JP2018053701A - Fluidized sand and method for producing the same, and ground improvement method using the same - Google Patents

Fluidized sand and method for producing the same, and ground improvement method using the same Download PDF

Info

Publication number
JP2018053701A
JP2018053701A JP2017109646A JP2017109646A JP2018053701A JP 2018053701 A JP2018053701 A JP 2018053701A JP 2017109646 A JP2017109646 A JP 2017109646A JP 2017109646 A JP2017109646 A JP 2017109646A JP 2018053701 A JP2018053701 A JP 2018053701A
Authority
JP
Japan
Prior art keywords
sand
fluidized
fluidized sand
additive
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017109646A
Other languages
Japanese (ja)
Other versions
JP6909642B2 (en
Inventor
雅大 永石
Masahiro Nagaishi
雅大 永石
山下 祐司
Yuji Yamashita
祐司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Publication of JP2018053701A publication Critical patent/JP2018053701A/en
Application granted granted Critical
Publication of JP6909642B2 publication Critical patent/JP6909642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve properties with time as fluidized sand produced by mixed with an additive for ion charge neutralization even in a sand material that is difficult to apply a press-in type sand pile construction method and a sand filling method, and to enable the methods to be applied to the sand material.SOLUTION: In fluidized sand for ground improvement which is obtained by adding not only water content adjustment water but also a fluidization agent to a sand material and is treated so as to be capable of being transferred through piping by a pressure pump, an additive for ion charge neutralization, which can neutralize cation such as a metal ion that is contained in the sand material and becomes a hindrance factor of the fluidizing agent, is mixed, and then the fluidization agent is mixed into the resultant substance. The method for producing the fluidized sand includes mixing the sand material with the additive for ion charge neutralization and then mixing the fluidizing agent, the water content adjustment water and a slow acting plasticizing agent, into the resultant substance.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良に用いられる砂材料に流動化剤を混ぜてポンプ圧送可能な状態とした流動化砂、その製造方法とそれを用いた圧入式砂杭造成や砂充填等の地盤改良工法に関する。   The present invention is a fluidized sand in which a fluidizing agent is mixed with a sand material used for ground improvement and is in a pumpable state, a manufacturing method thereof, and a ground improvement method such as press-fit sand pile formation and sand filling using the same. About.

地盤改良工法のうち、サンドコンパクションパイル工法(SCP工法)は、液状化対策等として多用されており、地盤中に締固めた砂杭を造成することで地盤の密度を増加させるものである。このSCP工法では、大型施工機械を用いるため施工スペースの確保上の制約から適用できない場合が多い。代用工法として、小型施工機を用いる薬液注入系やセメントモルタルを圧入する工法を適用することもあるが、コちストが高くなる。また、環境負荷を軽減できる自然材料である材料砂の使用を可能にする工法が望まれていた。このような背景から、本出願人らは、特許文献1や2に開示されるごとく、材料砂をポンプで圧送可能な流動化状態にし、地盤への圧入を行うことでコスト削減と環境負荷の低減を可能にした圧入式砂杭造成工法を開発し既に実用化している。この工法は、砂圧入式静的締固め工法やSAVE−SP工法(登録商標)と称され、小型施工機の使用により狭隘地での施工、既設構造物直下の改良にも対応できる。   Among the ground improvement methods, the sand compaction pile method (SCP method) is often used as a countermeasure for liquefaction, and increases the density of the ground by creating a compacted sand pile in the ground. In this SCP method, since a large construction machine is used, there are many cases where it cannot be applied due to restrictions in securing a construction space. As an alternative construction method, a chemical solution injection system using a small construction machine or a method of press-fitting cement mortar may be applied, but the cost becomes high. In addition, a construction method that enables the use of material sand, which is a natural material that can reduce the environmental burden, has been desired. From such a background, as disclosed in Patent Documents 1 and 2, the present applicants put the material sand into a fluidized state that can be pumped by a pump, and press-fit into the ground to reduce costs and reduce environmental impact. A press-in sand pile construction method that enables reduction has been developed and put into practical use. This construction method is called sand press-fit static compaction construction method or SAVE-SP construction method (registered trademark), and can be applied to construction in confined areas and improvement directly under existing structures by using a small construction machine.

特許文献1は圧入式砂杭造成工法の基本を開示している。この工法では、材料砂に含水比調整用水と共に流動化剤と遅効性塑性化剤とを含有する砂杭材料流動化物(以下、流動化砂と言う)を、流動状態を保持したまま地盤中に圧入し、地盤中で塑性化させる。この細部は、図11に例示されるごとく中空管23を地盤中に設計深度まで貫入した後、中空管23を通して流動化砂を地表から地中に圧入し、地中に該流動化砂を残致し、この上に次のステップ分の流動化砂を圧入し、これを繰り返すことで所定長さの改良体25を造成する。符号10は流動化砂製造プラント、1は流動化砂供給手段、2は砂材料供給手段、3は流動化剤供給手段、4は圧送ポンプ、5は遅効性塑性化剤供給装置である。   Patent document 1 is disclosing the basics of a press-in type sand pile construction method. In this construction method, a sand pile material fluidized material (hereinafter referred to as fluidized sand) containing a fluidizing agent and a slow-acting plasticizing agent together with water content adjustment water in the material sand is retained in the ground while maintaining the fluidized state. Press fit and plasticize in the ground. As shown in FIG. 11, the details are as follows. After the hollow tube 23 has penetrated into the ground to the design depth, the fluidized sand is pressed into the ground from the surface through the hollow tube 23, and the fluidized sand enters the ground. The fluidized sand for the next step is press-fitted on this, and the improved body 25 having a predetermined length is formed by repeating this. Reference numeral 10 denotes a fluidized sand production plant, 1 a fluidized sand supply means, 2 a sand material supply means, 3 a fluidizing agent supply means, 4 a pressure feed pump, and 5 a slow-acting plasticizer supply apparatus.

特許文献2は流動化砂の作製プラントを開示している。この作製プラントでは、材料砂に流動化剤を混合して流動化砂を作製するプラントであって、流動化砂は砂材料に水、流動化剤、遅効性塑性剤の順に混合する。好ましくは流動化砂は砂材料の重量を計測し、その重量に基づき水、流動化剤、遅効性塑性剤を自動計算して混合する。   Patent Document 2 discloses a fluidized sand production plant. In this production plant, a fluidizing agent is mixed with material sand to produce fluidized sand. The fluidized sand is mixed with sand material in the order of water, fluidizing agent, and slow-acting plasticizer. Preferably, the fluidized sand measures the weight of the sand material, and based on the weight, water, a fluidizing agent, and a slow-acting plasticizer are automatically calculated and mixed.

図12は施工時にける流動化砂の状態変化を示した模式図である。(a)は圧入前の流動化砂を示す。流動化砂は、中空管から地盤中に圧入されるまでは流動化剤(例えば、アニオン系高分子材料)が砂の粒子同士の間隙水の粘性を高め、粒子同士の摩擦をなくし砂と水との分離を抑制して、高い流動性を維持している。(b)は圧入中の流動化砂を示す。圧入中は、流動化砂が脱水し密な状態に締め固められる。流動化剤は網状で残る。(c)は塑性化終了状態を示す。この状態では、遅効性塑性化剤が電気的に流動化剤を中和して流動化剤の網状構造を保持できなくなり粒子同士の摩擦を回復している。   FIG. 12 is a schematic diagram showing changes in the state of fluidized sand during construction. (A) shows fluidized sand before press-fitting. Until the fluidized sand is pressed into the ground from the hollow tube, the fluidizing agent (for example, an anionic polymer material) increases the viscosity of the pore water between the sand particles and eliminates the friction between the particles. Suppresses separation from water and maintains high fluidity. (B) shows fluidized sand during press-fitting. During the press-fitting, the fluidized sand is dehydrated and compacted into a dense state. The fluidizer remains reticulated. (C) shows the plasticized end state. In this state, the slow-acting plasticizing agent electrically neutralizes the fluidizing agent so that the network structure of the fluidizing agent cannot be maintained, and the friction between the particles is recovered.

特許第5188894号公報Japanese Patent No. 5188894 特許第5189951号公報Japanese Patent No. 5189951

上記流動化砂を用いた圧入式砂杭造成工法では、直径100〜200mm程度の中空管が用いられ、流動化砂の地中圧入により直径500〜700mm程度の改良体を造成することが多い。施工に際しては、事前調査により対象地盤の特性が把握されて、それに応じて材料砂の選定と配合仕様を決定したり、製造した流動化砂としてテーブルフロー試験、ブリーディング試験、テクスチャー試験により適用性を判断し、使用可否を決定している。また、原料の材料砂に関しては、粒度分布等で使用可能な規定範囲を設定している。   In the press-fit sand pile construction method using fluidized sand, a hollow tube having a diameter of about 100 to 200 mm is used, and an improved body having a diameter of about 500 to 700 mm is often created by injecting fluidized sand into the ground. . At the time of construction, the characteristics of the target ground are ascertained by a preliminary survey, and selection of material sand and formulation specifications are determined accordingly, and the produced fluidized sand can be applied through table flow tests, bleeding tests, and texture tests. Judgment is made and whether or not it is usable is determined. In addition, regarding the material sand of the raw material, a usable range is set based on the particle size distribution and the like.

ところが、実際には、その規定範囲内にある材料砂についても貫入抵抗が早期に高くなって適用が困難となることがある。すなわち、使用される材料砂によっては、流動化砂として地中に圧入するとき圧力が短時間で高くなったり圧送ロスが増大して圧入量が目標値に達しなくなる。本出願人は、その原因を調べてきたが、主な要因として、材料砂に含まれる金属イオン等の陽イオンと流動化剤である高分子材料が反応したり互いに影響しあうことで目標値に対し急激に性能を低下するものと考えられる。   However, in practice, the material sand that is within the specified range may have a high penetration resistance at an early stage and may be difficult to apply. That is, depending on the material sand to be used, when it is pressed into the ground as fluidized sand, the pressure increases in a short time or the pumping loss increases and the press-fit amount does not reach the target value. The applicant has investigated the cause, but as a main factor, the target value is obtained when a cation such as a metal ion contained in the material sand and a polymer material as a fluidizing agent react with each other or influence each other. On the other hand, it is considered that the performance deteriorates rapidly.

