JP6909642B2 - Manufacturing method of fluidized sand - Google Patents
Manufacturing method of fluidized sand Download PDFInfo
- Publication number
- JP6909642B2 JP6909642B2 JP2017109646A JP2017109646A JP6909642B2 JP 6909642 B2 JP6909642 B2 JP 6909642B2 JP 2017109646 A JP2017109646 A JP 2017109646A JP 2017109646 A JP2017109646 A JP 2017109646A JP 6909642 B2 JP6909642 B2 JP 6909642B2
- Authority
- JP
- Japan
- Prior art keywords
- sand
- ppm
- fluidized sand
- fluidized
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
本発明は、地盤改良に用いられる砂材料に流動化剤を混ぜてポンプ圧送可能な状態とした流動化砂の製造方法。 The present invention is a method for producing fluidized sand in which a fluidizing agent is mixed with a sand material used for ground improvement so that the sand material can be pumped.
地盤改良工法のうち、サンドコンパクションパイル工法(SCP工法)は、液状化対策等として多用されており、地盤中に締固めた砂杭を造成することで地盤の密度を増加させるものである。このSCP工法では、大型施工機械を用いるため施工スペースの確保上の制約から適用できない場合が多い。代用工法として、小型施工機を用いる薬液注入系やセメントモルタルを圧入する工法を適用することもあるが、コストが高くなる。また、環境負荷を軽減できる自然材料である材料砂の使用を可能にする工法が望まれていた。このような背景から、本出願人らは、特許文献1や2に開示されるごとく、材料砂をポンプで圧送可能な流動化状態にし、地盤への圧入を行うことでコスト削減と環境負荷の低減を可能にした圧入式砂杭造成工法を開発し既に実用化している。この工法は、砂圧入式静的締固め工法やSAVE−SP工法(登録商標)と称され、小型施工機の使用により狭隘地での施工、既設構造物直下の改良にも対応できる。
Of the ground improvement methods, the sand compaction pile method (SCP method) is often used as a countermeasure against liquefaction, and increases the density of the ground by creating compacted sand piles in the ground. Since this SCP construction method uses a large construction machine, it is often not applicable due to restrictions on securing construction space. As an alternative method, a chemical injection system using a small construction machine or a method of press-fitting cement mortar may be applied, but the cost is high. In addition, a construction method that enables the use of material sand, which is a natural material that can reduce the environmental load, has been desired. Against this background, as disclosed in
特許文献1は圧入式砂杭造成工法の基本を開示している。この工法では、材料砂に含水比調整用水と共に流動化剤と遅効性塑性化剤とを含有する砂杭材料流動化物(以下、流動化砂と言う)を、流動状態を保持したまま地盤中に圧入し、地盤中で塑性化させる。この細部は、図11に例示されるごとく中空管23を地盤中に設計深度まで貫入した後、中空管23を通して流動化砂を地表から地中に圧入し、地中に該流動化砂を残致し、この上に次のステップ分の流動化砂を圧入し、これを繰り返すことで所定長さの改良体25を造成する。符号10は流動化砂製造プラント、1は流動化砂供給手段、2は砂材料供給手段、3は流動化剤供給手段、4は圧送ポンプ、5は遅効性塑性化剤供給装置である。
特許文献2は流動化砂の作製プラントを開示している。この作製プラントでは、材料砂に流動化剤を混合して流動化砂を作製するプラントであって、流動化砂は砂材料に水、流動化剤、遅効性塑性剤の順に混合する。好ましくは流動化砂は砂材料の重量を計測し、その重量に基づき水、流動化剤、遅効性塑性剤を自動計算して混合する。
図12は施工時にける流動化砂の状態変化を示した模式図である。(a)は圧入前の流動化砂を示す。流動化砂は、中空管から地盤中に圧入されるまでは流動化剤(例えば、アニオン系高分子材料)が砂の粒子同士の間隙水の粘性を高め、粒子同士の摩擦をなくし砂と水との分離を抑制して、高い流動性を維持している。(b)は圧入中の流動化砂を示す。圧入中は、流動化砂が脱水し密な状態に締め固められる。流動化剤は網状で残る。(c)は塑性化終了状態を示す。この状態では、遅効性塑性化剤が電気的に流動化剤を中和して流動化剤の網状構造を保持できなくなり粒子同士の摩擦を回復している。 FIG. 12 is a schematic view showing a change of state of fluidized sand during construction. (A) shows the fluidized sand before press fitting. In fluidized sand, a fluidizing agent (for example, anionic polymer material) increases the viscosity of the interstitial water between sand particles until it is press-fitted into the ground from a hollow tube, eliminating friction between the particles and forming sand. It suppresses separation from water and maintains high fluidity. (B) shows the fluidized sand during press fitting. During press fitting, the fluidized sand is dehydrated and compacted into a dense state. The fluidizing agent remains reticulated. (C) shows the plasticization end state. In this state, the slow-acting plasticizing agent electrically neutralizes the fluidizing agent and cannot maintain the network structure of the fluidizing agent, thus recovering the friction between the particles.
上記流動化砂を用いた圧入式砂杭造成工法では、直径100〜200mm程度の中空管が用いられ、流動化砂の地中圧入により直径500〜700mm程度の改良体を造成することが多い。施工に際しては、事前調査により対象地盤の特性が把握されて、それに応じて材料砂の選定と配合仕様を決定したり、製造した流動化砂としてテーブルフロー試験、ブリーディング試験、テクスチャー試験により適用性を判断し、使用可否を決定している。また、原料の材料砂に関しては、粒度分布等で使用可能な規定範囲を設定している。 In the press-fitting sand pile construction method using the fluidized sand, a hollow pipe having a diameter of about 100 to 200 mm is used, and an improved body having a diameter of about 500 to 700 mm is often created by underground press-fitting of the fluidized sand. .. At the time of construction, the characteristics of the target ground are grasped by a preliminary survey, and the material sand is selected and the compounding specifications are determined accordingly, and the applicability of the manufactured fluidized sand is determined by table flow test, bleeding test, and texture test. Judgment is made and whether or not it can be used is decided. In addition, regarding the raw material sand, a specified range that can be used is set in terms of particle size distribution and the like.
ところが、実際には、その規定範囲内にある材料砂についても貫入抵抗が早期に高くなって適用が困難となることがある。すなわち、使用される材料砂によっては、流動化砂として地中に圧入するとき圧力が短時間で高くなったり圧送ロスが増大して圧入量が目標値に達しなくなる。本出願人は、その原因を調べてきたが、主な要因として、材料砂に含まれる金属イオン等の陽イオンと流動化剤である高分子材料が反応したり互いに影響しあうことで目標値に対し急激に性能を低下するものと考えられる。 However, in reality, even for material sand within the specified range, the penetration resistance may increase at an early stage, making it difficult to apply. That is, depending on the material sand used, when the sand is press-fitted into the ground as fluidized sand, the pressure increases in a short time or the pumping loss increases, so that the press-fitting amount does not reach the target value. The applicant has investigated the cause, but the main factor is that the cations such as metal ions contained in the material sand react with the polymer material that is the fluidizing agent and affect each other, which is the target value. However, it is considered that the performance drops sharply.
