の油圧を制御するアクチュエータである。このブレーキアクチュエータ42は、4輪のホイールシリンダの油圧を共通のリニア制御弁にて制御するタイプである。このため、4輪のホイールシリンダの油圧は、ABS等の各輪独立制御を実施する場合を除き、互いに等しい圧力(4輪等圧)に調整される。
こうしたブレーキアクチュエータ42は、周知であるため、詳細については説明しないが、例えば、各摩擦ブレーキ機構41のホイールシリンダに共通の油圧を供給する油圧回路、昇圧ポンプとアキュムレータとを備えブレーキペダル踏力とは無関係に高圧の油圧を発生する動力油圧発生装置、動力油圧発生装置から4輪のホイールシリンダに通じる共通の油圧回路に設けられて4輪のホイールシリンダの油圧を調整する1組のリニア制御弁(増圧用リニア制御弁、減圧用リニア制御弁)、油圧回路の油圧を検出する油圧センサ等を備える。
こうした、1組のリニア制御弁で4輪のホイールシリンダ圧を共通に制御するタイプのブレーキアクチュエータ42は、周知であり、例えば、特開2013−256253号公報等に詳細に記載されている。従って、ブレーキアクチュエータ42は、こうした周知のものを適用することができる。
ブレーキアクチュエータ42は、ブレーキECU40に電気的に接続される。ブレーキECU40は、マイクロコンピュータを主要部として備えた電子制御装置であって、ブレーキアクチュエータ42の作動を制御する。ブレーキECU40は、図示しないCAN(Controller Area Network)を介して駆動ECU30と相互に送受信可能に接続されている。
ブレーキECU40には、ブレーキアクチュエータ42に設けられた図示しない油圧センサ、各種制御弁、ポンプが接続されている。また、ブレーキECU40には、ブレーキペダルの踏み込み量(あるいは、角度や圧力など)からドライバーのブレーキ操作量を検出するブレーキセンサ43、および、4輪の車輪速をそれぞれ検出する4つの車輪速センサ44が接続されている。
また、ブレーキECU40には、傾斜センサ45が接続されている。例えば、傾斜センサ45は、車両前後方向の加速度を検出する加速度センサであって、重力加速度Gの車両前後方向成分Gxを検出することにより、傾斜勾配(傾斜角度)を検出する。例えば、車両が降り坂に停車している場合には、車両前後方向成分Gxは車両前方に働く。従って、車両前後方向成分Gxの大きさに基づいて、車両の傾斜している角度、つまり、降坂路の傾斜角度(傾斜勾配)を検出することができる。傾斜角度θは、次式(1)により算出することができる。
θ=sin−1(Gx/G) ・・・(1)
また、ブレーキECU40には、DACスイッチ46が接続されている。DACスイッチ46は、ドライバーが後述する降坂路速度維持制御(DAC)による運転支援を希望する場合に、操作する選択スイッチである。
ブレーキECU40は、ブレーキペダル操作時における、摩擦ブレーキ機構41で発生させる目標油圧制動力と、フロントモータ12で発生させる目標回生制動力とを演算する処理、目標回生制動力を表す情報(回生ブレーキ指令)を駆動ECU30に送信する処理、および、目標油圧制動力に基づいてブレーキアクチュエータ42の作動を制御する処理を行う。また、ブレーキECU40は、車輪速センサ44により検出される4輪の車輪速に基づいて車速(車体速)を演算し、演算した車速を表す車速情報を通信ネットワーク(図示略)を介して駆動ECU30を含む複数の車載ECUに送信する処理を行う。
駆動ECU30は、ブレーキECU40から送信された回生ブレーキ指令を入力した場合、その回生ブレーキ指令に含まれる情報である目標回生制動力が前輪50Fに付与されるように生成した制御信号をインバータ20に出力する。これによりインバータ20のスイッチング素子のデューティ比が制御されて、目標回生制動力に対応した電流がフロントモータ12からバッテリ22に流れ、前輪50Fに制動力が付与される。
摩擦ブレーキ機構41、ブレーキアクチュエータ42、ブレーキペダル(図示略)、および、マスターシリンダ(図示略)からなる構成が、本発明の油圧ブレーキ装置に相当し、以下、本実施形態においても、それらを油圧ブレーキ装置と呼ぶこともある。また、フロントモータ12、インバータ20、DC/DCコンバータ21、および、バッテリ22からなる構成が、本発明の回生ブレーキ装置に相当し、以下、本実施形態においても、それらを回生ブレーキ装置と呼ぶこともある。
