JP2019042727A - Method of treating mud generated in mud pressure shield method - Google Patents
Method of treating mud generated in mud pressure shield method Download PDFInfo
- Publication number
- JP2019042727A JP2019042727A JP2018027746A JP2018027746A JP2019042727A JP 2019042727 A JP2019042727 A JP 2019042727A JP 2018027746 A JP2018027746 A JP 2018027746A JP 2018027746 A JP2018027746 A JP 2018027746A JP 2019042727 A JP2019042727 A JP 2019042727A
- Authority
- JP
- Japan
- Prior art keywords
- mud
- amphoteric polymer
- polymer flocculant
- solidifying material
- treating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229920000642 polymer Polymers 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 28
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 8
- 125000000129 anionic group Chemical group 0.000 claims abstract description 7
- 125000002091 cationic group Chemical group 0.000 claims abstract description 6
- 239000000292 calcium oxide Substances 0.000 claims abstract description 4
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 4
- 239000010440 gypsum Substances 0.000 claims abstract description 4
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 239000000701 coagulant Substances 0.000 abstract description 17
- 238000007711 solidification Methods 0.000 abstract description 6
- 230000008023 solidification Effects 0.000 abstract description 6
- 239000002689 soil Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000126 substance Substances 0.000 description 17
- 239000004576 sand Substances 0.000 description 16
- 229920006318 anionic polymer Polymers 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 239000000654 additive Substances 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000005553 drilling Methods 0.000 description 10
- 239000006261 foam material Substances 0.000 description 10
- 229920006317 cationic polymer Polymers 0.000 description 9
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 239000004033 plastic Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005187 foaming Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 4
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229920000591 gum Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、泥土圧シールド工法で発生する泥土の処理方法である。 The present invention is a method for treating mud generated by a mud pressure shield method.
泥土圧シールド工法は、掘削土砂を泥土化し、それに所定の圧力を与えることでシールド掘削機の切羽の安定を図りつつ掘削を行うものである。泥土化とは、具体的には、掘削土砂に加泥材や気泡材のような掘進用添加材を注入することにより掘削土砂の塑性流動性を保持することをいう。 In the mud pressure shield method, excavated soil is turned into mud, and a predetermined pressure is applied to it to perform excavation while securing the face of the shield excavator. Mudification specifically refers to maintaining the plastic fluidity of excavated earth and sand by injecting a drilling additive such as a mud material and foam into excavated earth and sand.
一方、掘削土砂は、シールド掘削機のチャンバーからスクリューコンベアを介して、連続ベルコンやズリ鋼車等で坑外へ搬出される。この際、掘削土砂の流動性が高すぎると、土水圧により、スクリューコンベアから掘削土砂が噴発することがある。これを防止するために、噴発防止剤が使用されている。 On the other hand, the excavated earth and sand is carried out of the chamber of the shield excavator via the screw conveyor and continuously excavated by a bellcon or a slip iron car. At this time, if the fluidity of the excavated soil is too high, excavated soil may be spouted from the screw conveyor due to the soil water pressure. In order to prevent this, an anti-propellant is used.
上記噴発防止剤は、掘削土砂中の水分との反応による水分保持効果と、土粒子の凝集効果により掘削土砂の噴発を防止するものである。 The anti-effusive agent is to prevent the spouting of excavated earth and sand by the water retention effect by the reaction with the water in excavated earth and sand and the aggregation effect of soil particles.
従来技術としては、特許文献1のように、泥土圧シールド工法において、アニオン性高分子物質を掘削土砂に添加混合し、ついでカチオン(陽イオン)高分子物質をも併用することによって、流動性の掘削土砂を非流動化させることを試みる技術もある。 As prior art, as disclosed in Patent Document 1, in the mud pressure shield method, an anionic polymer substance is added to and mixed with excavated earth and sand, and then a cation (cation) polymer substance is also used in combination to obtain fluidity. There are also techniques that attempt to demobilize excavated soil.
しかしながら、上記したようなアニオン性高分子凝集剤は、土粒子表面の荷電条件がプラスである場合には土粒子を凝集させる効果を発揮するが、マイナスである場合は土粒子と高分子とが反発し分散を生じるため、効果が低減する。 However, the anionic polymer flocculant as described above exerts an effect of coagulating soil particles when the charge condition of the surface of the soil particles is positive, but when it is negative, the soil particles and the polymer are Since the repulsion and dispersion occur, the effect is reduced.