本出願人は、以上のような急激な性状変化を防ぐ対策を検討してきた結果、阻害要因である金属イオン等の陽イオンを化学的ないしは化学物理的に解消できることが判明し、本発明に至った。本発明の目的は、圧入式砂杭造成工法や砂充填工法の適用に際し、適用が困難である材料砂でも、イオン電荷中和用添加剤を混ぜることで製造される流動化砂としての経時的な性状を改善して適用可能にすることにある。他の目的ないしは具体的な目的は以下の内容説明のなかで明らかにする。   As a result of studying measures to prevent such a sudden change in properties as described above, the present applicant has found that cations such as metal ions, which are inhibiting factors, can be eliminated chemically or chemically physically, leading to the present invention. It was. The object of the present invention is to provide a time-dependent change to fluidized sand produced by mixing an additive for neutralizing ionic charge even with material sand that is difficult to apply when applying the press-fitting sand pile construction method or sand filling method. It is to improve the properties and make it applicable. Other or specific purposes will be clarified in the following description.

上記目的を達成するため請求項1の発明は、材料砂に含水比調整用水と共に流動化剤を加えて圧送ポンプにより配管を通して移送可能に処理される地盤改良用の流動化砂において、前記材料砂に対し該材料砂に含まれる、前記流動化剤の阻害要因となる金属イオン等の陽イオンを電荷中和可能なイオン電荷中和用添加剤を混ぜた後、前記流動化剤を混入していることを特徴としている。   In order to achieve the above-mentioned object, the invention according to claim 1 is the fluidized sand for ground improvement, wherein a fluidizing agent is added to the material sand together with water for adjusting the water content ratio, and the material sand is processed so as to be transportable through a pipe by a pressure pump. In contrast, after mixing an additive for neutralizing an ionic charge that can neutralize a cation such as a metal ion contained in the material sand, which is an inhibiting factor of the fluidizing agent, the fluidizing agent is mixed. It is characterized by being.

以上の発明において、材料砂に含まれる流動化剤の阻害要因となる金属イオン等の陽イオンとしては、特に二価以上の金属イオン、例えばカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、鉄イオン(Fe2+,Fe3+)、アルミニウムイオン(Al3+)などが挙げられる。一方、イオン電荷中和用添加剤としては、炭酸水素ナトリウム等の無機電荷中和剤、又は、イミジコハク酸四ナトリウム等の有機電荷中和剤である。これらの点については後述する。 In the above invention, as a cation such as a metal ion that becomes an inhibiting factor of the fluidizing agent contained in the material sand, in particular, a metal ion having a valence of 2 or more, such as calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ) Examples thereof include iron ions (Fe 2+ , Fe 3+ ) and aluminum ions (Al 3+ ). On the other hand, the ionic charge neutralizing additive is an inorganic charge neutralizing agent such as sodium hydrogen carbonate, or an organic charge neutralizing agent such as tetrasodium imidosuccinate. These points will be described later.

以上の本発明は、以下のように更に具体化されることがより好ましい。すなわち、
第1に、前記イオン電荷中和用添加剤は、炭酸水素ナトリウム(NaHCO)、炭酸ナトリウム(NaCO)、トリポリりん酸ナトリウム(NaHCO10)、ポリアクリル酸ナトリウム(CNaO 等の無機電荷中和剤である(請求項2)。
第2に、前記イオン電荷中和用添加剤は、3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(CNO・4Na)、エチレンジアミン四酢酸四ナトリウム四水塩(C1012Na・4HO)等の有機電荷中和剤である(請求項3)。なお、この有機電荷中和剤は、一般的にキレート剤と称されるものであり、他に有機電荷遅延剤として称してもよい。
The above-mentioned present invention is more preferably embodied as follows. That is,
First, the ionic charge neutralizing additive includes sodium bicarbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ), sodium polyacrylate (C It is an inorganic charge neutralizing agent such as 3 H 3 NaO 2 ) n (Claim 2).
Second, the ionic charge neutralizing additives, 3- hydroxybenzoic 2,2' iminodisuccinic acid tetrasodium (C 8 H 7 NO 9 · 4Na), tetrasodium ethylenediaminetetraacetate tetrahydrate (C 10 H a 12 N 2 O 8 Na 4 · 4H 2 O) the organic charge neutralizing agents such (claim 3). The organic charge neutralizing agent is generally called a chelating agent, and may also be called an organic charge retarder.

第3に、前記流動化砂は、テクスチャー試験より少なくとも作成1時間経過時の流動化砂の貫入応力値が約6,000(Pa)以下となっている構成である(請求項4)。   Thirdly, the fluidized sand has a configuration in which the penetration stress value of the fluidized sand is at least about 6,000 (Pa) at least 1 hour after the creation of the texture test (Claim 4).

これに対し、請求項5の発明は、請求項1から4の何れかに記載の流動化砂の製造方法において、前記材料砂に前記イオン電荷中和用添加剤を混ぜた後、前記流動化剤と含水比調整用水と遅効性塑性化剤とを混入することを特徴としている。   On the other hand, the invention according to claim 5 is the fluidized sand manufacturing method according to any one of claims 1 to 4, wherein the ionic charge neutralizing additive is mixed into the material sand, and then the fluidized sand is mixed. It is characterized by mixing the agent, water content adjustment water and slow-acting plasticizer.

一方、請求項6の発明は、圧入式砂杭造成や砂充填等の地盤改良工法において、請求項1から5の何れかに記載の流動化砂を、圧送ポンプによって配管を通して地盤に貫入したり引き抜かれる中空管に圧送し、該中空管の先端側より地盤中に圧入すると共に、地盤中で塑性化させることを特徴としている。   On the other hand, the invention of claim 6 is a ground improvement method such as press-fitting sand pile formation or sand filling, and the fluidized sand according to any one of claims 1 to 5 is penetrated into the ground through a pipe by a pump. It is characterized in that it is pumped to a hollow tube to be pulled out, pressed into the ground from the tip side of the hollow tube, and plasticized in the ground.

請求項1の発明は、原料の材料砂に対し当該材料砂に含まれる陽イオン(特に二価以上の金属イオン等)を電荷中和可能なイオン電荷中和用添加剤を混ぜた後、流動化剤を混合することにより、流動化砂の経時的な性状が改善され正常な圧入施工を維持可能となる。この場合、各種試験からは、原料の材料砂に対しイオン電荷中和用添加剤を混ぜる時期が重要であり、材料砂に流動化剤と同時に混ぜたり、流動化剤を混入した後に混ぜると改善効果がさほど期待できない。これは、材料砂に対し流動化剤を混合する前段階にて、イオン電荷中和用添加剤を材料砂に混ぜて阻害要因を予め解消ないしは抑制することが必須となることを示している。   According to the first aspect of the present invention, an ionic charge neutralizing additive capable of charge neutralizing a cation (particularly a divalent or higher-valent metal ion) contained in the material sand is mixed with the raw material material sand. By mixing the agent, the time-dependent properties of the fluidized sand are improved, and normal press-fitting work can be maintained. In this case, from various tests, it is important to mix the ionic charge neutralizing additive with the raw material sand. It can be improved by mixing the material sand with the fluidizing agent or after mixing the fluidizing agent. The effect cannot be expected so much. This indicates that it is essential to eliminate or suppress the inhibiting factor in advance by mixing the additive for ionic charge neutralization with the material sand before mixing the fluidizing agent with the material sand.

以上のようにして、本発明の流動化砂は、原料の材料砂として、粒度分布等の規定範囲を満足しているにもかかわらず適用不能であった材料砂が使用可能となることにより、使用する材料砂の適用範囲を広げ、引いては経費低減と共に流動化砂を用いる地盤改良工法の適用機会拡大に寄与できる。   As described above, the fluidized sand of the present invention can be used as material sand of raw material, which is unapplicable despite satisfying the prescribed range such as particle size distribution, The application range of the material sand to be used can be expanded, and it can contribute to the expansion of application opportunities of the ground improvement method using fluidized sand as well as cost reduction.

請求項2の発明では、イオン電荷中和用添加剤として、後述する試験例から明らかなごとく炭酸水素ナトリウム、炭酸ナトリウム、トリポリりん酸ナトリウム、ヘキサメタりん酸ナトリウム等の無機電荷中和剤を原料の材料砂に混ぜることにより流動化砂の性状阻害要因を反応ないしは抑制作用により確実に改善できる。   In the invention of claim 2, as the ionic charge neutralizing additive, as is apparent from the test examples described later, an inorganic charge neutralizing agent such as sodium hydrogen carbonate, sodium carbonate, sodium tripolyphosphate, sodium hexametaphosphate is used as a raw material. By mixing it with the material sand, it is possible to reliably improve the property inhibiting factor of the fluidized sand by reacting or suppressing it.

請求項3の発明では、イオン電荷中和用添加剤として、後述する試験例から明らかなごとく3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム、エチレンジアミン四酢酸四ナトリウム四水塩等の有機電荷中和剤を原料の材料砂に混ぜることにより流動化砂の性状阻害要因を反応ないしは抑制作用により確実に改善できる。   In the invention of claim 3, as the ionic charge neutralizing additive, as will be apparent from the following test examples, organic charges such as tetrasodium 3-hydroxy-2,2′-iminodisuccinate, tetrasodium ethylenediaminetetraacetate tetrahydrate, etc. By mixing the neutralizing agent with the raw material sand, the property inhibiting factor of the fluidized sand can be reliably improved by reaction or suppression action.

請求項4の発明では、改善後の流動化砂の性状として、特に重要な貫入応力、つまりテクスチャー試験より作成1時間経過時の流動化砂の貫入応力が6,000(Pa)以下に改善される点を特定したものである。この値は現状の実施工で好ましいとされている基準値を満たすことを明確に特定したことに意義がある。   In the invention of claim 4, as the properties of the fluidized sand after the improvement, the particularly important penetration stress, that is, the penetration stress of the fluidized sand after one hour from the texture test is improved to 6,000 (Pa) or less. This is a specific point. This value is meaningful in clearly specifying that it satisfies the standard value that is considered preferable in the current implementation.