本出願人は、以上のような急激な性状変化を防ぐ対策を検討してきた結果、阻害要因である金属イオン等の陽イオンを化学的ないしは化学物理的に解消できることが判明し、本発明に至った。本発明の目的は、圧入式砂杭造成工法や砂充填工法の適用に際し、適用が困難である材料砂でも、イオン電荷中和用添加剤を混ぜることで製造される流動化砂としての経時的な性状を改善して適用可能にすることにある。他の目的ないしは具体的な目的は以下の内容説明のなかで明らかにする。 As a result of studying measures to prevent the above-mentioned sudden changes in properties, the applicant has found that cations such as metal ions, which are inhibitory factors, can be chemically or chemically and physically eliminated, leading to the present invention. rice field. An object of the present invention is that even material sand, which is difficult to apply when applying the press-fit sand pile construction method or the sand filling method, is produced over time as fluidized sand produced by mixing an additive for ionic charge neutralization. The purpose is to improve the properties and make them applicable. Other purposes or specific purposes will be clarified in the following explanation.
上記目的を達成するため請求項1の発明は、材料砂に含水比調整用水と共に流動化剤を加えて圧送ポンプにより配管を通して移送可能に処理される地盤改良用の流動化砂の製造方法において、前記材料砂に対し該材料砂に含まれる、前記流動化剤の阻害要因となる金属イオン等の陽イオンを電荷中和可能となるようイオン電荷中和用添加剤を所定量の材料砂に対し、100ppm〜1000ppm混ぜた後、前記流動化剤を混入することを特徴としている。
In order to achieve the above object, the invention of
以上の発明において、材料砂に含まれる流動化剤の阻害要因となる金属イオン等の陽イオンとしては、特に二価以上の金属イオン、例えばカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、鉄イオン(Fe2+,Fe3+)、アルミニウムイオン(Al3+)などが挙げられる。一方、イオン電荷中和用添加剤としては、炭酸水素ナトリウム等の無機電荷中和剤、又は、イミジコハク酸四ナトリウム等の有機電荷中和剤である。これらの点については後述する。
In the above invention, the cations such as metal ions that hinder the fluidizing agent contained in the material sand include metal ions having a divalent value or higher, such as calcium ion (Ca 2+ ) and magnesium ion (Mg 2+ ). Examples include iron ions (
以上の本発明は、以下のように更に具体化されることがより好ましい。すなわち、
第1に、前記イオン電荷中和用添加剤は、炭酸水素ナトリウム(NaHCO3)、炭酸ナトリウム(Na2CO3)、トリポリりん酸ナトリウム(Na5P3HCO10)、ポリアクリル酸ナトリウム(C3H3NaO2)n 等の無機電荷中和剤である
(請求項2)。
第2に、前記イオン電荷中和用添加剤は、3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(C8H7NO9・4Na)、エチレンジアミン四酢酸四ナトリウム四水塩(C10H12N2O8Na4・4H2O)等の有機電荷中和剤である(請求項3)。なお、この有機電荷中和剤は、一般的にキレート剤と称されるものであり、他に有機電荷遅延剤として称してもよい。
It is more preferable that the above invention is further embodied as follows. That is,
First, the ionic charge neutralizing additive is sodium hydrogen carbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ), sodium polyacrylate (C). 3 H 3 NaO 2 ) An inorganic charge neutralizer such as n (claim 2).
Second, the ionic charge neutralizing additives, 3- hydroxybenzoic 2,2' iminodisuccinic acid tetrasodium (C 8 H 7 NO 9 · 4Na), tetrasodium ethylenediaminetetraacetate tetrahydrate (C 10 H a 12 N 2 O 8 Na 4 · 4H 2 O) the organic charge neutralizing agents such (claim 3). In addition, this organic charge neutralizing agent is generally called a chelating agent, and may also be referred to as an organic charge retarding agent.
第3に、前記流動化砂は、テクスチャー試験より少なくとも作成1時間経過時の流動化砂の貫入応力値が約6,000(Pa)以下となっている構成である(請求項4)。 Thirdly, the fluidized sand has a configuration in which the intrusive stress value of the fluidized sand at least 1 hour after the texture test is about 6,000 (Pa) or less (claim 4).
請求項1の発明は、原料の材料砂に対し当該材料砂に含まれる陽イオン(特に二価以上の金属イオン等)を電荷中和可能なイオン電荷中和用添加剤を混ぜた後、流動化剤を混合することにより、流動化砂の経時的な性状が改善され正常な圧入施工を維持可能となる。この場合、各種試験からは、原料の材料砂に対しイオン電荷中和用添加剤を混ぜる時期が重要であり、材料砂に流動化剤と同時に混ぜたり、流動化剤を混入した後に混ぜると改善効果がさほど期待できない。これは、材料砂に対し流動化剤を混合する前段階にて、イオン電荷中和用添加剤を材料砂に混ぜて阻害要因を予め解消ないしは抑制することが必須となることを示している。
The invention of
以上のようにして、本発明の流動化砂は、原料の材料砂として、粒度分布等の規定範囲を満足しているにもかかわらず適用不能であった材料砂が使用可能となることにより、使用する材料砂の適用範囲を広げ、引いては経費低減と共に流動化砂を用いる地盤改良工法の適用機会拡大に寄与できる。 As described above, the fluidized sand of the present invention can be used as the raw material sand, which is not applicable even though it satisfies the specified range such as particle size distribution. The range of application of the material sand used can be expanded, which in turn can contribute to cost reduction and expansion of application opportunities for the ground improvement method using fluidized sand.
請求項2の発明では、イオン電荷中和用添加剤として、後述する試験例から明らかなごとく炭酸水素ナトリウム、炭酸ナトリウム、トリポリりん酸ナトリウム、ヘキサメタりん酸ナトリウム等の無機電荷中和剤を原料の材料砂に混ぜることにより流動化砂の性状阻害要因を反応ないしは抑制作用により確実に改善できる。
In the invention of
請求項3の発明では、イオン電荷中和用添加剤として、後述する試験例から明らかなごとく3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム、エチレンジアミン四酢酸四ナトリウム四水塩等の有機電荷中和剤を原料の材料砂に混ぜることにより流動化砂の性状阻害要因を反応ないしは抑制作用により確実に改善できる。
In the invention of
請求項4の発明では、改善後の流動化砂の性状として、特に重要な貫入応力、つまりテクスチャー試験より作成1時間経過時の流動化砂の貫入応力が6,000(Pa)以下に改善される点を特定したものである。この値は現状の実施工で好ましいとされている基準値を満たすことを明確に特定したことに意義がある。
In the invention of
以下、本発明を適用した形態例を図面を参照して説明する。この説明では、砂圧入式静的締固め工法や砂充填工法に用いられる施工機、流動化砂製造プラント、流動化砂の製造方法、地盤改良工法である砂圧入式静的締固め工法を述べた後、試験例1として実施例1から5、及び試験例2として実施例6と7で作製された流動化砂の物性試験結果について述べる。 Hereinafter, a form example to which the present invention is applied will be described with reference to the drawings. In this explanation, the construction machine used for the sand press-fit type static compaction method and sand filling method, the fluidized sand production plant, the fluidized sand production method, and the sand press-fit type static compaction method which is a ground improvement method are described. After that, the physical property test results of the fluidized sand produced in Examples 1 to 5 as Test Example 1 and Examples 6 and 7 as Test Example 2 will be described.
