JP7121542B2 - Method for producing fluidized sand - Google Patents

Method for producing fluidized sand Download PDF

Info

Publication number
JP7121542B2
JP7121542B2 JP2018101648A JP2018101648A JP7121542B2 JP 7121542 B2 JP7121542 B2 JP 7121542B2 JP 2018101648 A JP2018101648 A JP 2018101648A JP 2018101648 A JP2018101648 A JP 2018101648A JP 7121542 B2 JP7121542 B2 JP 7121542B2
Authority
JP
Japan
Prior art keywords
sand
fluidized sand
air
density
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018101648A
Other languages
Japanese (ja)
Other versions
JP2019206814A (en
Inventor
英典 高田
優輝 今井
雅大 永石
啓二 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2018101648A priority Critical patent/JP7121542B2/en
Publication of JP2019206814A publication Critical patent/JP2019206814A/en
Application granted granted Critical
Publication of JP7121542B2 publication Critical patent/JP7121542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、砂材料に含水比調整用水と共に流動化剤を加えて移送される流動化砂の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing fluidized sand in which a fluidizing agent is added to a sand material together with water for adjusting the water content, and the sand is transferred .

例えば、建築構造物の解体時、護岸や河川橋梁の架替え時には、多くの既設杭などが引抜き撤去されると共に、引抜きにより形成される引抜き孔や空洞を埋戻し材ないしは充填材(以下、充填材という)により充填される。この充填操作では、特に不完全な充填によって後で空隙や軟弱部が残ることに起因して引き込み沈下など様々な問題となる。 For example, when building structures are demolished or when revetments and river bridges are replaced, many existing piles are pulled out and removed. material). This filling operation presents a variety of problems such as draw-in settling, especially due to the incomplete filling leaving voids and weak spots later.

詳述すると、従来の充填材としては現地発生土、流動化処理土、セメントスラリーが一般的である。このうち、セメントスラリーは、アルカリ溶出や地中障害物となるため敬遠されることが多い。充填方法は、杭等の引抜き後、地表側より充填材を投入する構成、杭等の引抜く際に管を脇に挿入し、充填材を自由落下か、ポンプ圧送にて注入する構成に大別される。前者では、孔底まで埋まらず空洞ができたり、引抜き時に孔内に落下した土砂が軟弱土として残り易い。後者では、充填材を杭等の引抜きに合わせて入れるため孔底の部分から良好に充填し易い。 More specifically, conventional fillers generally include locally generated soil, fluidized soil, and cement slurry. Among these, cement slurry is often avoided because it causes alkali elution and underground obstruction. Filling methods include a structure in which the filling material is put in from the surface side after the piles are pulled out, and a structure in which the filling material is injected by free fall or pumping by inserting a pipe to the side when the piles are pulled out. separated. In the former case, the bottom of the hole is not filled and a cavity is formed, and the earth and sand dropped into the hole during extraction tends to remain as soft soil. In the latter, since the filling material is inserted in accordance with the pulling out of the pile or the like, it is easily filled from the bottom of the hole.

ところで、本出願人らは、矢板を引抜くと同時に引抜きで形成される孔に砂を確実に充填するため、特許文献1に開示のごとく矢板の内側面縦方向に砂投入筒を予め設けておき、矢板を地中から引抜くと同時に引抜き孔に砂投入筒を介して砂を投入する構成を開発している。しかし、このような構成では、打設前の矢板や杭に砂投入筒や砂投入管を付設しおかなくてはならず、既設杭や矢板の引抜きの場合に適用できない。 By the way, in order to reliably fill the holes formed by the drawing with sand at the same time when the sheet pile is pulled out, the applicants previously provided a sand injection cylinder in the longitudinal direction of the inner surface of the sheet pile as disclosed in Patent Document 1. We have developed a structure in which the sheet pile is pulled out from the ground and sand is injected into the extraction hole through a sand injection cylinder at the same time. However, in such a configuration, it is necessary to attach a sand injection cylinder or a sand injection pipe to the sheet pile or pile before driving, and it cannot be applied to the case of pulling out the existing pile or sheet pile.

また、本出願人らは、特許文献2に開示のごとく地盤改良用砂材料をポンプで圧送可能な流動化状態にし、地中に形成される孔にポンプ圧送することでコスト削減と環境負荷の低減を可能にした圧入式砂杭造成工法を開発し既に実用化している。この工法は、SAVE-SP工法(登録商標)とも称され、砂材料に含水比調整用水と共に流動化剤と遅効性塑性化剤を含有する流動化砂を、流動状態を保ったまま地盤中に圧入し、地盤中で塑性化させる。すなわち、図4に示されるごとく中空管23を地盤中に貫入した後、中空管23を通して流動化砂を地中に圧入し地中に該流動化砂を残致し、この上に次のステップ分の流動化砂を圧入し、これを繰り返すことで所定長さの改良体25を造成する。符号10は流動化砂製造プラント、1は流動化砂供給手段、2は砂材料供給手段、3は流動化剤供給手段、4は圧送ポンプ、5は遅効性塑性化剤供給手段である。製造プラント10において、流動化砂は砂材料に水、流動化剤、遅効性塑性化剤の順に混合する。 In addition, as disclosed in Patent Document 2, the present applicants put the sand material for ground improvement into a fluidized state that can be pumped by a pump, and pumped it into holes formed in the ground to reduce costs and reduce environmental impact. A press-fitting sand pile construction method has been developed and has already been put into practical use. This construction method is also called the SAVE-SP method (registered trademark), in which fluidized sand containing a fluidizer and a slow-acting plasticizer is added to the ground while maintaining a fluidized state, along with water for adjusting the water content ratio. It is pressed in and plasticized in the ground. That is, after penetrating the hollow pipe 23 into the ground as shown in FIG. A step amount of fluidized sand is press-fitted, and this process is repeated to form an improved body 25 of a predetermined length. Reference numeral 10 is a fluidized sand manufacturing plant, 1 is a fluidized sand supply means, 2 is a sand material supply means, 3 is a fluidizing agent supply means, 4 is a pumping pump, and 5 is a slow acting plasticizer supply means. In manufacturing plant 10, fluidized sand is mixed with sand material in the order of water, fluidizer, and slow-acting plasticizer.

図5は流動化砂の状態変化を示した模式図である。(a)は圧入前の流動化砂を示す。流動化砂は、中空管から地盤中に圧入されるまでは流動化剤が砂の粒子同士の間隙水の粘性を高め、粒子同士の摩擦をなくし砂と水との分離を抑制して高い流動性を維持している。(b)は圧入中の流動化砂を示す。圧入中は流動化砂が脱水し密な状態に締め固められる。流動化剤は網状で残る。(c)は塑性化終了状態を示す。この状態では、遅効性塑性化剤が電気的に流動化剤を中和して流動化剤の網状構造を保持できなくなり粒子同士の摩擦を回復している。 FIG. 5 is a schematic diagram showing changes in the state of fluidized sand. (a) shows fluidized sand before injection. Fluidized sand increases the viscosity of interstitial water between sand particles until it is pressed into the ground through a hollow tube, eliminating friction between particles and suppressing separation between sand and water. maintain liquidity. (b) shows fluidized sand during injection. During injection, the fluidized sand is dehydrated and compacted to a dense state. The superplasticizer remains reticulated. (c) shows the end state of plasticization. In this state, the slow-acting plasticizing agent electrically neutralizes the fluidizing agent, making it impossible to maintain the network structure of the fluidizing agent, thereby restoring the friction between the particles.