請求項5の発明では、請求項1から4の何れかに記載の流動化砂の製造方法において、流動化砂の理想的な組成を明確化したものであり、流動化砂として上記段落0005に記載したと同じように機能する。   In the invention of claim 5, in the method for producing fluidized sand according to any one of claims 1 to 4, the ideal composition of the fluidized sand is clarified. Works the same as described.

請求項6の発明では、特許文献1や2に開示の圧入式砂杭造成、特許第5478386号公報に開示されている砂充填等の地盤改良工法において、流動化砂(材料砂)の圧入量が不足したり圧入ロスが大きくなって圧入造成が困難になることがなくなり、圧入施工が常に設計通り達成可能となる。   In the invention of claim 6, in the ground improvement method such as press-fitting sand pile creation disclosed in Patent Documents 1 and 2 and sand filling disclosed in Japanese Patent No. 5478386, the amount of press-fitting of fluidized sand (material sand) Therefore, the press-fitting construction can always be achieved as designed.

本発明の圧入式砂杭造成工法や砂充填工法を実施する場合の装置構成を示した説明用の模式図である。It is a schematic diagram for description which showed the apparatus structure in the case of implementing the press-fit type sand pile construction method and sand filling construction method of this invention. 本発明を適用した流動化砂(イオン電荷中和用添加剤が炭酸水素ナトリウムの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of fluidized sand (example in which the additive for ionic charge neutralization is sodium bicarbonate) to which the present invention is applied. 図2に用いた流動化砂(イオン電荷中和用添加剤が炭酸水素ナトリウムの例)の物性試験結果のうち、フロー試験結果を示すグラフである。It is a graph which shows a flow test result among the physical property test results of the fluidized sand (example in which the additive for ionic charge neutralization is sodium bicarbonate) used in FIG. 本発明を適用した流動化砂(イオン電荷中和用添加剤が炭酸ナトリウムの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of the fluidization sand (example in which the additive for ionic charge neutralization is sodium carbonate) to which the present invention is applied. 本発明を適用した流動化砂(イオン電荷中和用添加剤がトリポリりん酸ナトリウムの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of the fluidization sand (example in which the additive for ionic charge neutralization is sodium tripolyphosphate) to which the present invention is applied. 本発明を適用した流動化砂(イオン電荷中和用添加剤がポリアクリル酸炭ナトリウムの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of the fluidized sand to which this invention is applied (the additive for ionic charge neutralization is sodium polyacrylate). 本発明を適用した流動化砂(イオン電荷中和用添加剤がヘキサメタりん酸ナトリウムの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of fluidized sand (example in which the additive for ionic charge neutralization is sodium hexametaphosphate) to which the present invention is applied. 本発明を適用した流動化砂(イオン電荷中和用添加剤がHIDSの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of fluidized sand to which the present invention is applied (an example in which the additive for ionic charge neutralization is HIDS). 図8に用いた流動化砂(イオン電荷中和用添加剤がHIDSの例)の物性試験結果のうち、フロー試験結果を示すグラフである。It is a graph which shows a flow test result among the physical property test results of the fluidized sand (example in which the additive for ionic charge neutralization is HIDS) used in FIG. 本発明を適用した流動化砂(イオン電荷中和用添加剤がキレストODの例)の物性試験結果のうち、テクスチャー試験結果を示すグラフである。It is a graph which shows a texture test result among the physical-property test results of fluidized sand to which the present invention is applied (an example in which the additive for ionic charge neutralization is Kirest OD). 特許文献1に開示されている砂杭造成装置を示す説明図である。It is explanatory drawing which shows the sand pile production apparatus currently disclosed by patent document 1. FIG. (a)〜(c)は施工時における流動化砂の状態変化を示す説明図である。(A)-(c) is explanatory drawing which shows the state change of the fluidization sand at the time of construction.

以下、本発明を適用した形態例を図面を参照して説明する。この説明では、砂圧入式静的締固め工法や砂充填工法に用いられる施工機、流動化砂製造プラント、流動化砂の製造方法、地盤改良工法である砂圧入式静的締固め工法を述べた後、試験例1として実施例1から5、及び試験例2として実施例6と7で作製された流動化砂の物性試験結果について述べる。   Embodiments to which the present invention is applied will be described below with reference to the drawings. In this explanation, the construction machine used in the sand press-fit static compaction method and the sand filling method, the fluidized sand production plant, the fluidized sand production method, and the sand press-fit static compaction method that is the ground improvement method are described. Then, physical property test results of fluidized sand produced in Examples 1 to 5 as Test Example 1 and Examples 6 and 7 as Test Example 2 will be described.

(地盤改良工法)本発明の地盤改良工法に用いられる施工機は、大別すると、中空管をリーダに沿って垂直に貫入したり引き抜くクローラタイプと、中空管を補助クレーンに吊り下げた状態で貫入したり引き抜くボーリングマシンタイプと、中空管を任意の角度に貫入したり引き抜くロータリーパーカッションドリルタイプとがあり、対象地盤や施工深度などに応じて選択される。 (Ground improvement method) The construction machine used in the ground improvement method of the present invention can be broadly divided into a crawler type that vertically penetrates or pulls out a hollow tube along a leader, and a hollow tube suspended from an auxiliary crane. There are a boring machine type that penetrates and pulls out in a state and a rotary percussion drill type that penetrates and pulls out a hollow tube at an arbitrary angle, and it is selected according to the target ground and construction depth.

図1は小型クローラタイプの施工機1の一例であり、流動化砂製造プラント2と共に模式的に示している。この施工機1は、中空管3を上下動する昇降機構4と、昇降機構4に保持されて中空管3を回動する回転機構5と、中空管の上端3aに設けられたスイベル15と、製造プラント2で作られた流動化砂を圧送するポンプPと、ポンプPの出口とスイベル15を接続している管路16と、管路16の途中に設けられて圧送されている流動化砂の圧力を検出する圧力計6を備えている。   FIG. 1 shows an example of a small crawler type construction machine 1, schematically showing a fluidized sand production plant 2. The construction machine 1 includes an elevating mechanism 4 that moves the hollow tube 3 up and down, a rotating mechanism 5 that is held by the elevating mechanism 4 and rotates the hollow tube 3, and a swivel provided at the upper end 3a of the hollow tube. 15, a pump P for pumping the fluidized sand produced in the production plant 2, a pipe 16 connecting the outlet of the pump P and the swivel 15, and a pump 16 provided in the middle of the pipe 16. A pressure gauge 6 for detecting the pressure of fluidized sand is provided.

ここで、昇降機構4は、ベースマシン10により移動可能に起立された柱状リーダー12の一側に沿ってラック・ピニオン機構等を介して上下動される。回転機構5は、昇降機構4でリーダー12に沿って昇降されると共に、中空管3をモーター及び減速ギア機構等を介し正転・逆転する。ベースマシン10は、運転室11の前方にリーダー12の下端側を位置決め保持し、運転室11の後方側に図示を省いた油圧装置や電動機等を搭載している。運転室11には各種の施工用操作部や制御部が配設されている。リーダー12は、起状シリンダ13等により支持されており、下側に付設されて中空管3の振れを規制する振止具18、上側に付設されて管路16の上側を支えるガイド具17などを有している。管路16の上端は、スイベル15を介し中空管3の上端3aに接続されている。   Here, the elevating mechanism 4 is moved up and down via a rack and pinion mechanism or the like along one side of the columnar leader 12 erected so as to be movable by the base machine 10. The rotating mechanism 5 is moved up and down along the leader 12 by the elevating mechanism 4 and forwardly and reversely rotates the hollow tube 3 via a motor and a reduction gear mechanism. The base machine 10 positions and holds the lower end side of the leader 12 in front of the cab 11, and a hydraulic device, an electric motor, and the like not shown are mounted on the rear side of the cab 11. In the cab 11, various construction operation units and control units are arranged. The leader 12 is supported by a raised cylinder 13 or the like, and is attached to the lower side to restrain the swinging of the hollow tube 3, and the guide tool 17 is attached to the upper side to support the upper side of the pipe line 16. Etc. The upper end of the pipe line 16 is connected to the upper end 3 a of the hollow pipe 3 through the swivel 15.

ポンプPは、特に高い吸込み力、機密性、空気の吸込みを起こさず、流動化砂性状の変化を低く抑えられるものとして、圧送構造が油圧ピストンを利用したタイプが選択されている。ポンプ駆動は、運転室11に配置された制御部を介して自動制御、又は操縦者により制御される。圧力計6は、ポンプPで圧送されている流動化砂の圧力を検出して中空管3の下端開口より地盤側領域つまり中空管引き抜きにより密度が低くなった箇所及びその周囲に圧入されるときの流動物の圧入圧力を推定可能にする。そして、圧力計6は、施工時において、流動化砂の圧送時の圧力を検出し、その検出信号を運転室11の制御部に送信している。制御部では、その検出信号に基づいて流動物の圧入圧力として、設定圧入圧力になったときにポンプPが駆動停止するようになっている。   As for the pump P, a pumping structure using a hydraulic piston is selected as a pump P that does not cause particularly high suction force, confidentiality, and air suction, and can keep the change in fluidized sand property low. The pump drive is automatically controlled via a control unit arranged in the cab 11 or controlled by the operator. The pressure gauge 6 detects the pressure of the fluidized sand being pumped by the pump P, and is pressed into the ground side region from the lower end opening of the hollow tube 3, that is, the portion where the density is lowered by drawing the hollow tube and the periphery thereof. It is possible to estimate the press-fitting pressure of the fluid when And the pressure gauge 6 detects the pressure at the time of pumping of fluidized sand at the time of construction, and transmits the detection signal to the control part of the cab 11. In the control unit, the pump P stops driving when the set pressure is reached as the fluid pressure based on the detection signal.

(流動化砂製造プラント)この製造プラント2は、混合室21及びアジテータ室22等を有した製造装置20を中心として、混合室21に対し、砂材料7を投入するバックホウ等の砂供給手段23、イオン電荷中和用添加剤を供給する添加剤供給手段24、流動化剤を投入する流動化剤供給手段25、含水量調整用の水を供給する水供給手段26、塑性化剤を投入する塑性化剤供給手段27が設けられている。 (Fluidized sand production plant) This production plant 2 is mainly composed of a production apparatus 20 having a mixing chamber 21 and an agitator chamber 22 and the like, and sand supply means 23 such as a backhoe for feeding sand material 7 into the mixing chamber 21. , An additive supply means 24 for supplying an ion charge neutralizing additive, a fluidizing agent supply means 25 for supplying a fluidizing agent, a water supply means 26 for supplying water for adjusting the water content, and a plasticizing agent. A plasticizer supply means 27 is provided.