(地盤改良工法)本発明で製造される流動化砂は地盤改良工法に用いられる。その工法に用いられる施工機は、大別すると、中空管をリーダに沿って垂直に貫入したり引き抜くクローラタイプと、中空管を補助クレーンに吊り下げた状態で貫入したり引き抜くボーリングマシンタイプと、中空管を任意の角度に貫入したり引き抜くロータリーパーカッションドリルタイプとがあり、対象地盤や施工深度などに応じて選択される。 (Ground improvement method) The fluidized sand produced in the present invention is used in the ground improvement method . The construction machines used in the construction method are roughly divided into a crawler type that penetrates and pulls out the hollow pipe vertically along the leader, and a boring machine type that penetrates and pulls out the hollow pipe while hanging it on an auxiliary crane. There is a rotary percussion drill type that penetrates or pulls out a hollow pipe at an arbitrary angle, and it is selected according to the target ground and construction depth.
図1は小型クローラタイプの施工機1の一例であり、流動化砂製造プラント2と共に模式的に示している。この施工機1は、中空管3を上下動する昇降機構4と、昇降機構4に保持されて中空管3を回動する回転機構5と、中空管の上端3aに設けられたスイベル15と、製造プラント2で作られた流動化砂を圧送するポンプPと、ポンプPの出口とスイベル15を接続している管路16と、管路16の途中に設けられて圧送されている流動化砂の圧力を検出する圧力計6を備えている。
FIG. 1 is an example of a small crawler
ここで、昇降機構4は、ベースマシン10により移動可能に起立された柱状リーダー12の一側に沿ってラック・ピニオン機構等を介して上下動される。回転機構5は、昇降機構4でリーダー12に沿って昇降されると共に、中空管3をモーター及び減速ギア機構等を介し正転・逆転する。ベースマシン10は、運転室11の前方にリーダー12の下端側を位置決め保持し、運転室11の後方側に図示を省いた油圧装置や電動機等を搭載している。運転室11には各種の施工用操作部や制御部が配設されている。リーダー12は、起状シリンダ13等により支持されており、下側に付設されて中空管3の振れを規制する振止具18、上側に付設されて管路16の上側を支えるガイド具17などを有している。管路16の上端は、スイベル15を介し中空管3の上端3aに接続されている。
Here, the elevating
ポンプPは、特に高い吸込み力、機密性、空気の吸込みを起こさず、流動化砂性状の変化を低く抑えられるものとして、圧送構造が油圧ピストンを利用したタイプが選択されている。ポンプ駆動は、運転室11に配置された制御部を介して自動制御、又は操縦者により制御される。圧力計6は、ポンプPで圧送されている流動化砂の圧力を検出して中空管3の下端開口より地盤側領域つまり中空管引き抜きにより密度が低くなった箇所及びその周囲に圧入されるときの流動物の圧入圧力を推定可能にする。そして、圧力計6は、施工時において、流動化砂の圧送時の圧力を検出し、その検出信号を運転室11の制御部に送信している。制御部では、その検出信号に基づいて流動物の圧入圧力として、設定圧入圧力になったときにポンプPが駆動停止するようになっている。
As the pump P, a type having a pumping structure using a hydraulic piston is selected because it does not cause particularly high suction force, airtightness, and air suction, and changes in fluidized sand properties can be suppressed to a low level. The pump drive is automatically controlled via a control unit arranged in the driver's
(流動化砂製造プラント)この製造プラント2は、混合室21及びアジテータ室22等を有した製造装置20を中心として、混合室21に対し、砂材料7を投入するバックホウ等の砂供給手段23、イオン電荷中和用添加剤を供給する添加剤供給手段24、流動化剤を投入する流動化剤供給手段25、含水量調整用の水を供給する水供給手段26、塑性化剤を投入する塑性化剤供給手段27が設けられている。
(Fluidized sand production plant) This
砂圧入式静的締固め工法の適用に際しては、事前調査により対象地盤の特性に応じて材料砂の選定と配合仕様が決定される。製造プラント2では、通常、目的の流動化砂が混合室21で1バッチ量(改良体9)毎に作製される。砂供給手段23により投入される材料砂7、添加剤供給手段24により供給されるイオン電荷中和用添加剤、流動化剤供給手段25により投入される流動化剤、水供給手段26により供給される水、塑性化剤供給手段27により供給される塑性化剤については、以下にその選択基準や作用などを明らかにする。
When applying the sand press-fit type static compaction method, the selection of material sand and the compounding specifications will be determined according to the characteristics of the target ground by a preliminary survey. In the
(1)、材料砂7は、一旦流動性を高めた状態でポンプ圧送するため、配管内で閉塞しない保水性の良さと、圧入時に脱水する排水性の良さとを併せ持つ性質が好ましい。この点は、特開2015−183466号公報の図6及びその関連記載を参照されたい。また、材料砂7としては、採取場所によっても異なるが、流動化剤の阻害要因となる陽イオンとして、特に2価以上の金属イオンが含まれているものがある。2価以上の金属イオンとしては、例えばカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、鉄イオン(Fe2+,Fe3+)、アルミニウムイオン(Al3+)等が挙げられる。なお、発明対象の材料砂は、通常ではないイレギュラーな砂、つまり砂が流動化剤の阻害要因となる陽イオンを含んでいて、テクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された砂である。従って、それ以外つまり通常の材料砂の場合は、本発明のイオン電荷中和用添加剤を混ぜる必要はないことは勿論である。 (1) Since the material sand 7 is pumped in a state where the fluidity is once increased, it is preferable that the material sand 7 has both good water retention that does not block in the pipe and good drainage that dehydrates at the time of press fitting. For this point, refer to FIG. 6 of Japanese Patent Application Laid-Open No. 2015-183466 and related descriptions thereof. Further, as the material sand 7, although it varies depending on the collection place, there is a material sand containing a metal ion having a divalent value or more as a cation which is an inhibitory factor of the fluidizing agent. Examples of the divalent or higher metal ion include calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ), iron ion (Fe 2+ , Fe 3+ ), aluminum ion (Al 3+ ) and the like. The material sand to be invented contains unusual irregular sand, that is, cations in which the sand acts as an inhibitor of the fluidizing agent. It is sand that is judged to be difficult to apply to the construction method. Therefore, in the case of other materials, that is, ordinary material sand, it is of course not necessary to mix the additive for ionic charge neutralization of the present invention.
(2)、イオン電荷中和用添加剤は、以上の材料砂7に混ぜることにより流動化剤の阻害要因、つまり当該材料砂に含まれる前記したような陽イオンとして、特に2価以上の金属イオンをイオン電荷的に中和するに好適な無機電荷中和剤、又は、特に3価以上の金属イオンを中和したり封鎖するに好適な有機電荷中和剤である。次に具体例を挙げる。 (2) The additive for ionic charge neutralization is an inhibitory factor of the fluidizing agent by mixing with the above material sand 7, that is, a metal having a valence of 2 or more as the above-mentioned cation contained in the material sand. It is an inorganic charge neutralizing agent suitable for neutralizing ions in terms of ionic charge, or an organic charge neutralizing agent particularly suitable for neutralizing or blocking metal ions having a valence of trivalent or higher. Next, a specific example will be given.