<降坂路速度維持制御(DAC)>
ブレーキECU40は、DACスイッチ46がオンされている場合には、降坂路速度維持制御(以下、DACと呼ぶ)を実施する。DACは、車両がオフロード等の急な下り坂を降りる場合に、車輪50をロックさせることなく一定車速(例えば、5km/h)を維持して降坂するように制動力を自動制御して、ドライバーの運転操作(ブレーキペダル操作)を支援する制御である。DACが実施されると、ブレーキECU40は、車速VがDAC目標車速Vdac(例えば、5km/h)に維持されるように、車速VとDAC目標車速Vdacとの偏差(V−Vdac)に応じた目標減速度G*を演算し、車両を目標減速度G*で減速させるように前輪50Fと後輪50Rとにおける制動力を制御する。これにより、ドライバーのブレーキペダル操作を必要とせずに、車両をDAC目標速度Vdacで降坂路を走行させることができる。
<制動力の前後配分比について>
上述したように本実施形態の油圧ブレーキ装置は、4輪のホイールシリンダに互いに等しい圧力の油圧を供給して制動力を発生させる4輪等圧油圧ブレーキ装置である。このため、前輪50Fで発生させる制動力と後輪50Rで発生させる制動力との配分比は、ABS等の各輪独立制御を実施する場合を除き、常に一定(予め設定された固定値)となっている。
例えば、摩擦ブレーキ機構41(油圧ブレーキ装置)で発生させる前輪50Fの制動力と後輪50Rの制動力との関係は、図2に示す実制動力配分線Loilにて表される。例えば、任意の目標減速度G*が設定されれば、その目標減速度G*に応じて設定され油圧(4輪等圧)をブレーキアクチュエータ42から各摩擦ブレーキ機構41に供給することにより、前輪50Fおよび後輪50Rに、所定の制動力(Foilf,Foilr)を発生させることができる。図中において、Lg(G*)は、車両を目標減速度G*で減速させることができる、前輪制動力と後輪制動力の関係を表すラインであって、等減速度線と呼ばれる。
図3は、車両減速時における前輪50Fの制動力と後輪50Rの制動力との理想的な配分比を表す理想配分線Lriso1,Lriso2を表す。理想配分線Lriso1は、車両が平坦路を減速走行する場合の理想配分特性を表し、理想配分線Lriso2は、車両が降坂路を減速走行する場合の理想配分特性を表す。路面の摩擦係数μが決まれば、その摩擦係数μに対して、車輪50をロックさせずに最大減速度で車両を減速させることができる前輪制動力と後輪制動力との関係を表すポイントが1つ決まる。例えば、前輪50Fがロックする限界における前輪制動力(最大減速度を出せる前輪制動力)と、後輪50Rがロックする限界における後輪制動力(最大減速度を出せる後輪制動力)とによってロック限界点が決まる。理想配分線Lriso1,Lriso2は、摩擦係数μを連続的に変化させた場合における、ロック限界点の集合体からなるラインとして表される。
車両が降坂路を下る場合には、車両の重心が前方に移動して、前輪50Fの接地荷重が増加し、後輪50Rの接地荷重が低下する。接地荷重が小さいほどスリップ度合いが大きくなる。そのために、理想配分線は、降坂路の傾斜角度(荷重変化量)応じてその特性が異なり、傾斜角度が大きいほど、前輪制動力の配分比が増加するように(後輪制動力の配分比が減少するように)設定される。
図4は、実制動力配分線Loil、理想配分線Lriso1、および、理想配分線Lriso2を共通の座標上に表したグラフである。また、図4には、平坦路で前輪50Fがロックする限界を表す前輪ロック線Lrockfと、平坦路で後輪50Rがロックする限界を表す後輪ロック線Lrockrとが破線にて示されている。この前輪ロック線Lrockf1と後輪ロック線Lrockr1とは、理想配分線Lriso1上で交差する。以下、この交差する点を前後輪ロック限界点Prockfr1と呼ぶ。この前後輪ロック限界点Prockfr1を通る等減速度線Lgmaxの表す減速度は、車輪50がロックせずに平坦路を減速できる最大の減速度である。従って、等減速度線Lgmaxは、平坦路において最大減速度を発生させることができる前輪50Fと後輪50Rとの制動力の配分特性を表し、本発明における平坦路最大等減速度特性に相当する。
尚、前輪ロック線Lrockfと後輪ロック線Lrockrとは、摩擦係数μに応じて変化するが、ここでは、任意の1つの摩擦係数μについての特性について説明している。