特開昭61-254715号公報JP-A-61-254715 特開2010-13885号公報JP 2010-13885 A

上記した流動化砂は、取扱性及び充填性に優れていることから、地盤改良以外に、既設杭や矢板の引抜きにより形成される孔や空洞充填材としての適用を検討してきたが、次のようなことが問題となる。すなわち、流動化砂の物性管理は、主にテーブルフロー値、テクスチャー値、ブリーデイング値により調整管理されていた。この点は、特開2015-183466号公報(以下、参考文献1という)、特願2017-152091号(以下、参考文献2という)を参照されたい。理由は、流動化砂の製造において、製造中の流動化砂には空気が混合攪拌時に混入しその混入量も幅が大きいため、その体積や密度を管理したり調整が難しいものと考えられていた。また、上記SAVE-SP工法では、流動化砂が設定吐出圧力で地中に圧入されるが、該圧入により流動化砂に混入していた空気が分離されて地表側へ上昇排気され易いため改良体への影響がない。ところが、引抜きにより形成される引抜き孔や空洞を流動化砂で充填する場合は、圧入による周囲地盤への影響を抑えるため吐出圧力を低く設定される関係で、含有された空気が分離されずそのまま残る。このような背景から、本出願人らは流動化砂について物性値として密度で管理する方法を検討してきた。 Since the above-mentioned fluidized sand is excellent in handling and filling properties, it has been studied for application as a filling material for holes and cavities formed by pulling out existing piles and sheet piles in addition to soil improvement. Something like that is a problem. In other words, the physical properties of fluidized sand were adjusted and managed mainly by the table flow value, texture value, and bleeding value. For this point, please refer to Japanese Patent Application Laid-Open No. 2015-183466 (hereinafter referred to as Reference 1) and Japanese Patent Application No. 2017-152091 (hereinafter referred to as Reference 2). The reason for this is that air is mixed into the fluidized sand during mixing and stirring during the production of fluidized sand, and the amount of air mixed in varies widely, making it difficult to control and adjust the volume and density of the fluidized sand. rice field. In addition, in the above SAVE-SP method, the fluidized sand is injected into the ground at a set discharge pressure. No effect on body. However, when filling a hole or cavity formed by drawing with fluidized sand, the discharge pressure is set low in order to suppress the impact of the injection on the surrounding ground. remain. Against this background, the applicants have studied a method of managing fluidized sand by density as a physical property value.

本発明の目的は、流動化砂の密度を比較的容易に調整管理できるようにし、例えば砂充填工法や圧入式砂杭造成工法への適用に際し、目的に応じた密度に管理した流動化砂、更にはより的確に評価可能な流動化砂を提供することにある。他の目的は以下の内容説明のなかで明らかにする。 An object of the present invention is to make it possible to adjust and manage the density of fluidized sand relatively easily. Another object of the present invention is to provide fluidized sand that can be evaluated more accurately. Other purposes will be made clear in the following description.

上記目的を達成するため請求項1の発明は、流動化砂製造部で砂材料に含水比調整用水と共に流動化剤を加えて混合する流動化砂の製造方法において、前記流動化砂製造部で混合された流動化砂を受け入れると共に、流動化砂用の体積計測手段及び重量計測手段、並びに流動化砂中の空気量を増減調整する空気量増減手段として流動化砂中の空気を減らす空気脱気機構及び流動化砂中の空気を増やす空気追加機構を設けた密度調整部を有しており、前記体積計測手段及び重量計測手段により前記流動化砂製造部から前記密度調整部に受け入れた流動化砂の密度及び混入している空気量を把握し、前記密度が所定の値ないしは範囲より低い場合は前記空気脱気機構により流動化砂から空気を抜いて高くなるよう調整し、密度が所定の値ないしは範囲より高い場合は前記空気追加機構により空気を流動化砂内に混入して低くなるよう調整することを特徴としている。 In order to achieve the above object, the invention of claim 1 provides a method for producing fluidized sand in which a fluidizing agent is added to and mixed with water for adjusting the water content ratio in a fluidized sand producing unit, wherein the fluidizing sand producing unit comprises: Air desorption means for receiving the mixed fluidized sand, volume measuring means and weight measuring means for the fluidized sand, and air amount increasing/decreasing means for adjusting the amount of air in the fluidized sand to reduce air in the fluidized sand. It has a density adjustment unit provided with an air mechanism and an air addition mechanism for increasing air in the fluidized sand, and the flow received from the fluidized sand production unit to the density adjustment unit by the volume measurement means and the weight measurement means The density of the composted sand and the amount of air mixed in are grasped, and if the density is lower than a predetermined value or range, the air is removed from the fluidized sand by the air deaeration mechanism to adjust the density so that the density reaches the predetermined value. If it is higher than the value or range of , the air addition mechanism mixes air into the fluidized sand to adjust it to be lower.

ここで、本発明において、砂材料は、従来の流動化砂製造に用いられてきたものであればよく、純粋な砂に限られず、シルトや礫を含む砂、砂類似のスラグなどを含む広義な意味で使用している。また、本出願人らは、流動化砂に用いられる砂材料の適用範囲を拡大する構成として、参考文献1では高吸収性樹脂を含有させる構成、参考文献2では非イオン系の流動化保持剤を含有させる構成を開発している。本発明は、砂材料の適用範囲を拡大するため、必要に応じてそのような高吸収性樹脂や非イオン系の流動化保持剤を含ませる構成でもよい。 Here, in the present invention, the sand material is not limited to pure sand as long as it has been used in the conventional production of fluidized sand. used in a sense. In addition, the present applicants have proposed a structure containing a superabsorbent resin in Reference Document 1 and a nonionic fluidization retention agent in Reference Document 2 as a structure for expanding the application range of sand materials used for fluidized sand. We are developing a configuration that contains In order to expand the applicable range of the sand material, the present invention may be configured to contain such a superabsorbent resin or nonionic fluidization retention agent as necessary.

以上の本発明は、以下のように更に具体化されることがより好ましい。すなわち、
第1に、前記空気脱気機構は振動機構又は/及び真空吸引機構であり、前記空気追加機構は攪拌機構又は/及び空気吹込み機構である(請求項2)。
More preferably, the present invention described above is further embodied as follows. i.e.
First, the air degassing mechanism is a vibrating mechanism and/or a vacuum suction mechanism, and the air adding mechanism is a stirring mechanism and/or an air blowing mechanism (Claim 2).

これは空気脱気機構と空気追加機構の具体例を挙げたものであり、これ以外でも差し支えない、また、攪拌機構については、駆動速度を高くすると空気追加機構として有効となり、逆に、駆動速度を低くすると実施例2のように空気脱気機構として有効となる。 These are specific examples of the air degassing mechanism and the air adding mechanism. is effective as an air degassing mechanism as in the second embodiment.

第2に、前記砂材料に前記含水比調整用水及び前記流動化剤と共に遅効性塑性化剤を添加している構成である(請求項3)。Secondly, a slow-acting plasticizer is added to the sand material together with the water for adjusting the water content ratio and the fluidizer (Claim 3).

請求項1の発明は、体積計測手段及び重量計測手段により流動化砂の密度及び混入している空気量を把握し、その密度が所定の値ないしは範囲外になっている場合に空気量増減手段により流動化砂の含有する空気量を調整することで該密度の制御を行うため、密度が管理された充填用や地盤改良用の流動化砂として提供できる。 According to the invention of claim 1, the density of the fluidized sand and the amount of air mixed therein are grasped by the volume measuring means and the weight measuring means, and when the density is out of a predetermined value or range, the air amount increasing/decreasing means Since the density is controlled by adjusting the amount of air contained in the fluidized sand, it can be provided as a fluidized sand for filling or ground improvement with a controlled density.

結果として、充填用流動化砂の場合は、圧入式砂杭造成用流動化砂に比べ圧入締固め作用が不要、つまり締固めによる周囲地盤への影響を抑えるため含有する空気量を少なめに設定し密度を的確に調整することで、充填材として良質で最良の評価が得られる。圧入式砂杭造成用流動化砂の場合は、使用する砂杭造成用流動化材の密度から造成される砂杭の密度も推察したり評価し易くなり信頼性を向上できる。 As a result, in the case of fluidized sand for filling, compared to fluidized sand for press-in sand pile construction, press-in compaction is not required. By properly adjusting the density, it is possible to obtain the highest quality and best evaluation as a filling material. In the case of press-in type sand pile construction fluidized sand, the density of the sand pile to be constructed can be easily estimated and evaluated from the density of the sand pile construction fluidization material used, and reliability can be improved.

また、この発明は、空気量増減手段が空気脱気機構及び空気追加機構を有している点と密度の制御を詳細に特定したもので、密度の制御が空気脱気機構又は空気追加機構により製造される流動化砂の含有空気量を調整することで比較的簡単に行える。 In addition, the present invention specifies in detail that the air amount increasing/decreasing means has an air degassing mechanism and an air adding mechanism, and the control of the density is performed by the air degassing mechanism or the air adding mechanism. This can be done relatively easily by adjusting the amount of air contained in the produced fluidized sand.

請求項2の発明は、空気脱気機構又は空気追加機構の典型例を例示したものである。但し、空気脱気機構としては振動機構又は/及び真空吸引機構以外でもよく、空気追加機構としては攪拌機構又は/及び空気吹込み機構以外でもよい。 The invention of claim 2 exemplifies a typical example of the air degassing mechanism or the air adding mechanism. However, the air degassing mechanism may be other than the vibrating mechanism and/or the vacuum suction mechanism, and the air adding mechanism may be other than the stirring mechanism and/or the air blowing mechanism.

請求項3の発明は、流動化砂の理想的な組成として、砂材料に含水比調整用水及び流動化剤と共に遅効性塑性化剤を添加している構成である。 According to the invention of claim 3, as an ideal composition of the fluidized sand, water for adjusting the water content ratio and a fluidizing agent are added to the sand material together with a slow-acting plasticizer.

遅効性塑性化剤は、流動化砂に含有された流動化剤を電気的に中和するよう作用し、流動化砂に保水されている水を分離することで元の砂状態に戻し易くする。The slow-acting plasticizer acts to electrically neutralize the fluidizing agent contained in the fluidized sand, and separates the water retained in the fluidized sand, thereby facilitating the return to the original sand state. .

本発明に係る流動化砂の製造方法に用いられる流動化砂製造装置の一例を示す模式図である。1 is a schematic diagram showing an example of a fluidized sand manufacturing apparatus used in a fluidized sand manufacturing method according to the present invention; FIG. 上記流動化砂の製造手順例を示す流れ図である。It is a flowchart which shows the manufacturing procedure example of the said fluidized sand. 図1の流動化砂製造装置で作られた流動化砂を使用した砂充填工法の概要を示す模式図である。FIG. 2 is a schematic diagram showing an outline of a sand filling method using fluidized sand produced by the fluidized sand manufacturing apparatus of FIG. 1; 特許文献2に開示されている砂杭造成装置を示す図である。It is a figure which shows the sand pile construction apparatus disclosed by patent document 2. FIG. (a)~(c)は施工時における流動化砂の状態変化を示す模式図である。(a) to (c) are schematic diagrams showing changes in the state of fluidized sand during construction.

以下、本発明を適用した形態例を図面を参照して説明する。この説明では、本発明に係る流動化砂の製造方法を明らかにした後、これまでと同様に作成した流動化砂について密度調整したときの実施例1及び2と、密度調整後の流動化砂の使用例に言及する。 Embodiments to which the present invention is applied will be described below with reference to the drawings. In this explanation, after clarifying the production method of the fluidized sand according to the present invention, Examples 1 and 2 when the density of the fluidized sand prepared in the same manner as before was adjusted, and the fluidized sand after density adjustment to mention the use case of .

(流動化砂の製造方法)図1は本発明の製造方法に用いられる流動化砂製造装置の一例を示し、図2は流動化砂の製造手順例を示している。図1において、この流動化砂製造装置1は、上段枠体10Aに設けられた流動化砂製造部2と、中段枠体10Bに設けられた密度調整部3と、下段枠体10Cに設けられた養生部(アジテーター部)4を備え、養生部4において密度制御された流動化砂が圧送ポンプPにより管路6へ移送される。符号5は、管路6内を移送される流動化砂の圧力を計測する圧力計である。なお、流動化砂製造部2及び養生部4は既存の流動化砂製造装置の構成とほぼ同じ。 (Manufacturing Method of Fluidized Sand) FIG. 1 shows an example of a fluidized sand manufacturing apparatus used in the manufacturing method of the present invention, and FIG. 2 shows an example of the fluidized sand manufacturing procedure. In FIG. 1, this fluidized sand manufacturing apparatus 1 includes a fluidized sand manufacturing section 2 provided in an upper frame 10A, a density adjusting section 3 provided in a middle frame 10B, and a lower frame 10C. A curing section (agitator section) 4 is provided, and fluidized sand whose density is controlled in the curing section 4 is transferred to a pipeline 6 by a pressure pump P. A reference numeral 5 is a pressure gauge for measuring the pressure of the fluidized sand transferred through the pipeline 6 . The fluidized sand manufacturing unit 2 and the curing unit 4 have almost the same configuration as the existing fluidized sand manufacturing apparatus.

すなわち、流動化砂製造部2は、混合槽20がパドルミキサー等の攪拌機構21と、投入される砂材料Sの重さを計測するロードセル等の重量計測手段22とを備えている。混合槽20には、バックホウ等の砂供給手段12により1バッチ量に対応する所定量の砂材料Sが投入された後、図2に示されるごとく混合槽20内の砂材料Sの重量に対し、含水比調整用の水が水供給手段13により所定水量だけ供給されると共に、必要に応じて流動化保持剤が流動化保持剤供給手段16により所定量だけ供給される。また、流動化剤が流動化剤供給手段14により、遅効性塑性化剤が塑性化剤供給手段15によりそれぞれ所定量だけ供給される。好ましくは、混合槽内の砂材料の重量に基づき、含水比調整用水、流動化剤、遅効性塑性化剤の使用量を自動的に計算して供給することである。混合槽20では、それらが均一になるよう攪拌機構21により混合攪拌される。 That is, in the fluidized sand producing section 2, the mixing tank 20 is provided with a stirring mechanism 21 such as a paddle mixer and a weight measuring means 22 such as a load cell for measuring the weight of the sand material S to be fed. After a predetermined amount of sand material S corresponding to one batch amount is charged into the mixing tank 20 by a sand supply means 12 such as a backhoe, as shown in FIG. A predetermined amount of water for adjusting the water content ratio is supplied by the water supplying means 13, and a predetermined amount of the fluidizing and retaining agent is supplied by the fluidizing and retaining agent supplying means 16 as required. Further, the fluidizing agent is supplied by the fluidizing agent supplying means 14 and the slow-acting plasticizing agent is supplied by the plasticizing agent supplying means 15 in predetermined amounts. Preferably, based on the weight of the sand material in the mixing tank, the amounts of the water for adjusting the water content ratio, the fluidizing agent, and the slow-acting plasticizer are automatically calculated and supplied. In the mixing tank 20, they are mixed and stirred by the stirring mechanism 21 so that they become uniform.

ここで、砂供給手段12により投入される砂材料S、水供給手段13により供給される水、流動化保持剤供給手段16により供給される流動化保持剤、流動化剤供給手段14により投入される流動化剤、塑性化剤供給手段15により供給される塑性化剤については、以下にその選択基準などを明らかにする。 Here, the sand material S supplied by the sand supply means 12, the water supplied by the water supply means 13, the fluidizing and retaining agent supplied by the fluidizing and retaining agent supplying means 16, and the fluidizing agent supplied by the fluidizing agent supplying means 14. Selection criteria for the fluidizing agent supplied by the plasticizing agent supplying means 15 and the plasticizing agent supplied by the plasticizing agent supply means 15 will be clarified below.

(1)、砂材料は、一旦流動性を高めた状態でポンプ圧送するため、配管内で閉塞しない保水性の良さと、圧入時に脱水する排水性の良さとを併せ持つ性質が好ましい。この点は、参考文献1の図6及びその関連記載を参照されたい。 (1) Since the sand material is pumped once in a state of increased fluidity, it is preferable that the sand material has both good water retention properties so as not to clog the pipes and good drainage properties such as dehydration at the time of press-fitting. For this point, refer to FIG. 6 of Reference 1 and its related description.

(2)、水は、含水比調整用であり、流動化剤等に影響する成分、特に金属イオン等の陽イオンを含む工業用水や海水は避けて中性の水道水を用いることが好ましい。水の使用量は通常、製造される流動化砂の含水比が20~40%となるよう算出される。この含水比は、高くなると投入容量も比例して多くなり地盤変位を生じ易くなるためその点も考慮して決められる。 (2) Water is used for adjusting the water content, and it is preferable to use neutral tap water, avoiding industrial water and seawater containing components that affect fluidizing agents, especially cations such as metal ions. The amount of water used is usually calculated so that the produced fluidized sand has a water content of 20 to 40%. If the water content ratio is high, the input capacity will also increase proportionally, making it easier to cause ground displacement.

(3)、流動化保持剤は、流動化砂の経時的な性状を改善して正常な圧入施工を維持可能にするもので、具体的には非イオン性界面活性剤やそれに類似のものである。非イオン性界面活性剤は、アニオン界面活性剤やカチオン界面活性剤よりも流動化砂の経時的な性状を改善する上でかなり優れていることが判明している(参考文献2を参照)。以上の流動化保持剤は、原料の砂材料に流動化剤と同時に混ぜても改善効果はあまり期待できず、更に砂材料に流動化剤を混入した後に混ぜると改善効果が得られない。つまり、原料の砂材料には、当該砂材料や水に含まれる上記した流動化剤の阻害要因を流動化保持剤にて予め解消ないしは抑制してから流動化剤を混入する。また、砂材料に対する混合割合は、砂材料や含水比によっても異なるが、一般的には添加量の下限値が0.05%以上で、添加量の上限値が大きくなると経費も比例して高くなるため0.10%程度にすることが好ましい。但し、流動化保持剤は省略しても差し支えない。 (3) The fluidization retention agent improves the properties of the fluidized sand over time to enable normal press-in construction. Specifically, it is a nonionic surfactant or similar agent. be. Nonionic surfactants have been found to be considerably better than anionic and cationic surfactants in improving the behavior of fluidized sand over time (see reference 2). The fluidity retention agent described above cannot be expected to have a significant improvement effect even if it is mixed with the raw material sand material at the same time as the fluidizing agent, and furthermore, if it is mixed after the fluidizing agent is mixed with the sand material, no improvement effect can be obtained. In other words, the fluidizing agent is mixed into the raw material sand material after eliminating or suppressing the above-described inhibitory factors of the fluidizing agent contained in the sand material or water with the fluidizing retention agent. In addition, although the mixing ratio to the sand material varies depending on the sand material and water content, generally the lower limit of the amount to be added is 0.05% or more, and the higher the upper limit of the amount to be added, the higher the cost proportionally. Therefore, it is preferable to set the content to about 0.10%. However, the fluidity retention agent may be omitted.

(4)、流動化剤は、砂の粒子間の間隙水の粘性を高め、飽和状態で砂と水の分離を抑制してポンプ圧送性を向上させる添加剤である。好ましくは、粘性を高め砂粒子の沈降分離を抑制するアニオン系高分子凝集剤であり、他にノニオン系高分子凝集剤、カチオン系高分子凝集剤などでもよい。これらは、高分子の親水基と高分子の網の内部に水分を保持する性能に優れ、品質の長期安定性も高い。流動化剤の配合割合は、砂材料に対し、外割配合で0.01~2.0重量%、好ましくは0.1~1.0重量%である。この配合割合は、少な過ぎると、砂材料が流動化せず、配管内で分離したり目詰まりしたりして圧送できなくなり、逆に多過ぎても流動化効果は変わらずコスト上昇要因となる。 (4) The fluidizing agent is an additive that increases the viscosity of interstitial water between sand particles, suppresses separation of sand and water in a saturated state, and improves pumpability. An anionic polymer flocculant that increases viscosity and suppresses sedimentation and separation of sand particles is preferred, and a nonionic polymer flocculant, a cationic polymer flocculant, and the like may also be used. These are excellent in the ability to retain moisture inside the hydrophilic group of the polymer and in the polymer network, and have high long-term quality stability. The mixing ratio of the fluidizing agent is 0.01 to 2.0% by weight, preferably 0.1 to 1.0% by weight, based on the sand material. If the mixing ratio is too low, the sand material will not be fluidized and will separate or clog in the pipe, making it impossible to pump. .

(5)、遅効性塑性化剤は、圧送時、圧入時共に流動性を確保すると共に、塑性化迄の時間を制御するために使用される。遅効性塑性化剤としては、分子量104~107のカチオン系合成高分子剤が挙げられる。このカチオン系合成高分子剤としては、アンモニア、脂肪族アルキルモノ又はジアミン又はポリアミンとエピハロヒドリンの重縮合物が挙げられる。塑性化剤の使用量は、製造される流動化砂中の砂材料に対し、外割配合で0.001~2重量%、好ましくは0.01~1.0重量%である。添加量は、少な過ぎると、流動化物が塑性化せず設計通りの充填体や改良体が造成できなくなり、添加が多過ぎると塑性化が早く起こりポンプ圧送に支障をきたす。 (5) The slow-acting plasticizer is used to ensure fluidity during pumping and press-fitting, and to control the time until plasticization. Cationic synthetic polymer agents having a molecular weight of 104 to 107 can be used as slow-acting plasticizers. Examples of cationic synthetic polymer agents include polycondensates of ammonia, aliphatic alkyl mono- or diamines, or polyamines and epihalohydrin. The amount of the plasticizer used is 0.001 to 2% by weight, preferably 0.01 to 1.0% by weight, based on the sand material in the produced fluidized sand. If the amount added is too small, the fluidized product will not be plasticized, making it impossible to form a packed body or improved body as designed.

密度調整部3は、密度調整槽30がパドルミキサー等の攪拌機構31と、流動化砂製造部2から受け入れた流動化砂の重さを計測するロードセル等の重量計測手段32、及び体積を計測する体積計測手段33と、流動化砂に含有されている空気量を調整する空気量増減手段17とを備えている。このうち、空気量増減手段17は、図示を省略したが、密度調整槽30内に移された流動化砂中の空気を密度調整槽30の上方又は吸排気管18などを介し外へ逃がして減らす空気脱気機構、及び空気を外部より流動化砂中に槽上側空間や吸排気管18などを介し混入したり導入して増やす空気追加機構を有している。吸排気管18の先端には、水や砂を通さず空気だけを出入り可能にするフイルターが装着されている。 In the density adjusting section 3, the density adjusting tank 30 includes a stirring mechanism 31 such as a paddle mixer, a weight measuring means 32 such as a load cell for measuring the weight of the fluidized sand received from the fluidized sand producing section 2, and a volume measuring means. and an air amount adjusting means 17 for adjusting the amount of air contained in the fluidized sand. Although not shown, the air amount increasing/decreasing means 17 releases the air in the fluidized sand transferred into the density adjusting tank 30 to the upper part of the density adjusting tank 30 or to the outside through the intake/exhaust pipe 18 to reduce the amount of air. It has an air degassing mechanism and an air adding mechanism for mixing or introducing air into the fluidized sand from the outside via the upper space of the tank or the intake and exhaust pipe 18 to increase the amount of air. A filter is attached to the tip of the intake/exhaust pipe 18 to allow only air to enter and exit without allowing water or sand to pass through.

ここで、空気脱気機構としては、密度調整槽30に振動を加えて流動化砂に含有している空気を密度調整槽30の上面側開口、更に吸排気管18から逃がす振動機構、及び/又は、流動化砂に含有している空気を吸排気管18及び不図示の切換バルブ等を介して真空引きする真空ポンプを使用した真空吸引機構などである。一方、空気追加機構としては、攪拌速度などを工夫することで密度調整槽30内の流動化砂に空気を混入させる攪拌機構31、及び/又は、密度調整槽30内の流動化砂に吸排気管18及び不図示の切換バルブ等を介して空気を吹き込むエアポンプを使用した空気吹き込み機構などである。但し、空気脱気機構や空気追加機構はここに挙げた機構以外でもよい。 Here, as the air deaeration mechanism, a vibrating mechanism for vibrating the density adjusting tank 30 to release the air contained in the fluidized sand from the upper surface side opening of the density adjusting tank 30 and further from the intake and exhaust pipe 18, and/or , a vacuum suction mechanism using a vacuum pump for vacuuming air contained in the fluidized sand through an intake/exhaust pipe 18 and a switching valve (not shown). On the other hand, as an air addition mechanism, a stirring mechanism 31 that mixes air into the fluidized sand in the density adjustment tank 30 by devising a stirring speed or the like, and/or an intake/exhaust pipe to the fluidized sand in the density adjustment tank 30 18 and an air blowing mechanism using an air pump that blows air through a switching valve (not shown) or the like. However, the air degassing mechanism and the air adding mechanism may be mechanisms other than those listed here.

そして、密度調整部3では、密度の制御として、流動化砂の密度が所定の値ないしは範囲(例えば、1.50~1.70g/cm)に設定されており、その最小値(例えば、1.50g/cm)より低い場合は前記空気脱気機構により密度調整槽30内の流動化砂から空気を抜いて高くなるよう調整され、その最大値(例えば、1.70g/cm)より高い場合は前記空気追加機構により空気を密度調整槽30に移された流動化砂内に吹き込んで混合し低くなるよう調整される。これらの調整操作は、図2に示されるごとく流動化砂中の空気量を増減し、目的の密度の値又は範囲になるまで繰り返される。 The density adjustment unit 3 sets the density of the fluidized sand to a predetermined value or range (for example, 1.50 to 1.70 g/cm 3 ) for density control, and the minimum value (for example, 1.50 g/cm 3 ). cm 3 ), the air is removed from the fluidized sand in the density adjusting tank 30 by the air deaeration mechanism to adjust the density to be higher. The air addition mechanism blows air into the fluidized sand transferred to the density adjustment tank 30 to mix and adjust the density. These adjustment operations are repeated to increase or decrease the amount of air in the fluidized sand, as shown in FIG. 2, until the desired density value or range is achieved.

養生部4は、アジテータ槽40がパドルミキサー等の攪拌機構41を備えており、密度調整槽30から受け入れたアジテータ槽40内の流動化砂を密度等の品質を維持すべく攪拌養生している。この攪拌機構41は、流動化砂製造部の攪拌機構21、密度調整部の攪拌機構31に比べ攪拌時に空気が流動化砂に極力混入しないよう攪拌翼形状や回転速度などが工夫されている。 In the curing section 4, the agitator tank 40 is provided with an agitating mechanism 41 such as a paddle mixer, and the fluidized sand in the agitator tank 40 received from the density adjusting tank 30 is agitated and cured in order to maintain quality such as density. . Compared to the stirring mechanism 21 of the fluidized sand manufacturing section and the stirring mechanism 31 of the density adjusting section, this stirring mechanism 41 is designed to prevent air from entering the fluidized sand during stirring, such as the shape of the stirring blades and rotation speed.

アジテータ槽40内の流動化砂は、圧送ポンプP及び管路6を介して充填用、又は、圧入式砂杭造成用として使用場所へポンプ圧送される。この圧送ポンプPは、特に高い吸込み力、機密性、空気の吸込みを起こさず、流動化砂性状の変化を低く抑えられるものとして、圧送構造が油圧ピストンを利用したタイプが選択されている。ポンプ駆動は、制御部を介して自動制御されたり、操縦者により制御される。 The fluidized sand in the agitator tank 40 is pumped through the pressure pump P and line 6 to the site of use for filling or for forming press-fit sand piles. For this pumping pump P, a type using a hydraulic piston is selected for the pumping structure because it has a particularly high suction force, is highly airtight, does not cause air intake, and can suppress changes in the properties of the fluidized sand. The pump drive can be automatically controlled via the controller or controlled by the operator.

(実施例1)この実施例1では、原料の砂材料として菰野砂(三重県菰野町産)を用い、図1の流動化砂製造部の混合槽20に類似の混合槽により、含水比が25%、流動化剤L1=0.64%、流動化保持剤S1=0.1%、遅効性塑性化剤P1=0.05%の組成の流動化砂を作成した。この流動化砂を混合槽から密度調整部の密度調整槽30に類似の密度調整槽に移した。この初期状態の流動化砂は、重量計測手段32より得られた流動化砂の重量/体積計測手段33より得られた流動化砂の体積から、密度γ=1.115g/cm であった。また、相対密度Dr=-256.6%であり、含有する空気量=43.7%であった。 (Example 1) In this Example 1, Komono sand (produced in Komono Town, Mie Prefecture) was used as the raw sand material, and a mixing tank similar to the mixing tank 20 of the fluidized sand production section in Fig. 1 was used to adjust the water content. 25%, fluidizing agent L1=0.64%, fluidizing retention agent S1=0.1%, and slow-acting plasticizer P1=0.05%. The fluidized sand was transferred from the mixing tank to a density adjustment tank similar to density adjustment tank 30 in the density adjustment section. The fluidized sand in the initial state had a density γ of 1.115 g/cm 3 based on the weight of the fluidized sand obtained from the weight measuring means 32 and the volume of the fluidized sand obtained from the volume measuring means 33. . Also, the relative density Dr was -256.6%, and the amount of air contained was 43.7%.

(1)相対密度Drの算出式は次の通りである。
Dr=(emax-e)/(emax-emin) ×100(%)
ここで、emax:砂の最大間隙比(砂の最小密度・最大密度試験より算出)
min:砂の最小間隙比(砂の最小密度・最大密度試験より算出)
e:流動化砂の間隙比
(1) The formula for calculating the relative density Dr is as follows.
Dr = ( emax-e)/(emax-emin ) x 100 (%)
Here, e max : Maximum void ratio of sand (calculated from minimum density/maximum density test of sand)
e min : Sand minimum void ratio (calculated from sand minimum density/maximum density test)
e: Void ratio of fluidized sand

流動化砂の間隙比eの算出式は次の通りである。
e=(V-V)/V =(流動化砂体積-砂粒子体積)/砂粒子体積
ここで、流動化砂に使う砂粒子比重は土質試験より求めることができるので、仮に砂粒子の体積を1cm とした場合の砂重量を算出できる。
The formula for calculating the void ratio e of the fluidized sand is as follows.
e = (V - V s ) / V s = (volume of fluidized sand - volume of sand particles) / volume of sand particles It is possible to calculate the weight of sand when the volume is 1 cm 3 .

次に、流動化砂は、砂重量に対する割合で含水比、流動化剤(L1)の配合量、流動化保持剤(S1)の配合量、遅効性塑性化剤(P1)の配合量を決めているので、砂粒子体積1cm の時の、流動化砂重量は計算で求められる。また、流動化砂の密度は、上記の密度計測より求められるので、砂粒子体積1cm の時の流動化砂体積も求められる。以上より上式を用いて流動化砂の間隙比を算出することができる。 Next, for the fluidized sand, the water content ratio, the blending amount of the fluidizing agent (L1), the blending amount of the fluidization retention agent (S1), and the blending amount of the slow-acting plasticizer (P1) are determined based on the ratio to the weight of the sand. Therefore, when the volume of sand particles is 1 cm 3 , the weight of fluidized sand can be obtained by calculation. Also, since the density of the fluidized sand can be obtained from the density measurement described above, the volume of the fluidized sand when the volume of sand particles is 1 cm 3 can also be obtained. From the above, the void ratio of the fluidized sand can be calculated using the above equation.

以上より、実施例1において、砂粒子比重が2.651、emaxが0.913、eminが0.493の砂材料を用いて、砂粒子の重量に対して、含水比が25%、L1が0.64%、P1が0.05%、S1が0.1%の割合で作成した流動化砂の計測密度が1.115g/cm とする。この場合、
・砂粒子体積1cm の砂粒子重量は2.651×1=2.651g
・流動化砂の重量は2.651×(1+0.25+0.0064+0.0005+0.001)=3.335g
・砂粒子体積1cm の流動化体積は3.335/1.115=2.991
・よって、流動化砂の間隙比は(2.991-1)/1=1.991
・流動化砂の相対密度は{(0.913-1.991)/(0.913-0.493)}×100=-256% となる。
Based on the above, in Example 1, sand particles having a specific gravity of 2.651, e max of 0.913, and e min of 0.493 were used. Suppose that the measured density of the fluidized sand prepared with a ratio of 0.05% and S1 of 0.1% is 1.115g/ cm3 . in this case,
・Sand particle weight of 1 cm 3 sand particle volume is 2.651×1=2.651g
・The weight of fluidized sand is 2.651 x (1 + 0.25 + 0.0064 + 0.0005 + 0.001) = 3.335g
・The fluidization volume of 1cm3 of sand particles is 3.335/1.115 = 2.991
・Therefore, the void ratio of the fluidized sand is (2.991-1)/1=1.991
・The relative density of fluidized sand is {(0.913-1.991)/(0.913-0.493)}×100=-256%.

(2)流動化砂に混入している空気量の割合は以下の式で求められる。
空気量の割合=空気体積/流動化砂体積
・ここで、流動化砂の重量は、砂重量と配合割合から求められる。
・また、流動化砂の密度は計測されるので、流動化砂体積も計算することができる。
・更に、砂重量と砂粒子比重が分かっているので流動化砂中の砂粒子体積は計算できる。
・よって、間隙(水+空気)の体積を(流動化砂体積-砂粒子体積)より求められる。
(2) The ratio of the amount of air mixed in the fluidized sand is calculated by the following formula.
Ratio of amount of air=Volume of air/Volume of fluidized sand Here, the weight of the fluidized sand is obtained from the weight of the sand and the mixing ratio.
・In addition, since the density of the fluidized sand is measured, the volume of the fluidized sand can also be calculated.
・Furthermore, since the weight of sand and the specific gravity of sand particles are known, the volume of sand particles in the fluidized sand can be calculated.
・Therefore, the volume of the gap (water + air) can be obtained from (fluidized sand volume - sand particle volume).

次に、間隙内の水と空気の割合を求める。
流動化砂の間隙比は既知なので、液体のみの間隙比を求めることができれば、水と空気の割合を求めることができ、空気量の体積を求めることができる。この場合、流動化砂中の液体の間隙比は、流動化砂が砂と水のみで構成されると仮定したときの理論飽和密度の時の間隙比を求めればよい。理論飽和密度は、流動化砂の配合比と、砂粒子及び薬剤(上記L1、P1、S1)の比重が分かっているので求めることができる。
Next, the ratio of water and air in the gap is determined.
Since the void ratio of the fluidized sand is known, if the void ratio of only the liquid can be obtained, the ratio of water and air can be obtained, and the volume of the amount of air can be obtained. In this case, the void ratio of the liquid in the fluidized sand can be obtained by obtaining the void ratio at the theoretical saturation density when the fluidized sand is assumed to consist only of sand and water. Theoretical saturation density can be obtained because the mixing ratio of the fluidized sand and the specific gravities of the sand particles and the chemicals (L1, P1, S1 above) are known.

以上より、実施例1において、砂粒子比重が2.651、emaxが0.913、eminが0.493の砂材料を用いて、砂粒子の重量に対して、含水比が25%、L1が0.64%(比重1.05)、P1が0.05%(比重1.15)、S1が0.1%(比重1.0)の割合で作成した流動化砂の計測密度が1.115g/cm とする。ここで、流動化砂の配合は砂を1000gとすると、含水量250g、L1量6.4g、P1量0.5g、S1量1.0gとなる。
・上記配合時の流動化砂体積は(1000+250+6.4+0.5+1.0)/1.115=1128.161cm
・砂粒子体積は1000/2.651=377.216cm
・間隙体積は1128.161-377.216=750.945cm
Based on the above, in Example 1, sand particles having a specific gravity of 2.651, e max of 0.913, and e min of 0.493 were used, and the water content ratio was 25% and L1 was 0.64% (specific gravity 1.05), P1 is 0.05% (specific gravity 1.15) , and S1 is 0.1% (specific gravity 1.0). Here, assuming that the sand is 1000 g, the composition of the fluidizing sand is 250 g of water content, 6.4 g of L1, 0.5 g of P1, and 1.0 g of S1.
・The fluidized sand volume at the above blending is (1000 + 250 + 6.4 + 0.5 + 1.0) / 1.115 = 1128.161 cm 3
・The volume of sand particles is 1000/2.651 = 377.216 cm 3
・Gap volume is 1128.161-377.216=750.945cm 3

次に、流動化砂の理論飽和密度は、
(1000+250+6.4+0.5+1.0)/(1000/2.651+250/1+6.4/1.05+0.5/1.15+1.0/1.0)=1.983g/cm
理論飽和の間隙比(水のみの間隙比)は、
(2.651×(1+0.25+0.0064+0.0005+0.001))/1.983=0.681
上記流動化砂の間隙比1.991のうち、水の間隙比0.681、空気の間隙比1.309を求めることができる。間隙体積は750.945cm より、
空気の体積は750.945×(1.309/1.991)=493.715cm
よって、流動化砂の中の空気の割合は(493.715/1128.161)×100=43.7% となる。
Then, the theoretical saturation density of fluidized sand is
(1000 + 250 + 6.4 + 0.5 + 1.0) / (1000 / 2.651 + 250 / 1 + 6.4 / 1.05 + 0.5 / 1.15 + 1.0 / 1.0) = 1.983g/ cm3
The theoretical saturation void ratio (water only void ratio) is
(2.651 x (1 + 0.25 + 0.0064 + 0.0005 + 0.001)) / 1.983 = 0.681
Of the fluidized sand void ratio of 1.991, the water void ratio of 0.681 and the air void ratio of 1.309 can be obtained. From the gap volume of 750.945 cm3 ,
The volume of air is 750.945 x (1.309/1.991) = 493.715 cm 3
Therefore, the ratio of air in the fluidized sand is (493.715/1128.161) x 100 = 43.7%.

以上の製造初期の流動化砂は、含有する空気量がかなり高く、孔や空洞用の充填材、又は、圧入砂杭造成用としては含有空気量を減らすことが好ましい。そこで、上記空気脱気機構としては、密度調整槽30に類似の密度調整槽の上面を開放ないしは半開した状態で、該密度調整槽に付設した振動器つまり振動機構にて加振することにより、流動化砂に含有する空気を脱気ないしは抜気した。つまり、抜気方法は振動を加える構成である。その際は、含有する空気が流動化砂の上方及び吸排気管18からも逃げるようにした。また、その抜気時間10分経過時点、15分経過時点、20分経過時点でそれぞれ流動化砂の密度を計測した。表1はその結果と共に相対密度及び含有空気量を一覧したものである。 The above-mentioned fluidized sand at the initial stage of production contains a considerably high amount of air, and it is preferable to reduce the amount of air contained as a filler for holes and cavities, or for construction of press-in sand piles. Therefore, as the air degassing mechanism, the upper surface of a density adjustment tank similar to the density adjustment tank 30 is opened or half-opened, and vibration is applied by a vibrator, that is, a vibration mechanism attached to the density adjustment tank. The air contained in the fluidized sand was degassed or vented. That is, the method of venting is to apply vibration. At that time, the contained air was made to escape from above the fluidized sand and from the intake/exhaust pipe 18 as well. Further, the density of the fluidized sand was measured after 10 minutes, 15 minutes, and 20 minutes of the degassing time. Table 1 lists the relative density and air content along with the results.

(表1)

Figure 0007121542000001
(Table 1)
Figure 0007121542000001

(実施例2)この実施例2では、原料の砂材料として、吉良砂(愛知県吉良町産)を用い、図1の混合槽20に類似の混合槽により、含水比が25.0%、流動化剤L1=0.64%、遅効性塑性化剤P1=0.05%の組成の流動化砂を作成した。この流動化砂を混合槽から密度調整部の密度調整槽30に類似の密度調整槽に移した。この初期状態の流動化砂は、重量計測手段32より得られた流動化砂の重量/体積計測手段33より得られた流動化砂の体積から、密度γ=1.861g/cm であった。また、相対密度Dr=-25.8%であり、含有する空気量=7.2%であった。相対密度及び含有する空気量の算出方法は、実施例1と同じのため説明を省略する。 (Embodiment 2) In this embodiment 2, kira sand (produced in Kira Town, Aichi Prefecture) was used as the raw material sand material, and a mixing tank similar to the mixing tank 20 in FIG. A fluidized sand was prepared with a composition of L1=0.64% and P1=0.05% of the slow-acting plasticizer. The fluidized sand was transferred from the mixing tank to a density adjustment tank similar to density adjustment tank 30 in the density adjustment section. The fluidized sand in the initial state had a density γ of 1.861 g/cm 3 based on the weight of the fluidized sand obtained from the weight measuring means 32 and the volume of the fluidized sand obtained from the volume measuring means 33 . Also, the relative density Dr was -25.8% and the amount of air contained was 7.2%. The method of calculating the relative density and the amount of air contained is the same as in Example 1, so the explanation is omitted.

また、実施例2では、空気脱気機構としては、密度調整槽の上面を半開した状態で、密度調整槽に付設した攪拌機構の駆動により、つまり抜気方法は攪拌する構成である。その際は、含有する空気が流動化砂の上方及び吸排気管18からも逃げるようにした。また、その抜気時間10分経過時点、60分経過時点でそれぞれ流動化砂の密度を計測した。表2はその結果と共に相対密度及び含有空気量を一覧したものである。 In Example 2, the air degassing mechanism is configured such that the agitation mechanism attached to the density adjustment tank is driven while the upper surface of the density adjustment tank is half-opened, that is, the air removal method is agitation. At that time, the contained air was made to escape from above the fluidized sand and from the intake/exhaust pipe 18 as well. Further, the density of the fluidized sand was measured after 10 minutes and 60 minutes of the degassing time. Table 2 lists the relative density and air content along with the results.

(表2)

Figure 0007121542000002
(Table 2)
Figure 0007121542000002

以上の各実施例から明らかなごとく、流動化砂としては、含有する空気量を調整することで密度で管理したり制御可能となる。この利点として、充填用流動化砂の場合は、圧入式砂杭造成用流動化砂に比べ締固めによる周囲地盤への影響を抑えるため含有する空気量を少なめに設定し密度を高めに調整管理することにより、密度が管理された充填材として使用でき、良質で最良の評価が得られる。圧入式砂杭造成用流動化砂の場合は、使用する流動化砂の密度から造成される砂杭の密度も推察したり評価し易くなり信頼性を向上できる。勿論、流動化砂の好適な密度については、充填用や圧入式砂杭造成用と言っても、対象の地盤性状や目標値などによってその都度、最適な値ないしは範囲が設計される。本発明は、そのような設計を可能にしたことに意義がある。 As is clear from each of the above examples, the fluidized sand can be managed and controlled in terms of density by adjusting the amount of air contained. As an advantage of this, in the case of fluidized sand for filling, in order to suppress the impact on the surrounding ground due to compaction, compared to the fluidized sand for press-in sand pile construction, the amount of air contained is set to be smaller and the density is adjusted higher. By doing so, it can be used as a filler whose density is controlled, and the best quality and evaluation can be obtained. In the case of fluidized sand for press-fitting sand pile construction, the density of the sand pile to be constructed can be easily estimated and evaluated from the density of the fluidized sand used, and reliability can be improved. Of course, with regard to the suitable density of the fluidized sand, even for filling or press-fitting sand pile construction, the optimum value or range is designed depending on the target ground properties and target values. The present invention is significant in enabling such a design.

(流動化砂の使用例)図3は既設杭の引抜きにより形成される孔に以上のアジテータ槽40内の密度が調整された流動化砂を充填して埋め戻す一例を示している。この使用域には、地盤改良又は基礎構造物に使用された多数の杭9が打設されており、不図示の杭引抜き装置と共に砂充填装置7が配設されている。この砂充填装置7は、図4に示されるような砂杭造成装置(圧入式砂杭造成装置)を代用したものであり、ベースマシン24に移動可能に起立されたリーダー25と、リーダー25の一側に沿ってラック・ピニオン機構等を介して上下動される昇降機構26と、昇降機構26に組付けられてトレミー管8の上端側を支持する保持手段28と、リーダー25の上側に付設されて管路6の上側を支えるガイド具29などを有している。管路6の上端は、ジョイント27を介しトレミー管8の上端に接続されている。 (Usage Example of Fluidized Sand) FIG. 3 shows an example of refilling the hole formed by pulling out the existing pile with the fluidized sand having the density adjusted in the agitator tank 40 . In this use area, a large number of piles 9 used for ground improvement or foundation structures are driven, and a sand filling device 7 is arranged together with a pile extraction device (not shown). This sand filling device 7 is a substitute for the sand pile forming device (press-in type sand pile forming device) shown in FIG. A lifting mechanism 26 that moves up and down along one side via a rack and pinion mechanism or the like; It has a guide member 29 or the like that is bent and supports the upper side of the pipe line 6 . The upper end of the conduit 6 is connected to the upper end of the tremie tube 8 via a joint 27 .

そして、この例では、トレミー管8が杭9を引抜く際にその杭9に沿って昇降機構26により貫入され、杭9の引抜きに合わせてアジテータ槽40内の密度を調整した流動化砂S1が圧送ポンプP及び管路6、更にトレミー管8を介して杭9の引抜きにより形成される孔に送られる。このため、この砂充填工法では、杭9の引抜きとほぼ同時に引抜き孔を充填して埋め戻すことができ、密度管理された流動化砂S1を使用して圧入力も低くして孔周囲を不用意に締め固めることなく、孔の底から的確に塑性化した砂Sにて埋め戻すことができる。その結果、砂充填工法としては、流動化砂S1の密度、充填量などを一元管理し易く、より的確に評価可能なものとなる。付言すると、このような密度を調整管理した流動化砂は、図3に例示した砂充填工法以外に、図4に示されるような地盤改良のうち圧入式砂杭造成工法に好適なものとなる。 In this example, when the pile 9 is pulled out, the tremie pipe 8 is penetrated by the elevating mechanism 26 along the pile 9, and the fluidized sand S1 whose density is adjusted in the agitator tank 40 is adjusted according to the pulling out of the pile 9. is sent via a pressure pump P and a line 6 and a tremie tube 8 to the hole formed by pulling out the pile 9 . For this reason, in this sand filling method, the pull-out hole can be filled and backfilled almost at the same time as the pile 9 is pulled out. The bottom of the hole can be refilled with plasticized sand S accurately without compaction. As a result, as a sand filling method, the density, filling amount, etc. of the fluidized sand S1 can be easily centrally managed and can be evaluated more accurately. In addition, the fluidized sand whose density is adjusted and managed in this way is suitable for the press-in sand pile construction method among the ground improvement methods shown in Fig. 4, in addition to the sand filling method illustrated in Fig. 3. .

なお、以上の形態例や実施例は本発明を何ら制約するものではない。本発明は、請求項で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。図1の流動化砂装置1については、流動化砂の製造規模や経費などに応じて変形されるものである。例えば、この形態例では、上段の流動化砂製造部2、中段の密度調整部3、下段の養生部4、つまり縦型の三段式にしたが、養生部4を分離して流動化砂製造部2と密度調整部3の二段式にしたり、流動化砂製造部2を分離して密度調整部3と養生部4の二段式にすることも考えられる。 It should be noted that the above embodiments and examples do not limit the present invention in any way. The present invention only needs to have the technical elements specified in the claims, and the details can be changed in various ways as necessary. The fluidized sand apparatus 1 shown in FIG. 1 is modified according to the production scale and cost of the fluidized sand. For example, in this embodiment, the fluidized sand producing section 2 in the upper stage, the density adjusting section 3 in the middle stage, and the curing section 4 in the lower stage, that is, a vertical three-stage system is used. A two-stage system consisting of the production section 2 and the density adjustment section 3, or a two-stage arrangement consisting of the density adjustment section 3 and the curing section 4 by separating the fluidized sand production section 2 is also conceivable.

1・・・・・流動化砂製造装置
2・・・・・流動化砂製造部
3・・・・・密度調整部
4・・・・・養生部(アジテータ部)
5・・・・・圧力計
6・・・・・管路
7・・・・・流動化砂充填装置
8・・・・・トレミー管
9・・・・・杭
12・・・・・砂供給手段
13・・・・・調整用水供給手段
14・・・・・流動化剤供給手段
15・・・・・塑性化剤供給手段
16・・・・・流動化保持剤供給手段
17・・・・・空気量増減手段(18は吸排気管)
20・・・・・混合槽(21は攪拌機構、22は重量計測手段)
30・・・・・密度調整槽(31は攪拌機構、32は重量計測手段)
33・・・・・体積計測手段
40・・・・・アジテータ槽(41は攪拌機構)
REFERENCE SIGNS LIST 1: Fluidized sand manufacturing device 2: Fluidized sand manufacturing unit 3: Density adjusting unit 4: Curing unit (agitator unit)
5: pressure gauge 6: pipeline 7: fluidized sand filling device 8: tremie pipe 9: pile 12: sand supply Means 13...Adjustment water supply means 14...plasticizer supply means 15...plasticizer supply means 16...fluidization and retention agent supply means 17...・Air amount increasing/decreasing means (18 is an intake/exhaust pipe)
20: Mixing tank (21 is a stirring mechanism, 22 is weight measuring means)
30 Density adjustment tank (31 is a stirring mechanism, 32 is a weight measuring means)
33: Volume measuring means 40: Agitator tank (41 is a stirring mechanism)

Claims (3)

流動化砂製造部で砂材料に含水比調整用水と共に流動化剤を加えて混合する流動化砂の製造方法において、
前記流動化砂製造部で混合された流動化砂を受け入れると共に、流動化砂用の体積計測手段及び重量計測手段、並びに流動化砂中の空気量を増減調整する空気量増減手段として流動化砂中の空気を減らす空気脱気機構及び流動化砂中の空気を増やす空気追加機構を設けた密度調整部を有しており、
前記体積計測手段及び重量計測手段により前記流動化砂製造部から前記密度調整部に受け入れた流動化砂の密度及び混入している空気量を把握し、前記密度が所定の値ないしは範囲より低い場合は前記空気脱気機構により流動化砂から空気を抜いて高くなるよう調整し、密度が所定の値ないしは範囲より高い場合は前記空気追加機構により空気を流動化砂内に混入して低くなるよう調整することを特徴とする流動化砂の製造方法。
In a fluidized sand manufacturing method in which a fluidizing agent is added to and mixed with water for adjusting the water content ratio in a fluidized sand manufacturing section ,
Fluidized sand as volume measuring means and weight measuring means for fluidized sand and air amount increasing/decreasing means for adjusting the amount of air in the fluidized sand while receiving the fluidized sand mixed in the fluidized sand manufacturing section It has a density adjustment unit with an air deaeration mechanism to reduce the air inside and an air addition mechanism to increase the air in the fluidized sand ,
When the density of the fluidized sand received from the fluidized sand manufacturing unit and the amount of air mixed therein are grasped by the volume measuring means and the weight measuring means, and the density is lower than a predetermined value or range. is adjusted to be high by extracting air from the fluidized sand by the air deaeration mechanism, and when the density is higher than a predetermined value or range, the air addition mechanism mixes air into the fluidized sand to lower it. A method for producing fluidized sand, characterized by adjusting.
前記空気脱気機構は振動機構又は/及び真空吸引機構であり、前記空気追加機構は攪拌機構又は/及び空気吹込み機構であることを特徴とする請求項1に記載の流動化砂の製造方法。 2. The method for producing fluidized sand according to claim 1, wherein the air degassing mechanism is a vibrating mechanism and/or a vacuum suction mechanism, and the air adding mechanism is a stirring mechanism and/or an air blowing mechanism. . 前記砂材料に前記含水比調整用水及び前記流動化剤と共に遅効性塑性化剤を添加していることを特徴とする請求項1又は2に記載の流動化砂の製造方法。 3. The method for producing fluidized sand according to claim 1, wherein a slow-acting plasticizer is added to the sand material together with the water for adjusting the water content and the fluidizer.
JP2018101648A 2018-05-28 2018-05-28 Method for producing fluidized sand Active JP7121542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101648A JP7121542B2 (en) 2018-05-28 2018-05-28 Method for producing fluidized sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101648A JP7121542B2 (en) 2018-05-28 2018-05-28 Method for producing fluidized sand

Publications (2)

Publication Number Publication Date
JP2019206814A JP2019206814A (en) 2019-12-05
JP7121542B2 true JP7121542B2 (en) 2022-08-18

Family

ID=68768393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101648A Active JP7121542B2 (en) 2018-05-28 2018-05-28 Method for producing fluidized sand

Country Status (1)

Country Link
JP (1) JP7121542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166044B2 (en) * 2020-02-14 2022-11-07 株式会社不動テトラ SIMPLE EVALUATION METHOD AND DEVICE FOR JUDGING POSSIBLE REUSE AS PILE MATERIAL FOR SAND PILE-BASED SOIL IMPROVEMENT
CN113585225A (en) * 2021-08-11 2021-11-02 浙江大学 Thermal consolidation settlement reinforcing structure and method for soft soil around thermal pipeline

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044179A (en) 2002-07-10 2004-02-12 Gmc:Kk Fluidized soil and manufacturing method for fluidized soil
JP2004060326A (en) 2002-07-30 2004-02-26 Chida Engineering:Kk Method and device for manufacturing lightweight solidification material, pipe-shaped mixer device, solidification material manufacturing device and specific gravity adjusting device
JP2005036502A (en) 2003-07-15 2005-02-10 Fudo Constr Co Ltd Method of creating lightweight solidified earth
JP2015059070A (en) 2013-09-19 2015-03-30 住友大阪セメント株式会社 Bubble-containing cement composition, production method of bubble-containing cement composition and construction method using bubble-containing cement composition
JP2015183466A (en) 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same
JP2018053701A (en) 2016-09-27 2018-04-05 株式会社不動テトラ Fluidized sand and method for producing the same, and ground improvement method using the same
JP2019104805A (en) 2017-12-12 2019-06-27 ケミカルグラウト株式会社 Filling material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027064B2 (en) * 1992-12-25 2000-03-27 信越化学工業株式会社 Water-permeable composition with excellent pumpability
US5647690A (en) * 1995-06-08 1997-07-15 Landau; Richard Erwin Low cost installation of columns of material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044179A (en) 2002-07-10 2004-02-12 Gmc:Kk Fluidized soil and manufacturing method for fluidized soil
JP2004060326A (en) 2002-07-30 2004-02-26 Chida Engineering:Kk Method and device for manufacturing lightweight solidification material, pipe-shaped mixer device, solidification material manufacturing device and specific gravity adjusting device
JP2005036502A (en) 2003-07-15 2005-02-10 Fudo Constr Co Ltd Method of creating lightweight solidified earth
JP2015059070A (en) 2013-09-19 2015-03-30 住友大阪セメント株式会社 Bubble-containing cement composition, production method of bubble-containing cement composition and construction method using bubble-containing cement composition
JP2015183466A (en) 2014-03-25 2015-10-22 株式会社不動テトラ Fluidized sand and ground improvement method using the same
JP2018053701A (en) 2016-09-27 2018-04-05 株式会社不動テトラ Fluidized sand and method for producing the same, and ground improvement method using the same
JP2019104805A (en) 2017-12-12 2019-06-27 ケミカルグラウト株式会社 Filling material

Also Published As

Publication number Publication date
JP2019206814A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP5188894B2 (en) Sand pile construction method and sand pile construction equipment
JP7121542B2 (en) Method for producing fluidized sand
JP5478386B2 (en) Improving method for ground with underground cavity
JP5390060B2 (en) Ground strengthening method
JP5780714B2 (en) Filling the underground cavity
JP4628378B2 (en) Ground strengthening method
JP6207149B2 (en) Underground continuous water barrier method
JP4972661B2 (en) Ground injection method
JP2008127939A (en) Ground reinforcing method for soft ground
JP5404344B2 (en) Slag pile construction method
JP2008223475A (en) Grouting method
JP2013064238A (en) Two-liquid grout injection method
JP2012057407A (en) Slurry recycling method
KR101235797B1 (en) Light weight fill materials with fluidity and resistance to segregation
JP7213609B2 (en) Method for producing fluidized sand
JP5676897B2 (en) Construction method of underground structure with standard bubble stabilizer
JP7231513B2 (en) fluidized sand composition
JP2011122323A (en) Method for treating soft soil
JP2014171977A (en) Deformation follow-up impervious material, method for producing deformation follow-up impervious material and construction method using deformation follow-up impervious material
JP2019042727A (en) Method of treating mud generated in mud pressure shield method
JP6916583B2 (en) Manufacturing method of fluidized sand
JP4970547B2 (en) Preparation method of bubble stabilizer and bubble drilling method
JP7191447B2 (en) Method for producing fluidized sand
JP2982980B2 (en) Backfill injection material for tunnel
JP4341884B2 (en) Foundation pile forming composition, manufacturing method thereof, and foundation pile forming method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7121542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150