無機電荷中和剤としては、後述する実施例1〜5で使用した炭酸水素ナトリウム(NaHCO3)、炭酸ナトリウム(Na2CO3)、トリポリりん酸ナトリウム(Na5P3HCO10)、ポリアクリル酸ナトリウム(C3H3NaO2)n、ヘキサメタりん酸ナトリウム(NaPO3)6 等である。他のイオン電荷中和用添加剤としては塩化カリウム(NaCl)、塩化ナトリウム(NaCl)、炭酸カリウム(K2CO3)等も有効であることが本発明者らの試験で確認されている。これに対し、有機電荷中和剤としては、実施例8〜10で使用した3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(C8H7NO9・4Na)、エチレンジアミン四酢酸四ナトリウム四水塩(C10H12N2O8Na4・4H2O)等である。
Examples of the inorganic charge neutralizer include sodium hydrogen carbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ), and polyacrylic used in Examples 1 to 5 described later. Sodium acid (C 3 H 3 NaO 2 ) n , sodium hexametaphosphate (NaPO 3 ) 6, etc. It has been confirmed in the tests of the present inventors that potassium chloride (NaCl), sodium chloride (NaCl), potassium carbonate (K 2 CO 3) and the like are also effective as other additives for ionic charge neutralization. In contrast, as the organic charge neutralizer, 3-
イオン電荷中和用添加剤は、例えば、材料砂に含まれる二価以上の金属イオンをイオン荷電的にどの様な態様で中和するかについてはあくまでも推論ではあるが、次のような反応によるものと考えられる。一例として、イオン電荷中和用添加剤が無機電荷中和剤として炭酸水素ナトリウム(NaHCO3)の場合は、例えば材料砂に含まれるカルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)に対し
(1) Ca2+ + NaHCO3 = CaCO3 +(Na+ + H+)
(2) Mg2+ + NaHCO3 = MgCO3 +(Na+ + H+)
前記反応式(1)や(2)などにより二価以上の金属イオンであるCa2+やMg2+をイオン電荷的に中和して流動化剤の阻害要因を解消したり抑制するものと思われる。
For example, it is only speculated how the additive for ionic charge neutralization neutralizes divalent or higher metal ions contained in the material sand in terms of ionic charge, but it is based on the following reaction. It is considered to be. As an example, when the additive for ionic charge neutralization is sodium hydrogen carbonate (NaHCO 3 ) as an inorganic charge neutralizing agent, for example, with respect to calcium ion (Ca 2+ ) and magnesium ion (Mg 2+ ) contained in the material sand (
(2) Mg 2+ + NaHCO 3 = MgCO 3 + (Na + + H + )
It is considered that Ca 2+ and Mg 2+ , which are divalent or higher metal ions, are neutralized in terms of ionic charges by the reaction formulas (1) and (2) to eliminate or suppress the inhibiting factor of the fluidizing agent. ..
以上のイオン電荷中和用添加剤は、原料の材料砂に流動化剤と同時に混ぜても改善効果はあまり期待できず、更に材料砂に流動化剤を混入した後に混ぜると改善効果が得られない。つまり、原料の材料砂には、当該材料砂に含まれる流動化剤の阻害要因として陽イオン、特に2価以上の金属イオンをイオン電荷中和用添加剤にてイオン電荷的に中和して阻害要因を予め解消ないしは抑制してから流動化剤を混入する。また、原料の材料砂に対する添加剤の混合割合は、後述の実施例より推察されるごとく対象の材料砂に添加剤を混ぜた後、流動化剤及び含水比調整用水を混合して作製した流動化砂、或いは流動化剤及び含水比調整用水並びに遅効性塑性化剤を混合して作製した流動化砂について、テクスチャー試験やフロー試験等によりその流動化砂の性状が予め決められた基準値の範囲に入る値を試験を通して確認し決めることになる。 The above additives for ionic charge neutralization cannot be expected to have much improvement effect even if they are mixed with the raw material sand at the same time as the fluidizing agent, and further, if they are mixed after mixing the fluidizing agent with the material sand, the improving effect can be obtained. do not have. That is, in the raw material sand, cations, particularly divalent or higher valent metal ions, are neutralized in terms of ionic charge with an ionic charge neutralizing additive as an inhibitory factor of the fluidizing agent contained in the material sand. After eliminating or suppressing the inhibiting factor in advance, the fluidizing agent is mixed. The mixing ratio of the additive to the raw material sand is a flow prepared by mixing the additive with the target material sand and then mixing the fluidizing agent and the water for adjusting the water content ratio, as inferred from the examples described later. For fluidized sand or fluidized sand prepared by mixing a fluidizing agent, water for adjusting the water content ratio, and a slow-acting plasticizing agent, the properties of the fluidized sand are determined in advance by a texture test, a flow test, or the like. Values that fall within the range will be confirmed and determined through tests.
(3)、水は、含水比調整用であり、流動化剤等に影響する多様な成分(上記した金属イオン等の陽イオン)を含む工業用水や海水は避けて、中性の水道水を用いることが好ましい。水の使用量は、通常、製造される流動化砂の含水比が30%から40%となるよう算出される。 (3) Water is for adjusting the water content ratio, and avoid industrial water and seawater containing various components that affect fluidizing agents (cations such as the above-mentioned metal ions), and use neutral tap water. It is preferable to use it. The amount of water used is usually calculated so that the water content of the produced fluidized sand is 30% to 40%.
(4)、流動化剤は、砂の粒子間の間隙水の粘性を高め、飽和状態で砂と水の分離を抑制してポンプ圧送性を向上させる添加剤である。好ましくは、粘性を高め砂粒子の沈降分離を抑制するアニオン系高分子凝集剤であり、他にノニオン系高分子凝集剤、カチオン系高分子凝集剤などでもよい。これらは、高分子の親水基と高分子の網の内部に水分を保持する性能に優れ、品質の長期安定性も高い。なお、アニオン系高分子凝集剤としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2−メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸などの単独重
合体あるいはアクリルアミドとの共重合体が挙げられる。
(4) The fluidizing agent is an additive that increases the viscosity of interstitial water between sand particles, suppresses the separation of sand and water in a saturated state, and improves pumping performance. Preferably, it is an anionic polymer flocculant that increases viscosity and suppresses sedimentation and separation of sand particles, and may also be a nonionic polymer flocculant, a cationic polymer flocculant, or the like. These are excellent in the ability to retain water inside the hydrophilic group of the polymer and the network of the polymer, and have high long-term stability of quality. Examples of the anionic polymer flocculant include homopolymers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide2-methylpropane sulphonic acid, vinyl sulphonic acid, and styrene sulphonic acid, or copolymers with acrylamide. Can be mentioned.
流動化剤の配合割合は、材料砂に対し、外割配合で0.01〜2.0重量%、好ましくは0.1〜1.0重量%である。この配合割合は、少な過ぎると、材料砂が流動化せず、配管内で分離したり目詰まりしたりして圧送できなくなると共に、多過ぎても流動化効果は変わらず、却ってコストを上昇させることになる。 The blending ratio of the fluidizing agent is 0.01 to 2.0% by weight, preferably 0.1 to 1.0% by weight, based on the outer composition of the material sand. If this mixing ratio is too small, the material sand will not be fluidized, and it will be separated or clogged in the pipe, making it impossible to pump, and if it is too large, the fluidization effect will not change, and the cost will increase. It will be.
(5)、遅効性塑性化剤の使用量は、流動化砂を塑性化できる配合量であり、製造される流動化砂中の材料砂に対して、外割配合で0.001〜2重量%、好ましくは0.01〜1.0重量%である。この添加量は、少な過ぎると、流動化物が塑性化せず、設計通りの改良体が造成できなくなり、添加が多過ぎると塑性化が早く起こりポンプ圧送に支障をきたすと同時に、コスト的に高くなる。 (5) The amount of the slow-acting plasticizing agent used is a blending amount capable of plasticizing the fluidized sand, and is 0.001 to 2 weight by external splitting with respect to the material sand in the fluidized sand to be produced. %, Preferably 0.01 to 1.0% by weight. If this amount is too small, the fluid will not be plasticized and it will not be possible to create an improved product as designed. If too much is added, plasticization will occur quickly, which will hinder pump pumping and at the same time be costly. Become.
(流動化砂の製造方法)製造プラント2において、砂圧入式静的締固め工法や砂充填工法に使用する流動化砂作製に際し、原料の材料砂がテクスチャー試験などから適用困難であると判断された場合に次のような要領で目的の流動化砂が作製されることになる。まず、1バッチ量に対応する所定量の材料砂7に対し、所要量のイオン電荷中和用添加剤を均一となるよう混ぜ、又は、所要量のイオン電荷中和用添加剤と共に含水比調整用水を混ぜる。その後、流動化剤と遅効性塑性化剤とを加えて流動化砂を作製する。これらは、例えば、材料砂に対し、流動化剤、又は、流動化剤と含水比調整用水、或いは流動化剤と含水比調整用水と遅効性塑性化剤を混ぜて流動化砂を作製した後、イオン電荷中和用添加剤を混ぜても、作製される流動化砂としての経時的な性状が改善されないからである。つまり、原料の材料砂に対し流動化剤を混ぜる前段階において、イオン電荷中和用添加剤を混ぜて当該材料砂に含まれる流動化剤の阻害要因(陽イオンとして金属イオン、特に2価以上の金属イオン)を解消ないしは抑制することが必須となる。
(Manufacturing method of fluidized sand) In the
(砂圧入式静的締固め工法)この工法は、図1の施工機1を使用した例で特徴点を挙げると次のようになる。まず、操作手順は、中空管3を昇降機構4を介して地中の設計深さまで貫入した後、所定ピッチだけ引き抜く引抜工程と、該引抜工程にて中空管3の下方にできる密度の低い領域及びその周囲に流動化砂を圧入する供給工程とを繰り返し行うことにより所定長さの改良体9を造成する。施工管理は、運転室11の制御部において、中空管3の最大貫入深さ(下端深度)、1ピッチ分の引抜長さL、総ピッチ数((下端深度−上端深度)/L)、設定圧入(吐出)圧力などの値がプログラムに入力される。また、製造された流動化砂がアジテータ部22に用意される。
(Sand press-fitting static compaction method) This method is as follows in the example of using the
施工に際しては、施工機1が施工箇所に移動されて位置決めされた後、中空管3が昇降機構4及び回転機構5を介して回転されながら地盤に貫入操作される。この貫入は、中空管3の下端が設計深さ(下端深度)に達したか否かを不図示の深度計からの信号により判断され、設計深さに達した時点で昇降機構4などを介して貫入が停止される。
At the time of construction, after the
次に、制御部は、昇降機構4を介して1ピッチ(例えば、20cm)分だけ中空管3の引抜きを開始するよう制御し、同時に、ポンプPが稼動されて流動化砂が圧送されて引抜きに伴って中空管3の下方に形成される領域及びその周囲に圧入するよう制御する。すなわち、制御部は、引抜きが1ピッチ分に達したか否かを判断し、引抜きが1ピッチに達したと判断されると、昇降機構4が停止ないしはアイドリング状態となるよう制御する。また、制御部は、流動化砂の圧入状態として、上記した領域に吐出される流動化砂の圧入圧力が設定値に達したか否かを圧力計6から送られている検出信号に基づいて判断し、圧入圧力が設定圧力になったと判断すると、ポンプPが停止ないしは不図示の開閉バルブを閉状態に切り換える。
Next, the control unit controls via the elevating
また、以上の制御部では、総ピッチ数ないしは全ピッチ引抜完了したか否かが判断され、総ピッチ数に達するまで引抜きと流動化砂の圧入が繰り返される。また、総ピッチ数に達すると、1本の改良体9が終了される。その後、地盤改良装置1は次の施工箇所に移動されて位置決めされた後、再び以上の操作が行われることになる。
Further, in the above control unit, it is determined whether or not the total number of pitches or all pitches have been drawn out, and the drawing out and the press-fitting of the fluidized sand are repeated until the total number of pitches is reached. Further, when the total number of pitches is reached, one
(実施例)以下、図1〜図7に示した実施例1−5は、原料の材料砂(この材料砂はテクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された原料砂である)に、イオン電荷中和用添加剤のうち、無機電荷中和剤として実施例1では炭酸水素ナトリウム(NaHCO3)を、実施例2では炭酸ナトリウム(Na2CO3)を、実施例3ではトリポリりん酸ナトリウム(Na5P3HCO10)を、実施例4ではヘキサメタりん酸ナトリウム(NaPO3)6を、実施例5ではポリアクリル酸ナトリウム(C3H3NaO2)nを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した各流動化砂について、図2及び図4〜図7のテクスチャー試験、図3のフロー試験を行ったときの試験結果をグラフにまとめたものである。 (Example) Hereinafter, Examples 1-5 shown in FIGS. 1 to 7 can be applied to the material sand of the raw material (this material sand can be applied to the sand press-fit type static compaction method and the sand filling method from the texture test and the like. Of the additives for ionic charge neutralization, sodium hydrogen carbonate (NaHCO 3 ) was used as an inorganic charge neutralizer, and sodium carbonate (NaHCO 3) was used as an inorganic charge neutralizer in Example 2 (which is the raw material sand judged to be difficult). Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ) in Example 3, sodium hexametaphosphate (NaPO 3 ) 6 in Example 4, sodium polyacrylate (C) in Example 5. 3 H 3 NaO 2 ) After mixing n , water for adjusting the water content ratio, fluidizing agent, and slow-acting plasticizing agent were mixed at a predetermined ratio for each fluidized sand, and FIGS. 2 and 4 to 4 to 4 The test results when the texture test of FIG. 7 and the flow test of FIG. 3 were performed are summarized in a graph.