この図4の例では、平坦路において前後輪50がロックせずに減速できる最大の減速度が1Gであり、実制動力配分線Loilは、前後輪ロック限界点Prockfr1(1Gの等減速度線Lgmaxが通る点)を通る。
ブレーキECU40は、実制動力配分線Loil、平坦路における前輪ロック線Lrockf1、平坦路における後輪ロック線Lrockr1、降坂路における傾斜角度(荷重変化量)に応じて決まる理想配分線Lriso2、目標減速度G*に応じた等減速度線Lg(G*)を表す配分比特性情報を記憶している。傾斜角度がゼロであれば、理想配分線Lriso2は、平坦路の理想配分線Lriso1と一致する。従って、理想配分線Lriso1と理想配分線Lriso2とを区別して配分比特性情報を記憶する必要はない。尚、ブレーキECU40は、必ずしも、こうした配分比特性情報をそのまま記憶している必要はなく、後述する回生許容制動力Freglimを演算することができる情報(演算式、演算パラメータ等)を記憶していればよい。
<DACにおける油圧制動力と回生制動力との配分について>
次に、DACにおける油圧制動力と回生制動力との配分について説明する。
図5に示すように、車両が降坂路を降りる場合の理想配分線Lriso2は、車両が平坦路を走行する場合の理想配分線Lriso1よりも、後輪50Rの制動力配分比が低下する方向にシフトする。また、車両が降坂路を降りる場合には、その前輪ロック線Lrockf2は、平坦路の前輪ロック線Lrockf1に比べて、前輪制動力の配分比が増加する方向にシフトし、その後輪ロック線Lrockr2は、平坦路の後輪ロック線Lrockr1に比べて、後輪制動力の配分比が低下する方向にシフトする。そして、前輪ロック線Lrockf2と後輪ロック線Lrockr2とは、理想配分線Lriso2上において交差する。この交差する点を前後輪ロック限界点Prockfr2と呼ぶ。
上述したように、油圧ブレーキ装置は、制動力の前後配分比が一定に設定されている。従って、実制動力配分線Loilの傾きを変更することができない。このため、実制動力配分線Loilは、図5の点Psoukiで後輪ロック線Lrockr2と交差する。従って、車両が降坂路を降りる場合に油圧ブレーキ装置のみで制動力を発生させると、後輪50Rが前輪50Fに比べて早期にロックしてしまい、安定走行性が悪化する(車輪50をロックさせないで得られる車両の最大減速度が低下する)。
そこで、本実施形態においては、DACの実施時においては、油圧ブレーキと回生ブレーキとの配分を工夫することにより、安定走行性の向上と、エネルギー回収効率の向上とが図られている。
回生ブレーキは、前輪50Fのみに付与することができる。従って、油圧ブレーキに回生ブレーキを併用した場合、油圧・回生トータルの制動力は、回生制動力の分だけ実制動力配分線Loilが図5の右側にシフトした特性となる。この場合、回生ブレーキによる前輪制動力が大きすぎると、油圧・回生トータルの制動力の特性線が、前輪ロック線Lrockf2(前後輪ロック限界点Prockfr2よりも制動力が低い側の前輪ロック線Lrockf2)に交差する。これにより、前輪50Fが後輪50Rに比べて早期にロックしてしまい、安定走行性が悪化する(車輪50をロックさせないで得られる車両の最大減速度が低下する)。また、回生ブレーキによる前輪制動力が小さすぎると、バッテリ22に回収できるエネルギーが少なくなり、回生ブレーキによる燃費向上分が少なくなってしまう。
そこで、本実施形態においては、以下のように回生制動力の大きさが設定される。
まず、降坂路の理想配分特性(理想配分線Lriso2で表される特性)が推定される。この場合、ブレーキECU40は、降坂路の傾斜角度(勾配)の推定値に基づいて、前後輪の荷重移動量を推定する。降坂路の傾斜角度が大きいほど、前後輪の荷重移動量が大きくなる。例えば、車両が降坂路を停車している場合は、水平路に停車している場合に比べて、前輪50Fに働く荷重はΔWだけ増え、後輪50Rに働く荷重はΔWだけ減る。この荷重移動量ΔWは、次式(2)にて算出される。
ΔW=m×G×(H/L)×sinθ ・・・(2)
ここで、mは車両重量、Gは重力加速度、Hは重心高さ、Lはホイールベース、θは傾斜角度を表す。
この荷重移動量ΔWが求められれば、それに応じて理想配分特性線Lriso2が得られる。ブレーキECU40は、荷重移動量ΔWと理想配分特性線Lriso2とを関係付けた関係付けデータ(例えば、マップ、あるいは、演算式等)を記憶しており、この関係付けデータを使って、荷重移動量ΔWから理想配分特性線Lriso2を算出する。この理想配分特性線Lriso2は、図6における太線にて表される。
続いて、図7に示すように、最大減速度(本実施形態では1G)を発生させることができる等減速度線Lgmaxと、降坂路の理想配分線Lriso2との交点P2が算出される。この等減速度線Lgmaxは、平坦路において車輪50がロックせずに減速できる最大の減速度(1G)の等減速度線である。つまり、等減速度線Lgmaxは、平坦路における前後輪ロック限界点Prockfr1を通る等減速度線Lgである。
続いて、図8に示すように、交点P2を通り実制動力配分線Loilと平行な直線である平行線Lparaと、後輪制動力がゼロとなる座標軸線(横軸)との交点P3が算出される。この交点P3における前輪制動力の値が、回生許容制動力Freglimに設定される。
ブレーキECU40は、上記のようにして回生許容制動力Freglimを演算した後は、DACで演算される降坂必要制動力F*(所定速度を維持して車両が降坂路を降りるために必要な制動力)が回生許容制動力Freglim以下である場合、回生制動力を優先的に発生させる。つまり、ブレーキECU40は、油圧ブレーキ装置では油圧制動力を発生させず、フロントモータ12の回生ブレーキによる回生制動力のみを発生させる。
また、ブレーキECU40は、DACで演算される降坂必要制動力F*が回生許容制動力Freglimを超える場合には、回生ブレーキによって回生許容制動力Freglimを発生させるとともに、降坂必要制動力F*に対して回生許容制動力Freglimだけでは不足する分(F*−Freglim)の制動力を油圧ブレーキ装置で発生させる。
従って、制動力特性は、図9に太線で示すように、折れ線状になる。以下、この太線で示される特性を回生油圧併用特性と呼び、その特性を表す線を回生油圧併用線Lregoilと呼ぶ。
これにより、降坂路で、車輪50のロックを回避して最大の減速度が得られる範囲内で、回生ブレーキで発生させる回生制動力を最大にすることができる。従って、車両の制動安定性を犠牲にすることなく、回生エネルギーの回収量を最大にすることができる。
<回生油圧配分制御ルーチン>
次に、ブレーキECU40の実施する回生制動力と油圧制動力との配分制御処理を表す回生油圧配分制御ルーチンについて説明する。図10は、回生油圧配分制御ルーチンを表すフローチャートである。ブレーキECU40は、DACが実施されている間、DACと並行して、回生油圧配分制御ルーチンを所定の演算周期で繰り返し実施する。
回生油圧配分制御ルーチンが起動すると、ブレーキECU40は、ステップS11において、降坂路の勾配(傾斜角度θ)を推定する。例えば、ブレーキECU40は、傾斜センサ45(加速度センサ)の検出信号を読み込んで、上述した式(1)を使って、降坂路の傾斜角度θを算出する。
続いて、ブレーキECU40は、ステップS12において、降坂路の勾配に基づいて、車両の前後方向の荷重移動量を推定する。この場合、ブレーキECUは、上述した式(2)を使って、車両の前後方向の荷重移動量を推定する。
続いて、ブレーキECU40は、ステップS13において、荷重移動量に基づいて、降坂路の理想配分特性を算出し、上述した手法により、回生許容制動力Freglimを算出する。
ブレーキECU40は、上述したように、油圧ブレーキ装置の前輪50Fと後輪50Rとの制動力の油圧制動力配分特性(実制動力配分線Loil)と、平坦路において最大減速度を発生させることができる前輪50Fと後輪50Rとの制動力の配分特性である等減速度特性(等減速度線Lgmax)と、降坂路における前輪50Fと後輪50Rとの制動力の理想配分を表す理想配分特性(理想配分線Lriso2)とに基づいて、回生許容制動力Freglimを演算する。
続いて、ブレーキECU40は、ステップS14において、回生ブレーキが許可されているか否かについて判定する。例えば、ブレーキECU40は、駆動ECU30から回生ブレーキを実施してもよい状況か否かについての情報である回生許可/禁止信号を所定の周期で入力し、この回生許可/禁止信号に基づいて、回生ブレーキが許可されているか否かについて判定する。
ブレーキECU40は、回生ブレーキが許可されていない場合(S14:No)、その処理をステップS15に進めて、制動モードを油圧制動モードに設定する。ブレーキECUは、DACの実施中に、回生油圧配分制御ルーチンで設定された制動モードを表す制動モード信号を読み込み、現時点の制動モードに応じた種類の制動力を発生させる。
ブレーキECU40は、DACの実施中において、油圧制動モードが設定されている場合には、降坂必要制動力F*を、全て油圧制動力にて発生させる。つまり、図2に示すように、実制動力配分線Loilと、目標減速度G*の等減速度線Lg(G*)との交点で決まる前輪制動力Foilfと後輪制動力Foilrとの全てを油圧ブレーキ装置で発生させる。降坂必要制動力F*は、車速VをDAC目標車速Vdacに維持して車両が降坂路を降りるために必要な4輪のトータル制動力である。
ブレーキECU40は、回生ブレーキが許可されている場合(S14:Yes)、その処理をステップS16に進めて、降坂必要制動力F*が回生許容制動力Freglim以下であるか否かについて判定する。この場合、ブレーキECU40は、DACの実施によって演算される降坂必要制動力F*を読み込んで、上記の判定を行う。この場合、図9に示すように、目標減速度G*の等減速度線Lg(G*)と回生油圧併用線Lregoilとが交差する交点が、PxAで表されるように横軸上(原点0から交点P3までのあいだ)に存在すれば、降坂必要制動力F*は回生許容制動力Freglim以下であると判定される。降坂必要制動力F*は、この交点PxAで表される前輪制動力である。
ブレーキECU40は、降坂必要制動力F*が回生許容制動力Freglim以下である場合(S16:Yes)には、その処理をステップS17に進めて、制動モードを回生制動モードに設定する。
ブレーキECU40は、DACの実施中において、回生制動モードが設定されている場合には、降坂必要制動力F*の全てを、フロントモータ12の回生ブレーキによって発生させる。従って、ブレーキECU40は、駆動ECU30に対して、目標回生制動力(=降坂必要制動力F*)を表す回生ブレーキ指令を送信する。これにより、駆動ECU30は、目標回生制動力が前輪50Fに付与されるように生成した制御信号をインバータ20に出力する。こうして、目標回生制動力に対応した電流がフロントモータ12からバッテリ22に流れ、前輪50Fに降坂必要制動力F*が付与される。
一方、降坂必要制動力F*が回生許容制動力Freglimを超えている場合(S16:No)には、ブレーキECU40は、その処理をステップS18に進めて、制動モードを回生油圧併用制動モードに設定する。
ブレーキECU40は、DACの実施中において、回生油圧併用制動モードが設定されている場合には、フロントモータ12の回生ブレーキによって回生許容制動力Freglimを発生させるとともに、回生許容制動力Freglimだけでは不足する制動力分(降坂必要制動力F*−回生許容制動力Freglim)を油圧ブレーキ装置で発生させる。
従って、ブレーキECU40は、駆動ECU30に対して、目標回生制動力(=回生許容制動力Freglim)を表す回生ブレーキ指令を送信する。これにより、駆動ECU30は、目標回生制動力が前輪50Fに付与されるように生成した制御信号をインバータ20に出力する。こうして、回生許容制動力Freglimに対応した電流がフロントモータ12からバッテリ22に流れ、前輪50Fに回生許容制動力Freglimが付与される。
同時に、ブレーキECU40は、図9に示すように、回生油圧併用線Lregoilと目標減速度G*の等減速度線Lg(G*)との交点PxBで決まる後輪制動力を発生させるように油圧ブレーキ装置を作動させる。油圧ブレーキ装置は、等圧の油圧を左右前後輪のホイールシリンダに供給する。これにより、前輪50Fには、交点PxBで決まる前輪制動力から回生許容制動力Freglimを減算した大きさの油圧制動力が付与される。
ブレーキECU40は、制動モードを設定すると、回生油圧配分制御ルーチンを一旦終了する。そして、所定の演算周期で回生油圧配分制御ルーチンを繰り返し実施する。
以上説明した本実施形態の車両用制動力制御装置によれば、油圧ブレーキ装置の前輪50Fと後輪50Rとの制動力の油圧制動力配分特性を表す実制動力配分線Loilと、車輪50がロックせずに平坦路を最大の減速度で車両が減速できる前輪50Fと後輪50Rとの制動力の配分特性を表す等減速度線Lgmaxと、降坂路における前輪50Fと後輪50Rとの制動力の理想配分特性を表す理想配分線Lriso2とに基づいて回生許容制動力Freglimが設定される。この場合、回生許容制動力Freglimは、前輪制動力と後輪制動力との関係を表す座標上において、降坂路の理想配分特性を表す理想配分線Lriso2と、等減速度線Lgmaxとの交点P2を通り実制動力配分線Loilに平行な直線Lparaと、後輪制動力がゼロとなる座標軸線との交点P3における前輪制動力の値に設定される。
そして、降坂必要制動力F*が回生許容制動力Freglim以下である場合(目標減速度G*での減速を回生許容制動力Freglimの範囲内で実現できる状況)においては、油圧ブレーキ装置で制動力を発生させずに回生ブレーキ装置のみで降坂必要制動力F*を発生させる。また、降坂必要制動力F*が回生許容制動力Freglimを超える場合(目標減速度G*での減速を回生許容制動力Freglimの範囲内では実現できない状況)においては、回生ブレーキ装置で回生許容制動力Freglimを発生させるとともに、降坂必要制動力F*に対して回生許容制動力Freglimだけでは不足する分の制動力を油圧ブレーキ装置で発生させる。
これにより、降坂路で、車輪50のロックを回避して最大の減速度が得られる範囲内で、回生ブレーキで発生させる回生制動力を最大にすることができる。従って、制動力の前後配分比の調整機能を有さない油圧ブレーキ装置を搭載した車両であっても、車両の制動安定性を犠牲にすることなく、回生エネルギーの回収量を最大にすることができる。つまり、回生エネルギーの増大と、車輪50の早期ロックの回避との両立を図ることができる。
<変形例1>
例えば、上記実施形態では、実制動力配分線Loilが平坦路における前後輪ロック限界点Prockfr1を通る例について説明したが、図11に示すように、実制動力配分線Loilが前後輪ロック限界点Prockfr1を通らない場合もある。この場合も、その路面の摩擦係数μにおける前後輪ロック限界点Prockfr1を通る等減速度線Lg(平坦路で車輪50がロックせずに最大減速度が得られる等減速度線Lgmaxとなる)と理想配分線Lriso2との交点P5を算出し、この交点P5を通り実制動力配分線Loilと平行な直線である平行性Lparaと、後輪制動力がゼロとなる座標軸線(横軸)との交点P6を算出する。この交点P6における前輪制動力の値が、回生許容制動力Freglimに設定される。この場合、図面の太い折れ線が回生油圧併用線Lregoilである。
<変形例2>
回生許容制動力Freglimを演算するにあたっては、平坦路における前輪ロック線Lrockf1と後輪ロック線Lrockr1とが用いられるが、ロック線は、路面の摩擦係数μに応じて変化する。従って、標準的な摩擦係数μにて設定された平坦路における前輪ロック線Lrockfと後輪ロック線Lrockrとを用いて回生許容制動力Freglimを演算してもよいが、好ましくは、車両が走行する路面の摩擦係数μを推定し、この推定した摩擦係数μに応じた平坦路における前輪ロック線Lrockf1μと後輪ロック線Lrockr1μとを用いて回生許容制動力Freglimを演算するとよい。路面の摩擦係数μの推定については、周知の手法の一つを用いて実施すればよい。
例えば、図12に示す前輪ロック線Lrockf1μと後輪ロック線Lrockr1μとは、路面の摩擦係数μに応じて設定されたロック線である。ブレーキECU40は、路面の摩擦係数μと、ロック線(Lrockf1μ,Lrockr1μ)とを関係付ける関係付けデータを記憶している。ブレーキECU40は、回生油圧配分制御ルーチンを実施する場合、路面の摩擦係数μを推定し、推定した摩擦係数μに対応する前輪ロック線Lrockf1μと後輪ロック線Lrockr1μとを算出し、この前輪ロック線Lrockf1μと後輪ロック線Lrockr1μとを使って、平坦路で車輪50がロックせずに最大減速度が得られる等減速度線Lgmaxを算出する。
図12に示す例は、実施形態における最大減速度(1G)よりも低い最大減速度(例えば、0.9G)に対応するロック線(Lrockf1μ,Lrockr1μ)を示している。ブレーキECU40は、この等減速度線Lgmaxと実制動力配分線Loilと理想配分線Lriso2とに基づいて、上述した手法にて回生許容制動力Freglimを算出する。
この変形例2によれば、路面の摩擦係数μに応じた回生許容制動力Freglimを算出することができ、安定走行性、および、エネルギー回収効率の更なる向上を図ることができる。
<回生許容制動力Freglimがゼロとなるケース>
例えば、図13に示すように、平坦路で発生可能な最大の減速度G11(交点P11を通る等減速度線Lg(G11)の減速度)と、実制動力配分線Loilと降坂路の理想配分線Lriso2との交点P12を通る等線速度線Lg(G12)の減速度G12との関係において、減速度G11が減速度G12よりも小さい場合には、制動安定性を確保しつつ(車輪50の早期ロックを回避しつつ)回生エネルギーの増大を図ることができない。従って、この場合には、回生許容制動力Freglimはゼロである。制動安定性を確保しつつ(車輪50の早期ロックを回避しつつ)回生エネルギーの増大を図ることができる路面の限界摩擦係数μは、交点P12にて定義される。
以上、本実施形態にかかる車両用制動力制御装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、本実施形態においては、後輪50Rをリアモータ13により駆動する構成を備えているが、必ずしも、リアモータ13を備えている必要は無く、少なくとも前輪50Fに回生制動力を発生させることができる車両であれば本発明を適用することができる。
また、本実施形態においては、降坂路の傾斜角度θを傾斜センサ45により検出するが、それに代えて、例えば、車両の位置情報に基づいて、降坂路の傾斜角度情報を取得する構成であってもよい。
また、本実施形態においては、ブレーキECU40から駆動ECU30に回生ブレーキ指令を送信するが、例えば、ブレーキECU40と駆動ECU30との間にハイブリッドECUを設け、ブレーキECU40の出力する回生ブレーキ指令をハイブリッドECUを介して駆動ECU30に送信する構成であってもよい。
1…車両、10…ハイブリッドシステム、11…エンジン、12…フロントモータ、13…リアモータ、20…インバータ、21…DC/DCコンバータ、22…バッテリ、30…駆動ECU、40…ブレーキECU、41…摩擦ブレーキ機構、42…ブレーキアクチュエータ、43…ブレーキセンサ、44…車輪速センサ、45…傾斜センサ、46…DACスイッチ、50…車輪、F*…降坂必要制動力、Foilf…前輪制動力、Foilr…後輪制動力、Freglim…回生許容制動力、Lg…等減速度線、Loil…実制動力配分線、Lregoil…回生油圧併用線、Lriso1,Lriso2…理想配分線、Lrockf1,Lrockf2…前輪ロック線、Lrockr1,Lrockr2…後輪ロック線、Prockfr1,Prockfr2…前後輪ロック限界点。

Claims (1)

  1. 左右前後輪の各摩擦ブレーキ機構に互いに等しい油圧のブレーキ作動油を供給して、左右前後輪に一定の前後配分比で油圧制動力を発生させる油圧ブレーキ装置と、
    左右前後輪のうち、左右前輪に対してのみ回生制動力を発生させる回生ブレーキ装置と、
    車両が降坂路を降りる場合に、車両が所定速度を維持して走行するように前記油圧ブレーキ装置と前記回生ブレーキ装置とで発生させる制動力を制御する降坂路速度維持制御を実施する降坂路走行時制動力制御手段と
    を備えた車両用制動力制御装置であって、
    前記降坂路走行時制動力制御手段は、
    前記油圧ブレーキ装置で制動力を発生させずに前記回生ブレーキ装置のみで制動力を発生させることが許容される回生許容制動力を設定する回生許容制動力設定手段と、
    前記所定速度を維持して車両が前記降坂路を降りるために必要な制動力である降坂必要制動力が前記回生許容制動力以下である場合には、前記油圧ブレーキ装置で制動力を発生させずに前記回生ブレーキ装置のみで前記降坂必要制動力を発生させ、前記降坂必要制動力が前記回生許容制動力を超える場合には、前記回生ブレーキ装置で前記回生許容制動力を発生させるとともに、前記降坂必要制動力に対して前記回生許容制動力だけでは不足する分の制動力を前記油圧ブレーキ装置で発生させる回生油圧配分制御手段とを備え、
    前記回生許容制動力設定手段は、前記油圧ブレーキ装置の前輪と後輪との制動力の油圧制動力配分特性と、平坦路において最大減速度を発生させることができる前輪と後輪との制動力の配分特性である平坦路最大等減速度特性と、前記降坂路における前輪と後輪との制動力の理想配分を表す降坂路理想配分特性とに基づいて、前記回生許容制動力を設定するように構成された車両用制動力制御装置。
JP2018210169A 2018-11-08 2018-11-08 車両用制動力制御装置 Pending JP2020075621A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210169A JP2020075621A (ja) 2018-11-08 2018-11-08 車両用制動力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210169A JP2020075621A (ja) 2018-11-08 2018-11-08 車両用制動力制御装置

Publications (1)

Publication Number Publication Date
JP2020075621A true JP2020075621A (ja) 2020-05-21

Family

ID=70723367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210169A Pending JP2020075621A (ja) 2018-11-08 2018-11-08 車両用制動力制御装置

Country Status (1)

Country Link
JP (1) JP2020075621A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033021A1 (ja) * 2021-08-31 2023-03-09 株式会社アドヴィックス 車両の制動制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033021A1 (ja) * 2021-08-31 2023-03-09 株式会社アドヴィックス 車両の制動制御装置

Similar Documents

Publication Publication Date Title
US10046643B2 (en) Braking force control apparatus for a vehicle
US8442737B2 (en) Method for operating a vehicle brake system and vehicle brake system
US9707944B2 (en) Braking force control system
US8548707B2 (en) Braking system and method for braking a vehicle having a hybrid drive
US9744862B2 (en) Slip-controlled braking system for electrically driven motor vehicles
JP5302749B2 (ja) 電気自動車の制御装置
JP4631477B2 (ja) 車両の回生制動制御装置
US20040262994A1 (en) Method and device for reducing the brake load at at least one wheel brake
US20130204502A1 (en) Method for Controlling a Motor Vehicle Brake System
CN105283364B (zh) 车辆速度控制系统
CN101132956A (zh) 车辆的制动/驱动力控制设备
JP6898843B2 (ja) 電動車両の制御装置、制御方法および制御システム
JP2019064556A (ja) 車両用制動力制御装置
JP5841265B2 (ja) 車輪制御装置、車両、車輪制御方法
JP2001039281A (ja) 車両の制動装置
JP2008301564A (ja) 車両の回生制動制御装置及びそれを含む車両制御装置
JP5766240B2 (ja) 車両用制動装置
JP5120297B2 (ja) 電気自動車の回生制動制御装置
JP6152705B2 (ja) 車両制御装置
JP6569462B2 (ja) 車両制御装置
JP2020075621A (ja) 車両用制動力制御装置
JP5971186B2 (ja) 車輪制御装置、車両
US20210270333A1 (en) Vehicle control system
JP2017034907A (ja) 車両制御装置
JP6160199B2 (ja) 電気自動車の制動制御装置