砂圧入式静的締固め工法の適用に際しては、事前調査により対象地盤の特性に応じて材料砂の選定と配合仕様が決定される。製造プラント2では、通常、目的の流動化砂が混合室21で1バッチ量(改良体9)毎に作製される。砂供給手段23により投入される材料砂7、添加剤供給手段24により供給されるイオン電荷中和用添加剤、流動化剤供給手段25により投入される流動化剤、水供給手段26により供給される水、塑性化剤供給手段27により供給される塑性化剤については、以下にその選択基準や作用などを明らかにする。   When applying the sand press-fit type static compaction method, material sand selection and blending specifications are determined according to the characteristics of the target ground through a preliminary survey. In the production plant 2, the intended fluidized sand is normally produced in the mixing chamber 21 for each batch (improved body 9). Sand supplied by the sand supply means 23, ionic charge neutralizing additive supplied by the additive supply means 24, fluidizing agent supplied by the fluidizing agent supply means 25, water supply means 26 The selection criteria and action of the plasticizer supplied by the water and plasticizer supply means 27 will be clarified below.

(1)、材料砂7は、一旦流動性を高めた状態でポンプ圧送するため、配管内で閉塞しない保水性の良さと、圧入時に脱水する排水性の良さとを併せ持つ性質が好ましい。この点は、特開2015−183466号公報の図6及びその関連記載を参照されたい。また、材料砂7としては、採取場所によっても異なるが、流動化剤の阻害要因となる陽イオンとして、特に2価以上の金属イオンが含まれているものがある。2価以上の金属イオンとしては、例えばカルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、鉄イオン(Fe2+,Fe3+)、アルミニウムイオン(Al3+)等が挙げられる。なお、発明対象の材料砂は、通常ではないイレギュラーな砂、つまり砂が流動化剤の阻害要因となる陽イオンを含んでいて、テクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された砂である。従って、それ以外つまり通常の材料砂の場合は、本発明のイオン電荷中和用添加剤を混ぜる必要はないことは勿論である。 (1) Since the material sand 7 is pumped in a state where the fluidity is once increased, the material sand 7 preferably has the property of having both good water retention that does not block in the piping and good drainage that dehydrates during press-fitting. For this point, refer to FIG. 6 of JP-A-2015-183466 and the related description. In addition, the material sand 7 may include divalent or higher valent metal ions as cations that may inhibit the fluidizing agent, although it varies depending on the collection location. Examples of divalent or higher metal ions include calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), iron ions (Fe 2+ , Fe 3+ ), and aluminum ions (Al 3+ ). Note that the material sand subject to the invention is an irregular sand that is not normal, that is, the sand contains a cation that hinders the fluidizing agent, and sand press-fit static compaction method or sand filling from texture tests etc. Sand that was judged to be difficult to apply to the construction method. Accordingly, it is needless to say that the ionic charge neutralizing additive of the present invention does not need to be mixed in other cases, that is, in the case of ordinary material sand.

(2)、イオン電荷中和用添加剤は、以上の材料砂7に混ぜることにより流動化剤の阻害要因、つまり当該材料砂に含まれる前記したような陽イオンとして、特に2価以上の金属イオンをイオン電荷的に中和するに好適な無機電荷中和剤、又は、特に3価以上の金属イオンを中和したり封鎖するに好適な有機電荷中和剤である。次に具体例を挙げる。 (2) The ionic charge neutralizing additive is mixed with the material sand 7 described above, and as a clogging factor of the fluidizing agent, that is, as a cation contained in the material sand, the metal having a valence of 2 or more It is an inorganic charge neutralizing agent suitable for neutralizing ions in terms of ionic charge, or an organic charge neutralizing agent particularly suitable for neutralizing or sequestering trivalent or higher metal ions. Next, a specific example is given.

無機電荷中和剤としては、後述する実施例1〜5で使用した炭酸水素ナトリウム(NaHCO)、炭酸ナトリウム(NaCO)、トリポリりん酸ナトリウム(NaHCO10)、ポリアクリル酸ナトリウム(CNaO、ヘキサメタりん酸ナトリウム(NaPO 等である。他のイオン電荷中和用添加剤としては塩化カリウム(NaCl)、塩化ナトリウム(NaCl)、炭酸カリウム(KCO)等も有効であることが本発明者らの試験で確認されている。これに対し、有機電荷中和剤としては、実施例8〜10で使用した3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(CNO・4Na)、エチレンジアミン四酢酸四ナトリウム四水塩(C1012Na・4HO)等である。 Examples of the inorganic charge neutralizing agent include sodium bicarbonate (NaHCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ), and polyacrylic used in Examples 1 to 5 described later. Sodium nitrate (C 3 H 3 NaO 2 ) n , sodium hexametaphosphate (NaPO 3 ) 6 and the like. It has been confirmed by the present inventors that potassium chloride (NaCl), sodium chloride (NaCl), potassium carbonate (K 2 CO 3 ) and the like are effective as other ionic charge neutralizing additives. In contrast, as the organic charge neutralizer, 3-hydroxybenzoic 2,2' iminodisuccinic acid tetrasodium used in Example 8~10 (C 8 H 7 NO 9 · 4Na), ethylenediaminetetraacetic acid tetrasodium four it is a tetrahydrate (C 10 H 12 N 2 O 8 Na 4 · 4H 2 O) and the like.


イオン電荷中和用添加剤は、例えば、材料砂に含まれる二価以上の金属イオンをイオン荷電的にどの様な態様で中和するかについてはあくまでも推論ではあるが、次のような反応によるものと考えられる。一例として、イオン電荷中和用添加剤が無機電荷中和剤として炭酸水素ナトリウム(NaHCO)の場合は、例えば材料砂に含まれるカルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)に対し
(1) Ca2+ + NaHCO = CaCO +(Na + H
(2) Mg2+ + NaHCO = MgCO +(Na + H
前記反応式(1)や(2)などにより二価以上の金属イオンであるCa2+やMg2+をイオン電荷的に中和して流動化剤の阻害要因を解消したり抑制するものと思われる。
0
The additive for neutralizing ionic charge is, for example, inferred from what kind of aspect to neutralize divalent or higher-valent metal ions contained in the material sand in terms of ionic charge, but by the following reaction It is considered a thing. As an example, when the ionic charge neutralizing additive is sodium hydrogen carbonate (NaHCO 3 ) as an inorganic charge neutralizing agent, for example, calcium ions (Ca 2+ ) and magnesium ions (Mg 2+ ) contained in the material sand ( 1) Ca 2+ + NaHCO 3 = CaCO 3 + (Na + + H + )
(2) Mg 2+ + NaHCO 3 = MgCO 3 + (Na + + H + )
The reaction formulas (1), (2), etc. are considered to neutralize Ca 2+ and Mg 2+ , which are divalent or higher metal ions, in an ionic charge to eliminate or suppress the inhibitory factor of the fluidizing agent. .

以上のイオン電荷中和用添加剤は、原料の材料砂に流動化剤と同時に混ぜても改善効果はあまり期待できず、更に材料砂に流動化剤を混入した後に混ぜると改善効果が得られない。つまり、原料の材料砂には、当該材料砂に含まれる流動化剤の阻害要因として陽イオン、特に2価以上の金属イオンをイオン電荷中和用添加剤にてイオン電荷的に中和して阻害要因を予め解消ないしは抑制してから流動化剤を混入する。また、原料の材料砂に対する添加剤の混合割合は、後述の実施例より推察されるごとく対象の材料砂に添加剤を混ぜた後、流動化剤及び含水比調整用水を混合して作製した流動化砂、或いは流動化剤及び含水比調整用水並びに遅効性塑性化剤を混合して作製した流動化砂について、テクスチャー試験やフロー試験等によりその流動化砂の性状が予め決められた基準値の範囲に入る値を試験を通して確認し決めることになる。   The above ionic charge neutralizing additives cannot be expected to improve much when mixed with the raw material sand at the same time as the fluidizing agent. Absent. In other words, the material sand of the raw material is neutralized in an ionic charge manner with a cation charge neutralizing additive as a hindering factor of the fluidizing agent contained in the material sand. The fluidizing agent is mixed after eliminating or suppressing the inhibiting factor in advance. In addition, the mixing ratio of the additive to the material sand of the raw material is a fluid produced by mixing the additive with the target material sand as inferred from the examples described later, and then mixing the fluidizing agent and water for adjusting the water content ratio. For fluidized sand produced by mixing sand, or fluidizing agent, water content adjustment water, and slow-acting plasticizer, the properties of the fluidized sand are determined by a texture test, flow test, etc. Values that fall within the range will be confirmed and determined through testing.

(3)、水は、含水比調整用であり、流動化剤等に影響する多様な成分(上記した金属イオン等の陽イオン)を含む工業用水や海水は避けて、中性の水道水を用いることが好ましい。水の使用量は、通常、製造される流動化砂の含水比が30%から40%となるよう算出される。 (3) Water is used for adjusting the water content ratio, and avoids industrial water and seawater containing various components (cations such as the above-mentioned metal ions) that affect fluidizing agents. It is preferable to use it. The amount of water used is usually calculated so that the water content of the fluidized sand produced is 30% to 40%.

(4)、流動化剤は、砂の粒子間の間隙水の粘性を高め、飽和状態で砂と水の分離を抑制してポンプ圧送性を向上させる添加剤である。好ましくは、粘性を高め砂粒子の沈降分離を抑制するアニオン系高分子凝集剤であり、他にノニオン系高分子凝集剤、カチオン系高分子凝集剤などでもよい。これらは、高分子の親水基と高分子の網の内部に水分を保持する性能に優れ、品質の長期安定性も高い。なお、アニオン系高分子凝集剤としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2−メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸などの単独重
合体あるいはアクリルアミドとの共重合体が挙げられる。
(4) The fluidizing agent is an additive that increases the viscosity of pore water between sand particles and suppresses separation of sand and water in a saturated state to improve pumpability. Preferably, it is an anionic polymer flocculant that increases the viscosity and suppresses the settling and separation of sand particles, and may also be a nonionic polymer flocculant or a cationic polymer flocculant. These are excellent in the performance of retaining moisture inside the polymer hydrophilic groups and the polymer network, and also have high quality long-term stability. As anionic polymer flocculants, homopolymers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide 2-methylpropane sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, and copolymers with acrylamide Is mentioned.

流動化剤の配合割合は、材料砂に対し、外割配合で0.01〜2.0重量%、好ましくは0.1〜1.0重量%である。この配合割合は、少な過ぎると、材料砂が流動化せず、配管内で分離したり目詰まりしたりして圧送できなくなると共に、多過ぎても流動化効果は変わらず、却ってコストを上昇させることになる。   The blending ratio of the fluidizing agent is 0.01 to 2.0% by weight, preferably 0.1 to 1.0% by weight, based on the material sand. If this blending ratio is too small, the material sand will not fluidize, it will be separated or clogged in the piping and cannot be pumped, and if it is too much, the fluidization effect will not change, and the cost will be increased. It will be.

(5)、遅効性塑性化剤の使用量は、流動化砂を塑性化できる配合量であり、製造される流動化砂中の材料砂に対して、外割配合で0.001〜2重量%、好ましくは0.01〜1.0重量%である。この添加量は、少な過ぎると、流動化物が塑性化せず、設計通りの改良体が造成できなくなり、添加が多過ぎると塑性化が早く起こりポンプ圧送に支障をきたすと同時に、コスト的に高くなる。 (5) The amount of the slow-acting plasticizing agent used is a blending amount capable of plasticizing the fluidized sand, and is 0.001 to 2% by weight based on the material sand in the fluidized sand to be produced. %, Preferably 0.01 to 1.0% by weight. If the amount added is too small, the fluidized material will not be plasticized, and it will not be possible to produce an improved body as designed.If the amount added is too large, plasticization will occur quickly, hindering pumping and at the same time will be expensive. Become.

(流動化砂の製造方法)製造プラント2において、砂圧入式静的締固め工法や砂充填工法に使用する流動化砂作製に際し、原料の材料砂がテクスチャー試験などから適用困難であると判断された場合に次のような要領で目的の流動化砂が作製されることになる。まず、1バッチ量に対応する所定量の材料砂7に対し、所要量のイオン電荷中和用添加剤を均一となるよう混ぜ、又は、所要量のイオン電荷中和用添加剤と共に含水比調整用水を混ぜる。その後、流動化剤と遅効性塑性化剤とを加えて流動化砂を作製する。これらは、例えば、材料砂に対し、流動化剤、又は、流動化剤と含水比調整用水、或いは流動化剤と含水比調整用水と遅効性塑性化剤を混ぜて流動化砂を作製した後、イオン電荷中和用添加剤を混ぜても、作製される流動化砂としての経時的な性状が改善されないからである。つまり、原料の材料砂に対し流動化剤を混ぜる前段階において、イオン電荷中和用添加剤を混ぜて当該材料砂に含まれる流動化剤の阻害要因(陽イオンとして金属イオン、特に2価以上の金属イオン)を解消ないしは抑制することが必須となる。 (Manufacturing method of fluidized sand) In manufacturing plant 2, when preparing fluidized sand for use in the sand press-fit static compaction method and sand filling method, it is judged that the material sand of the raw material is difficult to apply from the texture test etc. In this case, the desired fluidized sand is produced in the following manner. First, mix the required amount of ionic charge neutralizing additive uniformly with a predetermined amount of material sand 7 corresponding to one batch amount, or adjust the water content ratio together with the required amount of ionic charge neutralizing additive Mix water. Thereafter, a fluidizing sand is prepared by adding a fluidizing agent and a slow-acting plasticizing agent. For example, after preparing fluidized sand by mixing a fluidizing agent, or a fluidizing agent and water content adjustment water, or a fluidizing agent, water content ratio adjusting water and a slow-acting plasticizer with respect to the material sand. This is because mixing the ionic charge neutralizing additive does not improve the properties over time of the fluidized sand produced. That is, in the stage before mixing the fluidizing agent with the material sand of the raw material, the additive for neutralizing ionic charge is mixed to inhibit the fluidizing agent contained in the material sand (metal ion as cation, especially divalent or higher) It is essential to eliminate or suppress the metal ions.

(砂圧入式静的締固め工法)この工法は、図1の施工機1を使用した例で特徴点を挙げると次のようになる。まず、操作手順は、中空管3を昇降機構4を介して地中の設計深さまで貫入した後、所定ピッチだけ引き抜く引抜工程と、該引抜工程にて中空管3の下方にできる密度の低い領域及びその周囲に流動化砂を圧入する供給工程とを繰り返し行うことにより所定長さの改良体9を造成する。施工管理は、運転室11の制御部において、中空管3の最大貫入深さ(下端深度)、1ピッチ分の引抜長さL、総ピッチ数((下端深度−上端深度)/L)、設定圧入(吐出)圧力などの値がプログラムに入力される。また、製造された流動化砂がアジテータ部22に用意される。 (Sand press-fit type static compaction method) This method is as follows when the feature points are exemplified in the example using the construction machine 1 of FIG. First, the operation procedure is such that the hollow tube 3 is penetrated to the design depth in the ground via the lifting mechanism 4 and then pulled out by a predetermined pitch, and the density that can be formed below the hollow tube 3 in the pulling step. The improvement body 9 having a predetermined length is formed by repeatedly performing the supply process of press-fitting fluidized sand into the low area and the surrounding area. The construction management is carried out in the control section of the cab 11 with the maximum penetration depth of the hollow tube 3 (lower end depth), the drawing length L for one pitch, the total number of pitches ((lower end depth−upper end depth) / L), Values such as the set press-fit (discharge) pressure are input to the program. The produced fluidized sand is prepared in the agitator section 22.

施工に際しては、施工機1が施工箇所に移動されて位置決めされた後、中空管3が昇降機構4及び回転機構5を介して回転されながら地盤に貫入操作される。この貫入は、中空管3の下端が設計深さ(下端深度)に達したか否かを不図示の深度計からの信号により判断され、設計深さに達した時点で昇降機構4などを介して貫入が停止される。   At the time of construction, after the construction machine 1 is moved and positioned at the construction site, the hollow tube 3 is inserted into the ground while being rotated through the lifting mechanism 4 and the rotating mechanism 5. This penetration is determined by a signal from a depth meter (not shown) whether or not the lower end of the hollow tube 3 has reached the design depth (lower end depth). The penetration is stopped.

次に、制御部は、昇降機構4を介して1ピッチ(例えば、20cm)分だけ中空管3の引抜きを開始するよう制御し、同時に、ポンプPが稼動されて流動化砂が圧送されて引抜きに伴って中空管3の下方に形成される領域及びその周囲に圧入するよう制御する。すなわち、制御部は、引抜きが1ピッチ分に達したか否かを判断し、引抜きが1ピッチに達したと判断されると、昇降機構4が停止ないしはアイドリング状態となるよう制御する。また、制御部は、流動化砂の圧入状態として、上記した領域に吐出される流動化砂の圧入圧力が設定値に達したか否かを圧力計6から送られている検出信号に基づいて判断し、圧入圧力が設定圧力になったと判断すると、ポンプPが停止ないしは不図示の開閉バルブを閉状態に切り換える。   Next, the control unit controls to start drawing the hollow tube 3 by one pitch (for example, 20 cm) through the lifting mechanism 4, and at the same time, the pump P is operated and the fluidized sand is pumped. It controls so that it may press-fit in the area | region formed under the hollow tube 3, and its periphery with drawing | extracting. That is, the control unit determines whether or not the drawing has reached one pitch, and when it is determined that the drawing has reached one pitch, controls the lifting mechanism 4 to be stopped or in an idling state. Further, the control unit determines whether or not the press-fitting pressure of the fluidized sand discharged to the above-described region has reached a set value as the press-fitted state of the fluidized sand based on the detection signal sent from the pressure gauge 6. When it is determined that the press-fitting pressure has reached the set pressure, the pump P stops or switches an open / close valve (not shown) to a closed state.

また、以上の制御部では、総ピッチ数ないしは全ピッチ引抜完了したか否かが判断され、総ピッチ数に達するまで引抜きと流動化砂の圧入が繰り返される。また、総ピッチ数に達すると、1本の改良体9が終了される。その後、地盤改良装置1は次の施工箇所に移動されて位置決めされた後、再び以上の操作が行われることになる。   In the above control unit, it is determined whether or not the total number of pitches or all pitches have been drawn, and the drawing and press-fitting of fluidized sand are repeated until the total number of pitches is reached. Further, when the total number of pitches is reached, one improved body 9 is terminated. Then, after the ground improvement apparatus 1 is moved to the next construction location and positioned, the above operation is performed again.

(実施例)以下、図1〜図7に示した実施例1−5は、原料の材料砂(この材料砂はテクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された原料砂である)に、イオン電荷中和用添加剤のうち、無機電荷中和剤として実施例1では炭酸水素ナトリウム(NaHCO)を、実施例2では炭酸ナトリウム(NaCO)を、実施例3ではトリポリりん酸ナトリウム(NaHCO10)を、実施例4ではヘキサメタりん酸ナトリウム(NaPOを、実施例5ではポリアクリル酸ナトリウム(CNaOを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した各流動化砂について、図2及び図4〜図7のテクスチャー試験、図3のフロー試験を行ったときの試験結果をグラフにまとめたものである。 (Example) Examples 1-5 shown in FIGS. 1 to 7 are used as raw material sand (this material sand can be applied to a sand press-fit static compaction method or a sand filling method from a texture test or the like). Among the ionic charge neutralizing additives, sodium hydrogen carbonate (NaHCO 3 ) is used in Example 1 as an inorganic charge neutralizing agent, and sodium carbonate (Example 2 is used in Example 2). Na 2 CO 3 ), sodium tripolyphosphate (Na 5 P 3 HCO 10 ) in Example 3, sodium hexametaphosphate (NaPO 3 ) 6 in Example 4, and sodium polyacrylate (C 3 H 3 NaO 2 ) n is mixed, and then each fluidized sand produced by mixing water content adjustment water, a fluidizing agent, and a slow-acting plasticizing agent in a determined ratio is shown in FIGS. Texture of FIG. -The test results when the test and the flow test of Fig. 3 were performed are summarized in a graph.

また、図8〜図10に示した実施例6と7は、原料の材料砂(この材料砂はテクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された原料砂である)に、イオン電荷中和用添加剤のうち、有機電荷中和剤として実施例6では3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(CNO・4Na)を、実施例7ではエチレンジアミン四酢酸四ナトリウム四水塩(C1012Na・4HO)を混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した各流動化砂について、図8及び図10のテクスチャー試験、図9のフロー試験を行ったときの試験結果をグラフにまとめたものである。 Further, Examples 6 and 7 shown in FIG. 8 to FIG. 10 show that raw material sand (this material sand is difficult to be applied to a sand press-fit static compaction method or a sand filling method from a texture test or the like). In Example 6 as an organic charge neutralizing agent among the ionic charge neutralizing additives, 4-hydroxy-2,2′-iminodisuccinic acid tetrasodium (C 8 H 7 NO 9). · 4Na) and, after mixing example 7 In tetrasodium ethylenediaminetetraacetate tetrahydrate (C 10 H 12 N 2 O 8 Na 4 · 4H 2 O), water content adjusted water, flowing agents, slow-acting plastic FIG. 11 is a graph summarizing the test results when the texture test of FIG. 8 and FIG. 10 and the flow test of FIG. 9 are performed on each fluidized sand produced by mixing the agent in a determined ratio.

テクスチャー試験では、所定容器に流動化砂(試料)を充填し、市販のテクスチャー試験装置として株式会社山電製の卓上式物性測定器にセットした後、シリンダーを一定速度で上下させ、試料上面から20mmの貫入及び引抜を行う。貫入応力は、貫入時の最大荷重haを応力に換算した値である。また、フロー(テーブルフロー)試験は、セメントの物性試験方法(JIS R5201−1997)に準拠して行った。   In the texture test, fluidized sand (sample) is filled in a predetermined container and set as a commercially available texture test device on a tabletop physical property measuring instrument manufactured by Yamaden Co., Ltd. Perform 20 mm penetration and withdrawal. The penetration stress is a value obtained by converting the maximum load ha at the time of penetration into stress. Further, the flow (table flow) test was performed in accordance with a cement physical property test method (JIS R5201-1997).

実施例1:図2及び図3は、所定量の材料砂に対し、NaHCOを混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)とフロー試験(流動性)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNaHCOの配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、図2の貫入応力が炭化水素ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880Pa(Pa)に対して炭化水素ナトリウムを加えた場合には10,000(Pa)と性状の変化が抑えられている点、炭化水素ナトリウムを1000ppm混ぜることにより基準値、つまり作成3時間後の流動化砂の貫入応力であっても約5,878(Pa)、つまり何れも6,000(Pa)以下に改善される点が分かる。 Example 1: 2 and 3, for a given amount of material sand, 0 ppm of NaHCO 3 as mixing ratio, was mixed 100 ppm, 500 ppm, and 1000 ppm, water content ratio adjusting water, flowing agents, slow-acting plasticized The results of examining a texture test (hardness) and a flow test (fluidity) are shown for four types of fluidized sand prepared by mixing agents at a predetermined ratio. In the figure, the composition of NaHCO 3 , which is an additive for neutralizing ionic charge, is a sample in which black circles are 0 ppm, that is, not mixed, a sample in which squares are mixed in 100 ppm, a sample in which white circles are mixed in 500 ppm, and a sample in which triangles are mixed with 1000 ppm. From this test result, the penetration stress in FIG. 2 is significantly reduced even when 100 ppm is mixed as compared with the conventional sample in which sodium hydrocarbon is not mixed. When sodium hydrocarbon is added to 14,880 Pa (Pa), the change in properties is suppressed to 10,000 (Pa), and the standard value by mixing 1000 ppm of sodium hydrocarbon, that is, 3 hours of preparation It can be seen that even the intrusion stress of the later fluidized sand is improved to about 5,878 (Pa), that is, all are 6,000 (Pa) or less.

また、図3のフロー試験結果からは、炭化水素ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できることが分かる。なお、イオン電荷中和用添加剤である無機電荷中和剤は、粉末の状態で材料砂に混ぜる方法、水に溶かした状態で材料砂に混ぜる方法の何れであってもよい。一般的には均一混合の点から後者の方法が好ましい。この場合、使用した水は含水比調整用水の一部として処理されることになる。   Moreover, from the flow test result of FIG. 3, it can be understood that the fluctuation of the table flow value (mm) due to the presence or absence of mixing of hydrocarbon sodium is hardly recognized, and the influence of the fluidized sand on the table flow value can be ignored. In addition, the inorganic charge neutralizing agent which is an additive for ionic charge neutralization may be either a method of mixing with material sand in a powder state or a method of mixing with material sand in a state dissolved in water. In general, the latter method is preferable from the viewpoint of uniform mixing. In this case, the used water is treated as part of the water content adjustment water.

実施例2:図4は、所定量の材料砂に対し、NaCOを混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNaCOの配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力が炭化ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる。つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には10,970(Pa)と性状の変化が抑えられている点、炭化ナトリウムを500ppm混ぜることにより基準値、つまり例えば作成3時間後の流動化砂の貫入応力であっても6,000(Pa)以下に改善される点、貫入応力が炭化ナトリウムを500ppm混ぜた場合と1000ppm混ぜた場合とで余り変化しない点が分かる。なお、フロー試験については省略したが実施例1と同じく、炭化ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 2: FIG. 4 shows a mixture of 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of Na 2 CO 3 as a mixing ratio with a predetermined amount of material sand, and then water for adjusting the water content, fluidizer, and slow-acting plasticizer. The result of having investigated the texture test (hardness) about four types of fluidized sand produced by mixing each in a determined ratio is shown. In the figure, the composition of NaCO 3 which is an additive for neutralizing ionic charge is a sample in which black circles are 0 ppm, that is, not mixed, a sample in which squares are mixed in 100 ppm, a sample in which white circles are mixed in 500 ppm, and a sample in which triangles are mixed with 1000 ppm. From this test result, the penetration stress is significantly reduced even when 100 ppm is mixed as compared with the conventional sample in which sodium carbide is not mixed. In other words, for example, looking at the change over time after 3 hours of preparation, when no additive is added, the change in properties is suppressed to 10,970 (Pa) when the additive is added to 14,880 (Pa). The point is that, by mixing 500 ppm of sodium carbide, the reference value, that is, the penetration stress of fluidized sand after 3 hours of preparation, for example, is improved to 6,000 (Pa) or less. The penetration stress is 500 ppm of sodium carbide. It can be seen that there is little change between mixing and 1000 ppm. Although omitted for the flow test, as in Example 1, the change in the table flow value (mm) due to the presence or absence of mixing of sodium carbide is hardly recognized, and the influence of the fluidized sand on the table flow value can be ignored. .

実施例3:図5は、所定量の材料砂に対し、トリポリりん酸ナトリウム(NaHCO10)を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤であるNaHCO10の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がトリポリりん酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対してトリポリりん酸ナトリウムを加えた場合には7,970(Pa)と性状の変化が抑えられている点、更にポリりん酸ナトリウムを1000ppm混ぜることにより作成3時間後の流動化砂の貫入応力であっても3,807(Pa)であり、基準値である6,000(Pa)以下に改善される点が分かる。なお、フロー試験については省略したが実施例1と同じく、トリポリりん酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 3 FIG. 5 shows a mixture of 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of sodium tripolyphosphate (Na 5 P 3 HCO 10 ) with a predetermined amount of material sand, water content adjustment water, and flow 4 shows the results of examining the texture test (hardness) of four types of fluidized sand prepared by mixing an agent and a slow-acting plasticizer at a predetermined ratio. In the same figure, the composition of Na 5 P 3 HCO 10 which is an additive for ionic charge neutralization is a sample in which black circle is 0 ppm, that is, not mixed, sample in which square is mixed in 100 ppm, sample in which white circle is mixed in 500 ppm, triangle mixed in 1000 ppm It is a sample. From this test result, it is found that the intrusion stress is significantly reduced even when 100 ppm is mixed as compared with the conventional sample in which sodium tripolyphosphate is not mixed. When sodium tripolyphosphate is added to 880 (Pa), the change in properties is suppressed to 7,970 (Pa), and the flow after 3 hours of preparation by mixing 1000 ppm of sodium polyphosphate Even if it is the penetration stress of fossil sand, it is 3,807 (Pa), and it turns out that it is improved to 6,000 (Pa) or less which is a standard value. Although omitted for the flow test, as in Example 1, the fluctuation of the table flow value due to the presence or absence of mixing of sodium tripolyphosphate is hardly observed, and the influence of the fluidized sand on the table flow value can be ignored.

実施例4:図6は、所定量の材料砂に対し、ポリアクリル酸ナトリウム(CNaOを混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤である(CNaOの配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がポリアクリル酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間後の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には9,389(Pa)と性状の変化が抑えられている点、ポリアクリル酸ナトリウムを1000ppm混ぜることにより基準値、つまり作成3時間後の流動化砂の貫入応力であっても6,000(Pa)以下に改善される点が分かる。なお、フロー試験については省略したが実施例1と同じく、ポリアクリル酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 4: FIG. 6 shows a mixture of 0 ppm, 100 ppm, 500 ppm and 1000 ppm of sodium polyacrylate (C 3 H 3 NaO 2 ) n with a predetermined amount of material sand, The result of having investigated the texture test (hardness) about four types of fluidized sand produced by mixing a fluidizing agent and a slow-acting plasticizing agent at a predetermined ratio is shown. In the figure, the composition of (C 3 H 3 NaO 2 ) n , which is an additive for ionic charge neutralization, is a sample in which the black circle is 0 ppm, that is, a sample that is not mixed, a sample in which a square is mixed in 100 ppm, a sample in which a white circle is mixed in 500 ppm, and a triangle A sample mixed with 1000 ppm. From this test result, it is found that the penetration stress is greatly reduced even when 100 ppm is mixed as compared with the conventional sample in which sodium polyacrylate is not mixed. When an additive is added to 880 (Pa), the change in properties is suppressed to 9,389 (Pa), and by mixing 1000 ppm of sodium polyacrylate, a reference value, that is, 3 hours after preparation It can be seen that even the penetration stress of fluidized sand is improved to 6,000 (Pa) or less. Although omitted for the flow test, as in Example 1, the change in table flow value due to the presence or absence of mixing of sodium polyacrylate is hardly observed, and the influence of the fluidized sand on the table flow value can be ignored.

実施例5:図7は、所定量の材料砂に対し、ヘキサメタりん酸ナトリウム(NaPO を混合割合として0ppm、100ppm、500ppm、1000ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、イオン電荷中和用添加剤である(NaPO の配合は、黒丸が0ppmつまり混ぜない試料、四角が100ppm混ぜた試料、白丸が500ppm混ぜた試料、三角が1000ppm混ぜた試料である。この試験結果からは、貫入応力がヘキサメタりん酸ナトリウムを混ぜない従来試料に比べ100ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成3時間経の経時変化を見ると、無添加の場合だと14,880(Pa)に対して添加剤を加えた場合には7,257(Pa)と性状の変化が抑えられている点、ヘキサメタりん酸ナトリウムの配合割合による貫入応力の変動、例えば作成2時間後の流動化砂の貫入応力を比べると、100ppmだと貫入応力が最も小さい6,000(Pa)、500ppmだと貫入応力がそれよりも大きい約7,000(Pa)、1000ppmだと貫入応力が更に大きい9,000(Pa)となるため、具体的なイオン電荷中和用添加剤の選定に際しては最適な配合割合を予備試験により検証し決めなければならない点が分かる。なお、この実施例5でもフロー試験については省略したが実施例1と同じく、ヘキサメタりん酸ナトリウムの混合の有無によるテーブルフロー値の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。 Example 5: FIG. 7 shows a mixture of 0 ppm, 100 ppm, 500 ppm, and 1000 ppm of sodium hexametaphosphate (NaPO 3 ) 6 with a predetermined amount of material sand, water content adjustment water, fluidizing agent, The result of having investigated the texture test (hardness) about four types of fluidized sand produced by mixing slow-acting plasticizers at a predetermined ratio is shown. In the figure, the composition of (NaPO 3 ) 6 , which is an additive for neutralizing ionic charge, is a sample in which black circle is 0 ppm, that is, not mixed, sample in which square is mixed in 100 ppm, sample in which white circle is mixed in 500 ppm, sample in which triangle is mixed with 1000 ppm It is. From this test result, it is found that the penetration stress is significantly reduced by mixing 100 ppm as compared with the conventional sample in which sodium hexametaphosphate is not mixed. When an additive is added to 880 (Pa), the change in properties is suppressed to 7,257 (Pa), the fluctuation of penetration stress due to the mixing ratio of sodium hexametaphosphate, for example, 2 hours after preparation Comparing the penetration stress of the fluidized sand, the penetration stress is 6,000 (Pa), which is the smallest at 100 ppm, and the penetration stress is about 7,000 (Pa), 1000 ppm, which is greater than 500 ppm. Since it is 9,000 (Pa), which is larger, when selecting specific ionic charge neutralizing additives, the optimum blending ratio is verified and determined by preliminary tests. The point that must be seen. Although the flow test was omitted in Example 5 as well, as in Example 1, the change in the table flow value due to the presence or absence of mixing of sodium hexametaphosphate was hardly observed, and it affected the table flow value of the fluidized sand. The impact is negligible.

実施例8:図8及び図9は、所定量の材料砂に対し、有機電荷中和剤として3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム(以下、HIDSという)を混合割合として0ppm、600ppm、1200ppm、2400ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)とフロー試験(流動性)を調べた結果を示している。同図において、有機電荷中和剤であるHIDSの配合は、黒丸が0ppmつまり混ぜない試料、四角が600ppm混ぜた試料、白丸が1200ppm混ぜた試料、三角が2400ppm混ぜた試料である。この試験結果からは、図8の貫
入応力がHIDSを混ぜない従来試料に比べ600ppm混ぜるだけでも大幅に小さくなる、つまり例えば作成1時間後の経時変化を見ると、無添加の場合だと16,380(Pa)に対してHIDSを600ppm混ぜた場合には6,378(Pa)と性状の変化が抑えられている点、HIDSを2400ppm混ぜることにより基準値、つまり作成1時間後の流動化砂の貫入応力が5,948(Pa)、つまり約6,000(Pa)以下に改善される点が分かる。
Example 8: FIG. 8 and FIG. 9 show that 0 ppm as a mixing ratio of 4-hydroxy-2,2′-iminodisuccinic acid tetrasodium (hereinafter referred to as HIDS) as an organic charge neutralizing agent with respect to a predetermined amount of material sand. After mixing 600 ppm, 1200 ppm, and 2400 ppm, four types of fluidized sand prepared by mixing water content adjustment water, fluidizing agent, and slow-acting plasticizing agent at a determined ratio, respectively, texture test (hardness) And the results of examining the flow test (fluidity). In the figure, the composition of HIDS, which is an organic charge neutralizing agent, is a sample in which black circles are 0 ppm, that is, not mixed, a sample in which squares are mixed in 600 ppm, a sample in which white circles are mixed in 1200 ppm, and a sample in which triangles are mixed with 2400 ppm. From this test result, the penetration stress of FIG. 8 is significantly reduced even by mixing 600 ppm as compared with the conventional sample not mixed with HIDS. When 600 ppm of HIDS is mixed with 380 (Pa), the change in properties is suppressed to 6,378 (Pa). By mixing 2400 ppm of HIDS, the standard value, that is, fluidized sand 1 hour after creation It can be seen that the penetration stress is improved to 5,948 (Pa), that is, about 6,000 (Pa) or less.

また、図9のフロー試験結果からは、HIDSの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できることが分かる。なお、有機電荷中和剤の場合も、無機電荷中和剤と同様に粉末の状態で材料砂に混ぜる方法、水に溶かした状態で材料砂に混ぜる方法の何れであってもよい。一般的には均一混合の点から後者の方法が好ましい。この場合、使用した水は含水比調整用水の一部として処理されることになる。   Further, from the flow test result of FIG. 9, it is understood that the fluctuation of the table flow value (mm) due to the presence or absence of mixing of HIDS is hardly recognized, and the influence of the fluidized sand on the table flow value can be ignored. In the case of the organic charge neutralizing agent, either the method of mixing with the material sand in the form of a powder or the method of mixing with the material sand in the state of being dissolved in water may be used as in the case of the inorganic charge neutralizing agent. In general, the latter method is preferable from the viewpoint of uniform mixing. In this case, the used water is treated as part of the water content adjustment water.

実施例2:図10は、所定量の材料砂に対し、有機電荷中和剤としてエチレンジアミン四酢酸四ナトリウム四水塩(以下、キレストODという)を混合割合として0ppm、600ppm、1200ppm、2400ppmを混ぜた後、含水比調整用水、流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して作製した4種類の流動化砂について、テクスチャー試験(硬さ)を調べた結果を示している。同図において、有機電荷中和剤であるキレストODの配合は、黒丸が0ppmつまり混ぜない試料、四角が600ppm混ぜた試料、白丸が1200ppm混ぜた試料、三角が2400ppm混ぜた試料である。この試験結果からは、貫入応力がキレストODを混ぜない従来試料に比べ600ppm混ぜるだけでも大幅に小さくなる。つまり例えば作成1時間後の経時変化を見ると、無添加の場合だと16,380(Pa)に対してキレストODを600ppm混ぜた場合には6,128(Pa)と性状の変化が抑えられている点、キレストODを1200ppm混ぜることにより基準値、つまり例えば作成1時間後の流動化砂の貫入応力が4,877(Pa)以下に改善される点、貫入応力がキレストODを600ppm混ぜた場合と2400ppm混ぜた場合とで余り変化しない点が分かる。なお、フロー試験については省略したが実施例1と同じく、炭化ナトリウムの混合の有無によるテーブルフロー値(mm)の変動はほとんで認められず、流動化砂のテーブルフロー値に及ぼす影響は無視できる。   Example 2: FIG. 10 shows a mixture of 0 ppm, 600 ppm, 1200 ppm, and 2400 ppm of ethylenediaminetetraacetic acid tetrasodium tetrahydrate (hereinafter referred to as “Cylest OD”) as an organic charge neutralizing agent to a predetermined amount of material sand. After that, the results of examining the texture test (hardness) of four types of fluidized sand prepared by mixing water content adjustment water, fluidizing agent, and slow-acting plasticizer at a predetermined ratio are shown. Yes. In the figure, the blend of Cylest OD, which is an organic charge neutralizing agent, is a sample in which black circles are 0 ppm, that is, not mixed, a sample in which squares are mixed in 600 ppm, a sample in which white circles are mixed in 1200 ppm, and a sample in which triangles are mixed with 2400 ppm. From this test result, the penetration stress is greatly reduced even by mixing 600 ppm as compared to the conventional sample in which no quirest OD is mixed. In other words, for example, looking at the change over time after 1 hour of preparation, when no additive is added, the change in properties can be suppressed to 6,128 (Pa) when mixing 600 ppm of Kyrest OD with 16,380 (Pa). The point is that, by mixing 1200 ppm of Kirest OD, the standard value, that is, the penetration stress of fluidized sand, for example, 1 hour after creation is improved to 4,877 (Pa) or less, the penetration stress is mixed with 600 ppm of Kirest OD. It can be seen that there is not much change between the case of 2400 ppm and the case of mixing. Although omitted for the flow test, as in Example 1, the change in the table flow value (mm) due to the presence or absence of mixing of sodium carbide is hardly recognized, and the influence of the fluidized sand on the table flow value can be ignored. .

なお、以上の形態例や実施例は本発明を何ら制約するものではない。本発明は、請求項で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。また、『圧入式砂杭造成(砂圧入式静的締固め工法と同じ)や砂充填等の地盤改良』については、特許文献1と2、特許第5478386号公報に記載されている工法、及びその内容から容易に考えられる工法を含むものである。   In addition, the above form example and Example do not restrict | limit this invention at all. The present invention only needs to include technical elements specified in the claims, and the details can be variously changed as necessary. In addition, regarding “press-fit sand pile creation (same as sand press-fit static compaction method) and ground improvement such as sand filling”, the methods described in Patent Documents 1 and 2, Patent No. 5478386, and It includes construction methods that can be easily considered from the contents.

1・・・・・施工機
2・・・・・流動化砂製造プラント
3・・・・・中空管
4・・・・・昇降機構
5・・・・・回転手機構
6・・・・・圧力計
7・・・・・材料砂
8・・・・・注液管
9・・・・・改良体
15・・・・・スイベル
16・・・・・管路
24・・・・・イオン電荷中和用添加剤供給手段
25・・・・・流動化剤供給手段
26・・・・・調整用水供給手段
27・・・・・塑性化剤供給手段
DESCRIPTION OF SYMBOLS 1 ... Construction machine 2 ... Fluidized sand manufacturing plant 3 ... Hollow pipe 4 ... Elevating mechanism 5 ... Rotating hand mechanism 6 ...・ Pressure gauge 7 ... Material sand 8 ... Injection pipe 9 ... Improved body 15 ... Swivel 16 ... Pipe line 24 ... Ion Charge neutralizing additive supply means 25... Fluidizing agent supply means 26... Adjustment water supply means 27.

Claims (6)

材料砂に含水比調整用水と共に流動化剤を加えて圧送ポンプにより配管を通して移送可能に処理される地盤改良用の流動化砂において、
前記材料砂に対し該材料砂に含まれる、前記流動化剤の阻害要因となる金属イオン等の陽イオンを電荷中和可能なイオン電荷中和用添加剤を混ぜた後、前記流動化剤を混入していることを特徴とする流動化砂。
In fluidized sand for ground improvement that is treated so that it can be transferred through piping by a pressure pump by adding a fluidizing agent together with water for adjusting the water content ratio to the material sand,
After mixing the material sand with an additive for neutralizing an ionic charge capable of charge neutralizing cations such as metal ions contained in the material sand and inhibiting the fluidizing agent, the fluidizing agent is added. Fluidized sand characterized by contamination.
前記イオン電荷中和用添加剤は炭酸ナトリウム、トリポリりん酸ナトリウム、ヘキサメタりん酸ナトリウム等の無機電荷中和剤であることを特徴とする請求項1に記載の流動化砂。   The fluidized sand according to claim 1, wherein the ionic charge neutralizing additive is an inorganic charge neutralizing agent such as sodium carbonate, sodium tripolyphosphate, or sodium hexametaphosphate. 前記イオン電荷中和用添加剤は、3−ヒドロシキ−2,2’−イミノジコハク酸4ナトリウム、エチレンジアミン四酢酸四ナトリウム四水塩等の有機電荷中和剤であることを特徴とする請求項1に記載の流動化砂。   The ionic charge neutralizing additive is an organic charge neutralizing agent such as 4-hydroxy-2,2'-iminodisuccinic acid tetrasodium, ethylenediaminetetraacetic acid tetrasodium tetrahydrate, and the like. Fluidized sand as described. 前記流動化砂はテクスチャー試験より少なくとも作成1時間経過時の貫入応力が約6,000(Pa)以下であることを特徴とする請求項1から3の何れかに記載の流動化砂。   The fluidized sand according to any one of claims 1 to 3, wherein the fluidized sand has an intrusion stress of about 6,000 (Pa) or less after at least 1 hour of preparation from a texture test. 請求項1から4の何れかに記載の流動化砂の製造方法において、
前記材料砂に前記イオン電荷中和用添加剤を混ぜた後、前記流動化剤と含水比調整用水と遅効性塑性化剤とを混入することを特徴とする流動化砂の製造方法。
In the manufacturing method of the fluidized sand in any one of Claim 1 to 4,
A method for producing fluidized sand, comprising mixing the ionic charge neutralizing additive with the material sand, and then mixing the fluidizing agent, water content adjusting water, and slow-acting plasticizer.
圧入式砂杭造成や砂充填等の地盤改良工法において、請求項1から4の何れかに記載の流動化砂を、圧送ポンプによって配管を通して地盤に貫入したり引き抜かれる中空管に圧送し、該中空管の先端側より地盤中に圧入すると共に、地盤中で塑性化させることを特徴とする地盤改良工法。   In ground improvement methods such as press-fitting sand pile creation and sand filling, the fluidized sand according to any one of claims 1 to 4 is pumped to a hollow pipe that is penetrated into or pulled out from the ground through a pipe by a pump. A ground improvement method characterized by press-fitting into the ground from the tip side of the hollow tube and plasticizing in the ground.
JP2017109646A 2016-09-27 2017-06-02 Manufacturing method of fluidized sand Active JP6909642B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188204 2016-09-27
JP2016188204 2016-09-27

Publications (2)

Publication Number Publication Date
JP2018053701A true JP2018053701A (en) 2018-04-05
JP6909642B2 JP6909642B2 (en) 2021-07-28

Family

ID=61835545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109646A Active JP6909642B2 (en) 2016-09-27 2017-06-02 Manufacturing method of fluidized sand

Country Status (1)

Country Link
JP (1) JP6909642B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206814A (en) * 2018-05-28 2019-12-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
JP2020033731A (en) * 2018-08-29 2020-03-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
JP2020133256A (en) * 2019-02-20 2020-08-31 株式会社不動テトラ Fluidized sand manufacturing method and fluidized sand
JP2021025289A (en) * 2019-08-05 2021-02-22 株式会社不動テトラ Mixed material for fluidized sand, manufacturing method thereof, improved fluidized sand composition and manufacturing method thereof
CN112982998A (en) * 2021-03-10 2021-06-18 常树 Sand pile control device for building construction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191490A (en) * 2008-02-13 2009-08-27 Kyokado Eng Co Ltd Grouting method
JP2010013885A (en) * 2008-07-07 2010-01-21 Fudo Tetra Corp Method and device for constructing sand pile
JP2010101021A (en) * 2008-10-21 2010-05-06 Fudo Tetra Corp Plant for manufacturing fluidized sand
JP2012002010A (en) * 2010-06-18 2012-01-05 Naoharu Morii Steel sheet pile repairing method
JP2012077309A (en) * 2011-11-28 2012-04-19 Kyokado Kk Grouting material and grouting method
JP2014210232A (en) * 2013-04-18 2014-11-13 山陽特殊製鋼株式会社 Method for processing alkaline waste water including calcium-eluting particles
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191490A (en) * 2008-02-13 2009-08-27 Kyokado Eng Co Ltd Grouting method
JP2010013885A (en) * 2008-07-07 2010-01-21 Fudo Tetra Corp Method and device for constructing sand pile
JP2010101021A (en) * 2008-10-21 2010-05-06 Fudo Tetra Corp Plant for manufacturing fluidized sand
JP2012002010A (en) * 2010-06-18 2012-01-05 Naoharu Morii Steel sheet pile repairing method
JP2012077309A (en) * 2011-11-28 2012-04-19 Kyokado Kk Grouting material and grouting method
JP2014210232A (en) * 2013-04-18 2014-11-13 山陽特殊製鋼株式会社 Method for processing alkaline waste water including calcium-eluting particles
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206814A (en) * 2018-05-28 2019-12-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
JP7121542B2 (en) 2018-05-28 2022-08-18 株式会社不動テトラ Method for producing fluidized sand
JP2020033731A (en) * 2018-08-29 2020-03-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
JP7213609B2 (en) 2018-08-29 2023-01-27 株式会社不動テトラ Method for producing fluidized sand
JP2020133256A (en) * 2019-02-20 2020-08-31 株式会社不動テトラ Fluidized sand manufacturing method and fluidized sand
JP7191447B2 (en) 2019-02-20 2022-12-19 株式会社不動テトラ Method for producing fluidized sand
JP2021025289A (en) * 2019-08-05 2021-02-22 株式会社不動テトラ Mixed material for fluidized sand, manufacturing method thereof, improved fluidized sand composition and manufacturing method thereof
JP7231513B2 (en) 2019-08-05 2023-03-01 株式会社不動テトラ fluidized sand composition
CN112982998A (en) * 2021-03-10 2021-06-18 常树 Sand pile control device for building construction

Also Published As

Publication number Publication date
JP6909642B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP2018053701A (en) Fluidized sand and method for producing the same, and ground improvement method using the same
JP6188081B2 (en) Fluidized sand and ground improvement method using it
JP5188894B2 (en) Sand pile construction method and sand pile construction equipment
JP4823968B2 (en) Sand pile construction method and sand pile construction equipment
JP2012012878A (en) Improving method of ground having underground cavity
JP5404344B2 (en) Slag pile construction method
JP2019031791A (en) Fluidized sand and its manufacturing method and ground improvement method using it
EP1771627B1 (en) Process to prepare in-situ pilings in clay soil
JP6830632B2 (en) Treatment method of mud generated by mud pressure shield method
JP7121542B2 (en) Method for producing fluidized sand
JP7231513B2 (en) fluidized sand composition
JP5758702B2 (en) Construction method of ground improvement body
JP2007191951A (en) Sludge recycling system in soil improvement method and its device
CN103015428A (en) Double-pump pipe inserting and grouting adjusting and controlling device and double-pump pipe inserting and grouting adjusting and controlling method
JP7213609B2 (en) Method for producing fluidized sand
JP2005076285A (en) Foaming method in foam shield construction method and foaming material used for foam shield construction method
JP2020070582A (en) Ground displacement suppression method and displacement absorption pile
JP4148842B2 (en) Ground improvement method
AU2005291642B2 (en) Method for de- watering a slurry
JP5005434B2 (en) Additives used in shield method or propulsion method, manufacturing method thereof, and tunnel method
JP2020168629A (en) Method of treating mud generated in mud pressure shield method
JP2018159213A (en) Ground improvement material and manufacturing method thereof
JP6245543B2 (en) Soil improvement body construction method
JP2021038546A (en) Grouting method for suspension type grouting material
JP2020165142A (en) Ground displacement control method of slurry stirring type deep mixing treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6909642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150