また、特許文献1などのようにアニオン性高分子物質とカチオン高分子物質とを併用する場合は、設備や施工手間が増加する。具体的には、アニオン性高分子物質とカチオン高分子物質とを予め混合したうえで添加する場合には、両物質の原液を蓄えるタンク、さらには混合液を蓄える槽を増設する必要がある。一方で、アニオン性高分子物質とカチオン高分子物質とを別々に添加する場合も、両物質の原液を蓄えるタンクに加え、両物質を添加するための2系統の注入ラインを増設する必要がある。 In addition, when an anionic polymer substance and a cationic polymer substance are used in combination as in Patent Document 1 and the like, equipment and construction labor increase. Specifically, in the case where the anionic polymer substance and the cationic polymer substance are mixed in advance and added, it is necessary to add a tank for storing the stock solution of both substances, and further a tank for storing the mixed solution. On the other hand, even in the case of separately adding an anionic polymer substance and a cationic polymer substance, it is necessary to add two injection lines for adding both substances in addition to the tank storing the stock solutions of both substances. .
くわえて、両高分子物質を併用した際には、物質ごとのカチオンとアニオンとが互いに打ち消しあうため、本来期待される土粒子の凝集効果も低減してしまう。 In addition, when both high molecular substances are used in combination, since the cations and the anions of each substance mutually cancel each other, the aggregation effect of soil particles originally expected is also reduced.
本発明者は、前述の目的を達成するため、鋭意検討の結果、本発明に想到した。 The present inventor has conceived of the present invention as a result of intensive studies to achieve the above-mentioned object.
すなわち本発明は、泥土圧シールド工法で発生する泥土に、両性高分子凝集剤を混合し、泥土を凝集させることを特徴とする、泥土の処理方法である。 That is, the present invention is a method for treating mud, comprising mixing an amphoteric polymer flocculant with mud generated by a mud pressure shield method to coagulate the mud.
前記両性高分子凝集剤は、具体的には、アニオン性基およびカチオン性基を一つの高分子中に有するものが挙げられる。 Specific examples of the amphoteric polymer flocculant include those having an anionic group and a cationic group in one polymer.
さらに本発明は、前記凝集剤を混合した後、固化材を添加し、前記泥土を固化させることを特徴とする、上記泥土の処理方法である。 Furthermore, the present invention is the processing method of the above-mentioned mud characterized by adding a solidification agent after mixing the above-mentioned flocculant, and solidifying the above-mentioned mud.
前記固化材としては、特に限定されるものではないが、生石灰、石膏系固化材、または中性系固化材などが挙げられる。 The solidifying material is not particularly limited, and examples thereof include quick lime, gypsum-based solidifying material, and neutral-based solidifying material.
本発明にかかる、両性高分子凝集剤を用いた泥土処理方法は、従来のアニオン性高分子凝集剤のみを用いた場合や、アニオン性高分子凝集剤とカチオン性高分子凝集剤とを混合または別々に添加した場合よりも凝集効果を得やすいという顕著な効果を奏する。さらに、添加剤が一つであるため、設備や添加用の注入ラインを増加させる必要がないため施工性に大いに寄与することができる。 The mud treatment method using the amphoteric polymer coagulant according to the present invention can be performed by using only the conventional anionic polymer coagulant, or by mixing the anionic polymer coagulant with the cationic polymer coagulant or The remarkable effect is obtained that it is easier to obtain the aggregation effect than when added separately. Furthermore, since there is only one additive, there is no need to increase equipment and injection lines for addition, which can greatly contribute to the workability.
以下、本発明の形態について説明するが、本発明の範囲は、実施例を含めた当該記載に限定されるものではない。なお、本願において、「%」や比率を表す記載は、特にことわりのない限り、重量%、重量比率を意味する。 Hereinafter, although the form of the present invention is explained, the scope of the present invention is not limited to the statement including an example. In the present application, the term “%” or the term “ratio” means weight% or weight ratio, unless otherwise specified.
<両性高分子凝集剤>
本発明における両性高分子凝集剤は、噴発防止剤として用いられるものである。両性高分子凝集剤とは、具体的には、アニオン性基およびカチオン性基を一つの高分子中に有する。
<Ampholytic polymer flocculant>
The amphoteric polymer flocculant in the present invention is used as an anti-fugitive agent. Specifically, the amphoteric polymer flocculant has an anionic group and a cationic group in one polymer.
このような両性高分子凝集剤を使用することによって、アニオン性高分子凝集剤およびカチオン性高分子凝集剤を別々に添加する必要がない。また、下記実施例で証明するように、別々に添加する場合よりも土粒子の凝集による流動性の低減効果を得やすい。 By using such an amphoteric polymer flocculant, it is not necessary to separately add the anionic polymer flocculant and the cationic polymer flocculant. In addition, as demonstrated in the following examples, it is easier to obtain the effect of reducing the fluidity by the aggregation of soil particles than when adding separately.