また、図8〜図10に示した実施例6と7は、原料の材料砂(この材料砂はテクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された原料砂である)に、イオン電荷中和用添加剤のうち、有機電荷中和剤として実施例6では3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(C8H7NO9・4Na)を、実施例7ではエチレンジアミン四酢酸四ナトリウム四水塩(C10H12N2O8Na4・4H2O)を混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した各流動化砂について、図8及び図10のテクスチャー試験、図9のフロー試験を行ったときの試験結果をグラフにまとめたものである。
Further, Examples 6 and 7 shown in FIGS. 8 to 10 are found to be difficult to apply to the raw material sand (this material sand is difficult to apply to the sand press-fit type static compaction method and the sand filling method from the texture test and the like. Of the additives for ionic charge neutralization, in Example 6 as an organic charge neutralizer, 3-hydroshiki-2,2'-minodisuccinate tetrasodium (C 8 H 7 NO 9) was added to the determined raw material sand. · 4Na) and, after mixing example 7 In tetrasodium ethylenediaminetetraacetate tetrahydrate (C 10 H 12 N 2 O 8
テクスチャー試験では、所定容器に流動化砂(試料)を充填し、市販のテクスチャー試験装置として株式会社山電製の卓上式物性測定器にセットした後、シリンダーを一定速度で上下させ、試料上面から20mmの貫入及び引抜を行う。貫入応力は、貫入時の最大荷重haを応力に換算した値である。また、フロー(テーブルフロー)試験は、セメントの物性試験方法(JIS R5201−1997)に準拠して行った。 In the texture test, a predetermined container is filled with fluidized sand (sample), set in a tabletop physical property measuring instrument manufactured by Yamaden Co., Ltd. as a commercially available texture test device, and then the cylinder is moved up and down at a constant speed from the top surface of the sample. Perform 20 mm penetration and withdrawal. The penetration stress is a value obtained by converting the maximum load ha at the time of penetration into stress. The flow (table flow) test was carried out in accordance with the cement physical characteristic test method (JIS R5201-1997).
実施例1:図2及び図3は、所定量の材料砂に対し、NaHCO3を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)とフロー試験(流動性)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNaHCO3の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、図2の貫入応力が炭化水素ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880Pa(Pa)に対して炭化水素ナトリウムを加えた場合には10,000(Pa)と性状の変化が抑えられている点、炭化水素ナトリウムを1000ppm混ぜることにより基準値、つまり作成3時間後の流動化砂の貫入応力であっても約5,878(Pa)、つまり何れも6,000(Pa)以下に改善される点が分かる。 Example 1: In FIGS. 2 and 3, 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of NaHCO 3 are mixed with a predetermined amount of material sand as a mixing ratio, and then water for adjusting the water content ratio, a fluidizing agent, and slow-acting plasticization are performed. The results of a texture test (hardness) and a flow test (fluidity) of four types of fluidized sand prepared by mixing the agents at a predetermined ratio are shown. In the figure, the composition of NaHCO 3 , which is an additive for ionic charge neutralization, is 0 ppm for black circles, that is, a sample not mixed, a sample with 100 ppm for squares, a sample with 500 ppm for white circles, and a sample with 1000 ppm for triangles. From this test result, the penetration stress in Fig. 2 is significantly smaller than that of the conventional sample without sodium hydrocarbon, even if it is mixed at 100 ppm. When sodium hydrocarbon is added to 14,880 Pa (Pa), the change in properties is suppressed to 10,000 (Pa), and by mixing 1000 ppm of sodium hydrocarbon, the standard value, that is, 3 hours of preparation It can be seen that even the penetration stress of the later fluidized sand is improved to about 5,878 (Pa), that is, to 6,000 (Pa) or less.
また、図3のフロー試験結果からは、炭化水素ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できることが分かる。なお、イオン電荷中和用添加剤である無機電荷中和剤は、粉末の状態で材料砂に混ぜる方法、水に溶かした状態で材料砂に混ぜる方法の何れであってもよい。一般的には均一混合の点から後者の方法が好ましい。この場合、使用した水は含水比調整用水の一部として処理されることになる。 Further, from the flow test results of FIG. 3, it can be seen that the fluctuation of the table flow value (mm) depending on the presence or absence of mixing of sodium hydrocarbon is hardly observed, and the influence of the fluidized sand on the table flow value can be ignored. The inorganic charge neutralizing agent, which is an additive for ionic charge neutralization, may be mixed with the material sand in a powder state or mixed with the material sand in a state of being dissolved in water. Generally, the latter method is preferable from the viewpoint of uniform mixing. In this case, the water used will be treated as a part of the water content adjusting water.
実施例2:図4は、所定量の材料砂に対し、Na2CO3を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNaCO3の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力が炭化ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる。つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には10,970(Pa)と性状の変化が抑えられている点、炭化ナトリウムを500ppm混ぜることにより基準値、つまり例えば作成3時間後の流動化砂の貫入応力であっても6,000(Pa)以下に改善される点、貫入応力が炭化ナトリウムを500ppm混ぜた場合と1000ppm混ぜた場合とで余り変化しない点が分かる。なお、フロー試験については省略したが実施例1と同じく、炭化ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。
Example 2: FIG. 4 shows water for adjusting the water content ratio, a fluidizing agent, and a slow-acting plasticizing agent after mixing 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of Na 2 CO 3 as a mixing ratio with a predetermined amount of material sand. The results of examining the texture test (hardness) of four types of fluidized sand produced by mixing the above in a predetermined ratio are shown. In the figure, the composition of NaCO 3 , which is an additive for ionic charge neutralization, is 0 ppm for black circles, that is, a sample not mixed, a sample with 100 ppm for squares, a sample with 500 ppm for white circles, and a sample with 1000 ppm for triangles. From this test result, the penetration stress is significantly smaller than that of the conventional sample in which sodium carbonate is not mixed, even if only 100 ppm is mixed. In other words, for example, looking at the change over
実施例3:図5は、所定量の材料砂に対し、トリポリりん酸ナトリウム(Na5P3HCO10)を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNa5P3HCO10の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がトリポリりん酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対してトリポリりん酸ナトリウムを加えた場合には7,970(Pa)と性状の変化が抑えられている点、更にポリりん酸ナトリウムを1000ppm混ぜることにより作成3時間後の流動化砂の貫入応力であっても3,807(Pa)であり、基準値である6,000(Pa)以下に改善される点が分かる。なお、フロー試験については省略したが実施例1と同じく、トリポリりん酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 3: FIG. 5 shows that after mixing 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of sodium tripolyphosphate (Na 5 P 3 HCO 10) as a mixing ratio with a predetermined amount of material sand, water for adjusting the water content ratio, flow. The results of a texture test (hardness) of four types of fluidized sand prepared by mixing an agent and a slow-acting plasticizing agent at a predetermined ratio are shown. In the figure, the formulation of Na 5 P 3 HCO 10 , which is an additive for ionic charge neutralization, is 0 ppm for black circles, that is, a sample that is not mixed, a sample that is mixed with 100 ppm for squares, a sample that is mixed with 500 ppm for white circles, and 1000 ppm for triangles. It is a sample. From this test result, the penetration stress is significantly smaller than that of the conventional sample without sodium tripolyphosphate, even if it is mixed at 100 ppm. When sodium tripolyphosphate was added to 880 (Pa), the change in properties was suppressed to 7,970 (Pa), and by further mixing 1000 ppm of sodium polyphosphate, the flow after 3 hours of preparation. It can be seen that even the penetration stress of the fossilized sand is 3,807 (Pa), which is improved to the reference value of 6,000 (Pa) or less. Although the flow test was omitted, as in Example 1, the table flow value did not fluctuate depending on the presence or absence of mixing of sodium tripoliphosphate, and the effect of the fluidized sand on the table flow value was negligible.
