JP2019031791A - Fluidized sand and its manufacturing method and ground improvement method using it - Google Patents

Fluidized sand and its manufacturing method and ground improvement method using it Download PDF

Info

Publication number
JP2019031791A
JP2019031791A JP2017152091A JP2017152091A JP2019031791A JP 2019031791 A JP2019031791 A JP 2019031791A JP 2017152091 A JP2017152091 A JP 2017152091A JP 2017152091 A JP2017152091 A JP 2017152091A JP 2019031791 A JP2019031791 A JP 2019031791A
Authority
JP
Japan
Prior art keywords
sand
fluidized
agent
fluidizing
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017152091A
Other languages
Japanese (ja)
Other versions
JP6916583B2 (en
Inventor
雅大 永石
Masahiro Nagaishi
雅大 永石
山下 祐司
Yuji Yamashita
祐司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2017152091A priority Critical patent/JP6916583B2/en
Publication of JP2019031791A publication Critical patent/JP2019031791A/en
Application granted granted Critical
Publication of JP6916583B2 publication Critical patent/JP6916583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To make material sand applicable even in material sand which is difficult to apply when applying a press fit type sand pile construction method and a sand filling method, by improving the properties over time as fluidized sand produced by mixing a fluidizing keeping agent.SOLUTION: In fluidized sand for ground improvement which is treated so that a fluidizing agent is added to material sand 7 together with a water content adjusting water and is transportable through piping by a pressure feeding pump, when fluidized sand has a factor of losing fluidity with time, in the material sand and the water content adjusting water, a nonionic fluidizing keeping agent is added to the material sand and/or the water content adjusting water before adding the fluidizing agent to the material sand. Also, in the method of manufacturing the fluidized sand, after mixing the fluidizing keeping agent together with the water content adjusting water into the material sand 7 or mixing the water content adjusting water in which the fluidizing keeping agent is dissolved as the water content adjusting water into the material sand 7, the fluidizing agent and a delayed plasticizing agent are mixed.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良に用いられる砂材料に流動化剤を混ぜてポンプ圧送可能な状態とした流動化砂、その製造方法並びにそれを用いた地盤改良工法に関する。   TECHNICAL FIELD The present invention relates to fluidized sand in which a sanding material used for ground improvement is mixed with a fluidizing agent to be in a pumpable state, a manufacturing method thereof, and a ground improvement method using the same.

サンドコンパクションパイル工法(SCP工法)は、液状化対策等として多用されており、地盤中に締固めた砂杭を造成することで地盤の密度を増加させるものである。このSCP工法では、大型施工機械を用いるため施工スペースの確保上の制約から適用できない場合が多い。代用工法として、小型施工機を用いる薬液注入系やセメントモルタルを圧入する工法を適用することもあるが、コストが高くなる。このような背景から、本出願人らは、特許文献1や2に開示されるごとく材料砂をポンプで圧送可能な流動化状態にし、地盤への圧入を行うことでコスト削減と環境負荷の低減を可能にした圧入式砂杭造成工法を開発し既に実用化している。この工法は、砂圧入式静的締固め工法やSAVE−SP工法(登録商標)と称され、小型施工機の使用により狭隘地での施工、既設構造物直下の改良にも対応可能である。   The sand compaction pile method (SCP method) is frequently used as a countermeasure for liquefaction, and increases the density of the ground by creating a compacted sand pile in the ground. In this SCP method, since a large construction machine is used, there are many cases where it cannot be applied due to restrictions in securing a construction space. As an alternative construction method, a chemical solution injection system using a small construction machine or a method of press-fitting cement mortar may be applied, but the cost increases. From such a background, the present applicants made the material sand into a fluidized state that can be pumped by a pump as disclosed in Patent Documents 1 and 2, and reduced the cost and environmental burden by press-fitting into the ground. Has been developed and put into practical use. This construction method is called sand press-fit static compaction construction method or SAVE-SP construction method (registered trademark), and can be applied to construction in confined areas and improvement directly under existing structures by using a small construction machine.

特許文献1は圧入式砂杭造成工法の基本を開示している。この工法では、材料砂に含水比調整用水と共に流動化剤と遅効性塑性化剤とを含有する砂杭材料流動化物(以下、流動化砂と言う)を、流動状態を保持したまま地盤中に圧入し、地盤中で塑性化させる。細部は、図6に例示されるごとく中空管23を地盤中に設計深度まで貫入した後、中空管23を通して流動化砂を地表から地中に圧入し、地中に該流動化砂を残致し、この上に次のステップ分の流動化砂を圧入し、これを繰り返すことで所定長さの改良体25を造成する。符号10は流動化砂製造プラント、1は流動化砂供給手段、2は砂材料供給手段、3は流動化剤供給手段、4は圧送ポンプ、5は遅効性塑性化剤供給装置である。また、特許文献2は流動化砂の作製プラントを開示している。この作製プラントでは、材料砂に流動化剤を混合して流動化砂を作製するプラントであり、流動化砂は砂材料に水、流動化剤、遅効性塑性剤の順に混合する。好ましくは流動化砂は砂材料の重量を計測し、その重量に基づき水、流動化剤、遅効性塑性剤を自動計算して混合する。   Patent document 1 is disclosing the basics of a press-in type sand pile construction method. In this construction method, a sand pile material fluidized material (hereinafter referred to as fluidized sand) containing a fluidizing agent and a slow-acting plasticizing agent together with water content adjustment water in the material sand is retained in the ground while maintaining the fluidized state. Press fit and plasticize in the ground. For details, as shown in FIG. 6, after the hollow tube 23 is penetrated into the ground to the design depth, the fluidized sand is press-fitted from the surface into the ground through the hollow tube 23, and the fluidized sand is put into the ground. The fluidized sand for the next step is press-fitted on this, and the improved body 25 having a predetermined length is formed by repeating this. Reference numeral 10 denotes a fluidized sand production plant, 1 a fluidized sand supply means, 2 a sand material supply means, 3 a fluidizing agent supply means, 4 a pressure feed pump, and 5 a slow-acting plasticizer supply apparatus. Patent Document 2 discloses a fluidized sand production plant. In this production plant, fluidizing agent is mixed with material sand to produce fluidized sand, and fluidized sand is mixed with sand material in the order of water, fluidizing agent, and slow-acting plasticizer. Preferably, the fluidized sand measures the weight of the sand material, and based on the weight, water, a fluidizing agent, and a slow-acting plasticizer are automatically calculated and mixed.

図7は施工時における流動化砂の状態変化を示した模式図である。(a)は圧入前の流動化砂を示す。流動化砂は、中空管から地盤中に圧入されるまでは流動化剤(例えば、アニオン系高分子材料)が砂の粒子同士の間隙水の粘性を高め、粒子同士の摩擦をなくし砂と水との分離を抑制して、高い流動性を維持している。(b)は圧入中の流動化砂を示す。圧入中は、流動化砂が脱水し密な状態に締め固められる。流動化剤は網状で残る。(c)は塑性化終了状態を示す。この状態では、遅効性塑性化剤が電気的に流動化剤を中和して流動化剤の網状構造を保持できなくなり粒子同士の摩擦を回復している。   FIG. 7 is a schematic view showing a change in the state of fluidized sand during construction. (A) shows fluidized sand before press-fitting. Until the fluidized sand is pressed into the ground from the hollow tube, the fluidizing agent (for example, an anionic polymer material) increases the viscosity of the pore water between the sand particles and eliminates the friction between the particles. Suppresses separation from water and maintains high fluidity. (B) shows fluidized sand during press-fitting. During the press-fitting, the fluidized sand is dehydrated and compacted into a dense state. The fluidizer remains reticulated. (C) shows the plasticized end state. In this state, the slow-acting plasticizing agent electrically neutralizes the fluidizing agent so that the network structure of the fluidizing agent cannot be maintained, and the friction between the particles is recovered.

また、以上の圧入式砂杭造成工法では、直径100〜200mm程度の中空管が用いられ、流動化砂の地中圧入により直径500〜700mm程度の改良体を造成することが多い。施工に際しては、対象地盤の特性が事前調査で把握されて、それに応じて材料砂の選定と配合仕様を決定したり、製造した流動化砂としてテーブルフロー試験、ブリーディング試験、テクスチャー試験により適用性を判断し、使用可否を決定している。また、原料の材料砂に関しては粒度分布で使用可能な規定範囲を設定している。   Moreover, in the above press-fitting type sand pile construction method, a hollow pipe having a diameter of about 100 to 200 mm is used, and an improved body having a diameter of about 500 to 700 mm is often created by injecting fluidized sand into the ground. During construction, the characteristics of the target ground are ascertained in a preliminary survey, and material sand selection and blending specifications are determined accordingly, and the produced fluidized sand can be applied through table flow tests, bleeding tests, and texture tests. Judgment is made and whether or not it is usable is determined. In addition, for the material sand of the raw material, a prescribed range that can be used in the particle size distribution is set.

特許第5188894号公報Japanese Patent No. 5188894 特許第5189951号公報Japanese Patent No. 5189951

しかし、実際の施工では、粒度分布で使用可能な規定範囲内にある材料砂についても、製造した流動化砂として地中に圧入するとき圧力が短時間で高くなったり圧送ロスが増大して圧入量が目標値に達しなくなることがある。本出願人は、その原因を調べてきたところ、対象の材料砂や水に金属イオンを多く含有するものや、細粒分含有率が高く比較的大きな粒径を有する材料砂や、砂産地で対象の砂を洗う工程で用いられる薬剤の影響などが挙げられることが分かった。   However, in actual construction, even when the material sand is within the specified range that can be used in the particle size distribution, when it is pressed into the ground as the fluidized sand produced, the pressure increases in a short time or the pressure loss increases. The amount may not reach the target value. The applicant has investigated the cause of the problem, and in the target material sand and water containing a large amount of metal ions, the material sand having a high fine particle content rate and a relatively large particle size, and the sand production area. It was found that there are effects of chemicals used in the process of washing the target sand.

ここで、次の表1は産出地別の材料砂の物性特徴をまとめた一例である。木曽川産と吉良産の材料砂はD50(平均粒径)の値が使用範囲から外れており、万田野産と戸崎産の材料砂は細粒分含有率が高くなっている。法木産は金属イオンの含有量が多く塑性化の進行が早いことが確認されている。勿論、法木産以外の材料砂にも金属イオンが含有されている可能性がある。 Here, the following Table 1 is an example summarizing the physical property characteristics of the material sand according to the production area. The material sand from Kisogawa and Kira has a D 50 (average particle size) value outside the range of use, and the material sand from Mandano and Tozaki has a high fine particle content. It has been confirmed that Houki has a high metal ion content and is rapidly plasticizing. Of course, there is a possibility that metal ions are also contained in material sand other than the method wood.

表1:材料砂の産出地別特性

Figure 2019031791
Table 1: Characteristics of material sand

Figure 2019031791

下記表2は表1の各材料砂を用いて特許文献2の方法で製造した流動化砂について、物性試験としてテーブルフローとテクスチャーを調べた一例を示している。表2中の基準値は、従来より圧入式砂杭造成工法に適用可能とされた範囲であり、含水比は30〜40%、テーブルフローは170〜230、テクスチャーの貫入応力は6000(Pa)以下である。これらの値は、含水比だけではなく、製造後の経過時間により変化するため少なくともテーブルフローやテクスチャーについては製造1時間後の値で満たしていることが好ましい。この点から、表1の材料砂を使用して製造された流動化砂は、製造1時間後でいずれもがテクスチャー試験による貫入応力が基準値である6000(Pa)を超えてしまい使用できない砂であることが分かる。また一部の材料砂ではテーブルフロー値も基準値外となっている。   Table 2 below shows an example of examining the table flow and texture as a physical property test on the fluidized sand produced by the method of Patent Document 2 using each material sand of Table 1. The standard values in Table 2 are ranges that have been conventionally applicable to the press-fit sand pile construction method, the water content ratio is 30-40%, the table flow is 170-230, and the texture penetration stress is 6000 (Pa). It is as follows. Since these values change not only with the water content ratio but also with the elapsed time after production, it is preferable that at least the table flow and texture are satisfied with the values after 1 hour of production. From this point, the fluidized sand produced using the material sand shown in Table 1 cannot be used because the penetration stress by the texture test exceeded the standard value of 6000 (Pa) after 1 hour of production. It turns out that it is. In some material sands, the table flow value is also outside the standard value.

本出願人は、このような流動性喪失の対策として、金属イオン等の陽イオンを電荷中和可能なイオン電荷中和用添加剤を添加することである程度改善されることを見出した(特願2017−109646)。但し、このイオン電荷中和用添加剤は、流動性喪失の要因が金属イオンを多く含む場合だとそれなりの改善効果が得られるが、金属イオンを除く他の要因による場合だと効果を得ることができなかった。そこで、本出願人は流動性喪失の対策として更に有効な構成を検討追求してきた効果、本発明の完成に至った。   The present applicant has found that, as a countermeasure against such fluidity loss, it can be improved to some extent by adding an ionic charge neutralizing additive capable of charge neutralizing cations such as metal ions (patent application). 2017-109646). However, this ionic charge neutralizing additive can provide a certain improvement effect when the cause of loss of fluidity contains a large amount of metal ions, but it can be obtained when it is caused by other factors other than metal ions. I could not. Therefore, the applicant has studied and pursued a more effective configuration as a countermeasure for loss of fluidity, and has completed the present invention.

表2:表1の材料砂を用いた流動化砂(非イオン系流動化保持剤添加なし)の試験結果

Figure 2019031791

・表2中の「×」はテーブルフローやテクスチャー(貫入応力)の値が基準値外であることを示す。
・*法木産の含水比30%で流動化保持剤の添加量0%のものはテクスチャー(貫入応力)が248,679(Pa)以上となる。 Table 2: Test results of fluidized sand (no nonionic fluidized retention agent added) using the material sand of Table 1

Figure 2019031791

“X” in Table 2 indicates that the value of the table flow or texture (penetration stress) is outside the standard value.
* The texture content (penetration stress) of 248,679 (Pa) or more for the water content ratio of 30% and the addition amount of the fluidizing retention agent is 0%.

本発明の目的は、圧入式砂杭造成工法や砂充填工法の適用に際し、適用が困難である材料砂でも流動性喪失の対策として、金属イオンを含め、更に材料砂の粒度等に起因した流動性喪失にも有効に対応できる非イオン系の流動化保持剤を添加することで製造される流動化砂として経時的な性状を改善して適用可能にすることにある。他の目的は以下の内容説明のなかで明らかにする。   The purpose of the present invention is to apply a press-in sand pile construction method and a sand filling method, even if material sand is difficult to apply, as a countermeasure against loss of fluidity, including metal ions, further flow due to the particle size of the material sand, etc. It is to improve the properties over time and make it applicable as a fluidized sand produced by adding a nonionic fluidized retention agent that can effectively cope with loss of properties. Other purposes will be clarified in the description below.

上記目的を達成するため請求項1の発明は、材料砂に含水比調整用水と共に流動化剤を加えて圧送ポンプにより配管を通して移送可能に処理される地盤改良用の流動化砂において、前記流動化砂が時間と共に流動化性を喪失させる要因を前記材料砂や含水比調整用水に有する場合、前記材料砂に流動化剤を添加する前段階で、前記材料砂又は/及び前記含水比調整用水に対し非イオン系の流動化保持剤を添加していることを特徴としている。   In order to achieve the above object, the invention of claim 1 is the fluidized sand for ground improvement, wherein a fluidizing agent is added to the material sand together with water for adjusting the water content ratio, and the fluidized sand is processed so as to be transportable through a pipe by a pressure pump. When the sand has a factor that causes fluidity to be lost over time in the material sand or water content adjustment water, the material sand or / and the water content adjustment water is added to the material sand before adding a fluidizing agent to the material sand. On the other hand, it is characterized by adding a nonionic fluidizing retention agent.

以上の本発明は、以下のように更に具体化されることがより好ましい。すなわち、
第1に、前記流動化保持剤はダイヤノール(登録商標)などの非イオン性界面活性剤である(請求項2)。
第2に、前記流動化砂は、テクスチャー試験より少なくとも作製1時間経過時の流動化砂の貫入応力値が約6,000(Pa)以下となっている構成である(請求項3)。
The above-mentioned present invention is more preferably embodied as follows. That is,
First, the fluidizing retention agent is a nonionic surfactant such as Dianol (registered trademark) (Claim 2).
Secondly, the fluidized sand has a configuration in which the penetration stress value of the fluidized sand is at least about 6,000 (Pa) at least after 1 hour of production from the texture test (Claim 3).

これに対し、請求項4の発明は、請求項1から3の何れかに記載の流動化砂の製造方法において、前記含水比調整用水と共に前記流動化保持剤を前記材料砂に混入、あるいは前記含水比調整用水として流動化保持剤を溶解した含水比調整用水を前記材料砂に混入した後、前記流動化剤と遅効性塑性化剤とを混入することを特徴としている。   On the other hand, according to a fourth aspect of the present invention, in the method for producing fluidized sand according to any one of the first to third aspects, the fluidizing retention agent is mixed into the material sand together with the water content adjustment water, or The water content adjusting water in which the fluidizing retention agent is dissolved as water content adjusting water is mixed into the material sand, and then the fluidizing agent and the slow plasticizing agent are mixed.

また、請求項5の発明は、圧入式砂杭造成や砂充填等の地盤改良工法において、請求項1から3の何れかに記載の流動化砂を、圧送ポンプによって配管を通して地盤に貫入したり引き抜かれる中空管に圧送し、該中空管の先端側より地盤中に圧入すると共に、地盤中で塑性化させることを特徴としている。   Further, the invention of claim 5 is a ground improvement method such as press-fitting sand pile formation or sand filling, and the fluidized sand according to any one of claims 1 to 3 is penetrated into the ground through a pipe by a pump. It is characterized in that it is pumped to a hollow tube to be pulled out, pressed into the ground from the tip side of the hollow tube, and plasticized in the ground.

請求項1の発明は、流動化砂が時間と共に流動性を喪失させる要因を前記材料砂や含水比調整用水に有する場合、非イオン系の流動化保持剤により流動化砂の経時的な性状を改善して正常な圧入施工を維持可能となる。この場合、原料の材料砂に対し流動化保持剤を混ぜる時期が重要であり、材料砂に流動化剤と同時に混ぜたり、流動化剤を混入した後に混ぜると改善効果がさほど期待できない。これは、材料砂に対し流動化剤を混ぜる前に、非イオン系の流動化保持剤を材料砂に混ぜて阻害要因を予め解消ないしは抑制することが必須となる。以上のように本発明の流動化砂は、原料の材料砂として、粒度分布等の規定範囲を満足しているにもかかわらず適用不能であった材料砂が使用可能となることにより、使用する材料砂の適用範囲を広げ、引いては経費低減と共に流動化砂を用いる地盤改良工法の適用機会拡大に寄与できる。また、後述の実施例から推察されるごとく流動化砂の含水比を低く抑えることが可能となり、それによって地盤中への投入容量も少なくして地盤変位を生じなくする上でも有効となる。   In the first aspect of the present invention, when the fluidized sand has a factor that causes fluidity to be lost with time in the material sand or water for adjusting the water content ratio, the non-ionic fluidized retention agent can be used to characterize the fluidized sand over time. It is possible to improve and maintain normal press-fitting construction. In this case, it is important to mix the fluidization retention agent with the material sand of the raw material. If the fluidization agent is mixed with the material sand at the same time or mixed with the fluidization agent, the improvement effect cannot be expected so much. In this case, before mixing the fluidizing agent with the material sand, it is essential to eliminate or suppress the obstruction factor in advance by mixing the nonionic fluidizing retention agent with the material sand. As described above, the fluidized sand of the present invention is used as the material sand of the raw material because the material sand that was not applicable despite satisfying the specified range such as the particle size distribution can be used. The application range of material sand can be expanded, which can contribute to the expansion of application opportunities of ground improvement method using fluidized sand as well as cost reduction. Further, as inferred from the examples described later, the water content of the fluidized sand can be kept low, which is effective in reducing the input capacity into the ground and preventing the ground displacement.

請求項2の発明では、非イオン系の流動化保持剤として、後述する試験例から明らかなごとくダイヤノール(登録商標)、ノイゲン(登録商標)などの非イオン性界面活性剤を原料の材料砂に混ぜることにより流動化砂の性状阻害要因を抑制作用により改善可能となる。   In the invention of claim 2, as a nonionic fluidizing retention agent, a nonionic surfactant such as Dianol (registered trademark) or Neugen (registered trademark) is used as a raw material sand, as is apparent from test examples described later. It becomes possible to improve the property-inhibiting factor of fluidized sand by suppressing it by mixing it with the.

請求項3の発明では、改善後の流動化砂の性状として、特に重要な貫入応力、つまりテクスチャー試験より作製1時間経過時の流動化砂の貫入応力が6,000(Pa)以下に改善される点を特定したものである。この値は現状の実施工で好ましいとされている基準値を満たすことを明確化したことに意義がある。   In the invention of claim 3, as the property of the fluidized sand after the improvement, the penetration stress particularly important, that is, the penetration stress of the fluidized sand after one hour from the texture test is improved to 6,000 (Pa) or less. This is a specific point. This value is significant because it has been clarified that it satisfies the standard value that is considered preferable in the current implementation.

請求項4の発明では、請求項1から3の何れかに記載の流動化砂の製造方法において、流動化砂の理想的な組成を明確化したものであり、流動化砂として上記段落0004に記載したと同じように正常に機能する。   In the invention of claim 4, in the method for producing fluidized sand according to any one of claims 1 to 3, the ideal composition of the fluidized sand is clarified. It functions normally as described.

請求項5の発明では、特許文献1や2に開示の圧入式砂杭造成、特許第5478386号公報に開示されている砂充填等の改良工法において、流動化砂(材料砂)の圧入量が不足したり圧入ロスが大きくなって圧入造成が困難になることがなくなり、圧入施工が常に設計通り達成可能となる。   In the invention of claim 5, in the improvement method such as press-fitting sand pile creation disclosed in Patent Documents 1 and 2 and sand filling disclosed in Japanese Patent No. 5478386, the press-fitting amount of fluidized sand (material sand) is Press-in construction can always be achieved as designed, since there is no shortage or large press-in loss and press-in creation becomes difficult.

本発明の圧入式砂杭造成工法や砂充填工法を実施する場合の装置構成を示した説明用の模式図である。It is a schematic diagram for description which showed the apparatus structure in the case of implementing the press-fit type sand pile construction method and sand filling construction method of this invention. 本発明を適用した流動化砂(非イオン系流動化保持剤を添加した実施例)の物性試験結果のうち、(a)と(b)は材料砂が法木産を用い、含水比30.0%の流動化砂のテーブルフローとテクスチャー試験結果を示すグラフである。Among the physical property test results of fluidized sand to which the present invention is applied (an example in which a nonionic fluidized retention agent is added), (a) and (b) show that the material sand is made of law wood, and the water content ratio is 30. It is a graph which shows the table flow and texture test result of 0% fluidization sand. 本発明を適用した流動化砂(非イオン系流動化保持剤を添加した実施例)の物性試験結果のうち、(a)と(b)は材料砂が法木産を用い、含水比32.5%の流動化砂のテーブルフローとテクスチャー試験結果を示すグラフである。Among the physical property test results of fluidized sand to which the present invention is applied (an example in which a nonionic fluidized retention agent is added), (a) and (b) are made from raw wood made from a method of wood, and a water content ratio of 32. It is a graph which shows the table flow of 5% fluidized sand, and a texture test result. 本発明を適用した流動化砂(非イオン系流動化保持剤を添加した実施例)の物性試験結果のうち、(a)と(b)は材料砂が法木産を用い、含水比35%の流動化砂のテーブルフローとテクスチャー試験結果を示すグラフである。Among the physical property test results of fluidized sand to which the present invention is applied (an example in which a nonionic fluidized retention agent is added), (a) and (b) are made from sand made from the method wood, and the moisture content is 35%. It is a graph which shows the table flow of a fluidized sand, and a texture test result. 本発明を適用した流動化砂(非イオン系流動化保持剤を添加した実施例)の物性試験結果のうち、(a)と(b)は材料砂が法木産を用い、含水比37%の流動化砂のテーブルフローとテクスチャー試験結果を示すグラフである。Among the physical property test results of fluidized sand to which the present invention is applied (an example in which a nonionic fluidized retention agent is added), (a) and (b) are made of raw wood and have a moisture content of 37%. It is a graph which shows the table flow of a fluidized sand, and a texture test result. 特許文献1に開示されている砂杭造成装置を示す説明図である。It is explanatory drawing which shows the sand pile production apparatus currently disclosed by patent document 1. FIG. (a)〜(c)は施工時における流動化砂の状態変化を示す説明図である。(A)-(c) is explanatory drawing which shows the state change of the fluidization sand at the time of construction.

以下、本発明を適用した形態例を図面を参照して説明する。この説明では、砂圧入式静的締固め工法や砂充填工法に用いられる施工機、流動化砂製造プラント、流動化砂の製造方法、地盤改良工法である砂圧入式静的締固め工法を述べた後、実施例を挙げて本発明の利点を明らかにする。   Embodiments to which the present invention is applied will be described below with reference to the drawings. In this explanation, the construction machine used in the sand press-fit static compaction method and the sand filling method, the fluidized sand production plant, the fluidized sand production method, and the sand press-fit static compaction method that is the ground improvement method are described. Then, the advantages of the present invention will be clarified by giving examples.

(地盤改良工法)本発明の地盤改良工法に用いられる施工機は、大別すると、中空管をリーダに沿って垂直に貫入したり引き抜くクローラタイプと、中空管を補助クレーンに吊り下げた状態で貫入したり引き抜くボーリングマシンタイプと、中空管を任意の角度に貫入したり引き抜くロータリーパーカッションドリルタイプとがあり、対象地盤や施工深度などに応じて選択される。 (Ground improvement method) The construction machine used in the ground improvement method of the present invention can be broadly divided into a crawler type that vertically penetrates or pulls out a hollow tube along a leader, and a hollow tube suspended from an auxiliary crane. There are a boring machine type that penetrates and pulls out in a state and a rotary percussion drill type that penetrates and pulls out a hollow tube at an arbitrary angle, and it is selected according to the target ground and construction depth.

図1は小型クローラタイプの施工機1の一例であり、流動化砂製造プラント2と共に模式的に示している。この施工機1は、中空管3を上下動する昇降機構4と、昇降機構4に保持されて中空管3を回動する回転機構5と、中空管の上端3aに設けられたスイベル15と、製造プラント2で作られた流動化砂を圧送するポンプPと、ポンプPの出口とスイベル15を接続している管路16と、管路16の途中に設けられて圧送されている流動化砂の圧力を検出する圧力計6を備えている。   FIG. 1 shows an example of a small crawler type construction machine 1, schematically showing a fluidized sand production plant 2. The construction machine 1 includes an elevating mechanism 4 that moves the hollow tube 3 up and down, a rotating mechanism 5 that is held by the elevating mechanism 4 and rotates the hollow tube 3, and a swivel provided at the upper end 3a of the hollow tube. 15, a pump P for pumping the fluidized sand produced in the production plant 2, a pipe 16 connecting the outlet of the pump P and the swivel 15, and a pump 16 provided in the middle of the pipe 16. A pressure gauge 6 for detecting the pressure of fluidized sand is provided.

ここで、昇降機構4は、ベースマシン10により移動可能に起立された柱状リーダー12の一側に沿ってラック・ピニオン機構等を介して上下動される。回転機構5は、昇降機構4でリーダー12に沿って昇降されると共に、中空管3をモーター及び減速ギア機構等を介し正転・逆転する。ベースマシン10は、運転室11の前方にリーダー12の下端側を保持し、運転室11の後方側に図示を省いた油圧装置や電動機等を搭載している。運転室11には各種の施工用操作部や制御部が配設されている。リーダー12は、起状シリンダ13等により支持されており、下側に付設されて中空管3の振れを規制する振止具18、上側に付設されて管路16の上側を支えるガイド具17などを有している。管路16の上端は、スイベル15を介し中空管3の上端3aに接続されている。   Here, the elevating mechanism 4 is moved up and down via a rack and pinion mechanism or the like along one side of the columnar leader 12 erected so as to be movable by the base machine 10. The rotating mechanism 5 is moved up and down along the leader 12 by the elevating mechanism 4 and forwardly and reversely rotates the hollow tube 3 via a motor and a reduction gear mechanism. The base machine 10 holds the lower end side of the leader 12 in front of the cab 11, and a hydraulic device, an electric motor, etc., not shown, are mounted on the rear side of the cab 11. In the cab 11, various construction operation units and control units are arranged. The leader 12 is supported by a raised cylinder 13 or the like, and is attached to the lower side to restrain the swinging of the hollow tube 3, and the guide tool 17 is attached to the upper side to support the upper side of the pipe line 16. Etc. The upper end of the pipe line 16 is connected to the upper end 3 a of the hollow pipe 3 through the swivel 15.

ポンプPは、特に高い吸込み力、機密性、空気の吸込みを起こさず、流動化砂性状の変化を低く抑えられるものとして、圧送構造が油圧ピストンを利用したタイプが選択されている。ポンプ駆動は、運転室11に配置された制御部を介して自動制御、又は操縦者により制御される。圧力計6は、ポンプPで圧送されている流動化砂の圧力を検出して中空管3の下端開口より地盤側領域つまり中空管引き抜きにより密度が低くなった箇所及びその周囲に圧入されるときの流動物の圧入圧力を推定可能にする。そして、圧力計6は、施工時において、流動化砂の圧送時の圧力を検出し、その検出信号を運転室11の制御部に送信している。制御部では、その検出信号に基づいて流動物の圧入圧力として、設定圧入圧力になったときにポンプPが駆動停止するようになっている。   As for the pump P, a pumping structure using a hydraulic piston is selected as a pump P that does not cause particularly high suction force, confidentiality, and air suction, and can keep the change in fluidized sand property low. The pump drive is automatically controlled via a control unit arranged in the cab 11 or controlled by the operator. The pressure gauge 6 detects the pressure of the fluidized sand being pumped by the pump P, and is pressed into the ground side region from the lower end opening of the hollow tube 3, that is, the portion where the density is lowered by drawing the hollow tube and the periphery thereof. It is possible to estimate the press-fitting pressure of the fluid when And the pressure gauge 6 detects the pressure at the time of pumping of fluidized sand at the time of construction, and transmits the detection signal to the control part of the cab 11. In the control unit, the pump P stops driving when the set pressure is reached as the fluid pressure based on the detection signal.

(流動化砂製造プラント)この製造プラント2は、混合室21及びアジテータ室22等を有した製造装置20を中心として、混合室21に対し、砂材料7を投入するバックホウ等の砂供給手段23、非イオン系の流動化保持剤を供給する流動化保持剤供給手段24、流動化剤を投入する流動化剤供給手段25、含水量調整用の水を供給する水供給手段26、塑性化剤を投入する塑性化剤供給手段27が設けられている。 (Fluidized sand production plant) This production plant 2 is mainly composed of a production apparatus 20 having a mixing chamber 21 and an agitator chamber 22 and the like, and sand supply means 23 such as a backhoe for feeding sand material 7 into the mixing chamber 21. , Fluidization retention agent supply means 24 for supplying nonionic fluidization retention agent, fluidization agent supply means 25 for supplying fluidization agent, water supply means 26 for supplying water for adjusting water content, plasticizing agent A plasticizing agent supply means 27 is provided for charging the material.

砂圧入式静的締固め工法の適用に際しては、事前調査により対象地盤の特性に応じて材料砂の選定と配合仕様が決定される。製造プラント2では、通常、目的の流動化砂が混合室21で1バッチ量(改良体9)毎に作製される。砂供給手段23により投入される材料砂7、添加剤供給手段24により供給されるイオン電荷中和用添加剤、流動化剤供給手段25により投入される流動化剤、水供給手段26により供給される水、塑性化剤供給手段27により供給される塑性化剤については、以下にその選択基準や作用などを明らかにする。   When applying the sand press-fit type static compaction method, material sand selection and blending specifications are determined according to the characteristics of the target ground through a preliminary survey. In the production plant 2, the intended fluidized sand is normally produced in the mixing chamber 21 for each batch (improved body 9). Sand supplied by the sand supply means 23, ionic charge neutralizing additive supplied by the additive supply means 24, fluidizing agent supplied by the fluidizing agent supply means 25, water supply means 26 The selection criteria and action of the plasticizer supplied by the water and plasticizer supply means 27 will be clarified below.

(1)、対象の材料砂は、一旦流動性を高めた状態でポンプ圧送するため、配管内で閉塞しない保水性の良さと、圧入時に脱水する排水性の良さとを併せ持つ性質が好ましい。この点は、特開2015−183466号公報の図6及びその関連記載を参照されたい。しかし、ここでの材料砂7は、通常ではないイレギュラーな砂、つまり砂が流動化剤の阻害要因となる陽イオンを含んでいたり、細粒分含有率が高い等の要因により、テクスチャー試験等から砂圧入式静的締固め工法や砂充填工法への適用が困難であると判断された砂である。従って、それ以外つまり通常の材料砂の場合は、本発明の非イオン系の流動化保持剤を混ぜる必要はないことは勿論である。 (1) Since the target material sand is pumped in a state where the fluidity is once enhanced, it preferably has the property of having both good water retention that does not block in the piping and good drainage that dehydrates during press-fitting. For this point, refer to FIG. 6 of JP-A-2015-183466 and the related description. However, the material sand 7 here is an irregular sand that is not normal, that is, the sand contains a cation that obstructs the fluidizing agent, and the fine grain content rate causes a texture test. The sand is judged to be difficult to apply to the sand press-fit static compaction method and sand filling method. Therefore, in other cases, that is, in the case of ordinary material sand, it is needless to say that it is not necessary to mix the nonionic fluidizing retention agent of the present invention.

(2)、非イオン系流動化保持剤は、流動化砂の経時的な性状を改善して正常な圧入施工を維持可能にするもので、具体的には非イオン性界面活性剤やそれに類似のものである。非イオン性界面活性剤は、アニオン界面活性剤やカチオン界面活性剤よりも流動化砂の経時的な性状を改善する上でかなり優れていることが判明している。この理由は、未だよく解明されていないが、非イオン性界面活性剤は他の界面活性剤に比べ水に溶けたときにイオン化しない親水基を持っており水の硬度や電解質の影響を受け難くいことと、乳化・可溶化力に優れているからと考えられる。 (2) The nonionic fluidizing retention agent improves the time-dependent properties of fluidized sand and makes it possible to maintain normal press-fitting. Specifically, it is a nonionic surfactant or similar. belongs to. Nonionic surfactants have been found to be significantly better at improving the time-dependent properties of fluidized sand than anionic and cationic surfactants. The reason for this is not well understood, but nonionic surfactants have a hydrophilic group that does not ionize when dissolved in water compared to other surfactants, and are less susceptible to water hardness and electrolytes. This is probably because of its excellent emulsification / solubilization power.

また、非イオン性界面活性剤としては、イオンに解離する基を持たない界面活性剤であり、エーテル型、エステル型、エーテルエステル型などいずれでもよい。以下に非イオン性界面活性剤の好適な具体例として化学名称と市販の製品例を挙げる。(a)ヤシ油脂肪酸ジエタノールアミド(1:1型)、製品例は第一工業製薬株式会社製(以下、第一工業製と略称する)の商品名ダイヤノールCDEである。(b)ポリオキシエチレンアルキルエーテル、製品例は第一工業製の商品名ノイゲン ET-115やノイゲン ET-135である。(c)ポリオキシエチレンポリオキシプロピレンブロックポリマー、製品例は第一工業製の商品名エパン 720やU-108である。(d)ポリオキシエチレンジステアリン酸エステル、製品例は第一工業製の商品名イノゲン DS-601である。(e)ポリオキシエチレンオレイン酸エステル、製品例は第一工業製の商品名ノイゲン ES-149Dである。(f)ポリオキシエチレンアルキルアミンエーテル、製品例は第一工業製の商品名アミラジンC-1802である。(g)ポリオキシエチレンスチレン化フェニルエーテル、製品例は第一工業製の商品名ノイゲン EA-137である。(h)ポリオキシアルキレンオレイルセチルエーテル、製品例は第一工業製の商品名ノイゲン ET-129である。   Further, the nonionic surfactant is a surfactant that does not have a group capable of dissociating into ions, and may be any of ether type, ester type, ether ester type and the like. The chemical names and commercially available product examples are given below as preferred specific examples of the nonionic surfactant. (A) Coconut oil fatty acid diethanolamide (1: 1 type), a product example is a trade name of Dianol CDE manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (hereinafter abbreviated as “Daiichi Kogyo”). (B) Polyoxyethylene alkyl ether, product examples are trade names Neugen ET-115 and Neugen ET-135 manufactured by Daiichi Kogyo. (C) Polyoxyethylene polyoxypropylene block polymer, product examples are trade names Epan 720 and U-108 manufactured by Daiichi Kogyo. (D) Polyoxyethylene distearic acid ester, a product example is trade name Inogen DS-601 manufactured by Daiichi Kogyo. (E) Polyoxyethylene oleate, a product example is trade name Neugen ES-149D manufactured by Daiichi Kogyo. (F) Polyoxyethylene alkylamine ether, a product example is trade name Amirazine C-1802 manufactured by Daiichi Kogyo. (G) Polyoxyethylene styrenated phenyl ether, a product example is the trade name Neugen EA-137 manufactured by Daiichi Kogyo. (H) Polyoxyalkylene oleyl cetyl ether, a product example is trade name Neugen ET-129 manufactured by Daiichi Kogyo.

以上の非イオン系の流動化保持剤は、原料の材料砂に流動化剤と同時に混ぜても改善効果はあまり期待できず、更に材料砂に流動化剤を混入した後に混ぜると改善効果が得られない。つまり、原料の材料砂には、当該材料砂や水に含まれる上記した流動化剤の阻害要因を流動化保持剤にて予め解消ないしは抑制してから流動化剤を混入する。また、原料の材料砂に対する添加剤の混合割合は、後述の実施例より推察されるごとく対象の材料砂や含水比によっても異なる。一般的には、添加量の下限値が0.05%以上で、添加量の上限値が大きくなると経費も比例して高くなるため0.10%程度にすることが好ましい。   The above non-ionic fluidization retention agents cannot be expected to improve much when mixed with the raw material sand at the same time as the fluidizing agent. I can't. In other words, the fluidizing agent is mixed into the raw material sand after the above-described inhibiting factors of the fluidizing agent contained in the material sand and water are eliminated or suppressed in advance by the fluidizing retention agent. Moreover, the mixing ratio of the additive with respect to the raw material sand differs depending on the target material sand and the water content ratio as inferred from the examples described later. Generally, the lower limit value of the addition amount is 0.05% or more, and the cost increases in proportion to the increase of the upper limit value of the addition amount.

(3)、水は、含水比調整用であり、流動化剤等に影響する成分、特に金属イオン等の陽イオンを含む工業用水や海水は避けて、中性の水道水を用いることが好ましい。水の使用量は通常、製造される流動化砂の含水比が30%から40%となるよう算出される。この含水比は、高くなると投入容量も比例して多くなり地盤変位を生じ易くなるため低い方が好ましい。 (3) Water is used for adjusting the water content ratio, and it is preferable to use neutral tap water, avoiding industrial water and seawater containing components that affect the fluidizing agent and the like, particularly cations such as metal ions. . The amount of water used is usually calculated so that the water content of the fluidized sand produced is 30% to 40%. As this water content ratio increases, the input capacity also increases in proportion and it is easy to cause ground displacement.

(4)、流動化剤は、砂の粒子間の間隙水の粘性を高め、飽和状態で砂と水の分離を抑制してポンプ圧送性を向上させる添加剤である。好ましくは、粘性を高め砂粒子の沈降分離を抑制するアニオン系高分子凝集剤であり、他にノニオン系高分子凝集剤、カチオン系高分子凝集剤などでもよい。これらは、高分子の親水基と高分子の網の内部に水分を保持する性能に優れ、品質の長期安定性も高い。なお、アニオン系高分子凝集剤としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、アクリルアミド2−メチルプロパンスルフォン酸、ビニルスルフォン酸、スチレンスルフォン酸などの単独重合体あるいはアクリルアミドとの共重合体が挙げられる。 (4) The fluidizing agent is an additive that increases the viscosity of pore water between sand particles and suppresses separation of sand and water in a saturated state to improve pumpability. Preferably, it is an anionic polymer flocculant that increases the viscosity and suppresses the settling and separation of sand particles, and may also be a nonionic polymer flocculant or a cationic polymer flocculant. These are excellent in the performance of retaining moisture inside the polymer hydrophilic groups and the polymer network, and also have high quality long-term stability. As anionic polymer flocculants, homopolymers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, acrylamide 2-methylpropane sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, and copolymers with acrylamide Is mentioned.

流動化剤の配合割合は、材料砂に対し、外割配合で0.01〜2.0重量%、好ましくは0.1〜1.0重量%である。この配合割合は、少な過ぎると、材料砂が流動化せず、配管内で分離したり目詰まりしたりして圧送できなくなると共に、多過ぎても流動化効果は変わらず、却ってコストを上昇させることになる。   The blending ratio of the fluidizing agent is 0.01 to 2.0% by weight, preferably 0.1 to 1.0% by weight, based on the material sand. If this blending ratio is too small, the material sand will not fluidize, it will be separated or clogged in the piping and cannot be pumped, and if it is too much, the fluidization effect will not change, and the cost will be increased. It will be.

(5)、遅効性塑性化剤の使用量は、流動化砂を塑性化できる配合量であり、製造される流動化砂中の材料砂に対して、外割配合で0.001〜2重量%、好ましくは0.01〜1.0重量%である。この添加量は、少な過ぎると、流動化物が塑性化せず、設計通りの改良体が造成できなくなり、添加が多過ぎると塑性化が早く起こりポンプ圧送に支障をきたすと同時に、コスト的に高くなる。 (5) The amount of the slow-acting plasticizing agent used is a blending amount capable of plasticizing the fluidized sand, and is 0.001 to 2% by weight based on the material sand in the fluidized sand to be produced. %, Preferably 0.01 to 1.0% by weight. If the amount added is too small, the fluidized material will not be plasticized, and it will not be possible to produce an improved body as designed.If the amount added is too large, plasticization will occur quickly, hindering pumping and at the same time will be expensive. Become.

(流動化砂の製造方法)図1の製造プラント2において、砂圧入式静的締固め工法や砂充填工法に使用する流動化砂作製に際し、原料の材料砂がテクスチャー試験などから適用困難であると判断された場合に次のような要領で目的の流動化砂が作製されることになる。まず、1バッチ量に対応する所定量の材料砂に対し、所要量の非イオン系の流動化保持剤を均一となるよう混ぜ、又は、所要量の非イオン系の流動化保持剤と共に含水比調整用水を混ぜる。その後、流動化剤と遅効性塑性化剤とを加えて流動化砂を作製する。これらは、例えば、材料砂に対し、流動化剤、又は、流動化剤と含水比調整用水、或いは流動化剤と含水比調整用水と遅効性塑性化剤を混ぜて流動化砂を作製した後、非イオン系の流動化保持剤を混ぜても、作製される流動化砂としての経時的な性状が改善されないからである。つまり、原料の材料砂に対し流動化剤を混ぜる前段階において、非イオン系の流動化保持剤を混ぜて当該材料砂に含まれる流動化剤の阻害要因を解消ないしは抑制することが必須となる。 (Manufacturing method of fluidized sand) In the manufacturing plant 2 shown in FIG. 1, it is difficult to apply the material sand of the raw material from the texture test or the like when preparing the fluidized sand used in the sand press-fit static compaction method or the sand filling method. When it is determined that the target fluidized sand is produced in the following manner. First, mix the required amount of nonionic fluidizing retention agent uniformly with a predetermined amount of material sand corresponding to one batch amount, or the water content ratio together with the required amount of nonionic fluidization retention agent. Mix the adjustment water. Thereafter, a fluidizing sand is prepared by adding a fluidizing agent and a slow-acting plasticizing agent. For example, after preparing fluidized sand by mixing a fluidizing agent, or a fluidizing agent and water content adjustment water, or a fluidizing agent, water content ratio adjusting water and a slow-acting plasticizer with respect to the material sand. This is because, even when a nonionic fluidizing retention agent is mixed, the properties over time of the fluidized sand produced are not improved. In other words, before mixing the fluidizing agent with the material sand of the raw material, it becomes essential to eliminate or suppress the inhibiting factor of the fluidizing agent contained in the material sand by mixing a nonionic fluidizing retention agent. .

(砂圧入式静的締固め工法)この工法は、図1の施工機1を使用した例で特徴点を挙げると次のようになる。まず、操作手順は、中空管3を昇降機構4を介して地中の設計深さまで貫入した後、所定ピッチだけ引き抜く引抜工程と、該引抜工程にて中空管3の下方にできる密度の低い領域及びその周囲に流動化砂を圧入する供給工程とを繰り返し行うことにより所定長さの改良体9を造成する。施工管理は、運転室11の制御部において、中空管3の最大貫入深さ(下端深度)、1ピッチ分の引抜長さL、総ピッチ数((下端深度−上端深度)/L)、設定圧入(吐出)圧力などの値がプログラムに入力される。また、製造された流動化砂がアジテータ部22に用意される。 (Sand press-fit type static compaction method) This method is as follows when the feature points are exemplified in the example using the construction machine 1 of FIG. First, the operation procedure is such that the hollow tube 3 is penetrated to the design depth in the ground via the lifting mechanism 4 and then pulled out by a predetermined pitch, and the density that can be formed below the hollow tube 3 in the pulling step. The improvement body 9 having a predetermined length is formed by repeatedly performing the supply process of press-fitting fluidized sand into the low area and the surrounding area. The construction management is carried out in the control section of the cab 11 with the maximum penetration depth of the hollow tube 3 (lower end depth), the drawing length L for one pitch, the total number of pitches ((lower end depth−upper end depth) / L), Values such as the set press-fit (discharge) pressure are input to the program. The produced fluidized sand is prepared in the agitator section 22.

施工に際しては、施工機1が施工箇所に移動されて位置決めされた後、中空管3が昇降機構4及び回転機構5を介して回転されながら地盤に貫入操作される。この貫入は、中空管3の下端が設計深さ(下端深度)に達したか否かを不図示の深度計からの信号により判断され、設計深さに達した時点で昇降機構4などを介して貫入が停止される。   At the time of construction, after the construction machine 1 is moved and positioned at the construction site, the hollow tube 3 is inserted into the ground while being rotated through the lifting mechanism 4 and the rotating mechanism 5. This penetration is determined by a signal from a depth meter (not shown) whether or not the lower end of the hollow tube 3 has reached the design depth (lower end depth). The penetration is stopped.

次に、制御部は、昇降機構4を介して1ピッチ(例えば、20cm)分だけ中空管3の引抜きを開始するよう制御し、同時に、ポンプPが稼動されて流動化砂が圧送されて引抜きに伴って中空管3の下方に形成される領域及びその周囲に圧入するよう制御する。すなわち、制御部は、引抜きが1ピッチ分に達したか否かを判断し、引抜きが1ピッチに達したと判断されると、昇降機構4が停止ないしはアイドリング状態となるよう制御する。また、制御部は、流動化砂の圧入状態として、上記した領域に吐出される流動化砂の圧入圧力が設定値に達したか否かを圧力計6から送られている検出信号に基づいて判断し、圧入圧力が設定圧力になったと判断すると、ポンプPが停止ないしは不図示の開閉バルブを閉状態に切り換える。また、制御部では、総ピッチ数ないしは全ピッチ引抜完了したか否かが判断され、総ピッチ数に達するまで引抜きと流動化砂の圧入が繰り返される。また、総ピッチ数に達すると、1本の改良体9が終了される。その後、地盤改良装置1は次の施工箇所に移動されて位置決めされた後、再び以上の操作が行われる。   Next, the control unit controls to start drawing the hollow tube 3 by one pitch (for example, 20 cm) through the lifting mechanism 4, and at the same time, the pump P is operated and the fluidized sand is pumped. It controls so that it may press-fit in the area | region formed under the hollow tube 3 with the drawing | extraction, and its circumference | surroundings. That is, the control unit determines whether or not the drawing has reached one pitch, and when it is determined that the drawing has reached one pitch, controls the lifting mechanism 4 to be stopped or in an idling state. Further, the control unit determines whether or not the press-fitting pressure of the fluidized sand discharged to the above-described region has reached a set value as the press-fitted state of the fluidized sand based on the detection signal sent from the pressure gauge 6. When it is determined that the press-fitting pressure has reached the set pressure, the pump P stops or switches an open / close valve (not shown) to a closed state. Further, the control unit determines whether or not the total number of pitches or all pitches have been drawn, and the drawing and press-fitting of fluidized sand are repeated until the total number of pitches is reached. Further, when the total number of pitches is reached, one improved body 9 is terminated. Then, after the ground improvement apparatus 1 is moved and positioned to the next construction location, the above operation is performed again.

(実施例1)この実施例1では、表3に示されるごとく原料の材料砂として表2の法木産を用い、含水比を表2と同じく30%、32.5%、35%、37%のグループに調整した。そして、各含水比の材料砂を、更に3つの材料砂試料に分け、各材料砂試料に対し非イオン系流動化保持剤として上記したダイヤノールCDEを、添加量0.05%、添加量0.075%、添加量0.10%(但し、含水比37%の材料砂はダイヤノールCDE5を添加量0.10%だけ)となるよう混入し、10種類の材料砂試料を作製した。その後は、各材料砂試料に流動化剤と遅効性塑性化剤をそれぞれ決められた割合で混合して10種類の流動化砂を作製した。各流動化砂について、表2の場合と同様にテーブルフロー試験とテクスチャー試験を行った。表3はその試験結果を一覧したものである。 (Example 1) In Example 1, as shown in Table 3, the raw material sand of Table 2 was used as the raw material sand, and the moisture content was 30%, 32.5%, 35%, 37 as in Table 2. % Adjusted to group. Then, the material sand having each water content ratio is further divided into three material sand samples, and the above-mentioned Dianol CDE is added to each material sand sample as a nonionic fluidization retention agent in an addition amount of 0.05% and an addition amount of 0. 0.075% and an addition amount of 0.10% (however, the material sand with a water content ratio of 37% was mixed so that the amount of addition was 0.10% of Dianol CDE5), and 10 kinds of material sand samples were prepared. Thereafter, 10 kinds of fluidized sand were prepared by mixing each material sand sample with a fluidizing agent and a slow-acting plasticizer at a predetermined ratio. Each fluidized sand was subjected to a table flow test and a texture test in the same manner as in Table 2. Table 3 lists the test results.

なお、テクスチャー試験では、所定容器に流動化砂(試料)を充填し、市販のテクスチャー試験装置として株式会社山電製の卓上式物性測定器にセットした後、シリンダーを一定速度で上下させ、試料上面から20mmの貫入及び引抜を行う。貫入応力は、貫入時の最大荷重haを応力に換算した値である。また、フロー(テーブルフロー)試験は、セメントの物性試験方法(JIS R5201−1997)に準拠して行った。これらは表2〜表7の各実施例共に同じである。   In the texture test, fluidized sand (sample) is filled in a predetermined container, set as a commercially available texture test device on a tabletop physical property measuring instrument manufactured by Yamaden Co., Ltd., and then the cylinder is moved up and down at a constant speed to obtain a sample. Penetration and withdrawal 20mm from the top. The penetration stress is a value obtained by converting the maximum load ha at the time of penetration into stress. Further, the flow (table flow) test was performed in accordance with a cement physical property test method (JIS R5201-1997). These are the same in each example of Tables 2-7.

表3:表2の法木産の材料砂を用いた流動化砂(非イオン系の流動保持剤を添加して作製した実施例1の流動化砂)の試験結果。すなわち、材料砂は法木産、材料砂の含水比が30%、32.5%、35.0%、37% 、非イオン系流動化保持剤としてダイヤノールCDEを添加(含水比30%、32.5%、35.0%では添加量0.05%、添加量0.075%、添加量0.10%となるよう添加、含水比37%では添加量0.10%となるよう添加)し作製した合計10の実施例である。この比較例は、上記表2の法木産の材料砂、含水比が30%、32.5%、35.0%、37%で、非イオン系流動化保持剤を添加しない4例である。































Figure 2019031791

・表3中の「×」はテーブルフロー値・テクスチャー値が基準値外であることを示す。
・*含水比30%でイオン系流動化保持剤であるダイヤノールCDEの添加量0%のものはテクスチャー(貫入応力)が248,679(Pa)以上となった。 Table 3: Test results of fluidized sand (fluidized sand of Example 1 prepared by adding a nonionic fluid retention agent) using the method wood material sand of Table 2. That is, the material sand is made of law wood, the water content ratio of the material sand is 30%, 32.5%, 35.0%, 37%, and Dianol CDE is added as a nonionic fluidization retention agent (water content ratio is 30%, Add 30.05%, 35.0% to add 0.05%, add 0.075%, add 0.10%, add 0.10% to 37% water content 10 examples in total. This comparative example is four examples of the method wood material sand of Table 2 above, the water content ratio is 30%, 32.5%, 35.0%, 37%, and no non-ionic fluidizing retention agent is added. .































Figure 2019031791

“X” in Table 3 indicates that the table flow value / texture value is outside the reference value.
* The texture (penetration stress) of 248,679 (Pa) or more was obtained when the water content ratio was 30% and the addition amount of Dianol CDE as an ionic fluidization retention agent was 0%.

(実施例2)この実施例2では、実施例1に対し非イオン系流動化保持剤としてノイゲンET-115を用いた例であり、それ以外は実施例1と同じ。なお、表2の法木産を用い、イオン系流動化保持剤の添加量0%の試験結果は表3と同じため省略した。 (Example 2) In Example 2, Neugen ET-115 was used as a nonionic fluidization retaining agent for Example 1, and the other cases were the same as Example 1. In addition, the test result of the addition amount 0% of the ionic fluidization retention agent was omitted because it was the same as in Table 3, using the method wood from Table 2.

表4:表2の法木産の材料砂を用いた流動化砂(非イオン系流動化保持剤を添加して作製した実施例2の流動化砂)の物性試験結果。すなわち、材料砂は法木産、材料砂の含水比が30%、32.5%、35.0%、37%、非イオン系流動化保持剤としてノイゲンET-115を添加 (含水比30%、32.5%、35.0%では添加量0.05%、添加量0.075%、添加量0.10%となるよう添加し、含水比37%では添加量0.10%となるよう添加)し作製した合計10の実施例である。


Figure 2019031791

・表4中の「×」はデーブルフロー値・テクスチャー値が基準値外であることを示す。 Table 4: Physical property test results of fluidized sand (fluidized sand of Example 2 prepared by adding a nonionic fluidized retention agent) using the method wood material sand of Table 2. That is, the material sand is made of wood, the water content ratio of the material sand is 30%, 32.5%, 35.0%, 37%, and Neugen ET-115 is added as a nonionic fluidization retention agent (water content ratio 30% When 32.5% and 35.0% are added, the addition amount is 0.05%, the addition amount is 0.075%, and the addition amount is 0.10%. When the water content is 37%, the addition amount is 0.10%. This is a total of 10 examples prepared by adding the above.


Figure 2019031791

“X” in Table 4 indicates that the table flow value / texture value is outside the reference value.

(評価)図2〜図5は以上の実施例1と2の試験結果をグラフにまとめたものである。各図において、製造された流動化砂は、非イオン系流動化保持剤が添加されていない比較例(表2の法木産、非イオン系流動化保持剤添加なし)の流動化砂の計測値を×印で示している。非イオン系流動化保持剤としてダイヤノールCDEが用いられて、添加量0.05%の流動化砂の計測値を黒三角印、添加量0.075%の流動化砂の計測値を黒四角印、添加量0.10%の流動化砂の計測値を黒丸印で示している。非イオン系流動化保持剤としてノイゲンET-115が用いられて、添加量0.05%の流動化砂の計測値を白三角印、添加量0.075%の流動化砂の計測値を白四角印、添加量0.10%の流動化砂を白丸印で示している。各図からは、流動化砂として、非イオン系流動化保持剤が添加されているか否かにより次のようなことが分かる。 (Evaluation) FIGS. 2 to 5 summarize the test results of Examples 1 and 2 in the form of graphs. In each figure, the produced fluidized sand is measured for the fluidized sand of a comparative example in which a nonionic fluidized retention agent is not added (the method of Table 2, a non-ionic fluidized retention agent added). The value is indicated by a cross. Dianol CDE is used as a nonionic fluidization retention agent. The measured value of 0.05% fluidized sand is black triangle mark, and the measured value of 0.075% fluidized sand is black square. And the measured value of fluidized sand with an addition amount of 0.10% is indicated by black circles. Neugen ET-115 is used as a non-ionic fluidization retention agent. The measured value of 0.05% fluidized sand is indicated by white triangles, and the measured value of 0.075% fluidized sand is white. Square marks and fluidized sand with an addition amount of 0.10% are indicated by white circles. From each figure, the following can be understood depending on whether or not a nonionic fluidizing retention agent is added as fluidized sand.

第1に、×印で示された比較例の流動化砂は、非イオン系流動化保持剤を添加していないもので、含水比に係わらずテーブルフロー値及び貫入応力値共に製造直後を除いて基準値から大きく外れている。これに対し、×印以外の実施例の流動化砂は、非イオン系流動化保持剤を添加しているため、比較例と比べて、テーブルフロー値及び貫入応力値共に物性的にかなりの程度に改善されたことが分かる。従って、このような流動化砂の性状改善方法は、原料の材料砂として、粒度分布等の規定範囲を満足していないため適用不能であった材料砂、粒度分布等の規定範囲を満足しているにも係わらず上記した性状阻害要因により適用不能であった材料砂、それらの材料砂の適用可能性を広げ、引いては経費低減と共に流動化砂を用いる地盤改良工法の適用機会拡大に寄与できる。   First, the fluidized sand of the comparative example indicated by the x mark is a non-ionic fluidized retaining agent added, except for the table flow value and the intrusion stress value immediately after production regardless of the water content ratio. This is far from the standard value. On the other hand, since the fluidized sand of the examples other than the X mark has a nonionic fluidized retention agent added, both the table flow value and the penetration stress value are considerably physical properties compared to the comparative example. It can be seen that it has been improved. Therefore, such a method for improving the properties of fluidized sand satisfies the specified range of material sand, particle size distribution, etc., which is not applicable because it does not satisfy the specified range of particle size distribution, etc. as raw material sand. In spite of this, the material sand that could not be applied due to the above-mentioned property hindrance factors, and the applicability of those material sands were expanded, which in turn reduced costs and contributed to the expansion of application opportunities for ground improvement methods using fluidized sand. it can.

第2に、前記改善度合いは、例えば、材料砂の含水比が30%より35%や37%と言うように高くなる程、基準値に収まる確率も上がる傾向となる。図4の含水比35%において、非イオン系流動化保持剤としてダイヤノールCDEとノイゲンET-115を用いて、それぞれ添加量0.05%となるよう添加した流動化砂を比べると、テーブルフロー値は共に基準値に収まっているが、貫入応力の値はノイゲンET-115を添加した流動化砂は製造1時間後で基準値に収まっているが、ダイヤノールCDEを添加した流動化砂は製造1時間後で基準値から少し外れている。一方、ダイヤノールCDEとノイゲンET-115を用いて、それぞれ添加量0.10%となるよう添加した流動化砂を比べると、テーブルフロー値と貫入応力の値は製造1時間後、製造3時間後共に基準値に収まっている。イオン系流動化保持剤の添加による改善方法を採用する際は、含水比との関係も検討することが重要となる。勿論、一般的には含水比が高くなる程、地盤に圧送すべき流動化砂の体積も増えるためその点からの検討も必要となる。   Second, for example, as the water content ratio of the material sand increases from 30% to 35% or 37%, the probability of being within the reference value tends to increase. When the water content in FIG. 4 is 35% and the fluidized sand added to 0.05% is added by using Dianol CDE and Neugen ET-115 as nonionic fluidizing retention agents, the table flow Both values are within the standard value, but the intrusion stress value is within the standard value for the fluidized sand with Neugen ET-115 added, but the fluidized sand with the addition of Dianol CDE is It is slightly off the standard value after 1 hour of production. On the other hand, when comparing the fluidized sand added with Dianol CDE and Neugen ET-115 so that the addition amount is 0.10%, the table flow value and the penetration stress value are 1 hour after production and 3 hours after production. Both of them are within the standard values. When adopting an improvement method by adding an ionic fluidization retention agent, it is important to consider the relationship with the water content ratio. Of course, in general, the higher the water content ratio, the greater the volume of fluidized sand that should be pumped to the ground.

第3に、前記改善度合いは、非イオン系流動化保持剤として、ダイヤノールCDEを使用した流動化砂と、ノイゲンET-115を使用した流動化砂とを比較すると、テーブルフロー値は全体としてさほどの違いがないのに対し、貫入応力の値は特に含水比30%と低い場合だとかなりの相違となり、含水比35%以上になると差が縮まる傾向となる。すなわち、非イオン系流動化保持剤のうち、非イオン性界面活性剤として具体的に何を用いるかは対象の材料砂や水等に応じ予め検討し最適なものを選択決定することが好ましい。   Thirdly, when the degree of improvement is compared between the fluidized sand using Dianol CDE and the fluidized sand using Neugen ET-115 as a nonionic fluidized retention agent, the table flow value is as a whole. While there is not much difference, the value of the penetration stress is particularly different when the moisture content is as low as 30%, and when the moisture content is 35% or more, the difference tends to be reduced. That is, among the nonionic fluidizing and retaining agents, what is specifically used as the nonionic surfactant is preferably determined in advance according to the target material sand, water, etc., and the optimum one is selected and determined.

(実施例3)この実施例3では、原料の材料砂として表2の万田野産を用い、含水比を表2と同じく37.5%、40%の2グループに調整すると共に、非イオン系の流動化保持剤として上記したダイヤノールCDEを、添加量0.10%、0.15%となるよう混入し、4種類の材料砂試料を作製した。その後、各材料砂試料に流動化剤と遅効性塑性化剤をそれぞれ決められた割合で混合して4種類の流動化砂を作製した。各流動化砂について、表2と同様にテーブルフロー試験とテクスチャー試験を行った。表5はその試験結果と共に一覧したものである。 (Example 3) In this Example 3, as the material sand of the raw material, the product from Mandano in Table 2 was used, and the water content ratio was adjusted to 2 groups of 37.5% and 40% as in Table 2, and the nonionic system The above-mentioned Dianol CDE as a fluidization retention agent was mixed so that the addition amount was 0.10% and 0.15%, and four types of material sand samples were prepared. Thereafter, each material sand sample was mixed with a fluidizing agent and a slow-acting plasticizing agent at a predetermined ratio to prepare four types of fluidized sand. Each fluidized sand was subjected to a table flow test and a texture test in the same manner as in Table 2. Table 5 lists the test results.

表5:表2の万田野産の材料砂を用いた流動化砂(非イオン系の流動保持剤を添加して作製した実施例3の流動化砂)の試験結果。すなわち、材料砂は万田野産、材料砂の含水比37.5%と40%、非イオン系流動化保持剤としてダイヤノールCDEを使用した4つの実施例と、無添加の2つの比較例である。









Figure 2019031791

・表5中の「×」はテーブルフロー値・テクスチャー値が基準値外であることを示す。 Table 5: Test results of fluidized sand (fluidized sand of Example 3 prepared by adding a nonionic fluid retention agent) using material sands from Mandano from Table 2. That is, the material sand is from Mandano, the water content ratio of the material sand is 37.5% and 40%, and four examples using Dianol CDE as a nonionic fluidization retention agent and two additive-free comparative examples. is there.









Figure 2019031791

“X” in Table 5 indicates that the table flow value / texture value is outside the reference value.

(評価)実施例3の試験結果からは、万田野産の材料砂を用い、含水比37.5%、40%に調整した材料砂試料により作製した従来の流動化砂、つまり非イオン系の流動化保持剤を添加しないと流動化砂は、テーブルフロー値と貫入応力の値が製造直後を除いて共に基準値から外れて使用できない。これに対し、非イオン系の流動化保持剤を添加量0.10%、及び添加量0.15%となるよう添加して作製した流動化砂は、テーブルフロー値と貫入応力の値が共に基準値内に収まり、また製造3時間後でも含水比37.5%で、添加量0.1%のものを除いて基準値内に収まっている。このため、実施例3からも従来使用不能とされていた材料砂でも、非イオン系の流動化保持剤を適量添加するだけで性状が大幅に改善されて使用可能になることが分かる。 (Evaluation) From the test results of Example 3, the conventional fluidized sand produced by using material sand samples made from Mandano and adjusted to a water content ratio of 37.5% and 40%, that is, nonionic Unless the fluidizing retention agent is added, the fluidized sand cannot be used because both the table flow value and the penetration stress value deviate from the standard values except immediately after production. On the other hand, fluidized sand prepared by adding a nonionic fluidizing retention agent to an addition amount of 0.10% and an addition amount of 0.15% has both a table flow value and an intrusion stress value. It falls within the standard value, and even after 3 hours of production, the water content ratio is 37.5%, and it is within the standard value except for the addition amount of 0.1%. For this reason, it can be seen from Example 3 that even the material sand that has been conventionally unusable can be used with its properties greatly improved by simply adding an appropriate amount of a nonionic fluidizing retention agent.

(実施例4)この実施例4では、原料の材料砂として表2の木曽川産を用い、含水比を表2と同じく30%、35%の2グループに調整すると共に、非イオン系の流動化保持剤として上記したダイヤノールCDEを、添加量0.1%、添加量0.15%となるよう混入し、2種類の材料砂試料を作製した。その後、各材料砂試料に流動化剤と遅効性塑性化剤をそれぞれ決められた割合で混合して2種類の流動化砂を作製した。各流動化砂について、表2の場合と同様にテーブルフロー試験とテクスチャー試験を行った。表6はその試験結果と共に一覧したものである。 (Example 4) In this Example 4, Kisogawa from Table 2 was used as the material sand of the raw material, and the water content ratio was adjusted to 2 groups of 30% and 35% as in Table 2, and non-ionic fluidization was performed. Two kinds of material sand samples were prepared by mixing the above-mentioned Dianol CDE as a retaining agent so that the addition amount was 0.1% and the addition amount was 0.15%. Thereafter, two types of fluidized sand were prepared by mixing each material sand sample with a fluidizing agent and a slow-acting plasticizer at a predetermined ratio. Each fluidized sand was subjected to a table flow test and a texture test in the same manner as in Table 2. Table 6 lists the test results.

表6:表2の木曽川産の材料砂を用いた流動化砂(非イオン系の流動保持剤を添加して作製した実施例4の流動化砂)の試験結果。すなわち、材料砂は木曽川産、材料砂の含水比30%と35%、非イオン系流動化保持剤としてダイヤノールCDEを添加して作製した4つの実施例と、無添加の2つの比較例である。



Figure 2019031791

・表6中の「×」はデーブルフロー値・テクスチャー値が基準値外であることを示す。 Table 6: Test results of fluidized sand (fluidized sand of Example 4 prepared by adding a nonionic fluid retention agent) using material sand from Kisogawa in Table 2. That is, the material sand is produced in Kisogawa, 30% and 35% moisture content of the material sand, 4 examples prepared by adding Dianol CDE as a nonionic fluidization retention agent, and 2 comparative examples without addition. is there.



Figure 2019031791

“X” in Table 6 indicates that the table flow value / texture value is outside the reference value.

(評価)実施例4の試験結果からは、木曽川産の材料砂を用い、含水比30%、35%に調整した材料砂試料により作製した従来の流動化砂、つまり非イオン系の流動化保持剤を添加しない流動化砂は、貫入応力の値が製造直後を除いて共に基準値から外れて使用できない。これに対し、非イオン系の流動化保持剤を添加量0.10%、及び添加量0.15%となるよう添加して作製した流動化砂は、テーブルフロー値と貫入応力の値が共に基準値内に収まり、また製造3時間後でも含水比に関わらず基準値内に収まっている。このため、実施例4も従来使用不能とされていた材料砂であっても、非イオン系の流動化保持剤を適量添加するだけで性状が大幅に改善されて使用可能になることが分かる。 (Evaluation) From the test results of Example 4, conventional fluidized sand prepared from a material sand sample adjusted to a moisture content of 30% and 35% using a material sand from Kisogawa, that is, nonionic fluidized retention Fluidized sand to which no agent is added cannot be used because the value of the intrusion stress deviates from the standard value except for immediately after production. On the other hand, fluidized sand prepared by adding a nonionic fluidizing retention agent to an addition amount of 0.10% and an addition amount of 0.15% has both a table flow value and an intrusion stress value. It is within the standard value, and even within 3 hours after production, it is within the standard value regardless of the water content ratio. For this reason, it can be seen that even if Example 4 is a material sand that has been conventionally unusable, simply adding a suitable amount of a non-ionic fluidizing retention agent can greatly improve its properties and make it usable.

(実施例5)この実施例5では、原料の材料砂として表2の戸崎産を用い、含水比40%に調整した2組の材料砂を用意し、各材料砂に非イオン系の流動化保持剤として上記したダイヤノールCDEを、添加量0.10%及び添加量0.15%となるよう混入し、2種類の材料砂試料を作製した。その後、各材料砂試料に流動化剤と遅効性塑性化剤をそれぞれ決められた割合で混合して2種類の流動化砂を作製した。各流動化砂について、表2の場合と同様にテーブルフロー試験とテクスチャー試験を行った。表7はその試験結果と共に一覧したものである。 (Example 5) In this Example 5, two sets of material sand adjusted to a water content ratio of 40% were prepared using the raw material sand of Table 2 as raw material sand, and non-ionic fluidization was performed on each material sand. Two kinds of material sand samples were prepared by mixing the above-mentioned Dianol CDE as a retaining agent so that the addition amount was 0.10% and the addition amount was 0.15%. Thereafter, two types of fluidized sand were prepared by mixing each material sand sample with a fluidizing agent and a slow-acting plasticizer at a predetermined ratio. Each fluidized sand was subjected to a table flow test and a texture test in the same manner as in Table 2. Table 7 lists the test results.

表7:表2の戸崎産の材料砂を用いた流動化砂(非イオン系の流動保持剤を添加した実施例5の流動化砂)の試験結果。すなわち、材料砂は戸崎産、材料砂の含水比40%、非イオン系流動化保持剤としてダイヤノールCDEを添加して作製した2つの実施例と、無添加の1つの比較例である。




Figure 2019031791

・表7中の「×」はテーブルフロー値・テクスチャー値が基準値外であることを示す。 Table 7: Test results of fluidized sand (fluidized sand of Example 5 to which a nonionic fluid retention agent was added) using the material sand produced in Tozaki in Table 2. That is, the material sand is produced in Tozaki, the water content ratio of the material sand is 40%, and two examples prepared by adding Dianol CDE as a nonionic fluidization retention agent and one additive-free comparative example.




Figure 2019031791

“X” in Table 7 indicates that the table flow value / texture value is outside the reference value.

(評価)実施例5の試験結果からは、戸崎産の材料砂を用い、含水比40%に調整した材料砂試料により作製した従来の流動化砂、つまり非イオン系の流動化保持剤を添加しない場合、及び非イオン系の流動化保持剤を添加量0.10%となるよう添加して作製した流動化砂は、テーブルフロー値と貫入応力の値が共に基準値から大きく外れて使用できない。これに対し、非イオン系の流動化保持剤を添加量0.15%となるよう添加して作製した流動化砂は、テーブルフロー値と貫入応力の値が共に基準値内に収まり、また製造3時間後でも基準値内に収まっているため改善効果が顕著である。要は、この実施例5でも従来使用不能であったものが問題なく使用可能になることが分かる。 (Evaluation) From the test results of Example 5, conventional fluidized sand prepared from a material sand sample adjusted to a water content ratio of 40% using Tosaki material sand, that is, a nonionic fluidized retention agent was added. If not, fluidized sand prepared by adding a nonionic fluidizing retention agent to an addition amount of 0.10% cannot be used because both the table flow value and the penetration stress value greatly deviate from the reference value. . On the other hand, fluidized sand produced by adding a nonionic fluidizing retention agent to an addition amount of 0.15% has both the table flow value and the penetration stress value within the reference value, and is manufactured. The improvement effect is remarkable because it is within the standard value even after 3 hours. In short, it can be seen that even the fifth embodiment can be used without any problem in the past.

(実施例6)この実施例6では、原料の材料砂として表2の吉良産を用い、含水比30%に調整した2組の材料砂を用意し、各材料砂に非イオン系の流動化保持剤として上記したダイヤノールCDEを、添加量0.05%、0.10%となるよう混入し、2種類の材料砂試料を作製した。その後、各材料砂試料に流動化剤、遅効性塑性化剤をそれぞれ決められた割合で混合して2種類の流動化砂を作製した。各流動化砂について、表2の場合と同様にテーブルフロー試験とテクスチャー試験を行った。表8はその試験結果と共に一覧したものである。 (Example 6) In this Example 6, two sets of material sand adjusted to a water content ratio of 30% were prepared using the Kira products shown in Table 2 as raw material material sand, and nonionic fluidization was performed on each material sand. Two kinds of material sand samples were prepared by mixing the above-mentioned Dianol CDE as a retaining agent so that the addition amount was 0.05% and 0.10%. Thereafter, each material sand sample was mixed with a fluidizing agent and a slow-acting plasticizing agent at a predetermined ratio to prepare two types of fluidized sand. Each fluidized sand was subjected to a table flow test and a texture test in the same manner as in Table 2. Table 8 lists the test results.

表8:表2の吉良産の材料砂を用いた流動化砂(非イオン系の流動保持剤を添加した実施例6の流動化砂)の試験結果。すなわち、材料砂は吉良産、材料砂の含水比30%、非イオン系流動化保持剤としてダイヤノールCDEを添加して作製した2つの実施例と、無添加の1つの比較例である。













Figure 2019031791

・表8中の「×」はテーブルフロー値・テクスチャー値が基準値外であることを示す。 Table 8: Test results of fluidized sand (fluidized sand of Example 6 to which a nonionic fluid retention agent was added) using the material sand produced in Kira in Table 2. That is, the material sand is produced in Kira, the water content ratio of the material sand is 30%, and two examples prepared by adding Dianol CDE as a nonionic fluidizing retention agent and one additive-free comparative example.













Figure 2019031791

“X” in Table 8 indicates that the table flow value / texture value is outside the reference value.

(評価)実施例6の試験結果からは、吉良産の材料砂を用い、含水比30%に調整した材料砂試料により作製した従来の流動化砂、つまり非イオン系の流動化保持剤を添加しない流動化砂は、貫入応力の値が製造1時間後だと基準値から外れて使用できない。これに対し、非イオン系の流動化保持剤を添加量0.05%、添加量0.10%となるよう添加して作製した流動化砂は、貫入応力の値が製造1時間後と製造3時間後共に基準値内に収まり、改善効果が認められる。また、以上の実施例1〜6からは、対象の材料砂がいろいろな流動化阻害要因を有していても、非イオン系流動化保持剤を添加することにより無添加に比べ、含水比に係わらず顕著な改善効果が得られることが分かる。 (Evaluation) From the test results of Example 6, the conventional fluidized sand prepared from the material sand sample adjusted to a water content ratio of 30% using Kira material sand, that is, a nonionic fluidized retention agent was added. The fluidized sand that is not used cannot be used because the value of the penetration stress is out of the standard value after 1 hour of production. In contrast, fluidized sand produced by adding a nonionic fluidization retention agent to an addition amount of 0.05% and an addition amount of 0.10% has an intrusion stress value of 1 hour after production. After 3 hours, it was within the standard value and an improvement effect was observed. In addition, from Examples 1 to 6 above, even if the target material sand has various fluidization inhibiting factors, the water content ratio can be increased by adding a nonionic fluidization retention agent compared to no addition. Regardless, it can be seen that a significant improvement effect can be obtained.

なお、以上の形態例や実施例は本発明を何ら制約するものではない。本発明は、請求項で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。また、『圧入式砂杭造成(砂圧入式静的締固め工法と同じ)や砂充填等の地盤改良』については、特許文献1と2、特許第5478386号公報に記載されている工法、及びその内容から容易に考えられる工法を含むものである。   In addition, the above form example and Example do not restrict | limit this invention at all. The present invention only needs to include technical elements specified in the claims, and the details can be variously changed as necessary. In addition, regarding “press-fit sand pile creation (same as sand press-fit static compaction method) and ground improvement such as sand filling”, the methods described in Patent Documents 1 and 2, Patent No. 5478386, and It includes construction methods that can be easily considered from the contents.

1・・・・・施工機
2・・・・・流動化砂製造プラント
3・・・・・中空管
4・・・・・昇降機構
5・・・・・回転手機構
6・・・・・圧力計
7・・・・・材料砂
8・・・・・注液管
9・・・・・改良体
15・・・・・スイベル
16・・・・・管路
24・・・・・非イオン系の流動化保持剤供給手段
25・・・・・流動化剤供給手段
26・・・・・調整用水供給手段
27・・・・・塑性化剤供給手段
DESCRIPTION OF SYMBOLS 1 ... Construction machine 2 ... Fluidized sand manufacturing plant 3 ... Hollow pipe 4 ... Elevating mechanism 5 ... Rotating hand mechanism 6 ...・ Pressure gauge 7 ... Material sand 8 ... Injection pipe 9 ... Improved body 15 ... Swivel 16 ... Pipe 24 ... Non Ionic fluidization retention agent supply means 25... Fluidization agent supply means 26... Adjustment water supply means 27.

Claims (5)

材料砂に含水比調整用水と共に流動化剤を加えて圧送ポンプにより配管を通して移送可能に処理される地盤改良用の流動化砂において、
前記流動化砂が時間と共に流動性を喪失させる要因を前記材料砂や含水比調整用水に有する場合、前記材料砂に流動化剤を添加する前段階で、前記材料砂又は/及び前記含水比調整用水に対し非イオン系の流動化保持剤を添加していることを特徴とする流動化砂。
In fluidized sand for ground improvement that is treated so that it can be transferred through piping by a pressure pump by adding a fluidizing agent together with water for adjusting the water content ratio to the material sand,
When the fluidized sand has a factor that causes fluidity to be lost over time in the material sand and water for adjusting the water content ratio, the material sand and / or the water content ratio is adjusted before adding a fluidizing agent to the material sand. A fluidized sand characterized by adding a nonionic fluidizing retention agent to water.
前記流動化保持剤は非イオン性界面活性剤であることを特徴とする請求項1に記載の流動化砂。   The fluidized sand according to claim 1, wherein the fluidized retention agent is a nonionic surfactant. 前記流動化砂はテクスチャー試験より少なくとも作製1時間経過時の貫入応力が約6,000(Pa)以下であることを特徴とする請求項1又は2に記載の流動化砂。   3. The fluidized sand according to claim 1, wherein the fluidized sand has a penetration stress of at least about 6,000 (Pa) after 1 hour of production from a texture test. 請求項1から3の何れかに記載の流動化砂の製造方法において、
前記含水比調整用水と共に流動化保持剤を前記材料砂に混入、あるいは前記含水比調整用水として流動化保持剤を溶解した含水比調整用水を前記材料砂に混入した後、前記流動化剤と遅効性塑性化剤とを混入することを特徴とする流動化砂の製造方法。
In the manufacturing method of the fluidized sand in any one of Claim 1 to 3,
A fluidization retention agent is mixed in the material sand together with the water content adjustment water, or a water content adjustment water in which a fluidization retention agent is dissolved as the water content adjustment water is mixed in the material sand, and then the fluidizing agent and the delayed action are mixed. A method for producing fluidized sand, comprising mixing a plasticizing agent.
圧入式砂杭造成や砂充填等の地盤改良工法において、請求項1から3の何れかに記載の流動化砂を、圧送ポンプによって配管を通して地盤に貫入したり引き抜かれる中空管に圧送し、該中空管の先端側より地盤中に圧入すると共に、地盤中で塑性化させることを特徴とする地盤改良工法。   In ground improvement construction methods such as press-fitting sand pile creation and sand filling, the fluidized sand according to any one of claims 1 to 3 is pumped to a hollow pipe that is penetrated into or pulled out of the ground through a pipe by a pump. A ground improvement method characterized by press-fitting into the ground from the tip side of the hollow tube and plasticizing in the ground.
JP2017152091A 2017-08-07 2017-08-07 Manufacturing method of fluidized sand Active JP6916583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152091A JP6916583B2 (en) 2017-08-07 2017-08-07 Manufacturing method of fluidized sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152091A JP6916583B2 (en) 2017-08-07 2017-08-07 Manufacturing method of fluidized sand

Publications (2)

Publication Number Publication Date
JP2019031791A true JP2019031791A (en) 2019-02-28
JP6916583B2 JP6916583B2 (en) 2021-08-11

Family

ID=65523166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152091A Active JP6916583B2 (en) 2017-08-07 2017-08-07 Manufacturing method of fluidized sand

Country Status (1)

Country Link
JP (1) JP6916583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127614A (en) * 2020-02-14 2021-09-02 株式会社不動テトラ Simple evaluation method and device to determine whether it can be reused as pile material for sand pile-based ground improvement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104868A (en) * 1994-10-04 1996-04-23 Sato Kogyo Co Ltd Capsule-like ground improving material and engineering method for improving ground using the same
JPH08209671A (en) * 1995-02-02 1996-08-13 Koken:Kk Earth compaction and consolidation method
JPH091192A (en) * 1995-06-22 1997-01-07 Nippon Shokubai Co Ltd Sludge solidifying material and sludge solidifying method
JP2004011387A (en) * 2002-06-11 2004-01-15 Kanematsu Nnk Corp Construction method of underground improved body
JP2010013885A (en) * 2008-07-07 2010-01-21 Fudo Tetra Corp Method and device for constructing sand pile
JP2011106158A (en) * 2009-11-17 2011-06-02 Fudo Tetra Corp Compacting sand-pile creating device and compacting sand-pile creating method
JP5478386B2 (en) * 2010-07-02 2014-04-23 株式会社不動テトラ Improving method for ground with underground cavity
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104868A (en) * 1994-10-04 1996-04-23 Sato Kogyo Co Ltd Capsule-like ground improving material and engineering method for improving ground using the same
JPH08209671A (en) * 1995-02-02 1996-08-13 Koken:Kk Earth compaction and consolidation method
JPH091192A (en) * 1995-06-22 1997-01-07 Nippon Shokubai Co Ltd Sludge solidifying material and sludge solidifying method
JP2004011387A (en) * 2002-06-11 2004-01-15 Kanematsu Nnk Corp Construction method of underground improved body
JP2010013885A (en) * 2008-07-07 2010-01-21 Fudo Tetra Corp Method and device for constructing sand pile
JP2011106158A (en) * 2009-11-17 2011-06-02 Fudo Tetra Corp Compacting sand-pile creating device and compacting sand-pile creating method
JP5478386B2 (en) * 2010-07-02 2014-04-23 株式会社不動テトラ Improving method for ground with underground cavity
JP2015183466A (en) * 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127614A (en) * 2020-02-14 2021-09-02 株式会社不動テトラ Simple evaluation method and device to determine whether it can be reused as pile material for sand pile-based ground improvement
JP7166044B2 (en) 2020-02-14 2022-11-07 株式会社不動テトラ SIMPLE EVALUATION METHOD AND DEVICE FOR JUDGING POSSIBLE REUSE AS PILE MATERIAL FOR SAND PILE-BASED SOIL IMPROVEMENT

Also Published As

Publication number Publication date
JP6916583B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6909642B2 (en) Manufacturing method of fluidized sand
JP6188081B2 (en) Fluidized sand and ground improvement method using it
CN102713131B (en) Equipment for quick dispersion of polyacrylamide powder for fracturing operations
JP5188894B2 (en) Sand pile construction method and sand pile construction equipment
JP5478386B2 (en) Improving method for ground with underground cavity
JP2019031791A (en) Fluidized sand and its manufacturing method and ground improvement method using it
JP4823968B2 (en) Sand pile construction method and sand pile construction equipment
JP2014177797A (en) Ground improvement method and device for the same
CN208594077U (en) Flocculating agent used in water processing dissolves case
JP7121542B2 (en) Method for producing fluidized sand
JP5404344B2 (en) Slag pile construction method
JP6830632B2 (en) Treatment method of mud generated by mud pressure shield method
JP3994076B2 (en) Bubble generation method and bubble material used for bubble shield method in bubble shield method
JP7213609B2 (en) Method for producing fluidized sand
JP4933784B2 (en) Waste mud recycling system and equipment for ground improvement method
JP5398096B1 (en) Permeable fine grain grout material
JP2021025289A (en) Mixed material for fluidized sand, manufacturing method thereof, improved fluidized sand composition and manufacturing method thereof
JP2012149480A (en) Soil cement method
JP2000186280A (en) Shield drilling mud additive
JP2020165142A (en) Ground displacement control method of slurry stirring type deep mixing treatment method
JP7307650B2 (en) Cutting composition and high-pressure injection stirring method using the same
JP4680178B2 (en) Method for dewatering slurry mixture from jet grout operation and aqueous suspension used therefor
EP1805374B1 (en) Method for de-watering a slurry
JP5005434B2 (en) Additives used in shield method or propulsion method, manufacturing method thereof, and tunnel method
JP2020133256A (en) Fluidized sand manufacturing method and fluidized sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210715

R150 Certificate of patent or registration of utility model

Ref document number: 6916583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150