前記アニオン性基としては、特に限定されるものではないが、カルボキシル基、スルホン酸基、又はリン酸基などが挙げられる。 Although it does not specifically limit as said anionic group, A carboxyl group, a sulfonic acid group, or a phosphoric acid group etc. are mentioned.
前記カチオン性基としても、特に限定されるものではないが、アミノ基、又はアンモニウム基などが挙げられる。 The cationic group is not particularly limited, and examples thereof include an amino group and an ammonium group.
前記両性高分子凝集剤の添加量は、土の組成や高分子の構造によっても変動するが、シールド掘削機1(図1参照、以下省略)内のスクリューコンベア13内で掘削された土砂と均質に混合できること、余剰高分子による粘度の増加を抑制することなどの観点から、一般的な添加量としては、0.5〜20kg/m3が好ましく、2〜5kg/m3がより好ましい。(なお、「m3」は、土砂の体積を指す。以下同様) The amount of the amphoteric polymer coagulant added varies depending on the composition of the soil and the structure of the polymer, but it is homogeneous with the earth and sand excavated in the screw conveyor 13 in the shield excavating machine 1 (see FIG. 1, hereinafter omitted). It can be mixed, from the viewpoint of suppressing an increase in viscosity with excess polymer, as a general additive amount is preferably 0.5~20kg / m 3, 2~5kg / m 3 and more preferably. (Note that "m 3 " refers to the volume of earth and sand. The same applies below.)
本発明における両性高分子凝集剤の注入方法の一例を図1を用いて説明する。図1は、シールド掘削機1の先端部分の断面図である。シールド切削機1は、カッター11、掘進用添加材注入口12、スクリュ―コンベア13、両性高分子凝集剤注入口14、シールドジャッキ15、練混ぜ翼16、チャンバー17、土圧計18を含む。 An example of the method for injecting the amphoteric polymer flocculant in the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of the tip portion of the shield excavator 1. The shield cutting machine 1 includes a cutter 11, an additive injection port 12 for drilling, a screw conveyor 13, an amphoteric polymer coagulant injection port 14, a shield jack 15, a mixing blade 16, a chamber 17, and an earth pressure gauge 18.
カッター11は、土砂を切削する。掘進用添加材注入口12は、切削した土砂に対して掘進用添加材を注入するための開口部分である。掘進用添加材は、土砂に塑性流動性を付与して泥土化するために用いられるものであり、たとえば、加泥材や気泡材が挙げられる。 The cutter 11 cuts earth and sand. The drilling additive inlet 12 is an opening for injecting the drilling additive into the cut soil. The drilling additive is used to impart plastic flowability to soil to make it mud, and examples thereof include a mud and a foam.
加泥材としては、粘土やベントナイトなどの無機物質や、ガムやデンプン、セルロース系、アクリル系、多糖類などの高分子化合物のような有機物質を用いることができる。 As the mud material, inorganic substances such as clay and bentonite, and organic substances such as gum, starch, polymer compounds such as cellulose, acrylic and polysaccharides can be used.
気泡材としては、界面活性剤などの起泡材を用いて発泡させた気泡材が用いられる。気泡材は、発泡装置により添加する(図示しない)。 As a foam material, the foam material made to foam using foaming agents, such as surfactant, is used. The foam material is added by a foaming device (not shown).
スクリュ―コンベア13は、掘削した土砂を、シールド切削機外へ排出する排土装置である。両性高分子凝集剤注入口14は、スクリュ―コンベアからの土砂の噴発を防ぐために両性高分子凝集剤を注入する開口部分である。注入口14は、スクリューコンベア内での閉塞を回避するため、スクリューコンベアの中間部から後端部の間に3か所設けてある。通常、両性高分子凝集剤は中間部1か所から注入するが、砂礫層等透水性が高く地下水が高い地盤やチャンバー内の泥土の流動性が高い場合には、複数箇所から注入しても良い。シールドジャッキ15は、泥土圧を発生させ、切羽の安定をはかるための推力装置である。練混ぜ翼16は、土砂と掘進用添加材とをチャンバー17内で練混ぜるための翼である。土圧計18は、泥土圧を測定することによって掘削を管理する装置である。 The screw conveyor 13 is an earth removing device that discharges excavated earth and sand from the shield cutting machine. The amphoteric polymer flocculant injection port 14 is an opening portion into which the amphoteric polymer flocculant is injected in order to prevent the spouting of the soil from the screw conveyor. In order to avoid clogging in the screw conveyor, three inlets 14 are provided between the middle and the rear end of the screw conveyor. Usually, the amphoteric polymer coagulant is injected from one place in the middle part, but if the soil with high permeability and ground water such as sand and sand layers and the mud in the chamber have high fluidity, it may be injected from multiple places. good. The shield jack 15 is a thrust device for generating mud pressure and stabilizing the face. The mixing blade 16 is a blade for mixing the earth and sand and the drilling additive in the chamber 17. The earth pressure gauge 18 is a device that manages excavation by measuring mud pressure.