実施例4:図6は、所定量の材料砂に対し、ポリアクリル酸ナトリウム(C3H3NaO2)nを混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤である(C3H3NaO2)nの配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がポリアクリル酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には9,389(Pa)と性状の変化が抑えられている点、ポリアクリル酸ナトリウムを1000ppm混ぜることにより基準値、つまり作成3時間後の流動化砂の貫入応力であっても6,000(Pa)以下に改善される点が分かる。なお、フロー試験については省略したが実施例1と同じく、ポリアクリル酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 4: FIG. 6 shows water for adjusting the water content ratio after mixing 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of sodium polyacrylate (C 3 H 3 NaO 2 ) n as a mixing ratio with a predetermined amount of material sand. The results of a texture test (hardness) of four types of fluidized sand prepared by mixing a fluidizing agent and a slow-acting plasticizing agent at a predetermined ratio are shown. In the figure, the formulation of (C 3 H 3 NaO 2 ) n , which is an additive for ionic charge neutralization, is 0 ppm for black circles, that is, a sample that is not mixed, a sample that is mixed with 100 ppm for squares, a sample that is mixed with 500 ppm for white circles, and a triangle. It is a sample mixed with 1000 ppm. From this test result, the penetration stress is significantly smaller than that of the conventional sample without sodium polyacrylate, even if it is mixed at 100 ppm. When the additive was added to 880 (Pa), the change in properties was suppressed to 9,389 (Pa), and by mixing 1000 ppm of sodium polyacrylate, the standard value, that is, 3 hours after preparation. It can be seen that even the penetration stress of fluidized sand is improved to 6,000 (Pa) or less. Although the flow test was omitted, as in Example 1, fluctuations in the table flow value due to the presence or absence of mixing of sodium polyacrylate were hardly observed, and the effect of the fluidized sand on the table flow value was negligible.
実施例5:図7は、所定量の材料砂に対し、ヘキサメタりん酸ナトリウム(NaPO3)6 を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤である(NaPO3)6 の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がヘキサメタりん酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間経の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には7,257(Pa)と性状の変化が抑えられている点、ヘキサメタりん酸ナトリウムの配合割合による貫入応力の変動、例えば作成2時間後の流動化砂の貫入応力を比べると、100ppmだと貫入応力が最も小さい6,000(Pa)、500ppmだと貫入応力がそれよりも大きい約7,000(Pa)、1000ppmだと貫入応力が更に大きい9,000(Pa)となるため、具体的なイオン電荷中和用添加剤の選定に際しては最適な配合割合を予備試験により検証し決めなければならない点が分かる。なお、この実施例5でもフロー試験については省略したが実施例1と同じく、ヘキサメタりん酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 5: In FIG. 7, water for adjusting the water content ratio, a fluidizing agent, after mixing 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of sodium hexametaphosphate (NaPO 3 ) 6 as a mixing ratio with a predetermined amount of material sand. The results of a texture test (hardness) of four types of fluidized sand prepared by mixing slow-acting plasticizing agents at a predetermined ratio are shown. In the figure, the ionic charge neutralizing additive (NaPO 3 ) 6 is mixed with 0 ppm of black circles, that is, a sample not mixed, a sample of 100 ppm of squares, a sample of 500 ppm of white circles, and a sample of 1000 ppm of triangles. Is. From this test result, the penetration stress is significantly smaller than that of the conventional sample without sodium hexametaphosphate, even if it is mixed at 100 ppm. When the additive was added to 880 (Pa), the change in properties was suppressed to 7,257 (Pa), and the change in penetration stress due to the blending ratio of sodium hexametaphosphate, for example, 2 hours after preparation. Comparing the penetration stress of fluidized sand, the penetration stress is the smallest at 6,000 (Pa) at 100 ppm, the penetration stress is larger at 500 ppm, about 7,000 (Pa), and the penetration stress is 1000 ppm. Since the value is 9,000 (Pa), which is even larger, it can be seen that the optimum blending ratio must be verified and determined by a preliminary test when selecting a specific additive for ion charge neutralization. Although the flow test was omitted in Example 5, as in Example 1, fluctuations in the table flow value due to the presence or absence of mixing of sodium hexametaphosphate were hardly observed, which affected the table flow value of the fluidized sand. The impact is negligible.
実施例6:図8及び図9は、所定量の材料砂に対し、有機電荷中和剤として3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(以下、HIDSという)を混合割合として0ppm、600ppm、1200ppm、2400ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)とフロー試験(流動性)を調べた結果を示している。同図において、有機電荷中和剤であるHIDSの配合は、黒丸が0ppmつまり混ぜない試料、四角が600ppm混ぜた試料、白丸が1200ppm混ぜた試料、三角が2400ppm混ぜた試料である。この試験結果からは、図8の貫入応力がHIDSを混ぜない従来試料に比べ600ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成1時間後の経時変化を見ると、無添加の場合だと16,380(Pa)に対してHIDSを600ppm混ぜた場合には6,378(Pa)と性状の変化が抑えられている点、HIDSを2400ppm混ぜることにより基準値、つまり作成1時間後の流動化砂の貫入応力が5,948(Pa)、つまり約6,000(Pa)以下に改善される点が分かる。
Example 6: In FIGS. 8 and 9, 0 ppm of 4-sodium 3-hydroshiki-2,2'-iminodicosuccinate (hereinafter referred to as HIDS) as an organic charge neutralizing agent is mixed with a predetermined amount of material sand. Texture test (hardness) for four types of fluidized sand prepared by mixing 600 ppm, 1200 ppm, and 2400 ppm, and then mixing water for adjusting the water content ratio, fluidizing agent, and slow-acting plasticizing agent at predetermined ratios. And the result of examining the flow test (fluidity) are shown. In the figure, the composition of HIDS, which is an organic charge neutralizer, is 0 ppm for black circles, that is, a sample not mixed, a sample with 600 ppm for squares, a sample with 1200 ppm for white circles, and a sample with 2400 ppm for triangles. From this test result, the intrusive stress in FIG. 8 is significantly smaller than that of the conventional sample without HIDS even if it is mixed with 600 ppm. When 600 ppm of HIDS is mixed with 380 (Pa), the change in properties is suppressed to 6,378 (Pa). By mixing 2400 ppm of HIDS, the reference value, that is, the
また、図9のフロー試験結果からは、HIDSの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できることが分かる。なお、有機電荷中和剤の場合も、無機電荷中和剤と同様に粉末の状態で材料砂に混ぜる方法、水に溶かした状態で材料砂に混ぜる方法の何れであってもよい。一般的には均一混合の点から後者の方法が好ましい。この場合、使用した水は含水比調整用水の一部として処理されることになる。 Further, from the flow test results of FIG. 9, it can be seen that the fluctuation of the table flow value (mm) depending on the presence or absence of mixing of HIDS is hardly observed, and the influence of the fluidized sand on the table flow value can be ignored. In the case of the organic charge neutralizer, either a method of mixing it with the material sand in a powder state or a method of mixing it with the material sand in a state of being dissolved in water may be used as in the case of the inorganic charge neutralizer. Generally, the latter method is preferable from the viewpoint of uniform mixing. In this case, the water used will be treated as a part of the water content adjusting water.
実施例7:図10は、所定量の材料砂に対し、有機電荷中和剤としてエチレンジアミン四酢酸四ナトリウム四水塩(以下、キレストODという)を混合割合として0ppm、600ppm、1200ppm、2400ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、有機電荷中和剤であるキレストODの配合は、黒丸が0ppmつまり混ぜない試料、四角が600ppm混ぜた試料、白丸が1200ppm混ぜた試料、三角が2400ppm混ぜた試料である。この試験結果からは、貫入応力がキレストODを混ぜない従来試料に比べ600ppm混ぜるだけでも大幅に小さくなる。つまり例えば作成1時間後の経時変化を見ると、無添加の場合だと16,380(Pa)に対してキレストODを600ppm混ぜた場合には6,128(Pa)と性状の変化が抑えられている点、キレストODを1200ppm混ぜることにより基準値、つまり例えば作成1時間後の流動化砂の貫入応力が4,877(Pa)以下に改善される点、貫入応力がキレストODを600ppm混ぜた場合と2400ppm混ぜた場合とで余り変化しない点が分かる。なお、フロー試験については省略したが実施例1と同じく、炭化ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。
Example 7: In FIG. 10, 0 ppm, 600 ppm, 1200 ppm, and 2400 ppm of ethylenediaminetetraacetic acid tetrasodium tetrahydrate (hereinafter referred to as Kirest OD) are mixed as an organic charge neutralizer with a predetermined amount of material sand. After that, the results of a texture test (hardness) of four types of fluidized sand prepared by mixing water for adjusting the water content ratio, a fluidizing agent, and a slow-acting plasticizing agent at a predetermined ratio are shown. There is. In the figure, the composition of Kirest OD, which is an organic charge neutralizer, is 0 ppm for black circles, that is, a sample not mixed, a sample with 600 ppm for squares, a sample with 1200 ppm for white circles, and a sample with 2400 ppm for triangles. From this test result, the penetration stress is significantly smaller than that of the conventional sample not mixed with Chelest OD even if only 600 ppm is mixed. In other words, for example, looking at the change over
なお、以上の形態例や実施例は本発明を何ら制約するものではない。本発明は、請求項で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。 The above embodiments and examples do not limit the present invention in any way. The present invention may be I comprise technical elements specified by the claims, details Ru der capable variously modified as necessary.
1・・・・・施工機
2・・・・・流動化砂製造プラント
3・・・・・中空管
4・・・・・昇降機構
5・・・・・回転手機構
6・・・・・圧力計
7・・・・・材料砂
8・・・・・注液管
9・・・・・改良体
15・・・・・スイベル
16・・・・・管路
24・・・・・イオン電荷中和用添加剤供給手段
25・・・・・流動化剤供給手段
26・・・・・調整用水供給手段
27・・・・・塑性化剤供給手段
1 ・ ・ ・ ・ ・
Claims (4)
前記材料砂に対し該材料砂に含まれる、前記流動化剤の阻害要因となる金属イオン等の陽イオンを電荷中和可能となるようイオン電荷中和用添加剤を所定量の材料砂に対し、100ppm〜1000ppm混ぜた後、前記流動化剤を混入することを特徴とする流動化砂の製造方法。 In the method for producing fluidized sand for ground improvement, which is processed by adding a fluidizing agent together with water for adjusting the water content ratio to the material sand and transferring it through a pipe by a pressure pump.
An additive for ionic charge neutralization is added to a predetermined amount of the material sand so that the cations such as metal ions contained in the material sand, which are obstacles to the fluidizing agent, can be charge-neutralized with respect to the material sand. , was mixed 100Ppm~1000ppm, manufacturing method of fluidized sand, characterized by mixing said fluidizing agent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016188204 | 2016-09-27 | ||
JP2016188204 | 2016-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018053701A JP2018053701A (en) | 2018-04-05 |
JP6909642B2 true JP6909642B2 (en) | 2021-07-28 |
Family
ID=61835545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017109646A Active JP6909642B2 (en) | 2016-09-27 | 2017-06-02 | Manufacturing method of fluidized sand |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6909642B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7121542B2 (en) * | 2018-05-28 | 2022-08-18 | 株式会社不動テトラ | Method for producing fluidized sand |
JP7213609B2 (en) * | 2018-08-29 | 2023-01-27 | 株式会社不動テトラ | Method for producing fluidized sand |
JP7191447B2 (en) * | 2019-02-20 | 2022-12-19 | 株式会社不動テトラ | Method for producing fluidized sand |
JP7231513B2 (en) * | 2019-08-05 | 2023-03-01 | 株式会社不動テトラ | fluidized sand composition |
CN112982998B (en) * | 2021-03-10 | 2022-07-12 | 枣庄昊德新型材料科技有限公司 | Sand pile control device for building construction |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4701370B2 (en) * | 2008-02-13 | 2011-06-15 | 強化土エンジニヤリング株式会社 | Ground injection method |
JP5188894B2 (en) * | 2008-07-07 | 2013-04-24 | 株式会社不動テトラ | Sand pile construction method and sand pile construction equipment |
JP5189951B2 (en) * | 2008-10-21 | 2013-04-24 | 株式会社不動テトラ | Fluidized sand production plant |
JP5134043B2 (en) * | 2010-06-18 | 2013-01-30 | 直治 森井 | Steel sheet pile repair method |
JP4955123B2 (en) * | 2011-11-28 | 2012-06-20 | 強化土株式会社 | Ground injection material and ground injection method |
JP2014210232A (en) * | 2013-04-18 | 2014-11-13 | 山陽特殊製鋼株式会社 | Method for processing alkaline waste water including calcium-eluting particles |
JP6188081B2 (en) * | 2014-03-25 | 2017-08-30 | 株式会社不動テトラ | Fluidized sand and ground improvement method using it |
-
2017
- 2017-06-02 JP JP2017109646A patent/JP6909642B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018053701A (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6909642B2 (en) | Manufacturing method of fluidized sand | |
JP6188081B2 (en) | Fluidized sand and ground improvement method using it | |
JP5188894B2 (en) | Sand pile construction method and sand pile construction equipment | |
CN102713131B (en) | Equipment for quick dispersion of polyacrylamide powder for fracturing operations | |
JP5478386B2 (en) | Improving method for ground with underground cavity | |
JP4823968B2 (en) | Sand pile construction method and sand pile construction equipment | |
JP5780714B2 (en) | Filling the underground cavity | |
JP5389615B2 (en) | Compacted sand pile construction method | |
JP6830632B2 (en) | Treatment method of mud generated by mud pressure shield method | |
JP5646218B2 (en) | Deep mixing processing method and deep mixing processing equipment | |
JP6916583B2 (en) | Manufacturing method of fluidized sand | |
JP5404344B2 (en) | Slag pile construction method | |
JP7121542B2 (en) | Method for producing fluidized sand | |
CA2570265C (en) | Process to prepare in-situ pilings in clay soil | |
JP7231513B2 (en) | fluidized sand composition | |
JP7213609B2 (en) | Method for producing fluidized sand | |
JP5758702B2 (en) | Construction method of ground improvement body | |
JP5754882B2 (en) | Ground improvement method | |
JP2020070582A (en) | Ground displacement suppression method and displacement absorption pile | |
JP4148842B2 (en) | Ground improvement method | |
JP6916581B2 (en) | Manufacturing method of ground improvement material | |
JP2020168629A (en) | Method of treating mud generated in mud pressure shield method | |
JP2020133256A (en) | Fluidized sand manufacturing method and fluidized sand | |
AU2005291642B2 (en) | Method for de- watering a slurry | |
JP2020165142A (en) | Ground displacement control method of slurry stirring type deep mixing treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210705 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6909642 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |