JP2020070582A - Ground displacement suppression method and displacement absorption pile - Google Patents

Ground displacement suppression method and displacement absorption pile Download PDF

Info

Publication number
JP2020070582A
JP2020070582A JP2018203744A JP2018203744A JP2020070582A JP 2020070582 A JP2020070582 A JP 2020070582A JP 2018203744 A JP2018203744 A JP 2018203744A JP 2018203744 A JP2018203744 A JP 2018203744A JP 2020070582 A JP2020070582 A JP 2020070582A
Authority
JP
Japan
Prior art keywords
displacement
ground
pile
absorbing
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203744A
Other languages
Japanese (ja)
Other versions
JP7098250B2 (en
Inventor
渡辺 英次
Eiji Watanabe
英次 渡辺
浩史 矢部
Hiroshi Yabe
浩史 矢部
雅大 永石
Masahiro Nagaishi
雅大 永石
英典 高田
Hidenori Takada
英典 高田
晃弘 冨田
Akihiro Tomita
晃弘 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2018203744A priority Critical patent/JP7098250B2/en
Publication of JP2020070582A publication Critical patent/JP2020070582A/en
Application granted granted Critical
Publication of JP7098250B2 publication Critical patent/JP7098250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a ground displacement suppression method and a displacement absorption pile capable of improving displacement absorption efficiency and facilitating restoration at a construction site.SOLUTION: A ground displacement suppression method comprises a step arranging a displacement absorption pile 2 for absorbing displacement between a ground improvement area and an adjacent existing structure or peripheral ground to suppress ground displacement and vibration associated with ground improvement using the displacement absorption pile 2, wherein the displacement absorption pile 2 is shaped in an elastic pile shape, of which a part is pushed out to the ground surface side through absorbing the ground displacement and vibration associated with the ground improvement. The displacement absorption pile 2 is produced by: a step penetrating it to a predetermined depth excavating the ground with a penetrating member to be operated up and down and be rotated using injection treatment liquid which is treated by mixing high water-absorbing polymer with water to a gel state as well as is treated to allow its transportation through a piping with a pressure pump by mixing a fluidization agent; and a step injecting and mix or impregnating the injection treatment liquid to a previously positioned soil loosened by excavation in a process of the impregnating and/or pulling out.SELECTED DRAWING: Figure 5

Description

本発明は、基礎工事や地盤改良において、その隣接地の既設構造物や地盤に変位を与えないようにする地盤変位抑制方法及びそれに用いられる変位吸収杭に関する。   The present invention relates to a ground displacement suppressing method and a displacement absorbing pile used for the ground displacement suppressing method for preventing displacement of an existing structure or ground on an adjacent ground during foundation construction or ground improvement.

サンドコンパクションパイル(SCP)工法や高圧噴射工法等により地盤改良する際は、その隣接地の既設構造物や周辺地盤に変位を与えるため、施工域と変位対象物の間を形成している変位伝達経路に図6(これは特許文献1に開示のものである)に例示されるような地盤変位抑制方法が採用される。   When ground improvement is performed by sand compaction pile (SCP) method or high-pressure injection method, displacement is generated between the construction area and the object to be displaced in order to give a displacement to the existing structure and surrounding ground on the adjacent ground. A ground displacement suppressing method as illustrated in FIG. 6 (which is disclosed in Patent Document 1) is adopted for the route.

(1)同(a)の抑制構成は、変位伝達経路に鋼矢板20を埋設し変位要因を遮断したり分断する方法である。この構成では鋼矢板に代えて固化改良体とする態様もある。
(2)同(b)の抑制構成は、変位伝達経路に設けた縦穴21で変位要因を吸収する方法である。この構成では、縦穴に代えて掘削により穴内を単にほぐした態様(以下、この構成を緩衝杭という)、特許文献2に開示のごとく縦穴に細長い単一の袋体を埋設し、該袋体内に流体を充填した態様もある。
(3)同(c)の抑制構成は、文献2の態様だと、深度によって異なる地盤変位が発生すると、袋体のうち大きな地盤変位を受ける箇所のみが大きく変位し、その箇所が最大変位量に達し、この最大変位量に達した後も地盤変位を受けると、地盤変位が隣接地に伝達されるためその対策である。構成特徴は、縦穴上下方向に積層状態で埋設され、それぞれ流体を充填した複数の可撓性袋体2と、複数の袋体2の圧力をそれぞれ調整可能な圧力調整手段3と、地盤中の深度毎の地盤変位を検出する地盤変位検出手段4と、その検出状態に基づいて圧力調整手段3を制御する制御手段6とを備えている。
(1) The suppression structure of the same (a) is a method of embedding the steel sheet pile 20 in the displacement transmission path to block or divide the displacement factor. In this configuration, the steel sheet pile may be replaced with a solidification-improving body.
(2) The suppression structure of the same (b) is a method of absorbing the displacement factor by the vertical hole 21 provided in the displacement transmission path. In this configuration, instead of the vertical hole, a mode in which the inside of the hole is simply loosened by excavation (hereinafter, this structure is referred to as a buffer pile), a single elongated bag body is embedded in the vertical hole as disclosed in Patent Document 2, and the bag body is embedded in the bag body. There is also a mode in which a fluid is filled.
(3) In the suppression configuration of the same (c), according to the aspect of Document 2, when a ground displacement different depending on the depth occurs, only a portion of the bag body that undergoes a large ground displacement is largely displaced, and that portion is the maximum displacement amount. This is a countermeasure because the ground displacement is transmitted to the adjacent ground when the ground displacement is reached even after reaching the maximum displacement amount. Constituent features are: a plurality of flexible bags 2 which are embedded in a vertical hole in the vertical direction in a stacked state and filled with fluid; a pressure adjusting means 3 capable of adjusting the pressure of each of the bags 2; A ground displacement detecting means 4 for detecting the ground displacement for each depth and a control means 6 for controlling the pressure adjusting means 3 based on the detected state are provided.

特許第4459021号公報Japanese Patent No. 4459021 特開2001−152476号公報JP 2001-152476 A

上記従来の地盤変位抑制のうち、上記(1)の構成では地盤変位により鋼矢板の固定力を超える地盤圧力を受けると低減抑制効果が低くなり、また、使用後の現場回復作業では鋼矢板等を撤去しなくてはならず費用と手間が係る。上記(2)のうち、縦穴だけの構成では崩れ易く補修が困難であり、緩衝杭の構成では抑制効果が不十分であった。また、上記(3)の構成では縦穴形成、複数の袋体積層、地盤変位検出手段の設置及び圧力調整手段との連繋など複雑化し高価となる。   Among the above-mentioned conventional ground displacement suppression, in the configuration of the above (1), when the ground displacement exceeds the fixing force of the steel sheet pile due to the ground displacement, the reduction suppression effect becomes low, and in the field recovery work after use, the steel sheet pile etc. Must be removed, which is costly and troublesome. Of the above (2), the structure having only the vertical holes is likely to collapse and is difficult to repair, and the structure having the buffer pile has an insufficient suppressing effect. Further, in the configuration of the above (3), vertical holes are formed, a plurality of bag bodies are laminated, ground displacement detecting means is installed, and connection with the pressure adjusting means is complicated and expensive.

本発明の目的は、以上のような背景から、上記(2)及び(3)のように変位伝達経路で変位要因を吸収する地盤変位抑制方法及びそれに用いられる変位吸収杭として、より吸収効率を向上し、また、使用後の現場回復を比較的簡単に行えるようにすることにある。他の目的は、以下の内容説明のなかで明らかにする。   From the above background, an object of the present invention is to provide a ground displacement suppressing method that absorbs a displacement factor in a displacement transmission path as described in (2) and (3) above, and a displacement absorbing pile used for the method, and to improve absorption efficiency. It is to improve and also make it possible to relatively easily perform field recovery after use. Other purposes will be made clear in the following description.

上記目的を達成するため請求項1の発明は、地盤改良域と隣接する既設構造物又は周辺地盤との間に変位吸収杭を設け、該変位吸収杭により地盤改良に伴う地盤変位や振動を抑制する地盤変位抑制方法において、前記変位吸収杭は、弾性杭状をなし、地盤改良に伴う地盤変位や振動の吸収により一部が地表側へ押し出されることを特徴としている。   In order to achieve the above object, the invention of claim 1 is provided with a displacement absorbing pile between the ground improvement area and an existing structure adjacent to the ground or surrounding ground, and the displacement absorbing pile suppresses ground displacement and vibration associated with ground improvement. In the ground displacement suppressing method described above, the displacement absorbing pile is in the shape of an elastic pile, and a part of the displacement absorbing pile is pushed out toward the ground surface side by absorbing ground displacement and vibration accompanying ground improvement.

以上の本発明は、以下の請求項のごとく具体化されることがより好ましい。すなわち、
(ア)請求項2の発明は、前記変位吸収杭は、高吸水性高分子を水に混ぜてゲル状に処理すると共に、流動化剤を混入して圧送ポンプにより配管を通して移送可能に処理した注入処理液を用いて、昇降及び回転される貫入部材により地盤を掘削しながら所定深さまで貫入し、該貫入又は/及び引き抜き過程で掘削によりほぐされる原位置土に前記注入処理液を吐出して混入ないしは含浸させることにより作成される構成である。ここで、高吸水性高分子は、例えば実施例で使用したポリアクリル酸塩系高吸収性樹脂であり、吸水力(量)が水中で自重の100倍以上のものが好ましい。また、この構成では、高吸水性高分子を充分な水を用いることなく、つまりゲル状に処理することが重要となる。これは高吸水性高分子として水と反応する部分を残すためである。また、この構成では、ゲル状の高吸収性高分子溶液をポンプ圧送可能にするため流動化剤を混入することも重要となる。なお、貫入部材は、例えば杭基礎などの施工に使われるオーガ(オーガ削孔機)、それに類似の掘削機である。通常は、オーガ先端側より本発明の注入処理液を吐出できる構成である。
The present invention described above is more preferably embodied as in the following claims. That is,
(A) In the invention of claim 2, the displacement absorbing pile is processed by mixing a super absorbent polymer with water to form a gel, and mixing a fluidizing agent so that the displacement absorbing pile can be transferred through a pipe by a pressure pump. Using the injection treatment liquid, the earth is excavated by a penetrating member that is moved up and down and rotated to a predetermined depth, and the injection treatment liquid is discharged to the in-situ soil unraveled by excavation during the penetration or / and extraction process. This is a structure created by mixing or impregnating. Here, the superabsorbent polymer is, for example, the polyacrylate-based superabsorbent resin used in the examples, and it is preferable that the superabsorbent polymer has a water absorption capacity (quantity) of 100 times or more its own weight in water. Further, in this configuration, it is important to treat the super absorbent polymer without using sufficient water, that is, to treat it in a gel form. This is to leave a portion that reacts with water as the super absorbent polymer. Further, in this configuration, it is also important to mix a fluidizing agent so that the gel-like superabsorbent polymer solution can be pumped under pressure. The penetrating member is, for example, an auger (auger drilling machine) used for construction of a pile foundation or the like and an excavator similar thereto. Usually, the injection treatment liquid of the present invention can be discharged from the tip side of the auger.

(イ)請求項3の発明は、前記貫入部材の貫入速度と前記注入処理液の吐出流量により前記原位置土に対する前記注入処理液の注入率を40〜100%の範囲に収まるよう調整管理する構成である。この注入率の範囲は、一般的に高い程好ましいが、40%よりも低くなると変位吸収度合いが悪くなるため下限値以上になるよう調整することである。
(ウ)請求項4の発明は、前記変位吸収杭の含有水を排水可能にする強制排水剤の水溶液である強制排水剤溶液に、前記流動化剤の粘性を損失可能にする塑性化剤を混入した復元溶液を用いて、該復元溶液を地中に作成された前記変位吸収杭に吐出して混入ないしは含浸させることにより使用後の変位吸収杭のN値を上げるよう復元処理する構成である。この強制排水剤は、変位吸収杭に含浸されている水を強制的に排出する塩化カルシウムなどの添加剤である。塑性化剤は、原位置土が流動化剤で流動化された状態から元の性状に戻すための添加剤である。
(A) According to the invention of claim 3, the injection rate of the injection treatment liquid with respect to the in-situ soil is adjusted and managed within the range of 40 to 100% by the penetration speed of the penetration member and the discharge flow rate of the injection treatment liquid. It is a composition. Generally, the higher the injection rate, the more preferable it is. However, if it is lower than 40%, the degree of displacement absorption deteriorates.
(C) The invention of claim 4 further comprises a plasticizing agent capable of losing the viscosity of the fluidizing agent in a forced drainage agent solution which is an aqueous solution of a forced drainage agent capable of draining the water contained in the displacement absorbing pile. Using the mixed restoration solution, the restoration solution is discharged to the displacement absorption pile formed in the ground so as to be mixed or impregnated, so that the N value of the displacement absorption pile after use is increased. . This forced drainage agent is an additive such as calcium chloride that forcibly discharges the water impregnated in the displacement absorption pile. The plasticizing agent is an additive for returning the in-situ soil from the fluidized state to the original state by the fluidizing agent.

(エ)これに対し、請求項5の発明は、地盤改良域と隣接する既設構造物又は周辺地盤との間に設けられて、地盤改良に伴う地盤変位や振動を抑制する請求項1から3の何れかに記載の変位吸収杭である。 (D) On the other hand, the invention of claim 5 is provided between the ground improvement area and an existing structure adjacent to the ground improvement area or the surrounding ground, and suppresses ground displacement and vibration associated with ground improvement. The displacement absorption pile according to any one of 1.

請求項1と5の発明は、地盤変位吸収用の変位吸収杭により地盤変位を吸収する点から上記(2)の緩衝杭と同様なタイプとなる。しかし、本発明の変位吸収杭は、弾性杭状をなしており、地盤改良に伴う地盤変位や振動の吸収により変位吸収杭の一部が地表側へ押し出される。この結果、本発明の変位吸収杭では、変位吸収作用が目視で確認可能となる。この点は、従来の緩衝杭では期待できず、目視確認により信頼性が得られる。   The inventions of claims 1 and 5 are of the same type as the buffer pile of the above (2) from the point that the ground displacement is absorbed by the displacement absorption pile for ground displacement absorption. However, the displacement absorbing pile of the present invention is in the shape of an elastic pile, and a part of the displacement absorbing pile is pushed to the ground side due to the ground displacement and vibration absorption accompanying the ground improvement. As a result, in the displacement absorbing pile of the present invention, the displacement absorbing action can be visually confirmed. This point cannot be expected with conventional buffer piles, and reliability can be obtained by visual confirmation.

請求項2の発明では、本発明の変位吸収杭の造成は高吸水性高分子のゲル状水溶液に流動化剤を混入してポンプ圧送可能に処理した注入処理液を用いて、該注入処理液を、貫入部材により地盤を掘削しながら所定深さまで貫入又は/及び引き抜き過程で掘削によりほぐされる原位置土に吐出して混入ないしは含浸させる。このため、本発明の変位吸収杭は、通常の基礎工事や地盤改良に用いられるオーガ削孔機や機械攪拌式柱状改良機等を用いて容易に作成できる。この変位吸収杭の利点は、図1及び図2に示されるごとく上記したスパイラルで単にほぐしただけの緩衝杭に比べ地盤変位吸収作用を向上でき、また、使用後の現状回復操作が請求項4から分かるごとく容易となる。   According to the second aspect of the invention, the displacement absorbing pile of the present invention is constructed by using an injection treatment liquid prepared by mixing a fluidizing agent into a gel aqueous solution of a superabsorbent polymer so as to enable pumping. Is discharged to the predetermined depth while excavating the ground by the penetrating member and / or mixed or impregnated into the in-situ soil unraveled by excavation in the process of penetrating or / and extracting. Therefore, the displacement absorbing pile of the present invention can be easily prepared by using an auger boring machine, a mechanical stirring type column improving machine or the like which is used for usual foundation work and ground improvement. As shown in FIGS. 1 and 2, the advantage of this displacement absorbing pile is that the ground displacement absorbing action can be improved as compared with the above-mentioned buffer pile that is simply unraveled by the spiral, and the present state recovery operation after use is claimed. As you can see, it will be easier.

請求項3の発明は、請求項1の変位吸収杭として、原位置土に対する請求項1の注入処理液を、注入率40〜100%の範囲に収まるよう調整することが地盤変位を最も効率よく吸収できる。この注入率の下限値は、対象の地盤改良域の土質性状などによっても変化するが、本発明者らが行った各種試験及び経験則から最適と判断された値である。   In the invention of claim 3, as the displacement absorbing pile of claim 1, it is most efficient to adjust the injection treatment liquid of claim 1 to the in-situ soil so that the injection rate falls within the range of 40 to 100%. Can be absorbed. The lower limit of the injection rate varies depending on the soil properties of the target ground improvement area and the like, but is a value determined to be optimum from various tests and empirical rules conducted by the present inventors.

請求項4の発明は、変位吸収杭を使用した後、元の地盤状態ないしはそれに近い状態まで回復する操作として、例えば請求項1の注入処理液を原位置土に混入ないしは含浸させる操作で使用したオーガ削孔機などの機器類を用いて、強制排水剤溶液に塑性化剤を混入した復元溶液を地中の変位吸収杭中に吐出して混入ないしは含浸させるため経費を抑えて容易に復元操作できる。   The invention of claim 4 is used as an operation of recovering the original ground condition or a condition close to it after using the displacement absorbing pile, for example, by an operation of mixing or impregnating the injection treatment liquid into the in-situ soil. Using equipment such as an auger drilling machine, the restoration solution in which the plasticizing agent is mixed in the forced drainage agent solution is discharged into the displacement absorption pile in the ground to be mixed or impregnated, and the restoration operation can be easily performed with reduced cost. it can.

本発明の地盤変位抑制方法による変位吸収杭と従来の緩衝杭(スパイラルで単にほぐしただけのもの)の水平方向の変位吸収効果を比較した一例を示すグラフである。It is a graph which shows an example which compared the displacement absorption effect in the horizontal direction of the displacement absorption pile by the ground displacement suppression method of the present invention, and the conventional buffer pile (only unfolded with spiral). 上記変位吸収杭と従来の緩衝杭(スパイラルで単にほぐしただけのもの)の鉛直方向の変位吸収効果を比較した一例を示すグラフである。It is a graph which shows an example which compared the vertical direction displacement absorption effect of the above-mentioned displacement absorption pile and the conventional buffer pile (only unfolded by spiral). 図1及び図2の変位吸収効果を調べたときの試験条件を模式的に示し、(a)は平面図、(b)は鉛直方向の断面図である。The test conditions when investigating the displacement absorption effect of FIG. 1 and FIG. 2 are shown typically, (a) is a top view, (b) is a vertical cross-sectional view. 図1及び図2の地盤変位抑制方法による変位吸収杭と復元処理後のもの深度−N値(換算N値)を比較した一例を示すグラフである。It is a graph which shows an example which compared the displacement absorption pile by the ground displacement suppression method of FIG. 1 and FIG. 2, and the depth-N value (conversion N value) after the restoration process. (a)は砂杭造成前状態における変位吸収杭の模式断面図、(b)は砂杭造成状態における変位吸収杭の模式断面図である。(A) is a schematic cross section of the displacement absorption pile in the state before sand pile construction, (b) is a schematic cross section of the displacement absorption pile in the sand pile construction state. (a)から(c)は特許文献1に開示されている図5及び図6と図1である。(A) to (c) are FIG. 5 and FIG. 6 and FIG. 1 disclosed in Patent Document 1.

以下、本発明の地盤変位抑制方法の具体的構成を明らかにする。この説明では、本発明の地盤抑制方法を実施例で行った図3を参照して説明した後、本発明方法の変位吸収杭と比較例として従来のオーガ削孔機のスパイラルで単にほぐしただけの緩衝杭の変位吸収効果を調べたときの実施例1、変位吸収杭を復元処理する実施例2について述べる。   Hereinafter, a specific configuration of the ground displacement suppressing method of the present invention will be clarified. In this description, the ground suppression method of the present invention is described with reference to FIG. 3, which is performed in an embodiment, and then simply disentangled by the displacement absorption pile of the method of the present invention and a spiral of a conventional auger boring machine as a comparative example. Example 1 when investigating the displacement absorption effect of the buffer pile and Example 2 of restoring the displacement absorption pile will be described.

(地盤変位抑制用変位吸収杭)図3において、この地盤変位抑制方法は、図1や図2の地盤変位対策効果を調べたときの現場実験状況を模式的に示しており、地盤改良域Aと隣接する既設構造物又は周辺地盤Bとの間に変位吸収用の変位吸収杭2を複数本設け、それら変位吸収杭2により地盤改良に伴う地盤変位や振動を抑制する構成である。要部の変位吸収杭2は、予め作った所定の注入処理液を、例えば土木工事用の昇降機構により貫入されたり引き抜かれる貫入部材として、オーガ削孔機のスパイラルを介して地盤下の原位置土に混入して形成される。すなちわ、各変位吸収杭2は、昇降及び回転されるオーガ削孔機のスパイラルにより地盤を掘削しながら所定深さまで貫入し、該貫入又は/及び引き抜き過程で掘削によりほぐされる原位置土に注入処理液を吐出して混入ないしは含浸させることにより作成される。 (Displacement absorption pile for ground displacement suppression) In Fig. 3, this ground displacement suppression method schematically shows the on-site experimental situation when the ground displacement countermeasure effect of Fig. 1 and Fig. 2 is investigated. A plurality of displacement absorbing piles 2 for absorbing displacement are provided between the existing structure adjacent to and the surrounding ground B, and the displacement absorbing piles 2 suppress the ground displacement and vibration accompanying the ground improvement. The displacement absorption pile 2 of the main part is a pre-formed predetermined injection treatment liquid, for example, as a penetrating member that is penetrated or pulled out by an elevating mechanism for civil engineering work, and is used as an original position under the ground through a spiral of an auger drilling machine. It is formed by mixing with soil. That is, each displacement absorption pile 2 penetrates to a predetermined depth while excavating the ground by a spiral of an auger boring machine that is raised and lowered and rotated, and is in-situ soil that is unraveled by excavation in the penetration or / and extraction process. It is created by discharging the injection treatment liquid into and mixing or impregnating it.

ここで、前記注入処理液は、高吸水性高分子を水に混ぜてゲル状つまり寒天やプリン等のごとく半固体状で流動性がない状態に処理した後、該ゲル状の高吸水性高分子に流動化剤を混入して圧送ポンプにより配管を通して移送可能に処理したものである。以下、使用される高吸水性高分子と水及び流動化剤の選択基準や作用について明らかにする。   Here, the injection treatment liquid is prepared by mixing a superabsorbent polymer with water and treating it in a gel form, that is, in a semisolid state such as agar or pudding and having no fluidity, and then the gel form of the superabsorbent polymer. The fluidizing agent is mixed into the molecule and processed so that it can be transferred through a pipe by a pressure pump. The selection criteria and action of the superabsorbent polymer, water and superplasticizer used will be clarified below.

(1)高吸水性高分子(Super Absorbent Polymer、以下、SAPという)は、例えば紙おむつ等の吸収体として用いられ、高い水分保持性能を有する高分子であり、吸収性ポリマー、高吸収性樹脂、高分子吸収体などと称されることもある。このSAPは、親水性の直鎖状あるいは分子状高分子の架橋体であり、吸水力が高く増粘性及び凝集性並びに分散性を有さないか極低いものが用いられる。また、SAPは、一般的に吸水力(量)が水中で自重の10倍以上のものとされているが、吸水力(量)が水中で自重の100倍ないしはそれ以上に高いものを用いることが好ましい。 (1) Super Absorbent Polymer (hereinafter referred to as SAP) is a polymer used as an absorber of, for example, a paper diaper and has a high water retention property, and is an absorbent polymer, a super absorbent resin, It is also called a polymer absorber. This SAP is a crosslinked body of hydrophilic linear or molecular polymers, and has a high water absorption power and does not have or has very low viscosity increasing property, cohesive property and dispersibility. In addition, SAP is generally assumed to have a water absorption capacity (amount) of 10 times or more its own weight in water, but use a water absorption capacity (amount) 100 times or more its own weight in water. Is preferred.

すなわち、吸水性高分子のうち、合成ポリマー系のSAPには、ポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系、ポリアクリルアミド系、ポリエチレンオキシド系などが知られているが、用途に応じて、幹となる親水樹脂鎖の種類を変えることで水に対する吸収能力を変化させることができ、架橋密度を変えることで水を吸って膨潤したゲルの強度を変えることができる。そのため、例えば、ポリアクリル酸塩系の吸水性ポリマーと言っても、分散性を有したり吸水力が自重の10倍より小さいものもある。本発明では、そのような吸水力の小さい吸水性ポリマーは除外され、吸水力が水中で自重の10倍以上、好ましくは100倍かそれ以上のSAP、例えばポリアクリル酸塩系SAPなどを用いる。市販品としては、例えば、実施例で用いた株式会社ハイモ製のポリアクリル酸架橋タイプの『ハイモサブ300』が挙げられる。これは、白色粉状であり、吸水力(量)が水中で300倍以上である。   That is, among the water-absorbing polymers, synthetic polymer-based SAPs include polyacrylate-based, polysulfonate-based, maleic anhydride-based, polyacrylamide-based, polyethylene oxide-based, etc. Accordingly, the absorption capacity for water can be changed by changing the type of the hydrophilic resin chain serving as the trunk, and the strength of the gel swollen by absorbing water can be changed by changing the crosslinking density. Therefore, for example, even a polyacrylic acid salt-based water-absorbing polymer may have dispersibility or have a water-absorbing power less than 10 times its own weight. In the present invention, such a water-absorbing polymer having a low water absorption is excluded, and SAP having a water absorption of 10 times or more, preferably 100 times or more, of its own weight in water is used, for example, a polyacrylate SAP. As a commercially available product, for example, a polyacrylic acid cross-linking type “HIMO SUB 300” manufactured by Himo Co., Ltd. used in the examples can be mentioned. It is a white powder and has a water absorption capacity (quantity) of 300 times or more in water.

(2)水は、高吸水性高分子がゲル状を呈する量だけ使用される。この場合、高吸水性高分子は自重の数百倍から約千倍までの水を吸収したり保持できるが、水の中にナトリウムやカリウムなどの陽イオンが存在すると吸収力が著しく低下する。このため、使用する水は、高吸水性高分子に影響する多様な成分を含む工業用水や海水は避けて、中性の水道水を用いることが好ましい。 (2) Water is used in an amount such that the superabsorbent polymer is gelled. In this case, the superabsorbent polymer can absorb and retain several hundreds to about one thousand times its own weight of water, but if cations such as sodium and potassium are present in the water, the absorption capacity is significantly reduced. For this reason, it is preferable to use neutral tap water as the water to be used, avoiding industrial water and seawater containing various components that affect the superabsorbent polymer.

(3)流動化剤は、水に加えたゲル状の高吸水性高分子の粘性を高め、水の分離を抑制してポンプ圧送性を向上させる添加剤である。好ましくは、粘性を高め水の分離を抑制するアニオン系高分子凝集剤であり、他にノニオン系高分子凝集剤、カチオン系高分子凝集剤などでもよい。これらは、高分子の親水基と高分子の網の内部に水分を保持する性能に優れている。なお、アニオン系高分子凝集剤としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2−メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸などの単独重合体あるいはアクリルアミドとの共重合体が挙げられる。 (3) The fluidizing agent is an additive that increases the viscosity of the gel-like superabsorbent polymer added to water, suppresses the separation of water, and improves the pumpability. Anionic polymer flocculants that increase viscosity and suppress the separation of water are preferable, and nonionic polymer flocculants, cationic polymer flocculants and the like may also be used. These are excellent in the ability to retain water inside the hydrophilic group of the polymer and the network of the polymer. As the anionic polymer flocculant, a homopolymer of acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamido 2-methylpropanesulfonic acid, vinyl sulfonic acid, styrene sulfonic acid or the like or a copolymer with acrylamide is used. Is mentioned.

次に、本発明の注入処理液の好適な配合例及び作成方法について述べる。まず、SAPに対する水の配合量は、SAPの種類によっても異なるが、SAPがゲル状を呈するようになる割合である。実施例では、ミキサー内に1,000L当たりの水を入れ、そこに10kgのSAP(ハイモサブ300)を投入し攪拌させることで吸水したSAPがゲル状を呈した。また、ゲル状となったSAPに対する流動化剤の配合量は、ポンプ圧送可能な流動化を保つようになる割合である。流動化剤が少な過ぎると流動化せず、配管内で分離したり目詰まりしたりして圧送不能となり、逆に多過ぎても流動化効果は変わらず、却ってコストを上昇させることになる。実施例では、ミキサー内のゲル状のSAPに5kgの流動化剤(アニオン系高分子凝集剤)を投入し攪拌することで、ポンプ圧送可能な流動性の注入処理液を作成した。   Next, a suitable formulation example and preparation method of the injection treatment liquid of the present invention will be described. First, the blending amount of water with respect to SAP varies depending on the type of SAP, but is the ratio at which SAP becomes gel-like. In the example, water per 1,000 L was put in the mixer, and 10 kg of SAP (Hymosab 300) was put therein and stirred, so that the SAP absorbed water was gelled. Further, the amount of the fluidizing agent to be mixed with the gelled SAP is such a proportion that the fluidization can be maintained by pumping. If the fluidizing agent is too small, it will not fluidize, and it will be separated or clogged in the pipe to make it impossible to pump. On the contrary, if it is too large, the fluidizing effect will not change, but rather the cost will increase. In the examples, 5 kg of a fluidizing agent (anionic polymer flocculant) was added to the gel-like SAP in the mixer and stirred to prepare a fluid injection treatment liquid that could be pumped.

変位吸収杭の造成では、例えば、オーガ削孔機ないしはそれに類似の掘削機が用いられ、オーガ先端側より本発明の注入処理液を吐出させて地盤下の原位置土に混入ないしは含浸させる。実施例では、オーガ削孔機(スパイラルの直径500mm)により地盤を掘削しながら所定深さまで貫入し、該貫入過程で掘削によりほぐされる原位置土に注入処理液を吐出して混入ないしは含浸させることで変位吸収杭2を作成した。この場合、注入処理液の注入率は、貫入速度と注入量で管理され、通常は40〜100%の範囲、より好ましくは約60%である。なお、注入処理液の吐出は、貫入及び引き抜き過程、或いは引き抜き過程でもよい。作成された変位吸収杭2は、柔らかいゴムのような性状で、指で押すと反力を感じる。また、絞っても容易には脱水されない。硬さは図4に示されるごとく換算N値で深度2〜5mにおいて約1以下と小さくなっている。   In the construction of the displacement absorbing pile, for example, an auger drilling machine or an excavator similar to the auger drilling machine is used, and the injection treatment liquid of the present invention is discharged from the auger tip side to mix or impregnate in-situ soil under the ground. In the embodiment, the earth is excavated by an auger boring machine (spiral diameter: 500 mm) while excavating the ground to a predetermined depth, and the injecting treatment liquid is discharged and mixed or impregnated into the in-situ soil unraveled by the excavation process. Displacement absorption pile 2 was created. In this case, the injection rate of the injection treatment liquid is controlled by the penetration rate and the injection amount, and is usually in the range of 40 to 100%, more preferably about 60%. Note that the injection treatment liquid may be discharged by a penetration and extraction process or a withdrawal process. The created displacement absorbing pile 2 has a property like soft rubber, and when pressed with a finger, a reaction force is felt. Moreover, even if it is squeezed, it is not easily dehydrated. As shown in FIG. 4, the hardness is as small as about 1 or less in the converted N value at the depth of 2 to 5 m.

(変位吸収杭の原地盤への復元方法)使用後の変位吸収杭2は、図4に示されるごとくそのN値(換算N値)が約1以下になっているため復元処理することが好ましい。この復元操作では、変位吸収杭2の含有水を排水可能にする強制排水剤の水溶液である強制排水剤溶液に、流動化剤の粘性を損失可能にする塑性化剤を混入した復元溶液を使用する。この復元溶液は、地中に作成された変位吸収杭2中に吐出して混入ないしは含浸されることにより、変位吸収杭2を元の地盤ないしはそれに近い状態まで復元可能となる。 (Method of Restoring Displacement Absorption Pile to Original Ground) Since the displacement absorption pile 2 after use has an N value (converted N value) of about 1 or less as shown in FIG. 4, it is preferable to perform a restoration process. .. In this restoration operation, a restoration solution is used in which a forced drainage agent solution, which is an aqueous solution of a forced drainage agent that enables the water contained in the displacement absorption pile 2 to be drained, is mixed with a plasticizing agent that can lose the viscosity of the fluidizing agent. To do. This restoration solution can be restored to the original ground or a state close to the original ground by being discharged and mixed or impregnated into the displacement absorption pile 2 formed in the ground.

ここで、強制排水剤は、変位吸収杭に含浸されている水を強制的に排出する塩化カルシウム、塩化ナトリウムなどの塩である。作用的には、例えば、ポリアクリル酸塩系SAPが水を吸収すると、イオンを電離するが、強制排水剤の水溶液である強制排水剤溶液を外からかけると、分子内外のイオン濃度は外では濃く、内では薄くなるため、浸透圧により水が内から外へでていく現象を応用する。なお、強制排水剤としては、塩化マグネシウムや塩化アルミニウムなどでも差し支えない。   Here, the forced drainage agent is a salt such as calcium chloride or sodium chloride that forcibly discharges the water impregnated in the displacement absorption pile. Functionally, for example, when polyacrylate SAP absorbs water, ions are ionized, but when a forced drainage agent solution, which is an aqueous solution of the forced drainage agent, is applied from the outside, the ion concentration inside and outside the molecule is outside. It is thick and thin inside, so we apply the phenomenon that water flows out from inside due to osmotic pressure. As the forced drainage agent, magnesium chloride or aluminum chloride may be used.

塑性化剤は、原位置土に混入された流動化剤とイオン的に吸着することで不溶化し粘性を損失させる。例えば、流動化剤がアニオン系高分子剤の場合には分子量10〜10のカチオン系高分子剤を、流動化剤がカチオン系高分子剤の場合には分子量10〜10のアニオン系高分子剤を利用する。これは、電気的に流動化剤を中和させて水と分離させて元の土に戻す。すなわち、土の粒子間の間隙水は、粘性のない通常の水に戻り土粒子の摩擦は回復する。この添加量は、少な過ぎると、流動化土が塑性化せず、添加が多過ぎるとコスト的に高くなる。 The plasticizing agent ionically adsorbs the fluidizing agent mixed in the in-situ soil to make it insoluble and lose its viscosity. For example, when the fluidizing agent is an anionic polymer agent, a cationic polymer agent having a molecular weight of 10 4 to 10 7 is used. When the fluidizing agent is a cationic polymer agent, an anion having a molecular weight of 10 4 to 10 7 is used. Use a high-molecular-weight agent. This electrically neutralizes the fluidizing agent and separates it from the water to return it to its original soil. That is, the interstitial water between soil particles returns to normal water having no viscosity, and the friction of soil particles is recovered. If the addition amount is too small, the fluidized soil will not be plasticized, and if the addition amount is too large, the cost will increase.

次に、復元溶液の作成方法として、実施例では、ミキサー内に1,000Lの水を入れ、そこに塩化カルシウム100kgと、塑性化剤8kgを投入し攪拌して作成した。施工方法は、オーガ削孔機が用いられ、オーガ先端側より復元溶液を吐出しながら貫入させる。この場合、復元溶液の注入率は、貫入速度と注入量で管理され、通常は5〜15%の範囲、より好ましくは約10%である。なお、復元溶液の吐出は、貫入及び引き抜き過程、或いは引き抜き過程でもよい。以上の復元処理により、変位吸収杭2のN値(換算N値)は図4より深度−0.5〜−5.0mにおいて約2.5以上の硬さとなる。   Next, as a method for preparing the reconstitution solution, in the examples, 1,000 L of water was put in a mixer, 100 kg of calcium chloride and 8 kg of a plasticizer were added thereto, and the mixture was stirred. As the construction method, an auger drilling machine is used, and the restoration solution is discharged from the tip side of the auger while being injected. In this case, the injection rate of the reconstitution solution is controlled by the penetration rate and the injection amount, and is usually in the range of 5 to 15%, more preferably about 10%. The restoration solution may be discharged by a penetration and extraction process or a withdrawal process. By the above restoration process, the N value (converted N value) of the displacement absorption pile 2 becomes about 2.5 or more in hardness at the depth of −0.5 to −5.0 m from FIG.

(実施例1)この実施例1は、図3において、地盤改良域Aと既設構造物又は周辺地盤B(以下、周辺地盤Bという)の境界に本発明の変位吸収杭2を等間隔に6本造成した。周辺地盤Bには、6本の変位吸収杭2の中間位置(端から3番目と4番目の間)で、同図のごとく直線上にあって1000mm間隔で4本の地表面変位計4を設置した。その後、地盤改良域Aには、同図のごとく砂圧入式静的締固め工法により3列で各3本づつ、合計9本の砂杭1を打設した。1列目の砂杭1は変位吸収杭2の杭芯から1000mm、2列目の砂杭1は1列目の砂杭2から1700mm、3列目の砂杭1は2列目の砂杭2から1700mm離れている。各列において、3本の砂杭1は、6本の変位吸収杭2のうち、端から1番目と2番目の間、端から3番目と4番目の間、端から5番目と6番目の間に打設されている。 (Embodiment 1) In Embodiment 1, in FIG. 3, the displacement absorbing piles 2 of the present invention are arranged at equal intervals at the boundary between the ground improvement area A and the existing structure or the surrounding ground B (hereinafter referred to as the surrounding ground B). This was created. On the surrounding ground B, at the intermediate position of the six displacement absorption piles 2 (between the third and fourth positions from the end), four ground surface displacement gauges 4 are arranged on a straight line at 1000 mm intervals as shown in the figure. installed. After that, in the ground improvement area A, as shown in the figure, a total of 9 sand piles 1 were laid by the sand press-fitting static compaction method, three in each of three rows. The first row sand pile 1 is 1000 mm from the pile core of the displacement absorption pile 2, the second row sand pile 1 is 1700 mm from the first row sand pile 2, and the third row sand pile 1 is the second row sand pile. 2 to 1700 mm apart. In each row, the three sand piles 1 are the six displacement absorption piles 2 between the first and the second from the end, the third and the fourth from the end, and the fifth and the sixth from the end. It has been placed in between.

一方、比較例としては、以上の実施例用エリアとは別の比較例用エリアにおいて、図3の変位吸収杭2に代えて、従来のオーガ削孔機のスパイラルで単にほぐしただけの緩衝杭3と砂杭1を、実施例の変位吸収杭2と砂杭1と同じ条件で打設した。勿論、比較例用エリアは、地盤性状ないしは状態が実施例用エリアと同じである。   On the other hand, as a comparative example, in a comparative example area different from the above-mentioned example area, instead of the displacement absorbing pile 2 of FIG. 3, a buffer pile simply unraveled by a spiral of a conventional auger drilling machine. 3 and the sand pile 1 were placed under the same conditions as the displacement absorption pile 2 and the sand pile 1 of the example. Of course, the comparative example area has the same ground property or state as the example area.

(結果)図1及び図2は以上の実施例と比較例の試験結果をグラフに示している。図1と図2は、1列の砂杭1の杭芯からの離間距離2m、3m、4m、5mの箇所において、各地表面変位計4で計測された水平変位(mm)と鉛直変位(mm)を示している。水平変位としては、図1により、1列目の砂杭1の杭芯から2m離間した箇所と3m離間した箇所で比較すると、変位吸収杭2では約11mmと9mm変位するのに対し、緩衝杭3では約20mmと19mm変位する。従って、変位吸収杭2では、緩衝杭3に比べ地盤抑制効果として水平変位で約2倍の抑制効果が得られる。鉛直変位としては、図2により、1列目の砂杭1の杭芯から2m離間した箇所と3m離間した箇所で比較すると、変位吸収杭2では約5mmと4mm変位するのに対し、緩衝杭3では約14mmと7mm変位する。従って、変位吸収杭2では、緩衝杭3に比べ地盤抑制効果として鉛直変位でも約2倍以上の抑制効果が得られる。 (Results) FIGS. 1 and 2 are graphs showing the test results of the above Examples and Comparative Examples. 1 and 2 show horizontal displacements (mm) and vertical displacements (mm) measured by surface displacement gauges 4 at locations 2m, 3m, 4m, and 5m away from the pile core of one row of sand piles 1. ) Is shown. As for horizontal displacement, according to FIG. 1, when comparing the location 2 m away from the pile core of the first row sand pile 1 and the location 3 m away from it, the displacement absorbing pile 2 is displaced by about 11 mm and 9 mm, while the buffer pile is In No. 3, the displacement is about 20 mm and 19 mm. Therefore, in the displacement absorbing pile 2, as compared with the buffer pile 3, a ground displacement suppressing effect of about 2 times in horizontal displacement is obtained. As for the vertical displacement, according to FIG. 2, when comparing the location 2 m away from the pile core of the first row sand pile 1 and the location 3 m away from it, the displacement absorption pile 2 is displaced about 5 mm and 4 mm, while the buffer pile is In No. 3, displacement is about 14 mm and 7 mm. Therefore, in the displacement absorbing pile 2, as compared with the buffer pile 3, as a ground restraining effect, a restraining effect about twice or more can be obtained even in the vertical displacement.

ところで、以上の各変位吸収杭2は、砂杭1の造成に起因した地盤変位などを吸収するが、その吸収に伴って変位吸収材料(原位置土に本発明の注入処理液を混入ないしは含浸させたもの)の一部が地表面に絞り出されるようにして押し出される。図5はその現象を模式的に示したものである。同(a)の模式断面図は、上記した要領にて造成した変位吸収杭2を示しているが、隣接地の地盤改良域Aには砂杭1を未だ打設していない状態である。同(b)の模式断面図は、地盤改良式Aに所定本数の砂杭1を造成した状態での変位吸収杭2の弾性変形を模式化したものである。   By the way, each of the displacement absorption piles 2 described above absorbs the ground displacement and the like caused by the construction of the sand piles 1. However, the displacement absorption material (in-situ soil is mixed with or impregnated with the injection treatment liquid of the present invention) is absorbed by the absorption. A part of it is extruded as if it were squeezed to the ground surface. FIG. 5 schematically shows the phenomenon. Although the schematic cross-sectional view of (a) shows the displacement absorbing pile 2 constructed in the above-described manner, the sand pile 1 is not yet placed in the ground improvement area A of the adjacent ground. The schematic cross-sectional view of the same (b) is a schematic representation of elastic deformation of the displacement absorbing pile 2 in a state in which a predetermined number of sand piles 1 are constructed in the ground improvement formula A.

この構成では、変位吸収杭2が砂杭造成に伴う地盤変位や振動に起因した変位応力(対応側面に加わる負荷ないしは変位応力)により砂杭1の片側ないしは対応側面から全体ないしは局部的に押圧され、それに伴って一部を地表面より押し出す。換言すると、この現象は、従来の緩衝杭3では生じないことから、変位吸収杭2の物性の一つである流動性と共に弾性杭状に基づくものである。弾性杭状は、例えば、変位吸収杭を手で触ると、ネバネバ感ないしは弾性感を与える。   In this configuration, the displacement absorbing pile 2 is entirely or locally pressed from one side or the corresponding side surface of the sand pile 1 by the displacement stress (load applied to the corresponding side surface or displacement stress) caused by ground displacement or vibration accompanying the sand pile construction. , A part of it is pushed out from the ground surface. In other words, since this phenomenon does not occur in the conventional buffer pile 3, it is based on the elastic pile shape together with the fluidity which is one of the physical properties of the displacement absorbing pile 2. The elastic pile shape gives a sticky or elastic feeling when the displacement absorbing pile is touched with a hand, for example.

(実施例2)この実施例2は、上記実施例1と同様に複数本の変位吸収杭を造成し、造成1週間後に2本の変位吸収杭の換算N値(表中ではN値と省略)を計測した。また、残りの4本の変位吸収杭2は本発明の復元処理を施工し、復元処理した11週間後に2本の変位吸収杭の換算N値を計測した。次の表1はその計測結果をまとめたものである。 (Example 2) In this Example 2, a plurality of displacement absorption piles were constructed in the same manner as in Example 1 above, and one week after construction, the converted N value of the two displacement absorption piles (N value in the table is omitted. ) Was measured. The remaining four displacement absorption piles 2 were subjected to the restoration treatment of the present invention, and the converted N value of the two displacement absorption piles was measured 11 weeks after the restoration treatment. Table 1 below summarizes the measurement results.

(表1)

Figure 2020070582
(Table 1)
Figure 2020070582

また、図4は深度(m)と換算N値の関係を示している。すなわち、本発明の変位吸収杭は、復元処理することにより深度−0.5〜−5.0mにおいて、換算N値で約1.5以上硬くなることが分かる。なお、換算N値は、JIS A1221規定のスウェーデン式ウンディング試験において、ロッドを回転させて25cmめり込むのに何回転するのかを数え、その回数から算出される標準貫入試験におけるN値に相当する値である。   Further, FIG. 4 shows the relationship between the depth (m) and the converted N value. That is, it can be seen that the displacement absorption pile of the present invention becomes harder by about 1.5 or more in the converted N value at the depth of −0.5 to −5.0 m by the restoration process. The converted N value is a value equivalent to the N value in the standard penetration test calculated by counting the number of rotations required to rotate the rod and slipping it into 25 cm in the Swedish Unding test prescribed by JIS A1221. Is.

なお、以上の形態例や実施例は本発明を何ら制約するものではない。本発明は、請求項で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。   It should be noted that the above embodiments and examples do not limit the present invention in any way. The present invention only needs to include the technical elements specified in the claims, and various details can be changed as necessary.

1・・・・・砂杭
2・・・・・変位吸収杭
3・・・・・緩衝杭
4・・・・・地表面変位計(地盤変位検出計)
A・・・・・地盤改良域
B・・・・・既設構造物又はその周辺地盤
1-sand pile 2-displacement absorption pile 3-buffer pile 4-ground displacement meter (ground displacement detector)
A: Ground improvement area B: Existing structure or surrounding ground

Claims (5)

地盤改良域と隣接する既設構造物又は周辺地盤との間に変位吸収杭を設け、該変位吸収杭により地盤改良に伴う地盤変位や振動を抑制する地盤変位抑制方法であって、
前記変位吸収杭は、弾性杭状をなし、地盤改良に伴う地盤変位や振動の吸収により一部が地表側へ押し出されることを特徴とする地盤変位抑制方法。
A method for suppressing displacement of ground, which is provided with a displacement absorbing pile between an existing structure adjacent to the soil improvement area or the surrounding soil, and suppresses the displacement and vibration of the soil due to the soil improvement by the displacement absorbing pile,
The displacement absorbing pile has a shape of an elastic pile, and a part of the displacement absorbing pile is extruded to the ground surface side by absorbing ground displacement and vibration accompanying ground improvement, which is a method for suppressing ground displacement.
前記変位吸収杭は、高吸水性高分子を水に混ぜてゲル状に処理すると共に、流動化剤を混入して圧送ポンプにより配管を通して移送可能に処理した注入処理液を用いて、
昇降及び回転される貫入部材により地盤を掘削しながら所定深さまで貫入し、該貫入又は/及び引き抜き過程で掘削によりほぐされる原位置土に前記注入処理液を吐出して混入ないしは含浸させることにより作成されることを特徴とする請求項1に記載の地盤変位抑制方法。
The displacement absorbing pile is processed by mixing the superabsorbent polymer with water to form a gel, and using an injection treatment liquid treated with a fluidizing agent so that the fluid can be transferred through a pipe by a pressure pump.
Created by excavating the ground with a penetrating member that is moved up and down and rotated while penetrating to a predetermined depth, and discharging and mixing or impregnating the pouring treatment liquid into the in-situ soil that is unraveled by excavation during the penetration or / and extraction process. The ground displacement suppressing method according to claim 1, wherein the ground displacement suppressing method is performed.
前記貫入部材の貫入速度と前記注入処理液の吐出流量により前記原位置土に対する前記注入処理液の注入率を40〜100%の範囲に収まるよう調整管理することを特徴とする請求項2に記載の地盤変位抑制方法。   The injection rate of the injection treatment liquid with respect to the in-situ soil is adjusted and managed to fall within a range of 40 to 100% by the penetration speed of the penetration member and the discharge flow rate of the injection treatment liquid. Ground displacement control method. 前記変位吸収杭の含有水を排水可能にする強制排水剤の水溶液である強制排水剤溶液に、前記流動化剤の粘性を損失可能にする塑性化剤を混入した復元溶液を用いて、該復元溶液を地中に作成された前記変位吸収杭に吐出して混入ないしは含浸させることにより使用後の変位吸収杭のN値を上げるよう復元処理することを特徴とする地盤変位抑制方法。   In the forced drainage agent solution, which is an aqueous solution of the forced drainage agent that enables the water contained in the displacement absorption pile to be drained, a restoration solution in which a plasticizing agent that allows loss of the viscosity of the fluidizing agent is mixed is used to perform the restoration. A method for suppressing ground displacement, characterized in that the solution is discharged to the displacement absorbing pile formed in the ground and mixed or impregnated to restore the N value of the displacement absorbing pile after use. 地盤改良域と隣接する既設構造物又は周辺地盤との間に設けられて、地盤改良に伴う地盤変位や振動を抑制する請求項1から3の何れかに記載された変位吸収杭。   The displacement absorbing pile according to any one of claims 1 to 3, which is provided between the ground improvement area and an existing structure adjacent to the ground improvement area or a surrounding ground to suppress ground displacement and vibration associated with the ground improvement.
JP2018203744A 2018-10-30 2018-10-30 Ground displacement suppression method Active JP7098250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203744A JP7098250B2 (en) 2018-10-30 2018-10-30 Ground displacement suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203744A JP7098250B2 (en) 2018-10-30 2018-10-30 Ground displacement suppression method

Publications (2)

Publication Number Publication Date
JP2020070582A true JP2020070582A (en) 2020-05-07
JP7098250B2 JP7098250B2 (en) 2022-07-11

Family

ID=70549287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203744A Active JP7098250B2 (en) 2018-10-30 2018-10-30 Ground displacement suppression method

Country Status (1)

Country Link
JP (1) JP7098250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505505A (en) * 2021-06-18 2021-10-15 中国建筑第八工程局有限公司 Mixed grid finite element analysis method for simulating large-deformation continuous penetration process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125359A (en) * 1995-10-30 1997-05-13 Kajima Corp Soil improving technique
JP2001152476A (en) * 1999-11-30 2001-06-05 Hazama Gumi Ltd Aseismic ground
JP4459021B2 (en) * 2004-11-04 2010-04-28 株式会社不動テトラ Ground displacement suppression device
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same
JP2018076663A (en) * 2016-11-07 2018-05-17 株式会社不動テトラ Hollow pipe for constructing displacement reduction type compacted sand pile and construction method of compacted sand pile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125359A (en) * 1995-10-30 1997-05-13 Kajima Corp Soil improving technique
JP2001152476A (en) * 1999-11-30 2001-06-05 Hazama Gumi Ltd Aseismic ground
JP4459021B2 (en) * 2004-11-04 2010-04-28 株式会社不動テトラ Ground displacement suppression device
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same
JP2018076663A (en) * 2016-11-07 2018-05-17 株式会社不動テトラ Hollow pipe for constructing displacement reduction type compacted sand pile and construction method of compacted sand pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505505A (en) * 2021-06-18 2021-10-15 中国建筑第八工程局有限公司 Mixed grid finite element analysis method for simulating large-deformation continuous penetration process

Also Published As

Publication number Publication date
JP7098250B2 (en) 2022-07-11

Similar Documents

Publication Publication Date Title
JP6188081B2 (en) Fluidized sand and ground improvement method using it
CN105178285B (en) A kind of method for expanding ground grouting and reinforcing and antiseepage extent of congestion
EP3564444B1 (en) Method employing aerosol to perform disturbance processing on soft soil foundation
JP5188894B2 (en) Sand pile construction method and sand pile construction equipment
CN100501011C (en) Hole drilling mudjack pile construction method
CN109881659A (en) A kind of offshore wind farm steel pipe pile foundation foundation reinforcement method with protection against erosion ability
CN103233454A (en) Processing method of soaking, vacuum preloading and slurry injecting for sand piles of collapsible loess foundation
JP6909642B2 (en) Manufacturing method of fluidized sand
Songyu et al. A new combined vacuum preloading with pneumatic fracturing method for soft ground improvement
CN106400744B (en) A kind of side slope comprehensive treatment structure and its construction method for preventing river channel erosion
JP3972260B2 (en) Low concentration grout method
JP5780714B2 (en) Filling the underground cavity
JP2020070582A (en) Ground displacement suppression method and displacement absorption pile
JP5478386B2 (en) Improving method for ground with underground cavity
CN101713602A (en) Method for embedding ground heat exchanger of ground source heat pump by high-pressure jet grouting
CN107419628A (en) A kind of construction method of the rapid build road on reclaimed ground
CN105804045A (en) Equipment for strengthening deep soft soil foundation by vacuum preloading of filter well and method
CN201874008U (en) Discontinuous concrete grouting pile and wall structure
CN106638638A (en) Large-diameter casing pipe process foundation pit emergency system and construction method thereof
JP6066757B2 (en) Construction method of permeable foundation
JP7112242B2 (en) Impermeability and Permeability Restoration Method in the Ground
CN205259169U (en) Complete high vacuum preloading of section consolidates device of deep silt soil base
CN208533543U (en) Improve the structure and foundation pit SMW supporting construction of foundation pit side-wall waterproof performance
CN105464070B (en) The device and method of the deep silt soil base of tunneling boring high vacuum ground preloading
CN111535292A (en) One-large-three-small pile foundation leakage treatment construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7098250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150