具体的には、カッター11によって掘削された土砂に対し、掘進用添加材注入口12から、掘進用添加材として加泥材や気泡材を注入する。土砂及び加泥材等を練混ぜ翼16で練り混ぜることにより、土砂は、塑性流動性を有する泥土となる。 Specifically, to the earth and sand excavated by the cutter 11, a mud agent or a foam material is injected as an additive for drilling from the drilling additive inlet 12. By mixing the soil and mud and the like with the mixing blade 16, the soil becomes a mud having plastic flowability.
泥土がチャンバー17内及びスクリューコンベア13内に充填された状態で、シールドジャッキ15にてシールド切削機1を推進させる。この場合に、推力による泥土圧と切削する地下の土水圧及び地下水圧とが拮抗することによって、切羽が安定して切削できる。かかる泥土圧は、土圧計18をもって適宜測定管理することができる。 With the mud filled in the chamber 17 and in the screw conveyor 13, the shield jack 15 propels the shield cutting machine 1. In this case, the face can be stably cut by the antagonism of the mud pressure by the thrust and the ground water pressure and the ground water pressure to be cut. The mud pressure can be appropriately measured and managed by the earth pressure gauge 18.
<固化材>
固化材は、両性高分子凝集剤で凝集させた泥土に対して添加されるものである。固化材は、搬出される泥土を盛土などに再利用する場合などに、泥土に対して添加することで泥土を改質して強度を高めるために用いる。固化材は、たとえば、図1に示したスクリュ―コンベア13から排出された泥土(両性高分子凝集剤で凝集させた土砂)に対し、公知の方法により添加する。更に、シールド掘削機1とは別に設けた連続式二軸パドルミキサーなどの攪拌機を用いて泥土と混合することで泥土に必要な強度を与えることができる。
Solidification material
The solidifying material is added to the mud coagulated with the amphoteric polymer flocculant. The solidifying material is used to improve the strength of the mud by adding it to the mud when reusing the mud to be carried out for reclamation etc. The solidifying material is added, for example, to the mud (earth and sand aggregated with an amphoteric polymer coagulant) discharged from the screw conveyor 13 shown in FIG. 1 by a known method. Furthermore, the necessary strength can be given to the mud by mixing with the mud using a stirrer such as a continuous twin-screw paddle mixer provided separately from the shield drilling machine 1.
これら固化材については、特に種類は問わないが、たとえばセメント系固化材、石灰系固化材(生石灰)、石膏系固化材、およびマグネシウムあるいは酸化マグネシウムなどを用いた中性系固化材などが挙げられる。 There is no particular limitation on the type of the solidifying material, and examples thereof include cement-based solidifying materials, lime-based solidifying materials (quick lime), gypsum-based solidifying materials, and neutral-based solidifying materials using magnesium or magnesium oxide. .
前記固化材の添加量についても、土の組成等によって変動するが、一般的な添加量としては、20〜250kg/m3、好ましくは30〜200kg/m3である。 The addition amount of the solidifying material also varies depending on the composition of the soil, etc., but the general addition amount is 20 to 250 kg / m 3 , preferably 30 to 200 kg / m 3 .
<その他の添加剤>
上述のような一般的な加泥材や気泡材を添加することができる。あるいは、掘削土砂の腐敗を防止するため、各種殺菌剤や防腐剤などを適宜用いることができる。
<Other additives>
Common mud and foam materials as described above can be added. Alternatively, various disinfectants, preservatives, and the like can be used as appropriate in order to prevent decay of excavated soil.
次に、実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will next be described by way of examples, but the scope of the present invention is not limited to these examples.
1.両性高分子凝集剤による流動性の低減
(1)試料土としては、関東ローム(八王子で採取)を9.5mm以下に粒度調整したものを用いた。自然含水比は約117〜124%である。
1. Reduction of Fluidity by Amphoteric Polymeric Flocculant (1) As sample soil, the one whose particle size of Kanto loam (collected by Hachioji) was adjusted to 9.5 mm or less was used. The natural water content is about 117-124%.
(2)上記試料土を、体積比で8%または12%加水し、パン型ミキサーにて15秒の撹拌を2回行って混合した。加水量が8%か12%かのいずれかについては、表1中で明示する。(下記の注入率等についても同様とする) (2) 8% or 12% by volume of the above-mentioned sample soil was hydrolyzed, and mixing was carried out twice by stirring for 15 seconds with a pan-type mixer. Either 8% or 12% water content is specified in Table 1. (The same applies to the following injection rate etc.)
(3)掘進用添加材として、気泡材を使用した。具体的には、起泡材レオフォームOL−10(ライオン・スペシャリティ・ケミカルズ株式会社製)を0.5重量%濃度に希釈し、発泡機にて発泡倍率10倍となるように調整した気泡材を用いた。なお、ここで「発泡倍率」とは、希釈した溶液の体積に対する発泡後の気泡材体積の体積比をさすものとする。 (3) A foam material was used as an additive for drilling. Specifically, a foam material was prepared by diluting foaming agent Reofoam OL-10 (manufactured by Lion Specialty Chemicals Co., Ltd.) to a concentration of 0.5% by weight and adjusting the foaming ratio to 10 times with a foaming machine. Was used. Here, the "foaming ratio" refers to the volume ratio of the foam material volume after foaming to the volume of the diluted solution.
(4)この気泡材を必要量(注入率20%または40%)計量したものを前記(2)で得られた土に添加し、15秒の撹拌を2回行って混合した。なお、ここで「注入率」とは、土砂体積に対する添加気泡材体積の割合をさすものとする。たとえば注入率40%の場合、土砂1m3(=1000L)に対して、気泡材添加量は400Lとなる。 (4) A required amount (20% or 40% injection rate) of this foam material was weighed and added to the soil obtained in the above (2), and mixing was carried out by 15 seconds of stirring twice. In addition, the "injection rate" shall refer to the ratio of the addition bubble material volume to the earth and sand volume here. For example, when the injection rate is 40%, the amount of the foam material added is 400 L for 1 m 3 of soil (= 1000 L).
(5)両性高分子凝集剤を必要量計算し、前記(4)で得られた土に添加後、60秒の攪拌を1回行って混合した。なお、比較例では、両性高分子凝集剤の代わりにアニオン性(比較例1−1)、アニオン性&カチオン性(比較例1−2)の凝集剤を添加した。添加方法は上記実施例と同様である。 (5) The necessary amount of the amphoteric polymer flocculant was calculated, and after being added to the soil obtained in the above (4), the mixture was stirred once for 60 seconds and mixed. In the comparative example, instead of the amphoteric polymer flocculant, an anionic (Comparative Example 1-1), an anionic & cationic (Comparative Example 1-2) flocculant was added. The method of addition is the same as in the above example.
両性高分子凝集剤として、DP/A−350E(株式会社SNF社製)を用いた。 DP / A-350E (manufactured by SNF Co., Ltd.) was used as an amphoteric polymer flocculant.
両性高分子凝集剤DP/A−350Eの構造を下記化1に示す。構造式の通り、アクリルアミドとジメチルアミノエチルメタクリレートとジメチルアミノエチルアクリレートとアクリル酸との共重合物である。
(なお、m、n、p、およびqは、m+n+p+q=100%とした組成比を表す)
The structure of the amphoteric polymer flocculant DP / A-350E is shown in the following formula 1. As a structural formula, it is a copolymer of acrylamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate and acrylic acid.
(Note that m, n, p, and q represent composition ratios with m + n + p + q = 100%)
アニオン性高分子凝集剤としては、下記化2に示すものを用いた。構造式の通り、アクリルアミドとアクリル酸との共重合物である。
(なお、xおよびyは、x+y=100%とした組成比を表す)
As the anionic polymer flocculant, one shown in the following chemical formula 2 was used. As a structural formula, it is a copolymer of acrylamide and acrylic acid.
(Note that x and y represent the composition ratio with x + y = 100%)
カチオン性高分子凝集剤としては、下記化3に示すものを用いた。構造式の通り、アクリルアミドとジメチルアミノエチルアクリレートとの共重合物である。
(なお、xおよびyは、x+y=100%とした組成比を表す)
As the cationic polymer flocculant, one shown in the following chemical formula 3 was used. As a structural formula, it is a copolymer of acrylamide and dimethylaminoethyl acrylate.
(Note that x and y represent the composition ratio with x + y = 100%)
(6)前記(5)で得られた土をビニール袋に入れ、1時間後、土のコーン指数(JIS A 1228に準拠)を計測した。1時間後のコーン指数により噴発防止効果を評価する。 (6) The soil obtained in the above (5) was placed in a plastic bag, and after 1 hour, the corn cone index (based on JIS A 1228) was measured. Evaluate the anti-effusive effect by the cone index after 1 hour.
2.両性高分子凝集剤と固化材との併用による改質
(1)上記1.の(1)〜(5)までは共通である。前記(5)の操作後、ビニール袋をかぶせ30分間養生した。
2. Modification by Combined Use of Amphoteric Polymer Flocculant and Solidifying Material (1) Above 1. (1) to (5) are common. After the operation of (5), a plastic bag was put on and cured for 30 minutes.
(2)養生後、必要量を計量した固化材を添加し、60秒の攪拌を1回行って混合した。 (2) After curing, the solidified material whose required amount was measured was added, and stirring was performed once for 60 seconds and mixed.
(3)前記(2)で改質した土をビニール袋に入れ、1日後、土のコーン指数(JIS A 1228に準拠)を計測した。1日後のコーン指数により泥土の改質効果を評価する。 (3) The soil modified in the above (2) was placed in a plastic bag, and one day later, the corn cone index (based on JIS A 1228) was measured. Evaluate the effect of mud modification by corn index after 1 day.
上記一連の手順フローを、図2に示す。 The above series of procedure flow is shown in FIG.
上記1.の結果を表1に、2.の結果を表2に、それぞれ示す。 Above 1. Table 1 shows the results of 2. The results of are shown in Table 2 respectively.
<1.について>
実施例1−1と、比較例1−1および1−2とは、高分子凝集剤の種類以外は同条件である。これらを比較すると、両性高分子凝集剤を使用した実施例1−1は、アニオン性高分子凝集剤のみを使用した比較例1−1や、アニオン性高分子凝集剤とカチオン性高分子凝集剤とを混合したものを使用した比較例1−2よりも、コーン指数が高かった。すなわち、両性高分子凝集剤を用いることで土粒子の凝集による流動性の低下が進み、噴発防止効果が高くなることがわかる。
<1. About
Example 1-1 and Comparative Examples 1-1 and 1-2 have the same conditions except for the type of the polymer coagulant. Comparing these, Example 1-1 using an amphoteric polymer flocculant, Comparative Example 1-1 using only an anionic polymer flocculant, and an anionic polymer flocculant and a cationic polymer flocculant And the corn index was higher than Comparative Example 1-2 using a mixture of That is, it can be seen that by using the amphoteric polymer flocculant, the decrease in fluidity due to the aggregation of the soil particles proceeds, and the effect of preventing the fugitive emission becomes high.
また、両性高分子凝集剤を使用した実施例1−2は、加水量が比較例1−1および1−2よりも多く、凝集しにくい点で条件が厳しいにもかかわらず、上記比較例よりもコーン指数が高く、凝集が進み、噴発防止効果が高くなることがわかる。 In addition, in Example 1-2 using an amphoteric polymer flocculant, although the amount of water added is larger than Comparative Examples 1-1 and 1-2 and the conditions are severe in that aggregation is difficult, the above Comparative Example Also, it can be seen that the cone index is high, aggregation progresses, and the anti-effusive effect is enhanced.
<2.について>
実施例2−1と、比較例2−1および2−3とは、高分子凝集剤の種類以外は同条件である。これらを比較すると、上記1.の結果と同様、両性高分子凝集剤を使用した実施例2−1は、アニオン性高分子凝集剤のみを使用した比較例2−1や、アニオン性高分子凝集剤とカチオン性高分子凝集剤とを混合したものを使用した比較例2−3よりも、コーン指数が高く、固化による改質が進んでいることがわかる。
<2. About
Example 2-1 and Comparative Examples 2-1 and 2-3 have the same conditions except for the type of the polymer coagulant. Comparing these, the above 1. Similar to the result of Example 2, Example 2-1 using an amphoteric polymer flocculant is a comparative example 2-1 using only an anionic polymer flocculant, an anionic polymer flocculant and a cationic polymer flocculant It is understood that the corn index is higher than that of Comparative Example 2-3 in which the mixture of and is mixed, and the modification by solidification is advanced.
実施例2−2と比較例2−4、実施例2−4と比較例2−5、および実施例2−5と比較例2−6は、それぞれ高分子凝集剤の種類以外は同条件であるが、いずれも両性高分子凝集剤を使用した実施例の方が比較例よりもはるかにコーン指数が高く、固化による改質が進んでいることがわかる。 In Example 2-2 and Comparative Example 2-4, Example 2-4 and Comparative Example 2-5, and Example 2-5 and Comparative Example 2-6, respectively, under the same conditions except for the type of the polymer coagulant. Although there are some examples, in each of the examples using an amphoteric polymer flocculant, the corn index is much higher than that of the comparative example, and it can be seen that the modification by solidification proceeds.
また、両性高分子凝集剤を使用した実施例2−2は、加水量が比較例2−2よりも多く、条件が厳しいにもかかわらず、比較例2−2よりもコーン指数が高く、固化による改質が進んでいることがわかる。 In addition, in Example 2-2 using an amphoteric polymer flocculant, although the amount of water added is larger than that of Comparative Example 2-2 and the conditions are severe, the corn index is higher than that of Comparative Example 2-2 and solidified. It can be seen that the reformation by
同様に、両性高分子凝集剤を使用した実施例2−3は、加水量が比較例2−3よりも多く、条件が厳しいにもかかわらず、比較例2−3よりもコーン指数が高く、固化による改質が進んでいることがわかる。 Similarly, in Example 2-3 using an amphoteric polymer flocculant, the corn index is higher than that in Comparative Example 2-3, although the amount of water added is higher than in Comparative Example 2-3 and the conditions are severe. It can be seen that reforming by solidification is in progress.
以上をまとめると、凝集剤として両性高分子凝集剤を用いることによって、従来のアニオン性高分子凝集剤のみを添加した場合、およびアニオン性高分子凝集剤とカチオン性高分子凝集剤とを混合したものを添加した場合よりも、高分子凝集剤添加直後の噴発防止効果も、固化材と併用した1日後の改質効果ともに高くなる結果となった。 Summarizing the above, when only the conventional anionic polymer flocculant is added by using the amphoteric polymer flocculant as the flocculant, and the anionic polymer flocculant and the cationic polymer flocculant are mixed. As compared with the addition of the polymer, the effect of preventing the spouting immediately after the addition of the polymer coagulant was also higher in the modification effect after one day when used in combination with the solidifying material.
1・・・シールド掘削機
11・・・カッター
12・・・掘進用添加材注入口
13・・・スクリューコンベア
14・・・両性高分子凝集剤注入口
15・・・シールドジャッキ
16・・・練混ぜ翼
17・・・チャンバー
18・・・土圧計
1 ... shield excavator 11 ... cutter 12 ... excavation additive material inlet 13 ... screw conveyor 14 ... amphoteric polymer coagulant injection port 15 ... shield jacks 16 ... kneading Mixed wing 17 · · · Chamber 18 · · · earth pressure gauge
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018027746A JP6830632B2 (en) | 2018-02-20 | 2018-02-20 | Treatment method of mud generated by mud pressure shield method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018027746A JP6830632B2 (en) | 2018-02-20 | 2018-02-20 | Treatment method of mud generated by mud pressure shield method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020115228A Division JP7133816B2 (en) | 2020-07-02 | 2020-07-02 | Disposal method of mud generated by the mud pressure shield construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019042727A true JP2019042727A (en) | 2019-03-22 |
JP6830632B2 JP6830632B2 (en) | 2021-02-17 |
Family
ID=65815163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018027746A Active JP6830632B2 (en) | 2018-02-20 | 2018-02-20 | Treatment method of mud generated by mud pressure shield method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6830632B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184429A1 (en) | 2019-03-08 | 2020-09-17 | Agc株式会社 | Composition, crosslinked rubber, and production method therefor |
CN112473408A (en) * | 2020-12-15 | 2021-03-12 | 中国电建集团铁路建设有限公司 | Earth pressure balance shield foam system, working method and calculation method |
JP2021062364A (en) * | 2019-10-11 | 2021-04-22 | テクニカ合同株式会社 | Method of using amphoteric polymer flocculant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131400A (en) * | 1989-10-18 | 1991-06-04 | Kyoritsu Yuki Co Ltd | Method for coagulating earth and sand and mud shield method using the same |
JP2004043754A (en) * | 2002-07-12 | 2004-02-12 | Senka Kk | Solidifying agent for civil engineering |
JP2006265885A (en) * | 2005-03-23 | 2006-10-05 | Kurita Water Ind Ltd | Treating method of construction sludge generated in cellular shield construction method |
JP2008229497A (en) * | 2007-03-20 | 2008-10-02 | Daiyanitorikkusu Kk | Dehydrator for treating civil engineering and construction sludge |
JP2017064654A (en) * | 2015-09-30 | 2017-04-06 | 太平洋セメント株式会社 | Surplus soil treatment material and treatment method of surplus soil |
CN106587567A (en) * | 2016-12-20 | 2017-04-26 | 上海市建筑科学研究院(集团)有限公司 | Method for mud fast sedimentation conditioning and solid-liquid separation |
-
2018
- 2018-02-20 JP JP2018027746A patent/JP6830632B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131400A (en) * | 1989-10-18 | 1991-06-04 | Kyoritsu Yuki Co Ltd | Method for coagulating earth and sand and mud shield method using the same |
JP2004043754A (en) * | 2002-07-12 | 2004-02-12 | Senka Kk | Solidifying agent for civil engineering |
JP2006265885A (en) * | 2005-03-23 | 2006-10-05 | Kurita Water Ind Ltd | Treating method of construction sludge generated in cellular shield construction method |
JP2008229497A (en) * | 2007-03-20 | 2008-10-02 | Daiyanitorikkusu Kk | Dehydrator for treating civil engineering and construction sludge |
JP2017064654A (en) * | 2015-09-30 | 2017-04-06 | 太平洋セメント株式会社 | Surplus soil treatment material and treatment method of surplus soil |
CN106587567A (en) * | 2016-12-20 | 2017-04-26 | 上海市建筑科学研究院(集团)有限公司 | Method for mud fast sedimentation conditioning and solid-liquid separation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184429A1 (en) | 2019-03-08 | 2020-09-17 | Agc株式会社 | Composition, crosslinked rubber, and production method therefor |
JP2021062364A (en) * | 2019-10-11 | 2021-04-22 | テクニカ合同株式会社 | Method of using amphoteric polymer flocculant |
CN112473408A (en) * | 2020-12-15 | 2021-03-12 | 中国电建集团铁路建设有限公司 | Earth pressure balance shield foam system, working method and calculation method |
Also Published As
Publication number | Publication date |
---|---|
JP6830632B2 (en) | 2021-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019042727A (en) | Method of treating mud generated in mud pressure shield method | |
JP2012012878A (en) | Improving method of ground having underground cavity | |
JP7133816B2 (en) | Disposal method of mud generated by the mud pressure shield construction method | |
JP2010024432A (en) | Additive, and soil-pressed shield method and soil-pressed pipe-jacking method using the same | |
JP3764081B2 (en) | Construction method of continuous underground wall mixed with bentonite | |
JP6679030B1 (en) | Method for modifying mud soil such as soil mixed with drilling additives | |
JP6502812B2 (en) | Bubble shield method | |
JP4769180B2 (en) | Backfill injection material and backfill injection method | |
JP7245678B2 (en) | SOIL IMPROVEMENT MATERIAL, CEMENT MILK, AND SOIL IMPROVEMENT METHOD | |
JP4555911B2 (en) | Low noise, low vibration sediment pump additive and sediment pump pumping method | |
JP2003327989A (en) | Powder lubricant and mud adding material for civil engineering use containing the same | |
JPH01230893A (en) | Earth pressure shield constructing viscosity giving material and earth pressure type shield method | |
JP6085062B1 (en) | Shield drilling method | |
JPH10169365A (en) | Method of shield tunneling method for weak soil and drilling-fluid additive | |
JPH0716680B2 (en) | A method for agglomerating sediment and a mud pressure shield construction method using the method | |
JP2000186280A (en) | Shield drilling mud additive | |
JP7528141B2 (en) | How to deal with mud | |
JP5878972B1 (en) | Ground improvement method | |
JP2019031791A (en) | Fluidized sand and its manufacturing method and ground improvement method using it | |
JP4553397B2 (en) | Sludge treatment method | |
JPH0544394A (en) | Diposition method of excavated earth and sand in earth pressure shield construction method | |
JP2021059898A (en) | Cutting composition, and high pressure injection stirring method using the same | |
JP2004346108A (en) | Solidifying slurry for ground improvement and ground improvement method using the same | |
JP6981725B2 (en) | Deterioration control agent and deterioration control method for drilling fluid | |
JP6220525B2 (en) | Method for reforming sandy soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190115 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191224 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191224 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200311 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200702 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200702 |
|
C876 | Explanation why request for accelerated appeal examination is justified |
Free format text: JAPANESE INTERMEDIATE CODE: C876 Effective date: 20200702 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200713 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200714 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200814 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200818 |
|
C305 | Report on accelerated appeal examination |
Free format text: JAPANESE INTERMEDIATE CODE: C305 Effective date: 20200818 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200825 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20200908 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20201006 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20201006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201013 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20201020 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20201110 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20201215 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20201215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6830632 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |